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LONG TIME STABILITY FOR

CUBIC NONLINEAR SCHRÖDINGER EQUATIONS ON

NON-RECTANGULAR FLAT TORI

by Joackim Bernier & Nicolas Camps

Abstract. — We consider nonlinear Schrödinger equations on flat tori satisfying a simple and
explicit Diophantine non-degeneracy condition. Provided that the nonlinearity contains a cubic
term, we prove the almost global existence and stability of most of the small solutions in high
regularity Sobolev spaces. To this end, we develop a normal form approach designed to handle
general resonant Hamiltonian partial differential equations for which it is possible to modulate
the frequencies by using the initial data.

Résumé (Stabilité en temps long des équations de Schrödinger non linéaires cubiques sur des
tores plats non rectangulaires)

Nous considérons des équations de Schrödinger non linéaires sur des tores plats satisfaisant
à une condition simple et explicite de non-dégénérescence diophantienne. Sous la condition que
la non-linéarité contienne un terme cubique, nous prouvons l’existence et la stabilité presque
globales de la plupart des petites solutions dans des espaces de Sobolev de forte régularité.
À cette fin, nous développons une approche de forme normale conçue pour traiter des équations
aux dérivées partielles hamiltoniennes résonnantes générales, pour lesquelles il est possible de
moduler les fréquences en utilisant les données initiales.
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714 J. Bernier & N. Camps

1. Introduction

1.1. Context. — We consider the nonlinear Schrödinger equation

(NLS) i∂tu+ divG∇u = f(|u|2)u, (t, x) ∈ R× Td,

where G is a real symmetric d × d positive matrix and f : R → R is a C∞ function
satisfying f ′(0) ̸= 0 (to ensure the existence of a cubic nonlinear term in the equation).
Without loss of generality, we assume that f(0) = 0.

This is a convenient way of rewriting nonlinear Schrödinger equations on rescaled
tori. Indeed, d-dimensional flat tori writes Td

L = Rd/L where L =: V Zd is a lattice
of Rd (V being a d× d real invertible matrix) and so by setting G = V −1 t(V−1) and
by applying a linear change of coordinate x 7→ V x, (NLS) is equivalent to

i∂tu+∆u = f(|u|2)u, (t, x) ∈ R× Td
L .

By considering small solutions, (NLS) can be seen as a perturbation of the linear
integrable system

(1.1) i∂tu+ divG∇u = 0

whose actions In(u) = |un|2 are the square modulus of the Fourier coefficients

un =
1

(2π)d

∫
Td

e−in·x u(x) dx.

Since the actions are constants of motion for the linear evolution (1.1), a natural
question in this context of perturbation theory is then to understand how much the
nonlinear flow of (NLS) preserves these actions. Or more formally, by setting

∥u∥Hs :=
(∑
n∈Zd

⟨n⟩2s|un|2
)1/2

, ⟨n⟩ := (1 + |n|2)1/2,

for initial data of size ε in Hs(Td), on what time scales T (ε) are the integrable
dynamics orbitally stable under the flow of (NLS), in the sense that the actions of
the solution are slow-variables:

(1.2) sup
|t|⩽T (ε)

∑
n∈Zd

⟨n⟩2s
∣∣|un(t)|2 − |un(0)|2

∣∣ ≪ ε2 ?

A sub-question is the one of the stability of the zero solution u(t, x) = 0. Or more
precisely, for initial data of size ε in Hs(Td), on what time scales T (ε) do we have
that

(1.3) sup
|t|⩽T (ε)

∥u(t)∥Hs ⩽ Cs∥u(0)∥Hs?

(where Cs > 0 is constant depending only on s). The statement (1.2) is stronger
than (1.3). Note that the local Cauchy theory ensures that T (ε) is larger than or
equal to the linear time-scale ∼ ε−2, at least when s > d/2.

The above question is a mathematical formulation of the (absence) of transfer of
energy from large to small scales of oscillation. Extensive research has been conducted
over the past decades to construct energy cascades out of the resonant interactions,
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Stability for NLS on flat tori 715

and we refer to [CKS+10, GG22, GK15] for partial results about norm amplification
for the cubic Schrödinger equation on tori. In this setting, the existence of infinite
energy cascades dynamics conjectured by Bourgain [Bou00b] have only been estab-
lished when the NLS is posed on the waveguide R × Td manifold. The unbounded
direction provides a stronger dispersion that reduces the dynamic to the effective
one of the resonant system [HPTV15]. In contract, the second author and Staffi-
lani [CS24, Cam24] proved that the Sobolev norms remain bounded in infinite time
when NLS is posed on a Diophantine waveguide (namely R × Td

L for L having the
same Diophantine property as in the present paper).

In recent decades, important developments have been made in Birkhoff normal form
techniques to prove the stability of small solution over longer time scales, for many
different Hamiltonian PDEs (see e.g. [BG06, BDGS07, GIP09, Del12, FGL13, BD18,
BMM24]). All these results ensure the almost global existence and stability of the small
solutions in the sense that (1.3) holds for T (ε) ∼ ε−r with r arbitrarily large, provided
that s ≫ r. The case of low regularity is still wide open (see e.g. [BG25, BGR23] for
results in this direction). However, all these results apply to PDEs associated with non-
resonant Hamiltonians: the eigenvalues of the operator associated with the linearized
equation (also called the frequencies) must be rationally independent. For (NLS), the
frequencies are

λ2
n := g(n, n), where g(a, b) := taG b.

