Long time stability for cubic nonlinear Schrödinger equations on non-rectangular flat tori
[Stabilité en temps long des équations de Schrödinger non linéaires cubiques sur des tores plats non rectangulaires]
Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 713-800.

We consider nonlinear Schrödinger equations on flat tori satisfying a simple and explicit Diophantine non-degeneracy condition. Provided that the nonlinearity contains a cubic term, we prove the almost global existence and stability of most of the small solutions in high regularity Sobolev spaces. To this end, we develop a normal form approach designed to handle general resonant Hamiltonian partial differential equations for which it is possible to modulate the frequencies by using the initial data.

Nous considérons des équations de Schrödinger non linéaires sur des tores plats satisfaisant à une condition simple et explicite de non-dégénérescence diophantienne. Sous la condition que la non-linéarité contienne un terme cubique, nous prouvons l’existence et la stabilité presque globales de la plupart des petites solutions dans des espaces de Sobolev de forte régularité. À cette fin, nous développons une approche de forme normale conçue pour traiter des équations aux dérivées partielles hamiltoniennes résonnantes générales, pour lesquelles il est possible de moduler les fréquences en utilisant les données initiales.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.300
Classification : 35B34, 35B35, 35Q55, 37K45, 37K55
Keywords: Almost global existence, flat tori, nonlinear Schrödinger equations, normal forms, internal parameters
Mots-clés : Existence presque globale, tores plats, équations de Schrödinger non linéaires, formes normales, paramètres internes

Joackim Bernier 1 ; Nicolas Camps 2

1 Nantes Université, CNRS, Laboratoire de Mathématiques Jean Leray, LMJL, F-44000 Nantes, France
2 Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2025__12__713_0,
     author = {Joackim Bernier and Nicolas Camps},
     title = {Long time stability for {cubic~nonlinear~Schr\"odinger} equations on non-rectangular flat tori},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {713--800},
     publisher = {\'Ecole polytechnique},
     volume = {12},
     year = {2025},
     doi = {10.5802/jep.300},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.300/}
}
TY  - JOUR
AU  - Joackim Bernier
AU  - Nicolas Camps
TI  - Long time stability for cubic nonlinear Schrödinger equations on non-rectangular flat tori
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2025
SP  - 713
EP  - 800
VL  - 12
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.300/
DO  - 10.5802/jep.300
LA  - en
ID  - JEP_2025__12__713_0
ER  - 
%0 Journal Article
%A Joackim Bernier
%A Nicolas Camps
%T Long time stability for cubic nonlinear Schrödinger equations on non-rectangular flat tori
%J Journal de l’École polytechnique — Mathématiques
%D 2025
%P 713-800
%V 12
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.300/
%R 10.5802/jep.300
%G en
%F JEP_2025__12__713_0
Joackim Bernier; Nicolas Camps. Long time stability for cubic nonlinear Schrödinger equations on non-rectangular flat tori. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 713-800. doi : 10.5802/jep.300. https://jep.centre-mersenne.org/articles/10.5802/jep.300/

[Bam99] D. Bambusi - “Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations”, Math. Z. 230 (1999) no. 2, p. 345-387 | DOI | MR | Zbl

[BCGW24] J. Bernier, N. Camps, B. Grébert & Z. Wang - “Exponential stability of solutions to the Schrödinger–Poisson equation”, Discrete Contin. Dynam. Systems. Ser. A 44 (2024) no. 11, p. 3398-3442 | DOI | MR | Zbl

[BD18] M. Berti & J.-M. Delort - Almost global solutions of capillary-gravity water waves equations on the circle, Lect. Notes of the Unione Matematica Italiana, vol. 24, Springer, Cham, 2018 | DOI | MR

[BDGS07] D. Bambusi, J.-M. Delort, B. Grébert & J. Szeftel - “Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds”, Comm. Pure Appl. Math. 60 (2007) no. 11, p. 1665-1690 | DOI | MR | Zbl

[BFG20a] J. Bernier, E. Faou & B. Grébert - “Long time behavior of the solutions of NLW on the d-dimensional torus”, Forum Math. Sigma 8 (2020), article ID e12, 26 pages | DOI | MR | Zbl

