[Bornes optimales pour la hauteur des variétés de Fano K-semi-stables II : le cas logarithmique]
In our previous work we conjectured—inspired by an algebro-geometric result of Fujita—that the height of an arithmetic Fano variety $\mathcal{X}$ of relative dimension $n$ is maximal when $\mathcal{X}$ is the projective space $\mathbb{P}_{\mathbb{Z}}^{n}$ over the integers, endowed with the Fubini-Study metric, if the corresponding complex Fano variety is K-semistable. In this work the conjecture is settled for diagonal hypersurfaces in $\mathbb{P}_{\mathbb{Z}}^{n+1}$. The proof is based on a logarithmic extension of our previous conjecture, of independent interest, which is established for toric log Fano varieties of relative dimension at most three, hyperplane arrangements on $\mathbb{P}_{\mathbb{Z}}^{n}$, as well as for general arithmetic orbifold Fano surfaces.
Dans un travail antérieur, nous avons conjecturé — en nous inspirant d’un résultat algébro-géométrique de Fujita — que la hauteur d’une variété de Fano arithmétique $\mathcal{X}$ de dimension relative $n$ est maximale lorsque $\mathcal{X}$ est l’espace projectif $\mathbb{P}_{\mathbb{Z}}^{n}$ sur les entiers, muni de la métrique de Fubini-Study, à condition que la variété de Fano complexe correspondante soit K-semi-stable. Dans ce travail, nous démontrons cette conjecture pour les hypersurfaces diagonales dans $\mathbb{P}_{\mathbb{Z}}^{n+1}$. La démonstration repose sur une extension logarithmique de notre conjecture précédente — d’un intérêt indépendant — que nous établissons pour les variétés de Fano logarithmiques toriques de dimension relative au plus $3$, les arrangements d’hyperplans dans $\mathbb{P}_{\mathbb{Z}}^{n}$, ainsi que pour les surfaces de Fano arithmétiques orbifoldes générales.
Accepté le :
Publié le :
Keywords: Arakelov geometry, heights, Kähler–Einstein metrics, Fano varieties, K-stability
Mots-clés : Géométrie d’Arakelov, hauteurs, métriques de Kähler–Einstein, variétés de Fano, K-stabilité
Rolf Andreasson 1 ; Robert J. Berman 1

@article{JEP_2025__12__983_0, author = {Rolf Andreasson and Robert J. Berman}, title = {Sharp bounds on the height of {K-semistable~Fano} varieties {II,} the log case}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {983--1018}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.304}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.304/} }
TY - JOUR AU - Rolf Andreasson AU - Robert J. Berman TI - Sharp bounds on the height of K-semistable Fano varieties II, the log case JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 983 EP - 1018 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.304/ DO - 10.5802/jep.304 LA - en ID - JEP_2025__12__983_0 ER -
%0 Journal Article %A Rolf Andreasson %A Robert J. Berman %T Sharp bounds on the height of K-semistable Fano varieties II, the log case %J Journal de l’École polytechnique — Mathématiques %D 2025 %P 983-1018 %V 12 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.304/ %R 10.5802/jep.304 %G en %F JEP_2025__12__983_0
Rolf Andreasson; Robert J. Berman. Sharp bounds on the height of K-semistable Fano varieties II, the log case. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 983-1018. doi : 10.5802/jep.304. https://jep.centre-mersenne.org/articles/10.5802/jep.304/
[1] - “Birational geometry for number theorists”, in Arithmetic geometry, Clay Math. Proc., vol. 8, American Mathematical Society, Providence, RI, 2009, p. 335-373 | Zbl