They are clearly(1) not rationally independent, and therefore (NLS) is resonant.
A common way to overcome this obstacle is to add a random convolution potential V
(with real Fourier coefficients) to the equation, and the equation (NLS) becomes

(NLS*) i∂tu+ divG∇u = V ∗ u+ f(|u|2)u.

See for example [BG06, YZ14, FI21, BMP20, BG25, BFM24]. In this case, the fre-
quencies are modulated and become ωn = λ2

n +Vn. They are almost surely rationally
independent. For rational tori (i.e., G ∈ Qd×d up to multiplication by a scalar), the
almost global existence and stability of the small solutions of (NLS*) was proved by
[BG06]. For irrational flat tori, small divisors are degenerate which may generate high
frequencies instability. Nevertheless, in [BFG20a], Bernier, Faou and Grébert devel-
oped an approach to prove almost global existence of small solutions for semi-linear
equations enjoying such small divisor estimates. More recently, Bambusi, Feola and
Montalto [BFM24] proved the almost global stability of small solutions of (NLS*).

In this paper, we aim to extend these results by removing the Fourier multiplier
V ∗u. Since (NLS) is resonant, the previous results do not hold, i.e., the stability (1.2)
or (1.3) with T (ε) ∼ ε−r and r ≫ 1 arbitrarily large cannot be derived from the
Birkhoff normal form theorem. The situation is even worse, and we expect (1.2)
and (1.3) to be false after some polynomial time scales T (ε) ∼ ε−α. For example, one
can deduce from [CKS+10] that (1.3) is false on the square torus T2 (i.e., G = I2) for
some initial data after T (ε) = ε−2 log(ε−1).

(1)They belong to the finite dimensional Q vector space generated by the coefficients of G.
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716 J. Bernier & N. Camps

The only resonant equations for which stability results were proved have a special
algebraic property: the four-waves interactions must be trivial or, in other words,
the quartic terms of the Birkhoff normal form of the equation must be integrable.
This property allows to modulate the frequencies using the initial data as parameters
and leads to the almost global existence and stability of most of the small solutions:
an exceptional set of initial data has to be excluded. Such results have been proved
for (NLS) in dimension d = 1 [Bou00a, BFG20b], for the generalized Korteweg–de
Vries and a modified version of Benjamin–Ono equations [BG21] and for the Kirchhoff
equation [BH22] but only for T (ε) ∼ ε−6. We also mention [LX24, BCGW24], who
proved stability in Gevrey spaces over exponentially long times.

Kuksin and Pöschel observed in [KP96] that four-waves interactions are trivial for
(NLS) in dimension d = 1. The point is that this property is also true in any dimension
provided that

(1.4) g(a, b) ̸= 0, ∀a, b ∈ Zd ∖ {0}.

Indeed, as in dimension 1, if n1 − n2 + n3 − n4 = 0, we have

Ωn⃗ := λ2
n1

− λ2
n2

+ λ2
n3

− λ2
n4

= 2g(n1 − n2, n1 − n4)

which ensure that if Ωn⃗ = 0 then {n1, n3} = {n2, n4}.

1.2. Main theorem and comments. — In order to establish our main result, we have
to make the non-degeneracy condition (1.4) quantitative.

Definition 1.1 (Admissible tori). — The flat tori Td
L is admissible if there exist

C > 0 and τ∗ > 0 such that for all a, b ∈ Zd ∖ {0},

(1.5) |g(a, b)| ⩾ C

∥a∥τ∗2 ∥b∥τ∗2
.

In particular, g(a, b) = 0 if and only if a = 0 or b = 0.

Remark 1.2. — If the vector (Gi,j)i⩽j of the coefficients of G is Diophantine then
the torus is admissible. Note that the converse is not true (see (1.12)). In any case,
as a consequence, since this property is true for almost all matrix G, we can say that
almost all flat torus are admissible (as soon as τ∗ > d(d+ 1)/2).

To state our result, we have to introduce ΠM , M > 0, the orthogonal projectors
onto frequencies smaller than M :

ΠMu =
∑

|n|⩽M

un e
in·x .

Moreover, by abuse of notation, we denote by meas the canonical Lebesgue measure
on ΠML2(Td;C), for M > 0.

Theorem 1.3. — Let Td
L be an admissible torus in the sense of Definition 1.1 and

r ≳ 1. There exist µd > 0 and ν ≲r,L 1 such that for all s ≳r 1 and for all ε ≲r,s 1,
provided that M > 0 satisfies

(1.6) ε−µdr/s ⩽ M ⩽ ε−ν ,
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Stability for NLS on flat tori 717

there exists an open set Θε ⊂ ΠMBs(ε) for which the following holds: local solutions
to (NLS) in Hs initiated from initial data

(1.7) u(0) ∈ Bs(2ε) ∩Π−1
M Θε

exist in C([−Tε, Tε], H
s) for Tε = ε−r, and satisfy, for all |t| ⩽ Tε,

(1.8) ∥u(t)∥Hs ⩽ 2s+1∥u(0)∥Hs .

Moreover, these initial data are typical, in the sense that

(1.9) meas(Θε) ⩾ (1− ε1/40)meas(ΠMBs(ε)).

