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SHARP BOUNDS ON THE HEIGHT OF

K-SEMISTABLE FANO VARIETIES II, THE LOG CASE

by Rolf Andreasson & Robert J. Berman

Abstract. — In our previous work we conjectured—inspired by an algebro-geometric result of
Fujita—that the height of an arithmetic Fano variety X of relative dimension n is maximal
when X is the projective space Pn

Z over the integers, endowed with the Fubini-Study metric,
if the corresponding complex Fano variety is K-semistable. In this work the conjecture is settled
for diagonal hypersurfaces in Pn+1

Z . The proof is based on a logarithmic extension of our previous
conjecture, of independent interest, which is established for toric log Fano varieties of relative
dimension at most three, hyperplane arrangements on Pn

Z , as well as for general arithmetic
orbifold Fano surfaces.
Résumé (Bornes optimales pour la hauteur des variétés de Fano K-semi-stables II : le cas loga-
rithmique)

Dans un travail antérieur, nous avons conjecturé — en nous inspirant d’un résultat algébro-
géométrique de Fujita — que la hauteur d’une variété de Fano arithmétique X de dimension
relative n est maximale lorsque X est l’espace projectif Pn

Z sur les entiers, muni de la métrique de
Fubini-Study, à condition que la variété de Fano complexe correspondante soit K-semi-stable.
Dans ce travail, nous démontrons cette conjecture pour les hypersurfaces diagonales dans Pn+1

Z .
La démonstration repose sur une extension logarithmique de notre conjecture précédente —
d’un intérêt indépendant — que nous établissons pour les variétés de Fano logarithmiques
toriques de dimension relative au plus 3, les arrangements d’hyperplans dans Pn

Z , ainsi que
pour les surfaces de Fano arithmétiques orbifoldes générales.
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1. Introduction

This is a sequel to [3], where a conjectural arithmetic analog of Fujita’s sharp
bound for the degree (volume) of K-semistable Fano varieties over C from [17] was
proposed, concerning arithmetic Fano varieties X. The case when X is the canonical
integral model of a complex toric Fano variety X was settled in [3], when the relative
dimension n is at most six (the extension to any n is conditioned on a conjectural gap
hypothesis for the algebro-geometric degree). Here we will, in particular, show that the
conjecture introduced in [3] holds for any diagonal Fano hypersurface X in Pn+1

Z (see
Section 1.1.3 below). The proof is based on the following extension of the conjecture
in [3] to the logarithmic setting, which is the main focus of the present work:

Conjecture 1. — Let (X,D) be an arithmetic log Fano variety and denote by (X,∆)

is complexification, which defines a complex log Fano variety. Then the following in-
equality of arithmetic intersection numbers holds for any volume-normalized continu-
ous metric on −(KX +∆) with positive curvature current if (X,∆) is K-semistable:

(−K(X,D))
n+1 ⩽ (−KPn

Z
)n+1,

where −KPn
C

is endowed with the volume-normalized Fubini-Study metric. Moreover,
if X is normal equality holds if and only if (X,D) = (PnZ, 0) and the metric is Kähler-
Einstein, i.e., coincides with the Fubini-Study metric up to the action of an automor-
phism of PnC.

By definition, an arithmetic log Fano variety (X,D) is a projective flat scheme X

over Z, such that X is reduced and satisfies Serre’s conditions S2 (e.g., X normal),
together with an effective Q-divisor D on X such that

−K(X,D) := −(KX +D)

defines a relatively ample Q-line bundle, where KX denotes the relative canonical
divisor on X. We also assume that the corresponding complex variety X is normal.
The complexification (X,∆) of (X,D) thus defines a complex log Fano variety and
we shall say that (X,D) is an integral model of (X,∆) (see Section 2.2 for more
background on this setup).

Following standard procedure, we denote by L a metrized line bundle, i.e., a line
bundle L on X endowed with an Hermitian metric over the complex points X of X.
Arithmetic intersection numbers of metrized line bundles were introduced by Gillet-
Soulé in the context of Arakelov geometry [8]. The top arithmetic intersection number
L
n+1 of L is called the height of L. The height of −KPn

Z
with respect to the volume-

normalized Fubini-Study metric, appearing in the previous conjecture, is explicitly
given by the following formula [1, Lem. 3.6], which, essentially, goes back to [20, §5.4]:

(1.1) (−KPn
Z
)n+1 =

1

2
(n+ 1)n+1

(
(n+ 1)

n∑
k=1

k−1 − n+ log(πn/n!)

)
.

J.É.P. — M., 2025, tome 12



Sharp bounds on the height of K-semistable Fano varieties II, the log case 985

As for the notion of K-stability it originally appeared in the context of the Yau-Tian-
Donaldson conjecture for Fano manifolds X (see the survey [47] for recent develop-
ments, including connections to moduli spaces and the minimal model program in
birational geometry). By [26] and [27, Th. 1.6] a log Fano variety (X,∆) over C is
K-polystable (which is a slightly stronger condition than K-semistability) if and only
if it admits a log Kähler-Einstein metric, i.e., a locally bounded metric on −(KX+∆),
whose curvature current ω induces a Kähler metric with constant Ricci curvature on
the complement of ∆ in the regular locus of X. After volume-normalization, any log
Kähler-Einstein for (X,∆) maximizes the height (−K(X,D))

n+1 among all volume-
normalized locally bounded metrics on −(KX +∆) with positive curvature (as shown
precisely as in the case that D = 0 considered in [3, §2.3]). When (X,∆) is log smooth
any log Kähler-Einstein metric has conical singularities along ∆ (see Section 2.1.2)

The K-semistability of (X,∆) implies that (X,∆) is Kawamata log terminal (klt)
in the usual sense of birational geometry (see Remark 7). An important class of klt log
Fano varieties (X,∆) is provided by (smooth) Fano orbifolds, where the coefficients
of ∆ are of the form (1− 1/mi) for positive integers mi. Diophantine aspects of Fano
orbifolds have recently been explored in a number of works, building on Campana’s
program [12] and its developments by Abramovich [1] (see [43] for a very recent
survey). In particular, a logarithmic generalization of the Manin-Peyre conjecture for
the density of rational points of bounded height on Fano varieties is proposed in [39],
which, for example, is addressed for log Fano hyperplane arrangements and toric
varieties in [10] and [38], respectively. See [4] for relations between height bounds,
K-stability and the Manin-Peyre conjecture.

1.1. Main results

1.1.1. Toric log Fano varieties. — We first consider the case when (X,D) is the canon-
ical integral model of a complex toric log Fano variety (X,∆) (see [28, §2] and [11,
Def. 3.5.6]). One advantage of the logarithmic setup is that on any given toric Fano
variety X there exist an infinite number of toric Q−divisors D such that −(KX +∆)

is a K-semistable log Fano variety. Building on [1], where the case when D = 0 was
considered, we show:

Theorem 2. — Let (X,D) be the canonical integral model of a complex K-semistable
toric log Fano variety (X,∆). Conjecture 1 holds for (X,D) under anyone of the
following conditions:

– n ⩽ 3 and X is Q−factorial (equivalently, X has at worst abelian quotient sin-
gularities);

– X is not Gorenstein or has some abelian quotient singularity.

The starting point of the proof is the bound

(1.2)
(−K(X,D))

n+1

(n+ 1)!
⩽

1

2
vol(X,∆) log

( (2π2)n

vol(X,∆)

)
, vol(X,∆) :=

−(KX +∆)n

n!
,

J.É.P. — M., 2025, tome 12



986 R. Andreasson & R. J. Berman

shown precisely as in the case when ∆ = 0, considered in [1]. For X = Pn the previous
theorem is verified by an explicit calculation. In the remaining case, X ̸= Pn, the
bound in Conjecture 1 follows, just as in [1], from combining the bound (1.2) with
the following logarithmic analog of the “gap hypothesis” introduced in [1]:

(1.3) vol(X,∆) ⩽ vol(Pn−1 × P1)

for any K-semistable n-dimensional log Fano variety (X,∆) such that X ̸= Pn.(1)

In the case that X is singular the logarithmic gap hypothesis does hold in any dimen-
sion, just as in [1]. In the non-singular case there is, for any dimension, only a finite
number of toric Fano varieties X. For n ⩽ 6 these appear in the database [31], which,
as observed in [1], settles the gap hypothesis for n ⩽ 6, when ∆ = 0. However, in the
present case there is for any given toric variety X an infinite number of toric divi-
sors ∆ on X such that (X,∆) is a K-semistable Fano variety. In order to establish the
logarithmic gap-hypothesis (1.3) we thus introduce the following invariant of a Fano
manifold X:

S(X) := sup
∆

{vol(X,∆) : (X,∆)K-semistable log Fano}

and show, by solving the corresponding optimization problem, that

S(X) ⩽ vol(Pn−1 × P1)

when X ̸= Pn and n ⩽ 3.
The invariant S(X) and the corresponding maximizers ∆ appear to be of indepen-

dent interest in Kähler geometry. This is illustrated by some examples in Section 3.1,
where we make contact with a rigidity property of the corresponding log Kähler-
Einstein metric, first exhibited in [40].

1.1.2. Hyperplane arrangements. — We next turn to the case when X is the projective
space over the integers, X = PnZ and D is a hyperplane arrangement, i.e., its irreducible
components are hyperplanes.

Theorem 3. — Conjecture 1 holds when X = PnZ and D is a hyperplane arrangement
with simple normal crossings.

The proof employs a convexity argument to reduce the problem to the case when D

is toric, which is covered by Theorem 9. The argument leverages the explicit charac-
terization of K-semistable hyperplane arrangements established in [18] and yields the
following explicit bound:

(1.4)
(−K(X,D))

n+1

(n+ 1)!
⩽

1

2
vol(X,∆) log

( (n+ 1)ne2an

(n+ 1)! vol(X,∆)

)
, an =

(−KPn
Z
)n+1

(n+ 1)
n+1 ,

with equality if and only if D is toric.

(1)See [3, §3.2.1] for a comparison between the gap hypothesis and the ODP-conjecture in [41]
(very recently settled in the toric case [30]), which, however, yields a weaker inequality than the gap
hypothesis in our setup.

J.É.P. — M., 2025, tome 12
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1.1.3. Application to diagonal hypersurfaces. — Given a positive integer d and inte-
gers ai, consider the diagonal hypersurface Xa of degree d in Pn+1

Z cut out by the
homogeneous polynomial

∑n+1
i=0 aix

d
0. The corresponding complex variety Xa is Fano

if and only if d ⩽ (n+1) and is always K-polystable (and, in particular, K-semistable);
see, for example, [48] for an algebraic proof. Using the results stated in the previous
two sections we will establish Conjecture 1 for Xa, endowed with the trivial divisor 0:

Theorem 4. — Conjecture 1 holds for any diagonal hypersurface Xa which is Fano
(i.e., d ⩽ n+ 1) when the divisor D is trivial. More precisely,

(−KXa
)n+1 ⩽ (−KPn

Z
)n+1 + (1− d)(n+ 2− d)n

n+1∑
i=0

log |ai|,

and the inequality is strict if d ⩾ 2.

Note that the schemes Xa are mutually non-isomorphic over Z, for any given
degree d of at least two. In fact, in general, they are not even isomorphic over Q. The
proof of the previous theorem is first reduced to the case of a Fermat hypersurface,
i.e., the case when ai = 1. Expressing Xa as a Galois cover of PnZ the estimate (1.4)
can then be applied with X = PnZ and ∆ the corresponding branching divisor, which
reduces the problem to a simple toric case.

We recall that the Manin-Peyre conjecture has been settled for Fano hypersurfaces
over Q of sufficiently small degree [35, 36]. In particular, there is an extensive literature
on the diagonal case, in connection to Waring’s classical problem, where the degree
bound has been improved [37] (see also [7] and [46, Th. 15.6] for general number fields).

1.1.4. Arithmetic log surfaces. — Consider a polarized arithmetic log surface (X,D;L),
i.e., an arithmetic log surface (X,D) endowed with a relatively ample line bundle L.
Assume that the complexification L ⊗ C is isomorphic to −K(X,∆) (where (X,∆)

denotes, as before, the complexification of (X,D)). Given a continuous metric on L

we define the arithmetic log Mabuchi functional of (X,D;L) by

(1.5) M(X,D)(L) :=
1

2
L

2
+K(X,D) · L,

where K(X,D) is endowed with the volume-normalized metric induced by the curvature
current ω of L, assuming that this metric on K(X,D) is continuous. When D = 0 the
functional M(X,D)(L) coincides with the modular height introduced in [33], up to
normalization (see [3, §6.4] for a comparison between the different normalizations).
For a given integral model M(X,D)(L) is minimized on a log Kähler-Einstein metric,
if such a metric exists, and then

M(X,D)(L) = −(−K(X,D))
2/2,

if the metric is volume-normalized and L = −K(X,D).