[2] - “Canonical heights of arithmetic surfaces, periods and the Hurwitz zeta function”, 2024 | arXiv | Zbl
[3] - “Sharp bounds on the height of K-semistable Fano varieties I, the toric case”, Compositio Math. 160 (2024) no. 10, p. 2366-2406 | DOI | MR | Zbl
[4] - “On K-stability, height bounds and the Manin-Peyre conjecture”, Pure Appl. Math. Q 21 (2025) no. 3, p. 931-970 | DOI | MR | Zbl
[5] - “Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties”, Ann. Fac. Sci. Toulouse Math. (6) 22 (2013) no. 4, p. 649-711 | DOI | Numdam | MR | Zbl
[6] - “Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties”, J. reine angew. Math. 751 (2019), p. 27-89 | DOI | MR | Zbl
[7] - “Waring’s problem in algebraic number fields”, Proc. Cambridge Philos. Soc. 57 (1961), p. 449-459 | DOI | MR | Zbl
[8] - “Heights of projective varieties and positive Green forms”, J. Amer. Math. Soc. 7 (1994) no. 4, p. 903-1027 | DOI | MR | Zbl
[9] - “Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs”, Ann. Inst. Fourier (Grenoble) 67 (2017) no. 2, p. 743-841 | DOI | Numdam | MR | Zbl
[10] - “Arithmetic of higher-dimensional orbifolds and a mixed Waring problem”, Math. Z. 299 (2021) no. 1-2, p. 1071-1101 | DOI | MR | Zbl
[11] - Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, vol. 360, Société Mathématique de France, Paris, 2014 | Numdam | Zbl
[12] - “Special manifolds, arithmetic and hyperbolic aspects: a short survey”, in Rational points, rational curves, and entire holomorphic curves on projective varieties, Contemp. Math., vol. 654, American Mathematical Society, Providence, RI, 2015, p. 23-52 | DOI | Zbl
[13] - “Positivity of the CM line bundle for families of -stable klt Fano varieties”, Invent. Math. 223 (2021) no. 3, p. 811-894 | DOI | MR | Zbl
[14] - “Extension of plurisubharmonic functions with growth control”, J. reine angew. Math. 676 (2013), p. 33-49 | DOI | MR | Zbl
[15] - Toric varieties, Graduate Studies in Math., vol. 124, American Mathematical Society, Providence, RI, 2011 | DOI | MR | Zbl
[16] - “Diophantine approximation on abelian varieties”, Ann. of Math. (2) 133 (1991) no. 3, p. 549-576 | DOI | MR | Zbl
[17] - “Optimal bounds for the volumes of Kähler-Einstein Fano manifolds”, Amer. J. Math. 140 (2018) no. 2, p. 391-414 | DOI | MR | Zbl
[18] - “K-stability of log Fano hyperplane arrangements”, J. Algebraic Geom. 30 (2021) no. 4, p. 603-630 | DOI | MR | Zbl
[19] - “An obstruction to the existence of Einstein Kähler metrics”, Invent. Math. 73 (1983) no. 3, p. 437-443 | DOI | MR | Zbl
[20] - “Characteristic classes for algebraic vector bundles with Hermitian metric. II”, Ann. of Math. (2) 131 (1990) no. 2, p. 205-238 | DOI | MR | Zbl
[21] - “Conic singularities metrics with prescribed Ricci curvature: general cone angles along normal crossing divisors”, J. Differential Geom. 103 (2016) no. 1, p. 15-57 | MR | Zbl
[22] - “Minimization of Arakelov K-energy for many cases”, Kyoto J. Math. (2022), to appear, arXiv:2211.03415 | Zbl
[23] - “Kähler-Einstein metrics with edge singularities”, Ann. of Math. (2) 183 (2016) no. 1, p. 95-176 | DOI | MR | Zbl
[24] - “Singularities of pairs”, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Part 1, American Mathematical Society, Providence, RI, 1997, p. 221-287 | DOI | MR | Zbl
[25] - Singularities of the minimal model program, Cambridge Tracts in Math., vol. 200, Cambridge University Press, Cambridge, 2013 | DOI | MR | Zbl