Roughly speaking, for any r ≳ 1, s ≳r 1 and ε > 0 sufficiently small, we prove
that, under a generic condition on finitely many low Fourier modes, initial data of
size ε in Hs(Td) lead to stable solutions over time scales of order ε−r.

1.2.1. Comments about the literature

– Theorem 1.3 is the first almost global existence result for a resonant PDE in
dimension d ⩾ 2.

– It extends the results [Bou00a, BFG20b] in the one-dimensional case which is
much more favorable. In particular, the almost global preservation of all the actions
(i.e., (1.2)) holds when d = 1. When d ⩾ 2, however, we prove the stability of the low-
frequency actions and of the high-frequency super-actions, as discussed Section 1.2.2.

– In a similar finite dimensional setting the geometric part of the Nekhoroshev
theorem allows to prove the long time stability (in a sense weaker than (1.2) and (1.3))
of any small solution, removing the restriction (1.7). In contrast, [BK05] strongly
suggests that such a result should not extend to the infinite dimensional setting.
We nevertheless mention [Bam99, BG24] for results in this direction.

1.2.2. Technical comments

– We propose a new formulation (1.9) to quantify the proportion of initial data
leading to almost global and stable solutions. In this formalism, we only need to impose
a condition on the low Fourier coefficients. Moreover, we do not need to assume any
additional decay of the Fourier coefficients as it is usually done (e.g. in [Bou00a,
BFG20b, BG21, LX24]). We defer comments on this formulation to Section 1.2.3.

– The constraint s ≳r 1 could be refined in s ≳ r2 (which is a classical constraint
for this kind of problems, see e.g. [BG21]). It mainly comes from the existence of
a number M satisfying (1.6) and the fact that in the proof we impose ν ≲ r−1,
as specified in (3.1).

– In dimension d ⩾ 2, we are not able to control the variation of all the actions
(it is an open problem even for (NLS*)). Actually (in (2.34)), we only control the
variation of the low actions

sup
|t|⩽ε−r

∑
n∈Clo

⟨n⟩2s
∣∣|un(t)|2 − |un(0)|2

∣∣ ≪ ε2,

where Clo ⊂ Zd is a finite set, with {n ∈ Zd | |n| ⩽ (17r)−1M} ⊂ Clo. For the
high modes, however, as [BFM24], we only control the variations of the super-actions
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718 J. Bernier & N. Camps

based on a the cluster decomposition of the frequency space due to [Bou98, BM19].
We refer to Proposition 2.18 for a precise estimate (the truncation parameter M of
this proposition in not the same as the one of Theorem 1.3). The unusual exponent
2s+1 in (1.8) is a consequence of the dyadic structure of the cluster decomposition.

1.2.3. Comments on the set of initial data

– To overcome the possible instabilities generated by the resonances of the equa-
tion, we modulate the frequencies by using initial data. This leads (very technical)
Diophantine conditions on the set of initial data. Therefore, in order to prove that the
stability result is generic (and even not empty), we have to prove that this set of stable
initial data is large in some sense. In the finite dimensional setting, we would prove
that the set of admissible initial data is open and asymptotically of full Lebesgue
measure.

In the infinite dimensional setting, however, there is no Lebesgue measure and
therefore no canonical choice to express such a result. Fortunately, the constraints we
impose on the initial datum are quite weak, and it is possible to prove that this set
is big for any measure that is not too much degenerated (see e.g. [BFG20b, BG21,
LX24, BCGW24] for different possible choices and [BG21] for a discussion about the
topology of this set). We do not know if there is an intrinsic way to express that this
set is large.

– In this paper, as in [BCGW24], we stress out the fact that it suffices to impose
a condition on the low Fourier modes of the initial (i.e., un with |n| ⩽ M , with
M ∼ ε−µdr/s with s ≳ r). This is essentially the meaning of (1.7).

– The dimension of the finite-dimensional space ΠMHs(Td,C), which is of order
Md ⩾ ε−dµdr/s, is large with respect to the relative measure of the set of the initial
data we exclude (ε1/40). Hence, our probability framework is closer to an infinite
dimensional one than a finite dimensional one, even if our statement involves the
(finite-dimensional) Lebesgue measure. Indeed, in the limit ε → 0 the dimension
of ΠMHs(Td,C) goes to infinity, and we can show that the Lebesgue measure on
ΠMBs(ε) concentrates its mass on the sphere of radius ε:

1

meas(ΠMBs(ε))
meas

{
u ∈ ΠMBs(ε) | ∥u∥Hs ⩽ ε(1−M−1/2)

}
= (1−M−1/2)dimΠML2

≪ ε1/40.

Therefore, to prove Theorem 1.3 we could assume for free that ∥ΠMu(0)∥Hs ⩾
ε(1 − M−1/2). Nevertheless, we do not use such a property in the proof and, to
avoid any hidden smallness assumption of this kind on ∥u(0)−ΠMu(0)∥Hs , we allow
∥u(0)∥Hs to be as large as 2ε in (1.7).

– A popular way to draw initial data is to draw the Fourier coefficients indepen-
dently, see e.g. [Bou00a, BFG20b, BG21, LX24]. For example, here it could consist in
considering random initial data of the form(2)

V (ε) = c ε
∑
k∈Zd

Vk⟨k⟩−s−α,

(2)Note that V (ε) also lives on a sphere in the sense that ∥V (ε)∥ℓ∞s+α
= cε almost surely.
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Stability for NLS on flat tori 719

where the random variables Vk are independent and uniformly distributed in the
complex unit disk D(0, 1), α > d/2 and c(α) > 0 is a normalizing constant to ensure
that ∥V (ε)∥Hs < ε almost surely. With minor changes in the proof,(3) we could easily
replace the measure estimate (1.9) of Theorem 1.3 by

(1.10) P(ΠMV (ε) ∈ Θε) ⩾ 1− ε1/40.