[BFG20b] J. Bernier, E. Faou & B. Grébert - “Rational normal forms and stability of small solutions to nonlinear Schrödinger equations”, Ann. PDE 6 (2020) no. 2, article ID 14, 65 pages | DOI | MR | Zbl

[BFM24] D. Bambusi, R. Feola & R. Montalto - “Almost global existence for some Hamiltonian PDEs with small Cauchy data on general tori”, Comm. Math. Phys. 405 (2024) no. 1, article ID 15, 50 pages | DOI | MR | Zbl

[BFP23] M. Berti, R. Feola & F. Pusateri - “Birkhoff normal form and long time existence for periodic gravity water waves”, Comm. Pure Appl. Math. 76 (2023) no. 7, p. 1416-1494 | DOI | MR | Zbl

[BG06] D. Bambusi & B. Grébert - “Birkhoff normal form for partial differential equations with tame modulus”, Duke Math. J. 135 (2006) no. 3, p. 507-567 | DOI | MR | Zbl

[BG21] J. Bernier & B. Grébert - “Long time dynamics for generalized Korteweg-de Vries and Benjamin-Ono equations”, Arch. Rational Mech. Anal. 241 (2021) no. 3, p. 1139-1241 | DOI | MR | Zbl

[BG24] D. Bambusi & P. Gérard - “A Nekhoroshev theorem for some perturbations of the Benjamin-Ono equation with initial data close to finite gap tori”, Math. Z. 307 (2024) no. 3, article ID 54, 20 pages | DOI | MR | Zbl

[BG25] J. Bernier & B. Grébert - “Almost global existence for some nonlinear Schrödinger equations on 𝕋 d in low regularity”, Ann. Inst. Fourier (Grenoble) (2025), Online first | DOI

[BGR23] J. Bernier, B. Grébert & T. Robert - “Dynamics of quintic nonlinear Schrödinger equations in H 2/5+ (𝕋), 2023, To appear in Transactions of the AMS | arXiv

[BH22] P. Baldi & E. Haus - “Longer lifespan for many solutions of the Kirchhoff equation”, SIAM J. Math. Anal. 54 (2022) no. 1, p. 306-342 | DOI | MR | Zbl

[BK05] J. Bourgain & V. Kaloshin - “On diffusion in high-dimensional Hamiltonian systems”, J. Functional Analysis 229 (2005) no. 1, p. 1-61 | DOI | MR | Zbl

[BM19] M. Berti & A. Maspero - “Long time dynamics of Schrödinger and wave equations on flat tori”, J. Differential Equations 267 (2019) no. 2, p. 1167-1200 | DOI | MR | Zbl

[BMM24] M. Berti, A. Maspero & F. Murgante - “Hamiltonian Birkhoff normal form for gravity-capillary water waves with constant vorticity: almost global existence”, Ann. PDE 10 (2024) no. 2, article ID 22, 150 pages | DOI | MR | Zbl

[BMP20] L. Biasco, J. E. Massetti & M. Procesi - “An abstract Birkhoff normal form theorem and exponential type stability of the 1d NLS”, Comm. Math. Phys. 375 (2020) no. 3, p. 2089-2153 | DOI | MR | Zbl

[BMP21] L. Biasco, J. E. Massetti & M. Procesi - “Almost periodic invariant tori for the NLS on the circle”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 38 (2021) no. 3, p. 711-758 | DOI | Numdam | MR | Zbl

[Bou98] J. Bourgain - “Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations”, Ann. of Math. (2) 148 (1998) no. 2, p. 363-439 | DOI | MR | Zbl

[Bou00a] J. Bourgain - “On diffusion in high-dimensional Hamiltonian systems and PDE”, J. Anal. Math. 80 (2000), p. 1-35 | DOI | MR | Zbl

[Bou00b] J. Bourgain - “Problems in Hamiltonian PDE’s”, Geom. Funct. Anal. (2000), p. 32-56, GAFA 2000 (Tel Aviv, 1999) | DOI | MR | Zbl

[Bou05] J. Bourgain - “On invariant tori of full dimension for 1D periodic NLS”, J. Functional Analysis 229 (2005) no. 1, p. 62-94 | DOI | MR | Zbl

[Cam24] N. Camps - “Stability results for the nonlinear Schrödinger equation on Diophantine tori”, 2024, Journées EDP, Aussois, France | HAL