J.É.P. — M., 2025, tome 12



988 R. Andreasson & R. J. Berman

Theorem 5. — Let (X,D;L) be a polarized arithmetic log surface (X,D;L) with X

normal, such that the complexification (X,∆) of (X,D) is a K-semistable Fano variety
and L⊗ C = −K(X,∆). If ∆ is supported on (at most) three points, then

M(X,D)(L) ⩾ M(P1
Z,0)

(−KP1
Z
) (= −1− log π),

where −KP1
Z

is endowed with the Fubini-Study metric. Moreover, equality holds if
and only if (X,D) is isomorphic to (P1

Z, 0) and L is isomorphic to −KP1
Z
, endowed

with a metric coinciding with the Fubini-Study metric, up to the application of an
automorphism of P1

Z and a scaling of the metric.

It would be interesting to extend the previous theorem to the case when ∆ is
supported on any number of points. Anyhow, the assumption that ∆ is supported on
three points is always satisfied in the orbifold case. In particular, we get:

Corollary 6. — Conjecture 1 holds for arithmetic normal log Fano surfaces, if ∆ is
supported on, at most, three points. In particular, the conjecture holds for all normal
arithmetic log Fano orbifold surfaces (i.e., the case of coefficients of the form 1−1/mi

for mi ∈ N).

In the setup of the previous theorem the corresponding complex variety X is always
equal to P1 and thus (X,∆) is a hyperplane arrangement. Accordingly, applying The-
orem 3, the proof of Theorem 5 is reduced to showing that the canonical integral
model (Xc,Dc;−K(Xc,Dc)) of (X,∆;−K(X,∆)) obtained by setting Xc = P1

Z and tak-
ing Dc to be the Zariski closure of {0, 1,∞)} in P1

Z minimizes M(X,D)(L) over all
integral models (X,D;L) of (X,∆;−K(X,∆)), for any fixed metric on −K(X,∆). This
minimization property can be viewed as logarithmic version of Odaka’s minimization
conjecture (proposed in any dimension in [33]). Our proof builds on [33], leveraging
log canonical thresholds. We also show that the minimum is uniquely attained for
(P1

Z, 0). See also [22] for very recent progress on Odaka’s minimization conjecture in
another direction.

Acknowledgements. — Thanks to Julia Brandes, Dennis Eriksson, Mattias Jonsson,
Gerard Freixas i Montplet and Yuji Odaka for discussions and the referee for com-
ments that helped to improve the exposition.

2. General setup

2.1. Log Fano varieties over C and volume-normalized metrics on −(KX +∆)

A log pair (X,∆) over C is a normal complex projective variety X together with an
effective Q-divisor ∆ on X such that KX+∆ is Q-Cartier, i.e., defines a Q-line bundle,
where KX denotes the canonical divisor on X [24]. In the logarithmic setting this
bundle plays the role of the canonical line bundle and is thus called the log canonical
line bundle and is denoted by K(X,∆). A log pair (X,∆) is said to be a log Fano pair
if ∆ is effective and −(KX+∆) > 0. Any continuous metric ∥·∥ on −(KX+∆) induces
a measure µ on X in a standard fashion. Indeed, when X is regular and ∆ = 0 this

J.É.P. — M., 2025, tome 12



Sharp bounds on the height of K-semistable Fano varieties II, the log case 989

follows directly from the definition of metrics on −KX (see [3, §2.1.2]). In general,
denoting by Xreg the regular locus of X, and using that the Q-line bundles −(KX+∆)

and −KX are isomorphic on the complement Xreg ∖ supp(∆) in Xreg of the support
of ∆, the previous construction yields a measure on Xreg∖ supp(∆). Its push-forward
to X, under the inclusion map, thus yields a measure on X (see also [6, §3.1] for a
slightly different representation of this measure). This measure has finite mass if and
only if the log pair (X,∆) is klt in the standard sense of birational algebraic geometry
(see [6, §3.1] and Remark 7 below). A continuous metric on −(KX +∆) will be said
to be volume-normalized if the corresponding measure is a probability measure.

2.1.1. Local representations of metrics and measures. — As in [3] we will use additive
notation for metrics on holomorphic line bundles L → X. This means that we iden-
tify a continuous Hermitian metric ∥·∥ on L with a collection of continuous local
functions ϕU associated to a given covering of X by open subsets U and trivializing
holomorphic sections eU of L→ U :

(2.1) ϕU := − log(∥eU∥2).

The curvature current of the metric may then, locally, be expressed as

ddcϕU :=
i

2π
∂∂ϕU

Accordingly, as is customary, we will symbolically denote by ϕ a given continu-
ous Hermitian metric on L and by ddcϕ its curvature current. We will denote by
C0(L) ∩ PSH(L) the space of all continuous metrics on L whose curvature current is
positive, ddcϕ ⩾ 0 (which means that ϕU is plurisubharmonic, or psh, for short).

Given a log Fano pair (X,∆) the measure corresponding to a given continuous
metric ϕ on −K(X,∆) may be locally on Xreg be expressed as

µϕ = e−ϕU |sU |−2
(i/2)n

2

dz ∧ dz, dz := dz1 ∧ · · · ∧ dzn

by taking eU = ∂/∂z1 ∧ · · · ∧ ∂/∂zn ⊗ e∆, where e∆ is a local trivialization of the
Q-line bundle over Xreg corresponding to the divisor ∆ and sUe∆ is the (multi-valued)
holomorphic section cutting out ∆.

2.1.2. Log Kähler-Einstein metrics. — Given a log Fano pair (X,∆), a metric ϕ on
−K(X,∆) is said to be alog Kähler-Einstein metric, if ϕ is locally bounded and its
curvature current ddcϕ induces a Kähler metric with constant positive Ricci curvature
on the complement of ∆ in Xreg [6]. When (X,∆) is log smooth, i.e., X is smooth
and ∆ has simple normal crossings, any log Kähler-Einstein for (X,∆) has conical
singularities along ∆. More precisely, ϕ is continuous and if ∆ has coefficient ci ∈ ]0, 1[

along a smooth prime divisor ∆i, then ddcϕ has cone angle 2π(1 − ci) along ∆i

[23, 21, 29].

J.É.P. — M., 2025, tome 12
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2.1.3. K-semistability. — We next recall the definition of K-semistability in terms of
intersection numbers (see the survey [47] for more background). A test configuration
for a log Fano pair (X,∆) is a C∗-equivariant normal model (X ,L ) for (X,−K(X,∆))

over the complex affine line C. More precisely, X is a normal complex variety, endowed
with a C∗-action ρ, a C∗-equivariant holomorphic projection π to C and a relatively
ample C∗-equivariant Q-line bundle L (endowed with a lift of ρ):

(2.2) π : X −→ C, L −→ X , ρ : X × C∗ −→ X

such that the fiber of X over 1 ∈ C is equal to (X,−K(X,∆)). A log Fano pair
(X,∆) is said to be K-semistable if the Donaldson-Futaki invariants DF∆(X ,L ) are
non-negative for any test configuration (X ,L ) of (X,∆):

n!DF∆(X ,L ) =
n

(n+ 1)
L

n+1
+ K(X ,D)/P1 · L

n
,

where L denotes the C∗-equivariant extension of L to the C∗-equivariant compact-
ification X of X over P1 and K(X ,D)/P1 denotes the relative log canonical divisor
of the pair (X ,D) with D denoting the flat closure in X of the C∗-orbit of the
divisor ∆.

Remark 7. — If a log Fano variety (X,∆) is K-semistable, then (X,∆) is klt (see [34,
Th. 6.1] and [9, Cor. 9.6]). When X is non-singular and ∆ has simple normal crossings
this means that all the coefficients of ∆ along its irreducible components are strictly
smaller than 1.

2.2. Arithmetic log Fano varieties and integral models. — The notion of log pairs
over C can be extended to schemes over excellent rings, as explained in the book [25].
Here we will consider the case when the ring in question is Z. Henceforth, X will denote
a projective flat scheme X → SpecZ of relative dimension n such that X is reduced
and satisfies Serre’s conditions S2 (this is, for example, the case if X is normal). Such a
scheme X will be called an arithmetic variety. We will denote by π the corresponding
structure morphism to SpecZ,

π : X −→ SpecZ.

A log pair (X,D) over Z of relative dimension n is an arithmetic variety X endowed
with an effective Q-divisor D on X such that KX + D is Q-Cartier, i.e., defines a
Q-line bundle, where KX denotes the relative canonical divisor on X (see [25, §1.1]
and [3, §2.2.1]). We shall call such a pair (X,D) an arithmetic log variety. The com-
plexification of (X,D) will be denoted by (X,∆) and (X,D) will be called an integral
model of (X,∆).

Remark 8. — We are using the notion of an integral model in a generalized sense –
usually a scheme X over Z is said to be an integral model of a scheme XQ defined
over Q if XQ is isomorphic to X ⊗Z Q over Q. Here X (without any subscript) will
usually denote a variety over C and a scheme X over Z is thus called an integral model
of X if X is isomorphic to X⊗Z C.

J.É.P. — M., 2025, tome 12
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A log pair (X,D) over Z will be called an arithmetic log Fano variety if −(KX+D)

is relatively ample and the corresponding complex variety X is normal. In particular,
the complexification (X,∆) of (X,D) is a log Fano variety over C. More generally,
an arithmetic variety X endowed with a relatively ample line bundle L will be said to
be polarized and (X,L) will be called an integral model of a complex polarized variety
(X,L) if (X,L) is isomorphic to the complexification of (X,L).

2.3. Arithmetic intersection numbers and heights. — We recall some well-known
facts about heights (see [3] for more background and references). A metrized line
bundle L is a line bundle L → X such that the corresponding line bundle L → X is
endowed with a metric, that we shall denote by ϕ (as in Section 2.1.1); L := (L, ϕ).
The χ-arithmetic volume of a polarized arithmetic variety (X,L) is defined by

(2.3) v̂olχ
(
L
)
:= lim

k→∞
k−(n+1) log Vol

{
sk ∈ H0(X, kL)⊗ R : supX ∥sk∥ϕ ⩽ 1

}
,

whereH0(X, kL)⊗R may be identified with the subspace of real sections inH0(X, kL).
More generally, v̂olχ

(
L
)

is naturally defined for Q−line bundles, since it is homoge-
neous with respect to tensor products of L:

(2.4) v̂olχ
(
mL

)
= mn+1v̂olχ

(
L
)
, if m ∈ Z+.

Moreover, v̂olχ
(
L
)

is additively equivariant with respect to scalings of the metric:

(2.5) v̂olχ (L, ϕ+ λ) = v̂olχ
(
L
)
+
λ

2
Vol(L), if λ ∈ R.

If the metric on L has positive curvature current (i.e., if ϕ is psh), then, by the
arithmetic Hilbert-Samuel theorem,

(2.6) v̂olχ(L) =
L
n+1

(n+ 1)!
,

where L
n+1 denotes the top arithmetic intersection number in the sense of Gillet-

Soulé [20], which, defines the height of X with respect to L [16, 8]. For the purpose of
the present paper formula (2.6) may be taken as the definition of Ln+1 (arithmetic
intersections between general n + 1 metrized line bundles could then be defined by
polarization, i.e., using multilinearity). Following standard practice we will use the
shorthand hϕ(X,L) for the height (L, ϕ)n+1 and ĥϕ(X,L) for the normalized height:

hϕ(X,L) := (L, ϕ)n+1, ĥϕ(X,L) :=
(L, ϕ)n+1

(n+ 1)Ln
.

The definition of ĥϕ(X,L) is made so that

ĥϕ+λ(X,L) = ĥϕ(X,L) + λ/2 if λ ∈ R.
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We also recall that, given two continuous psh metrics ϕ and ϕ0 on the complexification
L→ X of L → X, we have that

(2.7)

2h (L, ϕ)− 2h (L, ϕ0) = E(ϕ, ϕ0)

:=
1

(n+ 1)!

∫
X

(ϕ− ϕ0)

n∑
j=0

(ddcϕ)j ∧ (ddcϕ0)
n−j .

2.4. The canonical height of an arithmetic log Fano variety. — We define the
canonical height hcan(X,D) of an arithmetic log Fano variety (X,D) by

hcan(X,D) := sup
{
hϕ

(
−K(X,D)

)
: ϕ cont. psh,

∫
X

µϕ = 1
}

(when D = 0 we shall use the short hand hcan(X) for hcan(X, 0)). As shown precisely
as in the case D = 0, considered in [3], hcan(X,D) <∞ if and only if the correspond-
ing log Fano variety (X,∆) over C is K-semistable. By [2, Prop. 3.3], the sup defining
hcan(X,D) may as well be taken over all locally bounded metrics ϕ on −K(X,∆) (or,
more generally, over all finite energy psh metrics ϕ). Moreover, (X,∆) is K-polystable
if and only if the sup defining hcan(X,D) is attained at some locally bounded met-
ric ϕ, namely a log Kähler-Einstein metric. Hence, if (X,∆) is K-polystable, then
the canonical height hcan(X,D) is computed by any volume-normalized log Kähler-
Einstein metric.