We would deduce from this that the set of the stable initial data
⋃

ε Bs(2ε) ∩Π−1
M Θε

is asymptotically of full measure:

P(εV (1) ∈ Π−1
M Θε) ⩾ 1− ε1/40.

Approaches of this type have the disadvantage of requiring initial data smoother
than necessary. We believe that one of the strengths of our probabilistic formulation
in Theorem 1.3 is to describe dynamics in Hs(Td) for solutions no more regular
than Hs(Td).

– In contrast with papers using rational normal forms, the set Θε a priori also
depends on the angles of the initial data: we do not prove that it is invariant by
rotation of the angles, in the sense that

(1.11) u ∈ Θε ⇐⇒
∑
k∈Zd

|uk|eik·x.

That is why contrary to [BFG20b, BG21, BCGW24], we do not only draw the actions
of the initial data randomly but also their angles. We point out that nevertheless,
here, (1.11) is true up to conjugation by a diffeomorphism (Ψ, defined in (7.1)).

1.2.4. Comments about flat tori

– The strength of our method with respect to rational normal form methods is
to only require a very weak and explicit condition on the external parameters G

associated to the tori Td
L . Explicit examples with Diophantine numbers can be easily

produced, e.g.

(1.12) G =

(
1

√
2√

2 3

)
is admissible.

– Note that admissible tori are not rectangular but can be chosen arbitrarily close
to rectangular tori. For rectangular tori, however, the four-wave interaction set is not
trivial. It can be decoupled into two one-dimensional systems (see [SW20]). We believe
that it is an interesting problem to understand the situation on a Diophantine rect-
angular tori.

– Most of our analysis can be easily transferred to the case of a hyperbolic
Laplacian (when the symmetric matrix G is indefinite). However, the finite-dimen-
sional reduction, which is based on the separation property of the frequencies (see
Lemma 2.15), may no longer be possible.

(3)in measure estimates, it suffices to replace round balls ΠMBs(0, ε) by rectangular ones
ΠMBℓ∞s+α

(0, cε).
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720 J. Bernier & N. Camps

– Theorem 1.3 is in line with the study of nonlinear Schrödinger equations on
irrational tori that has been developed in recent years. The general idea is to mimic the
dispersion in compact settings. Under some Diophantine conditions on the torus, the
refocusing time for the waves is actually longer [DGG17, DGGRM22] than it is on the
square torus, and the four-wave resonant system is smaller [SW20]. On Diophantine
rectangular tori, Deng–Germain [DG19] improved polynomial upper bounds for the
growth of Sobolev norms, while Deng [Den19] achieved polynomial growth in the
energy-critical case for small energy solutions (a challenging open problem on the
square torus). In a similar spirit, Collot–Germain [CG22] derived the kinetic wave
equation for larger set of scalings by considering dispersion relations associated with
non-rectangular Diophantine tori.

– Our result goes in the same direction, showing stronger stability properties on
non-rectangular Diophantine tori, in contrast to the norm amplification observed in
[CKS+10]. We stress out that Guilani–Guardia [GG22] proved that the same norm am-
plification mechanism occurs on rectangular Diophantine tori as well through quasi-
resonant quartets, but after exponential time-scales. This does not contradict our
Theorem 1.3, which achieves polynomial time-scales.

1.3. Discussions on the proof. — In this paper we develop a normal form approach
for proving stability of solutions to resonant Hamiltonian systems whose modulated
frequencies are highly degenerate (more than what the rational normal form approach
requires). We believe that beyond the almost global existence result stated in Theo-
rem 1.3, this method is one of the main interests of this paper. In the case of (NLS)
on flat tori, one advantage of this method is that it results in the simple (and quite
minimal) non-degeneracy assumption (1.5) for admissible tori.

Our normal form is inspired by an approach developed by Bourgain in the paper
[Bou00a] for (NLS) in dimension d = 1. Apart from the fact that we overcome the
degeneracy of linear frequencies which is specific to the dimension d ⩾ 2, the main
difference is that we also provide a formalism that allows us to prove and quantify
the sense in which most small solutions are stable over very long times.

In his proof, Bourgain describes a generic step of his normal form procedure: after a
preliminary change of variable (let us say τ0) to put the Hamiltonian under resonant
normal form, he explains how to construct a new change of variable to get better
properties. The point is that (due to the modulated small divisors) the transforma-
tion τ0 itself depends strongly on u(0) (let us denote it by τ0 =: τ0u(0)). Therefore,
in order to construct the new transformation, he has to assume that the new initial
data v(0) := τ0u(0)(u(0)) belong to a set Ξu(0) encoding some Diophantine conditions
and depending on u(0). He proves that Ξu(0) is asymptotically of full measure, but he
does not explain why this implies that v(0) = τ0u(0)(u(0)) ∈ Ξu(0) for most real initial
data u(0).