[CG22] C. Collot & P. Germain - “Derivation of the homogeneous kinetic wave equation: longer time scales”, 2022 | arXiv

[CKS + 10] J. Colliander, M. Keel, G. Staffilani, H. Takaoka & T. Tao - “Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation”, Invent. Math. 181 (2010) no. 1, p. 39-113 | DOI | MR | Zbl

[CS24] N. Camps & G. Staffilani - “Modified scattering for the cubic Schrödinger equation on Diophantine waveguides”, 2024 | arXiv

[Del12] J.-M. Delort - A quasi-linear Birkhoff normal forms method. Application to the quasi-linear Klein-Gordon equation on 𝕊 1 , Astérisque, Société Mathématique de France, Paris, 2012 no. 341 | Numdam | MR

[Den19] Y. Deng - “On growth of Sobolev norms for energy critical NLS on irrational tori: small energy case”, Comm. Pure Appl. Math. 72 (2019) no. 4, p. 801-834 | DOI | MR | Zbl

[DG19] Y. Deng & P. Germain - “Growth of solutions to NLS on irrational tori”, Internat. Math. Res. Notices (2019) no. 9, p. 2919-2950 | DOI | MR | Zbl

[DGG17] Y. Deng, P. Germain & L. Guth - “Strichartz estimates for the Schrödinger equation on irrational tori”, J. Functional Analysis 273 (2017) no. 9, p. 2846-2869 | DOI | MR | Zbl

[DGGRM22] Y. Deng, P. Germain, L. Guth & S. L. Rydin Myerson - “Strichartz estimates for the Schrödinger equation on non-rectangular two-dimensional tori”, Amer. J. Math. 144 (2022) no. 3, p. 701-745 | DOI | MR | Zbl

[FGL13] E. Faou, L. Gauckler & C. Lubich - “Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus”, Comm. Partial Differential Equations 38 (2013) no. 7, p. 1123-1140 | DOI | MR | Zbl

[FI21] R. Feola & F. Iandoli - “Long time existence for fully nonlinear NLS with small Cauchy data on the circle”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 22 (2021) no. 1, p. 109-182 | MR | Zbl

[GG22] F. Giuliani & M. Guardia - “Sobolev norms explosion for the cubic NLS on irrational tori”, Nonlinear Anal. 220 (2022), article ID 112865, 25 pages | DOI | MR | Zbl

[GIP09] B. Grébert, R. Imekraz & É. Paturel - “Normal forms for semilinear quantum harmonic oscillators”, Comm. Math. Phys. 291 (2009) no. 3, p. 763-798 | DOI | MR | Zbl

[GK15] M. Guardia & V. Kaloshin - “Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation”, J. Eur. Math. Soc. (JEMS) 17 (2015) no. 1, p. 71-149, Erratum: Ibid. 19 (2017), no. 2, p. 601–602 | DOI | MR | Zbl

[HPTV15] Z. Hani, B. Pausader, N. Tzvetkov & N. Visciglia - “Modified scattering for the cubic Schrödinger equation on product spaces and applications”, Forum Math. Pi 3 (2015), article ID e4, 63 pages | DOI | MR | Zbl

[KP96] S. Kuksin & J. Pöschel - “Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation”, Ann. of Math. (2) 143 (1996) no. 1, p. 149-179 | DOI | MR | Zbl

[LX24] J. Liu & D. Xiang - “Exact global control of small divisors in rational normal form”, Nonlinearity 37 (2024) no. 7, article ID 075020, 48 pages | DOI | MR | Zbl

[Pös02] J. Pöschel - “On the construction of almost periodic solutions for a nonlinear Schrödinger equation”, Ergodic Theory Dynam. Systems 22 (2002) no. 5, p. 1537-1549 | DOI | MR | Zbl

[SW20] G. Staffilani & B. Wilson - “Stability of the cubic nonlinear Schrodinger equation on an irrational torus”, SIAM J. Math. Anal. 52 (2020) no. 2, p. 1318-1342 | DOI | MR | Zbl

[YZ14] X. Yuan & J. Zhang - “Long time stability of Hamiltonian partial differential equations”, SIAM J. Math. Anal. 46 (2014) no. 5, p. 3176-3222 | DOI | MR | Zbl

Cité par Sources :