Finally, we note that, by scaling the metric,

−ĥcan(X,D) := − hcan(X)

(n+ 1)(−K(X,∆))n
= inf

ϕ

1

2
D̂Z(ϕ),

D̂Z(ϕ) := −2ĥϕ
(
−K(X,D)

)
− log

∫
X

µϕ,(2.8)

where the inf ranges over all continuous psh metrics ϕ on −K(X,∆). Additionally,
by [2, Prop. 3.3], −hcan(X,D) coincides with the infimum of the arithmetic Mabuchi
functional attached to (X,D;−K(X,D), ϕ). The functional D̂Z(ϕ) in (2.8) is an arith-
metic analog of the Ding functional Dϕ0

in Kähler geometry (that appears in the
proof of [3, Th. 2.5] in the case when D = 0), defined by

(2.9) Dϕ0(ϕ) := −E(ϕ, ϕ0)/ vol(−K(X,∆))− log

∫
X

µϕ

with respect to a reference metric ϕ0 on −K(X,∆).

3. Toric log Fano varieties

Recall that an n-dimensional complex projective variety X is said to be toric if
the complex torus TC := (C∗)n acts on X with an open dense orbit [15]. We can thus
view X is a TC-equivariant compactification of (C∗)n. A log pair (X,∆) over C is said
to be toric if X and ∆ are toric, i.e., if X is toric and the Q-divisor ∆ is invariant
under the torus action on X. A line bundle L over a complex toric variety X is called
toric if is endowed with a TC-action covering the TC-action on X. An ample toric line
bundle L→ X corresponds to a convex rational polytope P ⊂ Rn, called the moment
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polytope, determined by the following property: for any given positive integer k, the
complex vector space H0(X, kL decomposes as follows under the TC-action,

(3.1) H0(X, kL) ∼=
⊕

m∈Zn∩kP
Cχm, χm(z) = zm := zm1

1 . . . zm1
1 , z ∈ (C∗)n,

where we have identified L→ X with the trivial line bundle over the dense open orbit
of TC in X (from an invariant point of view, the real vector space Rn above arises as
M ⊗Z R, where M is the lattice Hom(Tc,C∗) of characters of the group Tc [15]).

Any toric ample line bundle L over a complex projective variety X admits a canon-
ical integral model L → X with X normal (see [28, §2] and [11, Def. 3.5.6]). It is de-
termined by the property that the Z−module H0(X, kL) is generated by the sections
corresponding to the characters χm, appearing in formula (3.1) (see [28, Prop. 2.3.10]).
Likewise, a toric log pair (X,∆) admits a canonical integral model (X,D). Moreover,
if (X,∆) is a log Fano variety, then (X,D) is an arithmetic log Fano variety (as shown
precisely as in the case D = 0, considered in [3, §3.1.6]).

In this section we will prove the following result, by building on the proof of
[3, Th. 1.2].

Theorem 9. — Let (X,D) be the canonical integral model of a complex K-semistable
toric log Fano variety (X,∆). Conjecture 1 holds for (X,D) under anyone of the
following conditions:

– n ⩽ 3 and X is Q-factorial (equivalently, X has at worst abelian quotient singu-
larities);

– X is not Gorenstein or has some abelian quotient singularity.

We start by introducing some notation, following [5]. Given a complex toric log
Fano variety (X,∆) set L = −(KX +∆) and denote by P the corresponding moment
polytope in Rn. Then
(3.2) P = {p ∈ Rn : ⟨lF , p⟩ ⩾ −aF , ∀F},

where aF ∈ ]0, 1] (generalizing the Fano case when aF = 1 for all F ; see [5]) and lF
is a primitive integer vector. As shown in [5] (X,∆) is K-semistable if and only if 0
is the barycenter of P if and only if the log Ding functional Dϕ0 is bounded from
below. Moreover, the infimum of Dϕ0

is attained at a T -invariant psh metric ϕ on L.
We will identify the metric ϕ with a continuous convex function on Rn, as in [3].
More precisely, on (C∗)n ↪→ X, let xi = log(|zi|2). Trivializing −(KX + ∆) with
dz1
z1

∧ · · · ∧ dzn
zn

⊗ sUe∆ over U = (C∗)n, and abusing notation slightly, we let ϕ(x) :=
ϕU (z) in the chosen trivialization over U = (C∗)n. Then ϕ as a function of x is a
continuous convex function on Rn. Via this recipe we also define a reference metric
from the convex function ψP (x) := supp∈P ⟨p, x⟩. As in [3, Eq. (3.8)], we still have
that

DψP
(ϕ) =

∫
P

ϕ∗dy/V − log

∫
Rn

e−ϕ(x)dx− n log π, V := vol(P )

(since the support of ∆ is contained in the complement of (C∗)n in X). Thus the
inequality in [3, Prop. 3.7] generalizes to the canonical toric model L of L (which
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coincides with −K(X,D)):

(3.3) 2v̂olχ
(
−K(X,D), ϕ

)
⩽ − vol(X,∆) log

(vol(X,∆)

(2π2)n

)
,

where vol(X,∆) := vol(−K(X,∆).
We will first prove Theorem 9 in the case that X = Pn, using the following

lemma, formulated in terms of the divisor D0 cut out by the Tc-invariant element
of H0(X,−KX) (given by dz1

z1
∧ · · · ∧ dzn

zn
over (C∗)n). In other words,

D0 =
∑
F

DF ,

where DF is the irreducible divisor corresponding to the facet F of the moment
polytope corresponding to X (see [5]). The lemma is a special case of [3, Prop. 3.12].

Lemma 10. — Let X be the canonical integral model of an n-dimensional complex
K-semistable toric Fano variety X and denote by D0 the standard anti-canonical
divisor on X. Then

(−K(X,(1−t)D0))
n+1/(n+ 1)!

(−(KX + (1− t)D0))
n
/n!

=
(−KX)

n+1/(n+ 1)!

(−KX)
n
/n!

− 1

2
log(tn),(3.4)

tn =
( (−(KX + (1− t)D0))

n

(−KX)
n

)
,(3.5)

with respect to the volume-normalized Kähler-Einstein metrics.

We next deduce the following

Lemma 11. — Let (X,D) be a toric K-semistable log Fano variety such that X = PnZ.
Then (−K(X,D))

n+1 ⩽ (−KPn
Z
)n+1 with equality if and only if D = 0.

Proof. — First observe that there exists t ∈ [0, 1] such that D = (1−t)D0 =: Dt. This
is a special case of [18, Cor. 1.6], which applies to Pn, in any dimension n, using that
toric log Fano varieties are never uniformly K-stable. It will thus be enough to show
that t 7→ (−K(Pn

Z ,Dt))
n+1 is increasing on [0, 1] (and thus its maximum is attained at

t = 1). By the previous lemma
2(−K(Pn

Z ,Dt))
n+1/(n+ 1)!

(−KPn)n/n!
= tn2

(−KPn
Z
)n+1/(n+ 1)!

(−KPn)n/n!
− tn log(tn).

Differentiating with respect to (tn) reveals that the right hand side above is increasing
with respect to t if and only if

2
(−KPn

Z
)n+1/(n+ 1)!

(−KPn)n/n!
⩾ 1.

The latter inequality is indeed satisfied, as follows from the explicit formula (1.1). □

Combining the universal bound (3.3) with [3, Lem. 3.8], all that remains to prove
Theorem 9 is to establish the “logarithmic gap hypothesis”

(3.6) vol(X,∆) ⩽ vol(Pn−1 × P1),

assuming that X ̸= Pn and that (X,∆) satisfies the assumptions of Theorem 9.
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Remark 12. — This is a logarithmic generalization of the “gap hypothesis”, discussed
in [3, §3.2.1] and it seems natural to ask if it holds for any K-semistable log Fano vari-
ety (X,∆) such that X ̸= Pn? For example, by the proof of [3, Lem. 3.1], the logarith-
mic gap hypothesis holds for K-semistable products. More generally, as pointed out
by the referee, the logarithmic gap hypothesis holds when (X,∆) admits a morphism
to P1 with K-semistable general fibers, by [13, Cor. 1.17 ] (even without assuming that
the total space (X,∆) is K-semistable).

Proposition 13. — The logarithmic gap hypothesis holds for all toric K-semistable
log Fano varieties (manifolds) (X,∆) such that X ̸= Pn if and only if the following
bound holds for all Fano varieties (manifolds) X ̸= Pn

(3.7) S(X) ⩽ vol(Pn−1×P1), S(X) := sup{vol(−(KX+∆)) : (X,∆)K-semistable}.

The “logarithmic gap hypothesis” holds for all log Fano varieties (X,∆) such that X
is Q-factorial and of dimension n ⩽ 3 and for any dimensions n if X has some abelian
quotient singularity or if X is not Gorenstein.

Proof. — Since, trivially, vol(X,∆) ⩽ S(X) the first equivalence follows directly from
the definitions. Next, let us show the last statement of the proposition, first assuming
that X is singular, which means that the moment polytope P of (X,∆) is “singular”
in the sense that there exists a vertex of ∂P such that the corresponding primitive
vectors lF1 , . . . , lFn do not generate Zn. It follows from the proof of [3, Lem. 3.9] that

vol(P ) ⩽
1

2
(n+ 1)n/n! ⩽ vol(Pn−1 × P1)

Indeed, since aF ⩽ 1 the first inequality follows from the inequality [3, (3.13)], using
that δ ⩾ 2, according to the singularity assumption on P (for the second inequality
see formula [3, (3.14)]). All that remains is thus to show the bound (3.7) for S(X)

when n ⩽ 3 and X is non-singular. First assume that n = 2. This means, by classical
classification results, that X is either P1 × P1 or the blow-up X(m) of P2 in m points
for m ⩽ 3. But (−KX(m))2 = (−KP2)2 −m and thus vol(X1) ⩽ 4 = vol(Pn−1 × P1),
proving the bound (3.7). Finally, consider the case when n = 3. Starting with the
trivial bound vol(X,∆) ⩽ vol(X) it follows the classification [31] of all non-singular
toric Fano varieties of dimension 3 that it is enough to show that the bound (3.7) holds
when X is P3 blown-up in one point or P(O(1)⊕O(2)) (whose degrees are 56 and 62,
respectively). According to the following proposition the corresponding invariants
S(X)n! are, approximately, given by 41.8 and 30.3, respectively, which are well below
the degree 54 of P2 × P1, as desired. □

3.1. The invariant S(X) for n ⩽ 3. — In the proof above we used the following
result.

Proposition 14. — After rounding to the nearest decimal place the invariant n!S(X)

(formula (3.7)) is given by 41.8 and 30.3 when X equals P3 blown up in one point
and P(O⊕ O(2)), respectively.
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Proof. — Given a convex subset P of Rn let

s(P ) := sup{vol(P0) : P0 ⊂ P, bP0 = 0},

where P0 is a closed subset of P with barycenter bP0
at the origin. We will compute

s(P ) when P is the moment polytope of the manifolds X appearing in the proposition,
showing at the same time that s(P ) = S(X). The moment polytopes P of both P3

blown up in one point and P(O⊕O(2)) are of the form a simplex, with a simplex subset
removed, by chopping off a vertex (see ID 20 and ID7 in the database [31])). After a
general linear transformation, they are of the form (a∆3 − 1)∖ (b∆3 − 1), where ∆3

is the standard unit simplex in dimension three, 1 is the vector with all entries equal
to 1, and a and b are positive real numbers. For P3 blown up in one point we can
transform the moment polytope to (4∆3 −1)∖ (2∆3 −1) and for P(O⊕O(2)) we get
(5∆3 − 1)∖ (∆3 − 1). In the first case, the linear transformation is unimodular, but
in the second case the transformation has determinant 2. This will not matter when
computing s(P ) as long as we correct for the non-unit determinant. Next we compute
the barycenter bP of these polytopes, a simple task using the explicit barycenter of the
standard unit simplex, b∆n

= 1/(n+ 1), and then scaling and linearity properties of
the volume times the barycenter. The barycenter of (a∆3−1)∖ (b∆3−1) is given by

a3/3!(a/4− 1)− b3/3!(b/4− 1)

a3/3!− b3/3!
1.

Next we use a general fact, to be proved in the lemma below, stating that the closed
subset P ′ of P which maximizes volume, with the relaxed constraint

(3.8) bP ′ · 1 = 0

is the one given by P ∩ H where H is a half-space with normal 1. In our case,
by symmetry, this P ′ automatically satisfies the stronger constraint bP ′ = 0. Moreover,
since the boundary of P ∩H is parallel to a facet of P it corresponds to a divisor ∆

on X defining a log Fano pair (X,∆). Thus (X,∆) is also the K-semistable log Fano
pair realizing the sup in the definition of S(X), showing that s(P ) = S(X). We can
find H by imposing the constraint. We introduce the weight w such that

P ∩H = ((a− w)∆3 − 1)∖ (b∆3 − 1).

From here it is clear that if bP ′ ·1 = 0, then, in fact, the entire barycenter will vanish
and the condition bP ′ ·1 = 0 turns into the following fourth order polynomial equation
for w:

(a− w)3/3!((a− w)/4− 1)− b3/3!(b/4− 1) = 0.