This type of problem is quite classical in standard KAM theory and is usually solved
by introducing Lipschitz norms to track the dependencies with respect to the internal
parameters. This is the strategy we implement in this paper. However, due to the small
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Stability for NLS on flat tori 721

divisor degeneracy this is far from obvious and has required the introduction of a whole
technical framework (and associated technical estimates), which largely explains the
length of this paper. It has also required us to refine some of the fundamental estimates
of [Bou00a] (see e.g. Remark 4.2 for a more detailed discussion on this point). This
difficulty is inherent in modulating the frequencies with internal parameters. It is a
well-known obstacle in the open problem of constructing infinite dimensional invariant
tori for (NLS)(4) in dimension d = 1 (see e.g. [Pös02]).

To continue the discussion of the proof, we need to introduce the Hamiltonian
structure of (NLS). More precisely, (NLS) rewrites

(1.13) i∂tu = ∇H(u) with H(u) = Z2(u) +
1

2

∫
Td

F (|u(x)|2) dx,

where F is the primitive of f vanishing at the origin and

Z2(u) =
1

2

∑
n∈Zd

λ2
n|un|2.

The classical notations (like ∇) are defined in Section 1.4 below.

1.3.1. Modulated frequencies, small divisors and comparison with rational normal forms

First, let us assume that(5) (NLS) can be put in Birkhoff normal form (at least up
to some high order 2r ≫ 1). This means that there would be a canonical change of
variable τ close to the identity in Hs such that

(1.14) H ◦ τ−1(u) = Z2(u) +Q(u) + O(u2r) and {Z2, Q} = 0.

Then, using the admissibility condition on Td
L , the four-waves interactions are inte-

grable and we deduce that (up to a gauge transform), setting v = eit divG∇τ(u), (NLS)
rewrites

i∂tvn = ωn(v)vn + O(v5), where ωn(v) = −f ′(0)|vn|2.
Since f ′(0) ̸= 0, this allows to modulate the frequencies using the initial data as
parameters. Note, however, that since v ∈ Hs this modulation is highly degenerate
in the high frequency regime since ωn decays at least like ⟨n⟩−2s with s ≫ 1. Under
some generic conditions on v, this provides small divisors estimates of type

(1.15)
∣∣∣∑
n∈Zd

hnωn(v)
∣∣∣ ≳ ∥v∥2Hs(µmax(h))

−2|h|ℓ1 (µmin(h))
−2s,

where µmin(h) = min{⟨n⟩ | hn ̸= 0}, µmax is defined similarly and h ∈ Z(Zd) is a
family of integers with finite support. We prove such an estimate in Section 5. This
type of small divisors seems to be ubiquitous for resonant Hamiltonian PDEs (e.g. it is

(4)Note that since in dimension d = 1 we control the variation of all the actions, what we prove in
this paper, as well as what is proved in [Bou00a, BFG20b], is somehow not so far from such a result:
we prove that most of the small solutions to (NLS) stay very close to some infinite dimensional tori
for very long times.

(5)Due to the degeneracy of the small divisor associated with the linear frequencies, this is an
open problem in dimension d ⩾ 2 discussed in Section 1.3.3.
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also true for KdV, Benjamin–Ono and their generalizations [BG21], Kirchhoff [BH22],
the pure-gravity water waves [BFP23]) to the notable exception of the Schrödinger–
Poisson equation (see [BFG20b, BCGW24]).

There are three different contributions in the right-hand-side of the small divisor
estimate (1.15).

– The first one, ∥v∥2Hs , comes from homogeneity arguments and is harmless.
– The second one, (µmax(h))

−2|h|ℓ1 , comes from counting estimates and could be
very critical, but truncation arguments (presented in Section 1.3.3) enable to handle
these resonances.

– The last contribution (µmin(h))
−2s is the most critical. In this sense, we say that

the small divisor estimate (1.15) is degenerate. To explain why it is so critical, let us
focus on just one aspect that we think is the most important.

To describe the dynamics over longer timescales one has to conjugate (at least
locally) (NLS) to an integrable system up to some higher order terms. In other words,
up to a new canonical change of variables z = τ ♯(v), (NLS) rewrites

i∂tzn = ω♯
n(z)zn + O(z2q+1), where ω♯

n(z) = ωn(z) + O(z4),

and 3 ⩽ q ⩽ r. To transform the remainder terms of order O(z2q+1) into terms of
order O(z2q+3),(6) a naive approach (in the spirit of Birkhoff normal forms) would be to
average the terms of order O(z2q+1) by the flow generated by the frequencies ωn(z)

(7)

to make them integrable. The point, identified and discussed in [BFG20b], is that
usually, when n is large enough, ωn is negligible with respect to ω♯

n, which makes this
naive approach fail. More precisely, due to higher order correction terms ω♯

n has no
reason to decay like ⟨n⟩−2s (i.e., like ωn;(8) for example, for (NLS) in dimension d = 1,
explicit computation of the corrections of order 6 in [BFG20b] proves that it actually
decays at most like ⟨n⟩−2). In any case, more terms of ω♯

n have to be considered to
average the terms of order O(z2q+1).

We discuss two strategies to overcome this problem: either we identify a higher
order term correction term allowing to prove that the small divisors are stable by
perturbation, or we use that the derivative of the small divisors is stable by pertur-
bation.