[26] - “-uniform stability and Kähler-Einstein metrics on Fano varieties”, Invent. Math. 227 (2022) no. 2, p. 661-744 | DOI | MR | Zbl
[27] - “Finite generation for valuations computing stability thresholds and applications to K-stability”, Ann. of Math. (2) 196 (2022) no. 2, p. 507-566 | DOI | MR | Zbl
[28] - Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables, Mém. Soc. Math. France (N.S.), vol. 80, Société Mathématique de France, Paris, 2000 | DOI | Numdam | Zbl
[29] - “The Ricci continuity method for the complex Monge-Ampère equation, with applications to Kähler-Einstein edge metrics”, Comptes Rendus. Mathématique 350 (2012) no. 13-14, p. 693-697 | DOI | Numdam | Zbl
[30] - “Bounding toric singularities with normalized volume”, Bull. London Math. Soc. 56 (2024) no. 6, p. 2212-2229 | DOI | MR | Zbl
[31] - “An algorithm for the classification of smooth Fano polytopes”, 2007, Database at http://www.grdb.co.uk/forms/toricsmooth | arXiv | Zbl
[32] - “A generalization of the Ross-Thomas slope theory”, Osaka J. Math. 50 (2013) no. 1, p. 171-185 | MR | Zbl
[33] - “Canonical Kähler metrics and arithmetics: generalizing Faltings heights”, Kyoto J. Math. 58 (2018) no. 2, p. 243-288 | DOI | MR | Zbl
[34] - “Testing log K-stability by blowing up formalism”, Ann. Fac. Sci. Toulouse Math. (6) 24 (2015) no. 3, p. 505-522 | DOI | Numdam | MR | Zbl
[35] - “Hauteurs et mesures de Tamagawa sur les variétés de Fano”, Duke Math. J. 79 (1995) no. 1, p. 101-218 | DOI | MR | Zbl
[36] - “Points de hauteur bornée, topologie adélique et mesures de Tamagawa”, J. Théor. Nombres Bordeaux 15 (2003) no. 1, p. 319-349 | DOI | Numdam | MR | Zbl
[37] - “The Vinogradov mean value theorem [after Wooley, and Bourgain, Demeter and Guth]”, in Séminaire Bourbaki. Vol. 2016/2017, Astérisque, vol. 407, Société Mathématique de France, Paris, 2019, p. 479-564, Exp. No. 1134 | DOI | MR | Zbl
[38] - “Hyperbola method on toric varieties”, J. Éc. polytech. Math. 11 (2024), p. 107-157 | DOI | MR | Zbl
[39] - “Campana points of bounded height on vector group compactifications”, Proc. London Math. Soc. (3) 123 (2021) no. 1, p. 57-101 | DOI | MR | Zbl
[40] - “Angle deformation of Kähler-Einstein edge metrics on Hirzebruch surfaces”, Pure Appl. Math. Q 18 (2022) no. 1, p. 343-366 | DOI | MR | Zbl
[41] - “Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds”, Pure Appl. Math. Q 13 (2017) no. 3, p. 477-515 | DOI | MR | Zbl
[42] - “Minimal model program for excellent surfaces”, Ann. Inst. Fourier (Grenoble) 68 (2018) no. 1, p. 345-376 | DOI | Numdam | MR | Zbl
[43] - “Campana points, Height zeta functions, and log Manin’s conjecture”, http://hdl.handle.net/2433/265752, 2020, Problems and prospects in analytic number theory (RIMS Kyoto, 2020)
[44] - “The Stacks Project”, 2023, Lemma 54.15.6: https://stacks.math.columbia.edu/tag/0BIC
[45] - Canonical metrics in Kähler geometry, Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 2000 | DOI | MR
[46] - “Nested efficient congruencing and relatives of Vinogradov’s mean value theorem”, Proc. London Math. Soc. (3) 118 (2019) no. 4, p. 942-1016 | DOI | MR | Zbl
[47] - “K-stability of Fano varieties: an algebro-geometric approach”, EMS Surv. Math. Sci. 8 (2021) no. 1-2, p. 265-354 | DOI | MR | Zbl
[48] - “Optimal destabilizing centers and equivariant K-stability”, Invent. Math. 226 (2021) no. 1, p. 195-223 | DOI | MR | Zbl
Cité par Sources :