The solution w and the corresponding value s(P ) for P3 blown up in one point, is
given by

w =
2

3

(
5− 4

3
√
19− 3

√
33

− 3

√
19− 3

√
33

)
n!s(P ) = n! vol(P ′) = ((4− w)3 − 23) ≈ 41.8and
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and for P(O⊕ O(2)),

w =

(
4− 3

√
4

2−
√
2
− 3

√
2(2−

√
2)

)
n!S(P ) =

1

2
n! vol(P ′) =

1

2
((5− w)3 − 13) ≈ 30.3,and

where we have corrected for the non-unimodular transformation used in the second
case. □

In the above proof we used the following

Lemma 15. — Let P be a closed subset of Rn with the origin as an interior point.
Given v ∈ Rn assume that

∫
P
x · v > 0. Then the maximum

max
Q⊂P :

∫
Q
v·xdλ(x)=0

∫
Q

dλ

is attained at Q = P ∩H with H a closed half-space with outward pointing normal v.
Here dλ is Lebesgue measure.

Proof. — Without loss of generality we can assume that v = (0, . . . , 0, 1). Denote
by (x1, x2, . . . , xn−1, y) the coordinates on Rn. Since the origin is an interior point
of P and

∫
P
x · v > 0 there is a closed half-space H as in the lemma satisfy-

ing
∫
P∩H ydλ = 0. Hence, any candidate Q for the maximum in question satisfies∫

P∩H ydλ =
∫
Q
ydλ. Subtracting the left hand side from the right hand side and

vice versa yields
∫
P∩H∖Q ydλ =

∫
Q∖P∩H ydλ. Since supP∩H∖Q y ⩽ infQ∖(P∩H) y it

follows that vol(P ∩ H ∖ Q) ⩾ vol(Q ∖ P ∩ H), so that vol(P ∩ H) ⩾ vol(Q), as
desired. □

In fact, with just a slight variation of the argument above, any maximizer must be of
the special form above and, in addition, assuming connectedness of P , the maximizer
is unique. The proof of the previous proposition thus reveals that the unique toric
divisor ∆ on X realizing the sup defining the invariant S(X) is a multiple of the
prime divisor DF defined by the zero-section of P(O⊕O(2)) → P2 and hyperplane “at
infinity” in P3 blown up at the origin in C3 ⊂ P3, respectively (i.e., the zero-section
of P(O⊕ O(1)) → P2). A similar argument also applies when X is the blow-up of P2

at the origin in C2 (i.e., the first Hirzebruch surface P(O⊕ O(1)) → P2). The unique
maximizer for the invariant S(X) is then a log Fano pair (X,∆) for a multiple of the
hyperplane D “at infinity” (i.e., the zero-section of P(O⊕O(1)) → P2). Interestingly,
this K-polystable log pair (X,∆) was also singled out in [40, Cor. 1.5] by the following
rigidity property (answering a question of Cheltsov): it admits a rigid Kähler-Einstein
metric in the sense that for any other multiple cD the log pair (X, cD) does not
admit a Kähler-Einstein metric. The same rigidity property holds for the two three-
dimensional log pairs discussed above (since there is a unique half-space H satisfying
the constraint in formula (3.8)).
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3.2. Estimates on the canonical height. — Theorem 1.3 from [3] (and its corollary)
generalizes directly to the case of log Fano pairs and their Kähler-Einstein metrics in
any relative dimension n (with the same proof, by letting P be the moment polytope
corresponding to (X,∆)):

1

2
vol(X,∆) log

( n!mnπ
n

vol(X,∆)

)
⩽
hcan(X,D)

(n+ 1)!
⩽

1

2
vol(X,∆) log

( (2π)nπn

vol(X,∆)

)
.

Interestingly, Lemma 10 reveals that the family of log Fano pairs (X,D) appearing
in the lemma may be explicitly expressed in terms of the algebro-geometric volume
vol(X,∆) in the same functional form as the one appearing in the previous upper and
lower bounds:

(−K(X,D))
n+1

(n+ 1)!
=

1

2
vol(X,∆) log

( be2a

vol(X,∆)

)
a :=

(−KX)
n+1/(n+ 1)!

(−KX)
n
/n!

and b = vol(X).with

4. Hyperplane arrangements

In this section we prove Theorem 3 concerning hyperplane arrangements. Recall
that a log Fano pair (X,∆) is called a log Fano hyperplane arrangement if X = Pn and
∆ =

∑m
i=1 wiHi where wi ∈ Q>0 and the Hi are distinct hyperplanes. Furthermore

we will call (X,∆) simple normal crossing, abbreviated snc, if the support of ∆ has
simple normal crossings.

For an snc log Fano hyperplane arrangement, if m = n+ 1 and all the weights wi
are equal, then (X,∆) is a toric log-pair (see Lemma 10). The following lemma shows
that for given hyperplanes H1, . . . ,Hm and a fixed volume vol(X,∆), the “toric”
weights form the vertices of the convex polytope of all weights wi corresponding to
K-semistable (X,∆).

Lemma 16. — Fix m ⩾ 1 and a real number 0 < D ⩽ (−KPn)n = (n + 1)n. Let as
before for a real m-tuple w, ∆ =

∑m
i=1 wiHi for distinct hyperplanes Hi. Then the set

of weights

S = {w ∈ Rn : (−(KPn +∆))n = D and (Pn,∆) is K-semistable}

is either empty or m ⩾ n + 1 and S is a polytope with
(
n
m

)
vertices given by any

reordering of the tuple w1 = w2 = · · · = wn+1 = 1
m (n+1−D1/n), wℓ = 0 ∀ℓ > n+1.

Proof. — By [18], for w ∈ Rn and ∆ =
∑m
i=1 wiHi, (Pn,∆) is a K-semistable log

Fano pair if and only if w is in the convex set C defined by the following inequalities:
0 ⩽ wi < 1 ∀i = 1, . . . ,m

k

m∑
i=1

wi ⩾ (n+ 1)

k∑
j=1

wij

{
∀k = 1, . . . , n,

∀i1, · · · , ik with 1 ⩽ i1 < · · · < ik ⩽ m.
(4.1)
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Here it should be noted that in fact, it suffices to consider the second inequality for
index combinations ij of length 1. The other inequalities for larger index combinations
follows. Hence, K-semistability of (Pn,∆) is equivalent to

0 ⩽ wi < 1 ∀i = 1, . . . ,m,

wi ⩽
1

n+ 1

m∑
j=1

wj ∀i = 1, . . . ,m.(4.2)

Fix m and D as in the statement of the theorem. The goal is to understand the
intersection of the above set with the set {w : −(KPn +∆) = D}. Note first that(

−(KPn +
∑m
i=1 wiHi)

)n
=

(
n+ 1−

∑m
i=1 wi

)n
.

Let C := n+ 1−D1/n, so that {w : −(KPn +∆) = D} = {w :
∑m
i=1 wi = C}. Thus

with S defined as in Lemma 16

S =

{
w :

∑m
i=1 wi = C,

{ 0 ⩽ wi < 1 ∀i = 1, . . . ,m

wi ⩽ C/(n+ 1) ∀i = 1, . . . ,m

}
.

Observe that since 0 ⩽ C < n + 1, the inequality wi < 1 is superfluous. After a
convenient rescaling we get

n+ 1

C
S = {w :

∑m
i=1 wi = n+ 1, 0 ⩽ wi ⩽ 1 ∀i = 1, . . . ,m}.

Clearly if m < n+ 1, (n+ 1/C)S is empty. For m ⩾ n+ 1, any vertex of (n+ 1/C)S

is given by the intersection of (n+ 1/C)S with some collection of the inequalities put
to equality. But clearly all such points must be of the form of having n+ 1 ones and
m− (n+ 1) zeros. And on the other hand any such point is a vertex. □

Fixing the volume vol(X,∆) is, when X = Pn, tantamount to fixing the isomor-
phism class of the Q-line bundle −(KX+∆) (since the rank of the Picard group of Pn
is one). The following lemma shows that, in this case, the maximal height is convex
with respect to the weights of ∆.

Lemma 17. — Consider an arithmetic Fano variety X and a curve t 7→ (X,Dt) of
arithmetic log Fano varieties where Dt =

∑m
i=1 wi(t)Di for some m ⩾ 1, irreducible

divisors Di over Z and w : [0, 1] → Rm an affine function. Additionally assume that
all the Dt are linearly equivalent, which equivalently means that −(K+Dt) isomorphic
to L for a line bundle L → X independent of t. Then the function h : [0, 1] → ]−∞,∞]

defined as

(4.3) t 7−→ hcan(X,Dt)

is strictly convex. Equivalently the function t 7→ ĥcan(X,Dt) is strictly convex.

Proof. — By assumption we can identify −(K + Dt) with L for a line bundle L

independent of ϕ. Thus the height hϕ(X,Dt) for a fixed metric on L is independent of t.
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Likewise, hcan(X,Dt) coincides with ĥcan(X,Dt) up to multiplication by a constant
independent of t. Next, express

ĥcan(X,Dt) = sup
ϕ
ĥ(X,Dt) +

1

2
log

∫
X

µ(ϕ,Dt),

where the sup ranges over all continuous psh metrics on L. Introducing an arbitrary
volume form dV on X we can rewrite∫

X

µ(ϕ,Dt) =

∫
X

exp(−ϕ−
m∑
i=1

wi(t)ψDi
− log dV )dV.

By Hölder’s inequality this expression is convex in t, since wi(t) is affine. It is even
strictly convex since the Di are distinct. This means that ĥcan(X,Dt) is the supremum
over a set independent of t, of a collection of strictly convex functions and thus is itself,
strictly convex. □

The above lemmas will reduce the proof of Theorem 3 to the case of when the
support of ∆ consists of n+ 1 distinct hyperplanes. The following lemma shows that
we can further reduce to the case when these hyperplanes are the standard toric ones.

Lemma 18. — Assume that the log pair (PnZ,D) is isomorphic to the standard toric
one (PnZ,D0) over C. Then, for any t ∈ [0, 1],

hcan(PnZ, (1− t)D) ⩽ hcan(PnZ, (1− t)D0).

Proof. — Denote by s0, . . . , sn the integral sections of O(1) cutting out the irreducible
components of D. We can express si :=

∑
j Aijxj with Aij ∈ Z, where (x0, . . . , xn)

are the standard affine coordinates on Cn+1. It will be enough to show that

(4.4) ĥcan(PnZ, (1− t)D) = ĥcan(PnZ, (1− t)D0) + (t− 1) log |detA|

(since t ⩽ 1 and |detA| ⩾ 1). To this end, denote by F the invertible C-linear map
from Cn+1

x → Cn+1
y satisfying

F ∗(
∑
j Aijyj) = xi

(the existence of F is equivalent to the invertibility of the matrix A which, in turn,
is equivalent to the assumption about an isomorphism over C). We will use the same
symbol F for the induced map Pn → Pn and its standard lift to O(1) (as well as its
tensor powers). By basic linear algebra

F ∗dy0 ∧ · · · ∧ dyn = (detA)−1dx0 ∧ · · · ∧ dxn.

Now, observe that −K(Pn
Z ,(1−t)D) ≃ tO(n + 1), using standard isomorphisms over Z.

In particular, any given metric ϕ on O(n + 1) induces a metric tϕ on −K(Pn
Z ,(1−t)D)

and thus, using the log pair (PnZ, (1− t)D), a measure F ∗µtϕ on PnZ. Note that

(4.5)
∫
Pn

µtϕ = |detA|−2
∫
Pn

µtF∗ϕ,
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where µtF∗ϕ is the measure associated to the metric tF ∗ϕ on −K(Pn
Z ,(1−t)D0) (now

using the toric log pair (PnZ, (1 − t)D0)). Indeed, consider the (singular) metric ψ on
(n+ 1)O(1) defined by

ψ := tϕ+ (1− t)
∑
i

log |si|2.

The measure µtϕ coincides with the measure µψ attached to the metric on −KPn

induced by ψ. Hence, denoting by G the canonical lift of the map F to −KPn , we have,
by definition, that

G∗µψ = µG∗ψ, G∗ψ = F ∗ψ + log(|detA|2), F ∗ψ := tF ∗ϕ+ (1− t)
∑
i

log |F ∗si|2.

This proves formula (4.5). Next, note that, by Lemma 31 in the appendix,

ĥ(O(n+ 1), G∗ϕ) = ĥ(O(n+ 1), ϕ).

Hence, we get, as above, that

ĥ(O(n+ 1), F ∗ϕ) = ĥ(O(n+ 1), G∗ϕ− log(|detA|))

= ĥ(O(n+ 1), G∗ϕ)− log(|detA|2)

= ĥ(O(n+ 1), ϕ)− log(|detA|)),

giving
ĥ(O(t(n+ 1)), tϕ) = ĥ(O(t(n+ 1)), F ∗)(tϕ)) + t log(|detA|).