– The first strategy, used in the papers following the rational normal form approach
[BFG20b, BG21, LX24], relies on an explicit computation of the correction terms of
order 4 of ω♯

n (coming from the terms of order 6 in the Hamiltonian) and on the hope
that they are much less degenerate than ωn. For example, here, we could prove that

(6)Of course, in practice, as we will see in the proof, the gain could be much weaker.
(7)i.e., those of i∂tzn = ωn(z)zn.
(8)Actually for some equations like Benjamin–Ono [BG21] or the pure gravity water waves

[BFP23], ωn contains some terms that do decay like ⟨n⟩−2s but they do not contribute to some
of the small divisors.
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they are of the form

ω̃n(z) = (f ′(0))2
∑
m ̸=n

|zm|4

λ2
n−m

+ other terms.

In the favorable cases it leads to small divisors estimates of the form(9)

(1.16)
∣∣∣ ∑
n∈Zd

hn(ωn + ω̃n)(z)
∣∣∣ ≳ ∥z∥2Hs(µmax(h))

−C|h|
ℓ1 max

(
∥z∥2Hs , (µmin(h))

−2s
)
,

which are much less degenerate than the one associated with ωn (see (1.15)). Since,
as before, the factor (µmax(h))

−C|h|
ℓ1 can be overcome by assuming high-regularity

(s large enough), such estimates are stable and imply similar small divisor estimates
for the full modulated frequencies ω♯

n. It also implies that it suffices to average the
terms of order O(z2q+1) using the flow generated by the modulated frequencies ωn+ω̃n.
Moreover, it also implies that it is not necessary to impose new Diophantine conditions
on the initial data at each step of the normal form procedure, it suffices to ensure
that (1.16) holds for z = u(0).

– The second strategy, used in [Bou00a] and which we implement in this paper, is to
average the terms of order O(z2q+1) using the flow generated by all the modulated
frequencies ω♯

n. To prove that they satisfy acceptable small divisor estimates, it is
important to note that even if ωn is not the leading part of ω♯

n, ∂|zn|2ωn = −f ′(0)

is necessarily the leading part of ∂|zn|2ω
♯
n. This allows to prove that if z(0) lives in

a set of asymptotically full measure, the modulated frequencies ω♯
n enjoy the same

small divisor estimate (1.15) as ωn. As discussed above, a significant part of the proof
(not considered in [Bou00a]) then consists in proving that this corresponds to a set
of initial data u(0) of asymptotically full measure.
The first strategy suffers from several limitations compared to the second one, which
is more flexible and which we follow in this paper.

– The higher order correction terms (such as ω̃n) depend on the linear frequencies
(here λ2

n). To get non-degenerate small divisor estimates of the type (1.16), it is then
necessary to impose additional assumptions on the linear frequencies (e.g. here we
would have to impose additional Diophantine conditions on the numbers λ−2

n , which
would be much less explicit than the admissibility condition (1.5)).

– For some equations these higher order correction terms may also be degenerate.
For the Benjamin–Ono equation they vanish exactly. In [BG21] is was then necessary
to assume the existence a term of the form ∂xu

3 in the perturbed equation in order
to follow the rational normal form approach.

– Depending on the equation at hand, and possibly also on preliminary Birkhoff
normal form reductions (to remove the non-resonant terms from the Hamiltonian),
obtaining explicit expressions for these higher order correction terms requires heavy
computation. In [BG21] it was necessary to use of a formal computation software.

(9)where C|h|
ℓ1

> 0 is an explicit function of |h|ℓ1 which plays no role.
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1.3.2. Algebraic framework: rational fractions versus re-centered polynomials

The algebraic framework of the papers based on rational normal forms is quite
different from that of this paper and [Bou00a]. Rational normal forms are quite close
to standard Birkhoff normal form since it consists in replacing polynomial expansions
by rational fraction expansions (which explains their name). Conversely, here, as in
[Bou00a], we consider expansions in re-centered(10) polynomial expansions which hold
much more locally (more in a KAM spirit: see [Bou05, BMP21] where a similar for-
malism is used in this context). The second approach offers more flexibility in the
construction whereas the first one provides a normal form which is more global. This
choice of algebraic framework does not seem to be related to small divisor considera-
tions: it is likely that we could replace rational fractions by re-centered polynomials in
[BFG20b, BG21, LX24, BCGW24]. Nevertheless, here and in [Bou00a], to overcome
the small divisor degeneracy (i.e., that we do not have (1.16)), the normal form is
constructed more locally (around some high-dimensional tori in Hs) and it is unclear
how a formalism based on rational fractions would allow to recover the smallness es-
timates provided by the fact that the solution remains very close to high-dimensional
tori. We refer to the end of Section 1.3.4 for further discussions about the way we
exploit this extra smallness.

1.3.3. Reduction to a finite dimensional system. — In order to put (NLS) in Birkhoff
normal form, the frequencies of the system must satisfy for all q ⩾ 2 a Diophantine
condition of type

|λ2
n1

− λ2
n2

+ · · · − λ2
n2q

| ≠ 0 =⇒ |λ2
n1

− λ2
n2

+ · · · − λ2
n2q

| ≳q max3⟨n⟩−βq ,

where βq > 0, n1, . . . , n2q ∈ Zd satisfy the zero momentum condition n1 − n2 +

· · · − n2q = 0 and max3⟨n⟩ denotes the third largest number among ⟨n1⟩, . . . , ⟨n2q⟩.
Such small divisor estimates are obvious for integer frequencies, and also holds for
generic choices of convolution potential in (NLS*) on rational tori. In contrast, for
Diophantine flat tori this estimate does not hold in general with max3⟨n⟩ but with
max1⟨n⟩. For this reason the almost global stability of small solution of (NLS*) for
irrational tori remained an open problem until the recent work of Bambusi–Feola–
Montalto [BFM24].

To address this, [BFM24] used cluster decomposition and frequency separation
properties between different clusters, initially established by Bourgain [Bou98] for the
square torus Td and later generalized by Berti–Maspero [BM19] for any flat tori (see
Lemma 2.15). This allows them, while leaving certain quasi-resonant terms in their
normal form, to prove the quasi-preservation of the super actions associated with this
decomposition and therefore to control the Hs norm of the solution for very long
times.

In Section 2 we detail the finite-dimensional approximation. We use the cluster
decomposition to prove that, up to a first change of variable Φ1

χ and a bootstrap

(10)around the actions in the final variables, which is quite implicit.
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assumption, the super actions are almost preserved and that the low-frequency part
of the solution ΠClo

u(t) solves an evolution equation associated with a truncated reso-
nant Hamiltonian H ◦Φ1

χ ◦ΠClo
, up to a very small remainder term. However, we have

added a number of technical refinements to ensure that the change of variable Φ1
χ does

not destroy our measure estimates (of the type (1.9)). The results of Section 2 reduce
the proof of Theorem 1.3 to the almost global stability of a truncated resonant Hamil-
tonian system, as stated in Theorem 2.7. Since the system is truncated, it can be put
on Birkhoff normal form (almost) for free and we can fully exploit the fact that quartic
resonant terms of the Hamiltonian are integrable.

1.3.4. A normal form with a two parameters scale. — Starting from Section 3, as in
[Bou00a], we only use the first correction term to modulate the frequencies. As a con-
sequence, the small divisors estimates are of the form (1.15). Due to the degeneracy
of these small divisors, we believe that an approach in the spirit of rational normal
forms, in which we would remove the non-integrable terms degree by degree (like
in classical Birkhoff normal forms) would fail. Indeed, with such an approach, there
does not seem to exists any reasonable way to absorb the losses due to the factor
(µmin(h))

−2s. Instead, as in [Bou00a], we introduce a two parameters scale to decom-
pose and classify the polynomials appearing in our Taylor expansions. In addition to
its presentation given below, we also refer to the Section 3 of the proceeding [Cam24]
for further explanations.

More precisely, following [Bou00a] we decompose a polynomial as a sum of mono-
mials of the form

(1.17)
∏
n∈Zd

ukn
n un

ℓn(|un|2 − ξn)
mn ,

where k, ℓ,m ∈ NZd are some finitely supported families of indices counting the mul-
tiplicities satisfying the condition ℓnkn = 0 for all n ∈ Zd (to ensure the uniqueness
of the decomposition). The parameters ξn ∈ R modulate the frequencies. They are
implicitly the actions of the initial data in the final variables. To each non-integrable
monomial of the form (1.17) we associate a frequency scale Nα such that

(1.18) Nα ⩽ n− < Nα+1, where Ns
α = ε−α/200,

ε is the size of the initial data in Hs and n− is the size of the smallest index appearing
in the associate small divisor, i.e.,

n− = min{|n| | n ∈ Zd, kn + ℓn ⩾ 1}.

The parameter α classifies polynomials according to the cost of the associated small
divisors. Monomials at scale α as in (1.18) satisfy two properties:

– They preserves the actions |un|2 with |n| < Nα. This type of property is also
central in papers in low regularity like [BGR23].

– Assuming moreover that they are resonant (or quasi-resonant in some sense to
be specified), since they are not integrable and quartic resonant terms are integrable,
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we have
∑

n kn + ℓn ⩾ 6. Consequently, they generate vector fields from Hs to Hs of
order at most ε5N−4s

α (see Proposition 4.6).
The cost of the small divisor is at most of order ε−2N2s

α+1 (see (1.15)). Since,
by construction, the ratio between two consecutive scales (Nα+1/Nα)

2s ≲ ε−1/100 is
not too large, we see that there is room to remove these monomials (they could be
associated to quite large coefficients).

The heart of the proof consists in removing, by induction on the frequency
scales Nα, the monomials satisfying Nα ⩽ n− < Nα+1 (see Theorem 6.2). For this
purpose, we consider for each α a norm Y sup

α well suited to polynomials composed
of monomials satisfying Nα ⩽ n−. Then imposing new Diophantine conditions on ξ,
we construct by induction (in Proposition 6.19) canonical changes of variables to
make these norms smaller and smaller in terms of powers of ε (this is the second scale
of parameters) for polynomials composed of monomials satisfying Nα ⩽ n− < Nα+1.
At the end of this second induction, the monomials satisfying Nα ⩽ n− < Nα+1 are
associated with very small coefficients, and do not contribute to the dynamics over
time scales of order ε−r.

However, in the second induction, the terms generated by the Poisson bracket with
an integrable monomials with low-indices |n| ≪ Nα, and only one index at frequency
scale ∼ Nα, do not seem to be sufficiently small to compensate for the small divisor
loss ∼ N−2s

α . To address these terms, Bourgain made the following observation: re-
centered actions are much smaller than the actions themselves (which we prove are
expected to be slow variables). This observation provides an extra smallness factor
for re-centered actions ||un|2 − ξn| with a gain N−2s

α , even for low indices |n| ≪ Nα.
The definition of the non-resonant neighborhood (4.8) encodes this gain, which is a
crucial ingredient to address the degenerate small-divisor losses. At this point, we also
see that it is natural to introduce the frequency scale to compensate the small divisor
losses thanks to this extra smallness.