All in all, this means that

ĥ(O(t(n+1)), tϕ)+log

∫
µtϕ = ĥ(O(t(n+1)), F ∗tϕ)+log

∫
µF∗tϕ+(t−1) log(|detA|).

Taking the sup over all continuous metrics ϕ on O(n+1) with positive curvature thus
concludes the proof of the desired identity (4.4). □

4.1. Conclusion of the proof of Theorem 3. — In the following we will use the
notation Dw =

∑m
i=1 wiHi for w ∈ Rm and for fixed hyperplanes Hi defined over Z.

Let (PnZ,Dw′) be a K-semistable snc log Fano hyperplane arrangement. Define for
brevity d := (−(KPn +∆(w′)))n. Set, as in Lemma 16,

S = {w ∈ Rn : (−(KPn +∆w))
n = d and (PnZ,Dw) is K-semistable}.

Consider the function h(w) defined by

h(w) = hcan(PnZ,Dw).

Restricted to the convex set S, h|S is convex by Lemma 17. Next by Lemma 16,
S is the convex hull of weight vectors (wk)k=1,...,( m

n+1)
, each corresponding to toric

log Fano pairs, equivalent to (PnZ, (1 − t)D0) over C, where D0 is the toric standard
anti-canonical divisor and t is the unique number such that (−(KPn +(1−t)D0)

n = d.
By the convexity of h,

h(w′) ⩽ max
k

h(wk) ⩽ hcan(PnZ, (1− t)D0),
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where the second inequality is the content of Lemma 18. We have thus reduced to
the standard toric case, which we have already handled. Specifically, the bound (1.4)
follows directly from Lemma 10. For Theorem 3, recall that it was observed in the
proof of Lemma 11 that the volume dependent bound in (1.4) is strictly increasing
with volume, so that a universal bound is uniquely given for maximal volume, i.e.,
when ∆ = 0, yielding the result.

5. Diagonal hypersurfaces

In this section we will deduce Theorem 4 from the results in the previous sections.
The starting point of the proof is the following analytic representation of the height:

Lemma 19 (Restriction formula). — Let X be the subscheme of Pn+1
Z cut out by a

homogeneous polynomial s of degree d with integer coefficients and ϕ a continuous psh
metric on O(d) → Pn+1

C . Then the height hϕ(Xd,O(d)) of the restriction of (O(d), ϕ)
to X may be expressed as

2hϕ(Xd,O(d))

(n+ 1)!
= (n+ 2)E(ϕ, dϕ0) +

∫
Pn+1

log
(
∥s∥2ϕ

) (ddcϕ)n+1

(n+ 1)!
,

where ϕ0 is the Weil metric on O(1) and E is the functional defined by formula (2.7),
corresponding to O(d) → Pn+1.

Proof. — This is well-known, but for completeness we provide a proof. Consider first
the general situation where X is a subscheme (of relative dimension n) of a regular
projective flat scheme Y cut out by a section s of a relatively ample line bundle L → Y.
Then, given a metric ϕ on the complexification L of L → Y, the restriction formula
for arithmetic intersection numbers [8, Prop. 2.3.1] gives

(5.1) (L, ϕ)n+2 · Y = (L, ϕ)n+1 · X−
∫
Y

log ||s||ϕ(ddcϕ)n+1.

In particular, setting Y = Pn+1
Z and L = O(d) gives

2hϕ(Xd,O(d))

(n+ 1)!
= (n+ 2)

hϕ(Pn+1
Z ,O(d))

(n+ 2)!
+

∫
log ||s||2ϕ

(ddcϕ)n+1

(n+ 1)!
.

The proof is thus concluded by invoking the well-known fact that

hϕ(Pn+1
Z ,O(d))/(n+ 2)! = EPn+1(ϕ, ϕ0).

For example, this is a special case of the toric formula [1, Eq. 3.7]. □

In general, if X is subscheme of Pn+1
Z of codimension one, then KX is well-defined as

line bundle over X. More precisely, by the adjunction formula, there is an isomorphism
of line bundles over Z,

KX ≃
(
KPn+1

Z
− O(I/I2)

)
X
,

where I is the ideal sheaf cutting out X [25, Eq. 1.6.2, p. 8]. In particular, if X is cut
out by a homogeneous polynomial s of degree d, then

(5.2) −KX ≃ −KPn+1
Z

− O(d) ≃ O(n+ 2− d).
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Hence, −KX is relatively ample if and only if d ⩽ n+1. Now assume that the complex
variety X defined by the complex points of X is non-singular. Then, by the adjunction
isomorphism (5.2), a metric ϕ0 on O(n + 2 − d)|X may be identified with a metric
on −KX .

5.1. Reduction to Fermat hypersurfaces. — Given integers ai consider the sub-
scheme Xa of Pn+1

Z cut out by the homogeneous polynomial

sa :=

n+1∑
i=0

aix
d
i .

Denote by Xa the corresponding complex variety, which is non-singular and consider
the map

(5.3) Fa : Cn+2 −→ Cn+2, x 7−→ Fa(x) := (a
−1/d
0 x0, . . . , a

−1/d
n+1 xn+1).

It descends to an automorphism of Pn+1 with the property that

Xa = Fa(X1).

By identifying Cn+2 ∖ {0} with the complement of the zero-section of O(1) → Pn+1,
the map Fa induces, for any given integer m, an automorphism of O(m) → Pn+1 (that
we also denote by Fa). In the statement of the following proposition we will use that,
by the adjunction isomorphism recalled above, a metric ϕ on O(n+2− d)|Xa

may be
identified with a metric on −KXa and thus induces a measure µϕ on X (Section 2.1.1).

Proposition 20. — Let k be a positive integer and ϕ a metric on O(n + 2 − d)|Xa
.

Then

2ĥϕ(Xa,O(n+ 2− d)) + log

∫
Xa

µϕ

= 2ĥF∗
aϕ

(X1,O(n+ 2− d)) + log

∫
X1

µF∗
aϕ

+
(n+ 2− d

(n+ 1)
− 1

)
d−1

∑
i

log(|ai|2).

The proof of the proposition follows from combining the following two lemmas:

Lemma 21. — Let k be a positive integer and ϕ a metric on O(k). Then

2ĥϕ(Xa,O(k)) = 2ĥF∗
aϕ

(X1,O(k)) +
1

d

∑
i

log(|ai|2)
k

(n+ 1)
.

Proof. — We will use that any continuous psh metric ϕ on O(k)|X is the restric-
tion of a continuous psh metric on O(k) → Pn+1, that we shall denote by the same
symbol ϕ [14]. First consider the case when k = d and denote by sa the section
of O(d) cutting out the scheme Xa. By the restriction formula (Lemma 19), setting
MA(ψ) := (ddcψ)n+1/(n+ 1)!,

2

(n+ 1)!
hϕ(Xa,O(k)) = (n+ 2)EPn+1(ϕ, dϕ0) +

∫
Pn+1

log |sa|2ϕMA(ϕ).
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Rewriting∫
Pn+1

log |sa|2ϕMA(ϕ) =

∫
Pn+1

log |(F−1
a )∗s1|2ϕMA(ϕ) =

∫
Pn+1

log |s1|2F∗
aϕ

MA(F ∗
aϕ),

thus reveals that
2

(n+ 1)!
hF∗

aϕ
(X1,O(k))−

2

(n+ 1)!
hϕ(Xa,O(k))

= (n+ 2)
(
EPn+1(F ∗

aϕ, dϕ0)− EPn+1(ϕ, dϕ0)
)
.

Now, denote by Ga the standard lift of Fa from X1 to −KX1
and its tensor powers,

which has the property that F ∗
aµϕ = µG∗

aϕ
for any metric ϕ on −KXa . We can then

express
G∗
aϕ = F ∗

aϕ+ ca, ca :=
k

(n+ 2)

1

d

∑
i

log(|ai|2).

Indeed,

(5.4) G∗
a(e

−n+2
k ϕdzdz) = (e−

n+2
k F∗

aϕ)F ∗
a (dzdz) = (e−

n+2
k F∗

aϕ)
∏
i

|ai|−2/d(dzdz).

Hence,

2hF∗
aϕ(P

n+1,O(k)) = 2hG∗
aϕ−ca(P

n+1,O(k)) = 2hG∗
aϕ
(Pn+1,O(k))− ca

kn+1

(n+ 1)!
.

But, by Lemma 31 in the appendix,

EPn+1(G∗
aϕ, dϕ0) = EPn+1(ϕ, dϕ0).

Hence,
2

(n+ 1)!
hF∗

aϕ
(X1,O(k))−

2

(n+ 1)!
hϕ(Xa,O(k))

= (n+ 2) (EPn+1(F ∗
aϕ, dϕ0)− EPn+1(ϕ, dϕ0)) = −(n+ 2)ca

k(n+1)

(n+ 1)!
.

As a consequence,

2ĥF∗
aϕ

(X1,O(k))− 2ĥϕ(Xa,O(k)) = −(n+ 2)ca
kn+1

(n+ 1)!
· 1

dkn/n!

= −(n+ 2)ca
k

d(n+ 1)
= −1

d

∑
i

log(|ai|2)(n+ 2)
k

(n+ 2)

k

d(n+ 1)

= −1

d

∑
i

log(|ai|2)
k2

d(n+ 1)
.

Since we have assumed that k = d this means that

2ĥϕ(Xa,O(k))− 2ĥF∗
aϕ

(X1,O(k)) =
1

d

∑
i

log(|ai|2)
d

(n+ 1)
.

Finally, for any given integer k we can express k = dλ for λ = k/d and use the basic
scaling property

ĥλϕ(X, λL) = λĥϕ(X,L),
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to get

2ĥϕ(Xa,O(k))− 2ĥF∗
aϕ

(X1,O(k)) =
1

d

∑
i

log(|ai|2)
k

(n+ 1)
,

which concludes the proof. □

Lemma 22. — Given a metric ϕ on O(n+ 2− d) we have that

log

∫
Xa

µϕ = log

∫
X1

µF∗
aϕ

− d−1
∑
i

log(|ai|2).

Proof. — Let X be the non-singular hypersurface of Pn+1 cut out by a given homoge-
neous polynomial s in Cn+2. Let AX be the zero-locus of s in Cn+2∖{0} and assume
that ds ̸= 0 on AX . Let Ωs be the holomorphic top form on AX defined by the rela-
tion Ωs ∧ ds = dz on AX , where dz := dz0 ∧ · · · ∧ dzn+1. We can identify X with
AX/C∗ using the standard C∗-action on Cn+2. Denote by δ interior multiplication
with the holomorphic vector field generating the C∗-action. Assume now that X is
Fano. A given metric ϕ on −KX then corresponds to a one-homogeneous function r

on AX (using the adjunction isomorphism (5.2) and by identifying Cn+2 ∖ {0} with
the complement of the zero-section in O(1)∗ → X). Moreover, lifting the adjunction
isomorphism (5.2) to AX yields the following well-known formula (which applies in
the general setup of Fano varieties over local fields; cf. [35, Lem. 4.2.2]):∫

X

µϕ = c

∫
{s=0}/C∗

rd−(n+2)(δΩs ∧ δΩs)

for a non-zero constant c only depending on n and d (since Ωs has degree (n+2− d)

with respect to the C∗-action, the (n, n)-form rd−(n+2)(δΩs∧δΩs) is C∗-invariant and
thus descends to a real top form on X). Hence, setting F := Fa,∫

X

µϕ = c

∫
{F∗s=0}/C∗

(F ∗r)d−(n+2)(δF ∗Ωs ∧ δF ∗Ωs).

To conclude the proof it will thus be enough to verify that

F ∗Ωs = ΩF∗sa
−1/d
0 · · · a−1/d

n+1 .

To this end, note that applying F ∗ to the defining relation for Ωs yields F ∗Ωs∧d(F ∗f)

= F ∗dz. Since F ∗dz = a
−1/d
0 · · · a−1/d

n+1 dz this concludes the proof. □

It follows directly from Proposition 20 and the definition of hcan(X) that

(5.5) hcan(Xa)− hcan(X1) = (n+ 1)(n+ 2− d)nd
(n+ 2− d

(n+ 1)
− 1

)
d−1

∑
i

log(|ai|2).

In particular, since n+ 2− d ⩽ n+ 1, this means that

(5.6) hcan(Xa) ⩽ hcan(X1),

and thus the proof of Theorem 4 is reduced to the case of the Fermat hypersurface X1.
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Remark 23. — For any sufficiently large finite field extension F of Q, the schemes
Xa ⊗Z F and X1 ⊗Z F are isomorphic over F and, in particular, over C – the iso-
morphism is provided by the map Fa. Moreover, since X1 admits a Kähler-Einstein
metric [45, §6.3], hcan(X1) = hϕ1

(X1), for any volume-normalized Kähler-Einstein
metric ϕ1 on −KX1

. Denoting by ϕa the corresponding metric on −KXa
, induced

by the natural lift Ga of Fa from −KX1
to −KXa

, the identity (5.5) thus holds for
hϕa(Xa) − hϕ1(X1) (this also follows directly from Proposition 20). Such a differ-
ence is, by general principles [2, Lem. 2.4], a purely arithmetic quantity (independent
of the choice of metric ϕ1), since Ga induces an isomorphism KXa

⊗Z F ≃ KXa
⊗Z F.

It seems thus natural to ask if there is a direct scheme-theoretic proof of the iden-
tity (5.5)? Interestingly, the corresponding inequality (5.6) is reminiscent of Odaka’s
minimization conjecture [33, 22]. But an important difference is that hcan(X1) does
not, in general, maximize hcan(X) over all integral models X of X1⊗ZQ (and likewise
when Q is replaced by a number field F). For example, when d = 2, X1 ⊗OF F is
isomorphic to P1

F for F = Q(
√
−1), but hcan(X1 ⊗Z OF) < hcan(P1

OF
), as follows from

the conclusion of Theorem 3 (after a base change). Alternatively, the strict inequality
follows from Corollary 6, applied to ∆ = 0, since X1 ⊗Z OF is not isomorphic to P1

OF

over OF.

Before continuing we also make a final remark.

Remark 24. — Let X be a hypersurface in Pn+1
Z cut-out by a homogeneous polyno-

mial s of degree d of the form T ∗s1 where T ∈ GL(n+ 2,C). Then formula (5.5) can
be generalized as follows (shown in essentially the same manner as before):

hcan(X) = hcan(X1) + (n+ 1)(n+ 2− d)nd
(n+ 2− d

(n+ 1)
− 1

)
log(|detT |2).

5.2. Reduction to log hyperplane arrangements. — Fix a degree d(⩽ n + 1) and
denote by X the corresponding Fermat hypersurface. The Fermat hypersurface of
degree one will be denoted by Y. We will next express the canonical height hcan(X)

in terms of the canonical height hcan(Y,D) where D is the divisor on Y defined by

D = (1− 1/d) [x0 = 0] + · · ·+ (1− 1/d) [xn = 0] + (1− 1/d)
[∑n

i=0 xi = 0
]
,

where xi denotes the homogeneous coordinates on Pn+1
Z restricted to Y.

Proposition 25. — Denote by X the Fermat hypersurface of a given degree m(⩽ n+1)

and by Y the Fermat hypersurface of degree one, endowed with the divisor D. Then

(5.7) ĥcan(X) = ĥ(Y,D)− 1

2
log

V (X)

V (Y,∆)
.

Proof. — By the adjunction formula we have isomorphisms −KX ≃ (n+2−m)O(1)|X
and −K(Y,∆) ≃ (n+ 2−m)(1/m)O(1)|Y. Consider the following morphism:

F : Cn+2 −→ Cn+2, (x0, . . . , xn+1) 7−→ (xm0 , . . . , x
m
n+1),
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which induces a map Pn+1 → Pn+1 and a lift to O(1), which is naturally defined
over Z and satisfies F ∗O(1) ≃ mO(1). In particular, it induces a morphism

F : X −→ Y, F ∗(−K(Y,∆)) ≃ −KX,

under the adjunction isomorphisms. We recall that, by basic functorial properties of
heights,

(5.8) ĥ(X, F ∗L) = ĥ(Y,L).

In fact, in this case this formula follows directly from the analytic representation of
the height in Lemma 19, using that F preserves the Weil metric ϕ0. In particular,
setting L := (n + 2 −m)(1/m)O(1)|Y and using the adjunction isomorphisms yields
ĥ(X,−KX, F

∗ϕ) = ĥ(Y,−K(Y,∆), ϕ). Thus, all that remains is to show that∫
X

µF∗ϕ = m−(n+1)

∫
Y

µϕ,

where we have used that F ∗ϕ induces a metric on −KX and ϕ induces a metric on
−K(Y,∆). Since F has topological degree m(n+1) we have F∗[Xm] = m(n+1)[Y ] as
homology classes and thus it will be enough to show that

F ∗µϕ = m2(n+1)µF∗ϕ.

To this end consider the affine piece Cn+1 of Pn+1 where x0 ̸= 0. Setting zi = xi/x0 for
i = 1, . . . , n+1) we can, locally, parametrize X by the coordinates z1, . . . , zn. In these
coordinates a metric ψ on the restriction of O(1) to X induces, by the adjunction
isomorphism, a metric on −KX and thus a measure on X locally expressed as

(5.9) µψ =
e−(n+2−m)ψ

(m|zn+1|m−1)
2

i

2
dz1 ∧ dz1 · · ·

i

2
dzn ∧ dzn.

To see this, recall that, by definition,

µψ := ∥dz1 ∧ · · · ∧ dzn∥−2
ψ

i

2
dz1 ∧ dz1 · · ·

i

2
dzn ∧ dzn.

In the affine piece Cn+1 of Pn+1 we can express

s = fx⊗2
0 , f = 1 +

n∑
i=1

zmi + zmn+1.

By the adjunction isomorphism (5.2) we have

∥dz1 ∧ · · · ∧ dzn∥ := ∥dz1 ∧ · · · ∧ dzn ∧ ds∥ = ∥dz1 ∧ · · · ∧ dzn ∧ df∥ ∥x⊗m0 ∥.

Since dz1 ∧ · · · ∧ dzn ∧ df = dz1 ∧ · · · ∧ dzn ∧ dzn+1∂f/∂zn+1 this means that

∥dz1 ∧ · · · ∧ dzn∥2 :=
∣∣∣ ∂f

∂zn+1

∣∣∣2 ∥dz1 ∧ · · · ∧ dzn ∧ dzn+1∥ ∥x⊗m0 ∥ = e(n+2)ψe−mψ,

giving

(5.10) µϕ =
e−(n+2−m)ψ

|∂f/∂zn+1|2
i

2
dz1 ∧ dz1 · · ·

i

2
dzn ∧ dzn,
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which proves (5.9). Likewise, we can parametrize the affine piece of Y by the coor-
dinates z1, . . . , zn. A given metric ϕ on the restriction of O(1) to Y induces, by the
adjunction isomorphism a measure (defined with respect to the divisor D)

µϕ = e−(n+2−m)m−1ϕ |zn+1|−2(1−1/m) |z1|−2(1−1/m) · · · |zn|−2(1−1/m)

· i
2
dz1 ∧ dz1 · · ·

i

2
dzn ∧ dzn.

Since F ∗zi = zmi this means that

F ∗µϕ = e−(n+2−m)f∗(m−1ϕ) |zn+1|−2(m−1) |z1|−2(m−1) · · · |zn|−2(m−1)

· i
2
d(zm1 ) ∧ d(zm1 ) · · · i

2
d(zmn ) ∧ d(zmn ).

Finally, since d(zm) = mzm−1 this proves the desired identity (5.7), using the repre-
sentation (5.10) with ψ = F ∗(m−1ϕ). □

5.3. Conclusion of the proof of Theorem 4. — The affine projection

(x0, . . . , xn+1) 7−→ (x0, . . . , xn)

induces an isomorphism from Y to PnZ, identifying (Y,D) with a hyperplane arrange-
ment (PnZ,D) with simple normal crossings. It follows readily from the definition of D
and the criterion (4.1) that (PnZ,D) is K-semistable. Hence, combining Proposition 25
with refined bound following the statement of Theorem 3 yields

ĥcan(X) ⩽ ĥcan(PnZ,Dt)−
1

2
log

V (X)

V (Pn,∆t)
,

where Dt is the toric divisor on PnZ such that (PnZ,Dt) is K-semistable and V (Pn,∆t) =

V (Pn,∆). The explicit formula for ĥcan(PnZ,Dt) thus yields

ĥcan(X) ⩽ ĥcan(PnZ)−
1

2
log

V (X)

V (Pn)
.

Multiplying both sides with V (X) reveals that

hcan(X) ⩽ λhcan(PnZ)−
1

2
V (X) log λ, λ := V (X)/V (Pn).

Since λ ∈ ]0, 1[ it thus follows from Lemma 10 that the right hand side above is
increasing with respect to λ and thus maximal when λ = 1, giving hcan(X,D) ⩽
hcan(PnZ). Moreover, the equality is strict if d ⩾ 2 since then λ < 1.

6. Arithmetic log surfaces

In this section we will prove Theorem 5. Throughout the section X will be assumed
normal. Given an effective divisor ∆Q on P1

Q supported at three points, such that
−K(P1,∆) is ample, we define the canonical model of (P1

Q,∆Q;−K(P1
Q,∆Q)) over Z as

(P1
Z,Dc;−K(P1

Z,Dc)) where Dc is the Zariski closure of the divisor on P1
Q supported

on {0, 1,∞}, having the same coefficients as ∆Q. That this is a model over Z follows
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from the basic fact that any three points on P1
Q can be mapped to {0, 1,∞}, by an

automorphism of P1
Q,

As explained in Section 1.1.4, by Theorem 3, the proof is reduced to showing that
for any fixed metric on −K(P1,∆):

– The canonical integral model (P1
Z,Dc;−K(P1

Z,Dc)) of (P1
Q,∆Q;−K(P1

Q,∆Q)) mini-
mizes M(X,D)(L) over all integral models (X,D;L) of (P1

Q,∆Q;−K(P1
Q,∆Q)).

– When ∆Q = 0, the minimum is uniquely attained for X = P1
Z, up to isomorphisms

over Z.

6.1. Preliminaries on log canonical thresholds. — Following [25, 42] a log pair
(X,D) is said to be log canonical (lc) if for any normal blow-up morphism p : Y → X

KY/X − p∗D =
∑
i

aiEi, ai ⩾ −1, KY/X := KY − p∗KX,

where the prime divisor Ei is either an exceptional divisor of p or the proper transform
of a component of D. The log canonical threshold of a Q−divisor F on X with respect
to the log pair (X,D) is defined by

lct(X,D;F ) := sup
t>0

{t : (X, tF +D) is lc}.

The following lemma follows readily from the definition:

Lemma 26. — For any normal blow-up morphism p : Y → X

lct(X,D;F ) ⩽ inf
i

ai − bi + 1

ci
,

where ai, bi and ci denote the order of vanishing along the p-exceptional prime divi-
sor Ei of KY/X, p∗D and p∗F , respectively and i ranges over all p-exceptional prime
divisors.

6.2. Preparations for the proof of Theorem 5. — The following result is a loga-
rithmic generalization of [33, Th. 2.14 (3)] (in the case of arithmetic surfaces).

Lemma 27. — Let (X,D) be a log Fano curve over C and (X,D) an arithmetic log
Fano model for (X,D) such the fibers Xb of X are reduced and irreducible and the
divisor D is horizontal (i.e., D is the Zariski closure of D). Assume that

α(X,D) := inf
b,F

lct(X,D+ Xb; F ) ⩾ 1/2,

where the inf runs over all effective Q−divisors F on X linearly equivalent to −K(X,D)

and closed points b in the base B := SpecZ such that F does not contain the support
of Xb. Then

1

2
L

2
+K(X′,D) · L ⩾

1

2
L

2
+K(X,D) · L

for any relatively ample model (X′,D′;L′) of (X,D;−K(X,D)) and given metrics on
−K(X,D) and L.
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In the proof we fix once and for all metrics on −K(X,D) and L and set

(6.1) M(X,D)(L) :=
1

2
L

2
+K(X,D) · L

for the corresponding metrized lines bundles L and K(X,D). Thus M(X,D)(L) spe-
cializes to the arithmetic log Mabuchi functional M(X,D)(L) (formula (1.5)) precisely
when the metric on K(X,D) is the one induced from the curvature form ω of L. But
here it will be convenient to consider the present more general setup.

Proof when D is trivial. — To fix ideas we first consider the case when D is trivial.
Set B := SpecZ and L := −KX. To simplify the notation we will remove the bar
indicating the metric in the notation for the arithmetic intersection numbers. Anyhow,
all the arithmetic intersections will be computed over the closed points b in the base B

and are thus independent of the choice of metric (since they are proportional to the
algebraic intersections on the scheme π−1(b) over the residue field of b). If F1 and F2

are Q-divisors we will write F1 ⩾ F2 if F1 − F2 is effective.

Step 1. — It is enough to consider the case of a relatively semi-ample model of the
form (X′,L′) = (Y, p∗L − E) where p : Y → X is the blow-up along a closed sub-
scheme Z of X and E is an effective p-exceptional divisor on Y whose support contains
all the p-exceptional prime divisors and such that for any b ∈ π(Z) p∗L−E admits a
global section sb not vanishing identically along Yb.

This is shown precisely as in the proof of [32, Prop. 3.10] – for completeness, a
proof is given in Step 1 in Section 6.3 below.

Step 2: The inequality holds in the case of Step 1. — First observe that

(6.2) MY(L
′)−MX(L) = L′ ·

(
KY/X − 1

2
E
)
.

Indeed, rewriting

MX(L) = −L2

2
+ ·L · (L+KX)

(and likewise for (Y,L′)) the left hand side in formula (6.2) may be expressed as

p∗L2 − L′2

2
+ L′ · (KY/X − E) =

E · (p∗L+ L′)

2
+ L′ · (KY/X − E).

Since E · p∗L = 0 this proves formula (6.2).
Since L′ is relatively semi-ample it will thus be enough to show that the verti-

cal exceptional divisor KY/X − 1
2E is effective. This means, by the assumption on

α(X) (:= α(X, 0)), that it is enough to show that

(6.3) KY/X − α(X)E ⩾ 0.

To fix ideas first assume that π(Z) is supported on a single point that we denote
by b. By Step 1, we can express sb = p∗s for a global section s of L → X whose
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zero-divisor F does not vanish identically on Xb and such that p∗F − E is effective.
Since F is a contender for the inf defining α(X) we have

α(X) ⩽ lct(X,Xb; F ),

Next, since p∗F ⩾ E it follows from Lemma 26 that

lct(X,Xb; F ) ⩽ inf
i

ai + 1− bi
ci

,

where i runs over the p-exceptional irreducible prime divisors Ei of Y and ai, bi
and ci denote the order of vanishing along Ei of KY/X, Yb and E respectively. Note
that ci > 0 (since the support of E contains the support of all p-exceptional divisors)
and bi ⩾ 1 (since Z is assumed to be supported in Xb). Thus

α(X) ⩽ inf
i

ai + 1− bi
ci

⩽ inf
i

ai
ci
,

giving

KY/X − α(X)E ⩾
∑
i

aiEi − (minj aj/cj)Ei =
∑
i

(ai/ci − (minj aj/cj)) ciEi ⩾ 0,

which proves (6.3). Finally, consider the general case when the support of π(Z) consists
of a finite number of points bm in B. We then split the vertical divisors KY/X and E

into the components K
(m)
Y/X and E(m) over bm:

KY/X − α(X)E =
∑
m

K
(m)
Y/X − α(X)E(m),

and apply the previous bound for each fixed m (with b replaced by bm) to get that
K

(m)
Y/X − α(X)E(m) ⩾ 0 and thus KY/X − α(X)E ⩾ 0, as desired.

Proof for log pairs. — Just as in the previous case it is enough to consider the special
case of Step 2. In this case formula (6.2) readily generalizes to

(6.4) M(Y,q∗D′)(L
′)−M(X,D)(L) = L′ ·

(
D′ − p∗D+KY/X − 1

2
E
)
.

As before it will thus be enough to show that

(6.5) KY/X + q∗D′ − p∗D− α(X,D)E ⩾ 0.

To simplify the exposition we will assume that π(Z) is a single closed point in B,
denoted by b (the general case is shown in a similar way by decomposing with respect
to the components of π(Z) as above). By the definition of α(X,D),

(6.6) α(X,D) ⩽ lct(X,D+ Xb; F ),

Next, since p∗F − E is effective, i.e., p∗F ⩾ E, Lemma 26 yields

lct(X,D+ Xb; F ) ⩽ inf
i

ai + 1− di − bi
ci

,
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where ai, bi, ci and di are the order of vanishing along Ei of KY/X, Yb, E and p∗D

respectively. In particular, bi ⩾ 1 since Z is supported in Xb, Hence,

α(X,D) ⩽ inf
i

ai + 1− di − bi
ci

.

Next, we may decompose

p∗D = (p∗D)hor + (p∗D)ex,

where (p∗D)hor is the horizontal divisor obtained as the proper transform of the
horizontal divisor D and (p∗D)ex is p-exceptional. By (6.6)

KY/X − (p∗D)ex − αEex ⩾
∑
i

(ai − di)Ei −
(
min
j

aj − bj + 1− dj
cj

)
ciEi

⩾
∑
i

( (ai − di)

ci
Ei −

(
min
j

aj − dj
cj

))
ciEi ⩾ 0,

using that bj ⩾ 1. Hence,

KY/X +D′ − p∗D− α(X,D)Eex ⩾ D′ − (p∗D)hor.

But, since both (X′,D′) and (X,D) are models for (X,∆) and D is assumed horizontal
it follows that q∗D′ − (p∗D)hor is an effective vertical divisor and hence

q∗D′ − (p∗D)hor ⩾ 0,

which concludes the proof of the inequality (6.5).

Lemma 28. — If (X,∆) is a K-semistable log Fano curve over C, then the canonical
model (P1

Z,Dc) of (X,∆) satisfies

α(X,D) ⩾ 1/2,

and the inequality is strict if (X,∆) is K-stable.

Proof. — By inversion of adjunction on surfaces over excellent schemes [42]

lct(X,D+ Xb; F ) = lct(X,D|Xb
;F|Xb

),

if F does not contain the support of the divisor Xb. In the present case Xb = P1
Fb

,
where b has been identified with a prime number and Fb denotes the field with b

elements. Decomposing
Dc =

∑
wiDi,

the K-semistability assumption is, by (4.2), equivalent to the condition

(6.7) wj ⩽
1

2

∑
i

wi, ∀j.

We recall that for any curve C over a perfect field (here taken to be P1
Fb

) an effective
Q-divisor F on C is lc if and only if all its coefficients are less then are equal to one
[25, 42]. Since −KP1

Fb
is linearly equivalent to O(2) and Di|Xb

is linearly equivalent
to O(1) it thus follows from the weight condition (6.7) that lct(X,D|Xb

;F|Xb
) ⩾ 1/2.
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Indeed, it is enough to consider the case when F = (2−
∑
i wi)[x], where [x] denotes

the prime divisor on P1
Fb

corresponding to a closed point x in P1
Fb

. Then
1

2
F +D|Xb

=
(
1− 1

2

∑
i

wi

)
[x] +

∑
wi[xi].

The definition of Dc ensures that [xi] = [xj ] if and only if i = j. In the case that
x ̸= xi for any i the coefficients of F/2+D|Xb

are indeed less than or equal to 1, since
wi ∈ [0, 1]. Moreover, if x = xj then the coefficient of index j equals (1− 1

2

∑
i wi)+wj

which is less than are equal to 1, by the weight condition (6.7).
We will also need the following lemma, shown precisely as in the case when D = 0

considered in [1, Prop. 5.3]. □

Lemma 29. — Let (X,D;L) be a polarized arithmetic log surfaces (X,D;L) such that
the complexification (X,∆) of (X,D) is a log Fano variety and L ⊗ C = −K(X,∆).
A metric realizes the infimum

inf
∥·∥

M(X,D)(L, ∥·∥)

over all locally bounded metrics on −(K(X,D)) with positive curvature current if and
only if the metric is a log Kähler-Einstein metric. In particular, in the case when
D = 0 any minimizer coincides with the Fubini-Study metric up to the application of
an automorphism of X and a scaling of the metric. Moreover,

inf
∥·∥

M(P1
Z,D)

(
−K(P1

Z,D), ∥·∥
)
= − sup

∥·∥

1

2

(
−K(P1

Z,D), ∥·∥
)2
,

where the sup in the right-hand side is restricted to volume-normalized metrics.

6.3. Conclusion of the proof of Theorem 2 and Corollary 6. — Combining the
previous first two lemmas immediately yields
(6.8) M(X′,D′)(L′) ⩾ M(P1

Z,D)(−K(P1
Z,D)).

Applying the third lemma above thus gives

M(X′,D′)(L′) ⩾ − sup
∥·∥

(1
2

(
−K(P1

Z,D), ∥·∥
)2)

,

where the infimum in the left hand side is restricted to volume-normalized metrics.
Invoking Theorem 3 and using that the Fubini-Study metric is a minimizer when
D = 0 (by Lemma 29) thus proves the inequality in Theorem 5 and it corollary.
Moreover, Theorem 3 implies that the inequality is strict, as soon as D is non-trivial.

6.3.1. The equality case. — Consider now the case of equality in Theorem 5 (and,
as a consequence, D = 0):
(6.9) M(X′,D′)(L′) = M(P1

Z,0)
(−KP1

Z
),

where, in the right-hand side, −KP1
Z

is endowed with the Fubini-Study metric. By the
minimizing property in Lemma 26, when D = 0, the metric on L coincides with the
Fubini-Study metric up to the application of an automorphism of X and scaling of
the metric. All that remains is to show is thus that (X′,D′) is isomorphic to (P1

Z, 0).
To this end first note that since X (= P1

Z) and X′ have the same generic fiber they
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are birationally equivalent. Thus, there exists a normal variety Y, which is flat and
projective over B, dominating both X and X′, with birational morphisms

(6.10) p : Y −→ X, q : Y −→ X′,

which are the identity over the generic point in B (a concrete construction is given in
Step 1 below). It will thus be enough to show that the equality (6.9) implies that p
can be taken to be an isomorphism. Indeed, if p is an isomorphism we get a birational
morphism q from P1

Z to X′ and any such morphism is an isomorphism (since the fibers
of P1

Z over B are all reduced and irreducible). Moreover, when X′ is equal to P1
Z any L

whose complexification equals −KP1 is isomorphic to −KP1
Z

and the components of
any divisor D′ on X′ whose complexification is trivial are fibers Xbi of P1

Z (using again
that the fibers of P1

Z over B are all reduced and irreducible). Hence, the assumed
equality (6.9) implies, since X2

bi
= 0 and −KP1

Z
is relatively ample that D′ is trivial,

i.e., D′ = 0.
Thus all that remains is to show that the assumed equality in formula (6.9) implies

that the morphism p : Y → X (in formula (6.10)) can be taken to be an isomorphism.

Step 1. — In the case of arithmetic surfaces p : Y → X can be taken as the successive
blow-ups of X along a finite number of closed points xi in regular surfaces Xi and
there exists a p-exceptional and p-ample effective divisor E on Y and a morphism q

from Y to X such that q∗L′ = p∗L− E. In particular, MX′(L′) = MY(p
∗L− E).

This is shown as in the beginning of the proof of [32, Prop. 3.10], as next explained.
First note that, since X and X′ have the same generic fiber, they are birationally
equivalent. Since X is normal this means that there exists a morphism h : U → X′

from a Zariski open subset U in X of codimension two. As a consequence, h∗L′ extends
to a Q-line bundle L′′ on X coinciding with −KX on the generic fiber. Since X = P1

Z
this implies that L′′ is isomorphic to −KX (using that π : X → SpecZ has reduced
irreducible fibers). Now fix a positive integer k such that kL′ is a relatively very ample
line bundle and take a basis s′i in the free Z−module H0(X′, kL′). Then si := h∗si
extends, since X is normal, to a unique element in H0(X, kL). Denote by J the ideal
sheaf on X generated by the sections si. Since X is a regular surface we get after
successive blow-ups (as stated in Step 1) a morphism p : Y → X from a regular
surface Y to X with the property that p∗J defines an effective p-exceptional divisor Ek
on Y (using that Z is an excellent ring) [44]. Set

E := k−1Ek (Ek := p∗J).

By construction, Ek is p-ample,

(6.11) H0(Y, kp∗L− Ek) ∼= H0(X, kL⊗ J) ∼= H0(X′, kL′),

and the global sections of kp∗L − Ek induce a morphism q to X′ such that q∗L′ =

p∗L− E. Finally, note that

MX′(L′) = MY(q
∗L′),
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as follows directly from the fact that p is an isomorphism between Zariski open subsets
of X′ and Y and, as a consequence, the Q−line bundle q∗L′ is trivial on the support
of the divisor q∗KX −KY.

Step 2. — MY(p
∗L− E) = MX(L) =⇒ p is an isomorphism, when X = P1

Z.
Replacing q∗L′ with p∗L−E in formula (6.2) yields, since MY(p

∗L−E) = MX(L),

(p∗L− E) ·
(
KY/X − 1

2
E
)
= 0.

It follows, since, by construction, p∗L− E is p-ample, that

(6.12) KY/X =
1

2
E.

Now, since p : Y → X is the blow-up along a finite number of closed points xi in
regular surfaces Xi,
(6.13) KY/X =

∑
ciEi, ci ⩾ 1,

where the sum runs over all prime p-exceptional divisors Ei. Hence,
E =

∑
i

2ciEi ⩾
∑
i

2Ei.

But this contradicts the isomorphisms (6.11), if the number of points xi is non-zero.
Indeed, denote by E1 the strict transform of the p-exceptional divisor on Y induced
from the exceptional divisor on the first point x1 blown-up on X(= P1

Z). Then it
follows from the previous inequality and the construction of E that the restriction
of the ideal sheaf J on X to a neighbourhood of x1 in the fiber Xπ(x1) is contained
in the 2kth power m2k

x1
of the maximal ideal mx1 on Xπ(x1) defined by the point x1.

But, in general, for X = P1
Z, the line bundle kL|Xπ(x)

⊗ m2k
x on Xπ(x) is trivial for

any closed point x on X (since L|Xb
:= −KXb

= OP1
Fb
(2)). But this contradicts the

isomorphism (6.11), since L′ is relatively ample. Hence, the number of points xi must
be zero, as desired.

Combing these two steps thus concludes, as discussed above, the proof of Theo-
rem 5. Finally, Corollary 6 can be deduced from Theorem 5 using a generalization of
Lemma 29. But here we instead proceeds as follows. Given an arithmetic log Fano
surface (X,D) set L := −KX and endow L and −KX with the same metric induced
from a volume-normalized metric on −KX with positive curvature current. Then,
by definition (6.1),

−1

2
K

2

(X,D) = M(X,D)(L).

Hence, combining Step one and Step two above yields

−1

2
K

2

(X,D) ⩾ M(P1
Z,0)

(−KP1
Z
) = −1

2
(−KP1

Z
)2,

and the equality case is deduced precisely as before.

Remark 30. — When (P1,∆) is K-stable equality holds in the inequality (6.8) if and
only if (X′,D′) = (P1,D0). Indeed, by Lemma 28, the K-stability of (P1,∆) implies
that α(P1,D0) > 1/2. Hence, if equality holds in (6.8), then formula (6.4) forces
E = 0, showing that p is an isomorphism. We can then conclude precisely as in the
beginning of Section 6.3.1.
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7. Appendix

In the proof of Lemma 21 we used the following result (applied to X = PnC).

Lemma 31. — Let X be a Fano manifold and V a holomorphic vector field on X.
Denote by Gt the flow of the real part of V on X at time t and by (GVt )

∗ϕ its action
on a given continuous metric ϕ on −KX with positive curvature current. If X admits
a Kähler-Einstein metric, then

d

dt
E(G∗

tϕ, ψ0) = 0

for any fixed metric ψ0 on −KX .

Proof. — This is well-known and essentially goes back to [19], but for the convenience
of the reader we provide a proof in the spirit of the present paper and its precursor [3].
Consider the Ding functional Dϕ0

on the space of all continuous metrics on −KX

with positive curvature current, defined by formula (2.9). Since, µG∗ϕ = G∗µϕ for
any biholomorphism G of X it follows that E(G∗

tϕ) and Dϕ0
(Gt

∗ϕ) have the same
derivative. Moreover, in general, the function t 7→ Dϕ0(G

∗
tϕ) is linear. Indeed, its

derivative is the Futaki invariant of V (see the claim in [45, p. 73], where Dϕ0 is
denoted by Fω). Hence, all that remains is to verify that Dϕ0

is bounded from below
(since then t 7→ Dϕ0

(G∗
tϕ) must be constant). But this follows from the existence of a

Kähler-Einstein metric, since such a metric minimizes Dϕ0 , as recalled in [3, §2.3]. □

References
[1] D. Abramovich – “Birational geometry for number theorists”, in Arithmetic geometry, Clay Math.

Proc., vol. 8, American Mathematical Society, Providence, RI, 2009, p. 335–373.
[2] R. Andreasson & R. J. Berman – “Canonical heights of arithmetic surfaces, periods and the

Hurwitz zeta function”, 2024, arXiv:2406.19785.
[3] , “Sharp bounds on the height of K-semistable Fano varieties I, the toric case”, Compo-

sitio Math. 160 (2024), no. 10, p. 2366–2406.
[4] R. J. Berman – “On K-stability, height bounds and the Manin-Peyre conjecture”, Pure Appl.

Math. Q 21 (2025), no. 3, p. 931–970.
[5] R. J. Berman & B. Berndtsson – “Real Monge-Ampère equations and Kähler-Ricci solitons on

toric log Fano varieties”, Ann. Fac. Sci. Toulouse Math. (6) 22 (2013), no. 4, p. 649–711.
[6] R. J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj & A. Zeriahi – “Kähler-Einstein metrics and

the Kähler-Ricci flow on log Fano varieties”, J. reine angew. Math. 751 (2019), p. 27–89.
[7] B. J. Birch – “Waring’s problem in algebraic number fields”, Proc. Cambridge Philos. Soc. 57

(1961), p. 449–459.
[8] J.-B. Bost, H. Gillet & C. Soulé – “Heights of projective varieties and positive Green forms”,

J. Amer. Math. Soc. 7 (1994), no. 4, p. 903–1027.
[9] S. Boucksom, T. Hisamoto & M. Jonsson – “Uniform K-stability, Duistermaat-Heckman measures

and singularities of pairs”, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 2, p. 743–841.
[10] T. Browning & S. Yamagishi – “Arithmetic of higher-dimensional orbifolds and a mixed Waring

problem”, Math. Z. 299 (2021), no. 1-2, p. 1071–1101.
[11] J. I. Burgos Gil, P. Philippon & M. Sombra – Arithmetic geometry of toric varieties. Metrics,

measures and heights, Astérisque, vol. 360, Société Mathématique de France, Paris, 2014.
[12] F. Campana – “Special manifolds, arithmetic and hyperbolic aspects: a short survey”, in Rational

points, rational curves, and entire holomorphic curves on projective varieties, Contemp. Math.,
vol. 654, American Mathematical Society, Providence, RI, 2015, p. 23–52.

J.É.P. — M., 2025, tome 12

http://arxiv.org/abs/2406.19785


Sharp bounds on the height of K-semistable Fano varieties II, the log case 1017

[13] G. Codogni & Z. Patakfalvi – “Positivity of the CM line bundle for families of K-stable klt Fano
varieties”, Invent. Math. 223 (2021), no. 3, p. 811–894.

[14] D. Coman, V. Guedj & A. Zeriahi – “Extension of plurisubharmonic functions with growth con-
trol”, J. reine angew. Math. 676 (2013), p. 33–49.

[15] D. A. Cox, J. B. Little & H. K. Schenck – Toric varieties, Graduate Studies in Math., vol. 124,
American Mathematical Society, Providence, RI, 2011.

[16] G. Faltings – “Diophantine approximation on abelian varieties”, Ann. of Math. (2) 133 (1991),
no. 3, p. 549–576.

[17] K. Fujita – “Optimal bounds for the volumes of Kähler-Einstein Fano manifolds”, Amer. J.
Math. 140 (2018), no. 2, p. 391–414.

[18] , “K-stability of log Fano hyperplane arrangements”, J. Algebraic Geom. 30 (2021),
no. 4, p. 603–630.

[19] A. Futaki – “An obstruction to the existence of Einstein Kähler metrics”, Invent. Math. 73
(1983), no. 3, p. 437–443.

[20] H. Gillet & C. Soulé – “Characteristic classes for algebraic vector bundles with Hermitian
metric. II”, Ann. of Math. (2) 131 (1990), no. 2, p. 205–238.

[21] H. Guenancia & M. Păun – “Conic singularities metrics with prescribed Ricci curvature: general
cone angles along normal crossing divisors”, J. Differential Geom. 103 (2016), no. 1, p. 15–57.

[22] M. Hattori & Y. Odaka – “Minimization of Arakelov K-energy for many cases”, Kyoto J. Math.
(2022), to appear, arXiv:2211.03415.

[23] T. Jeffres, R. Mazzeo & Y. A. Rubinstein – “Kähler-Einstein metrics with edge singularities”,
Ann. of Math. (2) 183 (2016), no. 1, p. 95–176.

[24] J. Kollár – “Singularities of pairs”, in Algebraic geometry—Santa Cruz 1995, Proc. Sympos.
Pure Math., vol. 62, Part 1, American Mathematical Society, Providence, RI, 1997, p. 221–287.

[25] , Singularities of the minimal model program, Cambridge Tracts in Math., vol. 200,
Cambridge University Press, Cambridge, 2013.

[26] C. Li – “G-uniform stability and Kähler-Einstein metrics on Fano varieties”, Invent. Math. 227
(2022), no. 2, p. 661–744.

[27] Y. Liu, C. Xu & Z. Zhuang – “Finite generation for valuations computing stability thresholds and
applications to K-stability”, Ann. of Math. (2) 196 (2022), no. 2, p. 507–566.

[28] V. Maillot – Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables, Mém.
Soc. Math. France (N.S.), vol. 80, Société Mathématique de France, Paris, 2000.

[29] R. Mazzeo & Y. A. Rubinstein – “The Ricci continuity method for the complex Monge-Ampère
equation, with applications to Kähler-Einstein edge metrics”, Comptes Rendus. Mathématique
350 (2012), no. 13-14, p. 693–697.

[30] J. Moraga & H. Süß – “Bounding toric singularities with normalized volume”, Bull. London
Math. Soc. 56 (2024), no. 6, p. 2212–2229.

[31] M. Øbro – “An algorithm for the classification of smooth Fano polytopes”, 2007, Database at
http://www.grdb.co.uk/forms/toricsmooth, arXiv:0704.0049.

[32] Y. Odaka – “A generalization of the Ross-Thomas slope theory”, Osaka J. Math. 50 (2013),
no. 1, p. 171–185.

[33] , “Canonical Kähler metrics and arithmetics: generalizing Faltings heights”, Kyoto
J. Math. 58 (2018), no. 2, p. 243–288.

[34] Y. Odaka & S. Sun – “Testing log K-stability by blowing up formalism”, Ann. Fac. Sci. Toulouse
Math. (6) 24 (2015), no. 3, p. 505–522.

[35] E. Peyre – “Hauteurs et mesures de Tamagawa sur les variétés de Fano”, Duke Math. J. 79
(1995), no. 1, p. 101–218.

[36] , “Points de hauteur bornée, topologie adélique et mesures de Tamagawa”, J. Théor.
Nombres Bordeaux 15 (2003), no. 1, p. 319–349.

[37] L. B. Pierce – “The Vinogradov mean value theorem [after Wooley, and Bourgain, Demeter and
Guth]”, in Séminaire Bourbaki. Vol. 2016/2017, Astérisque, vol. 407, Société Mathématique de
France, Paris, 2019, Exp. No. 1134, p. 479–564.

[38] M. Pieropan & D. Schindler – “Hyperbola method on toric varieties”, J. Éc. polytech. Math. 11
(2024), p. 107–157.

J.É.P. — M., 2025, tome 12

http://arxiv.org/abs/2211.03415
http://www.grdb.co.uk/forms/toricsmooth
http://arxiv.org/abs/0704.0049


1018 R. Andreasson & R. J. Berman

[39] M. Pieropan, A. Smeets, S. Tanimoto & A. Várilly-Alvarado – “Campana points of bounded height
on vector group compactifications”, Proc. London Math. Soc. (3) 123 (2021), no. 1, p. 57–101.

[40] Y. A. Rubinstein & K. Zhang – “Angle deformation of Kähler-Einstein edge metrics on Hirzebruch
surfaces”, Pure Appl. Math. Q 18 (2022), no. 1, p. 343–366.

[41] C. Spotti & S. Sun – “Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-
Einstein Fano manifolds”, Pure Appl. Math. Q 13 (2017), no. 3, p. 477–515.

[42] H. Tanaka – “Minimal model program for excellent surfaces”, Ann. Inst. Fourier (Grenoble) 68
(2018), no. 1, p. 345–376.

[43] S. Tanimoto – “Campana points, height zeta functions, and log Manin’s conjecture”, http://
hdl.handle.net/2433/265752, 2020, Problems and prospects in analytic number theory (RIMS
Kyoto, 2020).

[44] The Stacks Project Authors – “The Stacks Project”, 2023, Lemma 54.15.6: https://stacks.
math.columbia.edu/tag/0BIC.

[45] G. Tian – Canonical metrics in Kähler geometry, Lectures in Math. ETH Zürich, Birkhäuser
Verlag, Basel, 2000.

[46] T. D. Wooley – “Nested efficient congruencing and relatives of Vinogradov’s mean value theo-
rem”, Proc. London Math. Soc. (3) 118 (2019), no. 4, p. 942–1016.

[47] C. Xu – “K-stability of Fano varieties: an algebro-geometric approach”, EMS Surv. Math. Sci.
8 (2021), no. 1-2, p. 265–354.

[48] Z. Zhuang – “Optimal destabilizing centers and equivariant K-stability”, Invent. Math. 226
(2021), no. 1, p. 195–223.

Manuscript received 15th August 2024
accepted 4th June 2025

Rolf Andreasson, Chalmers University of Technology and the University of Gothenburg,
Chalmers tvärgata 3, SE-412 96 Göteborg, Sweden
E-mail : rolfan@chalmers.se

Robert J. Berman, Chalmers University of Technology and the University of Gothenburg,
Chalmers tvärgata 3, SE-412 96 Göteborg, Sweden
E-mail : robertb@chalmers.se
Url : https://www.chalmers.se/en/persons/robertb/

J.É.P. — M., 2025, tome 12

http://hdl.handle.net/2433/265752
http://hdl.handle.net/2433/265752
https://stacks.math.columbia.edu/tag/0BIC
https://stacks.math.columbia.edu/tag/0BIC
mailto:rolfan@chalmers.se
mailto:robertb@chalmers.se
https://www.chalmers.se/en/persons/robertb/

	1. Introduction
	2. General setup
	3. Toric log Fano varieties
	4. Hyperplane arrangements
	5. Diagonal hypersurfaces
	6. Arithmetic log surfaces 
	7. Appendix
	References