When we reach a certain frequency scale Nα large enough (with the notations of
the paper, when α = β), we conclude that the actions are almost preserved over very
long times using that the only remaining monomials are either integrable or associated
with negligible coefficients: they generate vector fields of order at most N−4s

β ≪ ε−2r

(see estimate (7.15)).

1.4. Notations and functional setting

1.4.1. Functional setting. — We equip the torus Td = Rd/2πZd with the normalized
Lebesgue measure (2π)−ddx. Therefore, the Lebesgue norms ∥ · ∥Lp , 1 ⩽ p < ∞, are
defined by density through the formula

∀u ∈ C0(Td), ∥u∥pLp := (2π)−d

∫
Td

|u(x)|pdx.

We identity each distribution u on Td with the sequence of its Fourier coefficients
defined by density by

uk = (2π)−d

∫
Td

u(x)e−ikxdx.
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Given 1 ⩽ p < ∞ and s ∈ R we set

ℓps(Zd) :=
{
u ∈ CZd | ∥u∥p

ℓps
:=

∑
k∈Zd⟨k⟩ps|uk|p < ∞

}
.

As usual, we set

Hs(Td) = hs(Zd) = ℓ2s(Zd) and ℓp(Zd) := ℓp0(Z
d).

Note that with these conventions, the Fourier–Plancherel isometry writes

∀u ∈ L2(Td), ∥u∥2L2 = ∥u∥2ℓ2 .

Throughout this paper, we consider L2 and ℓ2 as real Hilbert spaces equipped with
the scalar products

∀u, v ∈ L2(Td), (u, v)L2 := (2π)−d Re

∫
Td

u(x)v(x)dx = Re
∑
k∈Zd

ukvk =: (u, v)ℓ2 .

Note that if s ∈ N is a nonnegative integer, we have

∀u ∈ Hs(T), ∥u∥2Hs = (2π)−d

∫
Td

|∂s
xu(x)|2dx.

1.4.2. Differential calculus and Poisson brackets. — Given p ∈ [1,∞), s ∈ R, U an
open subset of ℓps(Zd), a smooth function P : U → R and u ∈ ℓps(Zd), its gradient
∇P (u) is the unique element of ℓp

′

−s(Zd) satisfying

∀v ∈ ℓps(Zd), (∇P (u), v)L2 = dP (u)(v).

It can be checked that

(1.19) ∀k ∈ Zd, (∇P (u))k = 2∂uk
P (u).

We equip L2(Td) with the usual symplectic form (i·, ·)L2 . Therefore, provided that
ℓps(Zd) ⊂ ℓ2(Zd), a smooth map τ : U → ℓps(Zd) is symplectic if

∀u ∈ U,∀v, w ∈ ℓps(Zd), (iv, w)L2 = (idτ(u)(v),dτ(u)(w))L2 .

Moreover, if H,K : U → R are two smooth functions such that ∇H (or ∇K) is ℓps(Zd)

valued then the Poisson bracket of H and K is defined by

{H,K}(u) := (i∇H(u),∇K(u))L2 .

Note that, as usual, we have

(1.20) {H,K} = 2i
∑
k∈Zd

∂uk
H∂uk

K − ∂uk
H∂uk

K.

Note that this relation allows to extend the Poisson bracket to the case where H

and K are not real valued.
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1.4.3. Subspaces and projections. — Given any subset A ⊂ Zd, we always consider CA

as the subspace of CZd of the sequences supported on A. We denote by ΠA : CZd → CA

the projection defined by restriction. We extend implicitly any function F on CA to
a function on CZd by F = F ◦ ΠA. As a consequence, any function on ℓ2(A;C) :=

ℓ2(Zd)∩CA can be see as a smooth function in ℓ2(Zd) and so all the previous definitions
make sense. In particular, we note that if F : CA → R is C1 then ∇F is CA valued.
Given a positive number N , we set Π⩾N := Π{n∈Zd||n|⩾N}, ΠN := Π{n∈Zd||n|⩽N} and
Zd
N = {n ∈ Zd | |n| ⩽ N}.

Acknowledgements. — The authors would like to thank the anonymous referee for
the careful reading of the manuscript and for the valuable comments and suggestions.
J.B. would like to thank E. Faou and B. Grébert for enthusiastic discussions about
this problem many years ago.

2. Low frequency reduction

In this section, we reduce the proof of Theorem 1.3 to that of Theorem 2.7 on the
stability of small solutions of a finite-dimensional dynamical system. First, we intro-
duce some notations about polynomials on ℓ1 in order to formulate Theorem 2.7 in
a second subsection. Then we prove some a priori estimates for the time-variation of
the high-frequency super-actions, together with some mismatch lemmas to control the
remainder terms generated by the truncations. Finally, we prove that Theorem 2.7
implies Theorem 1.3. The dimension d ⩾ 1, the admissible torus Td

L and the nonlin-
earity f of (NLS) are considered as fixed. With a few exceptions, we do not follow in
details the dependencies with respect to these constants.

Many of the proof’s ingredients are the same as in [BFM24]. However, we use them
differently. The main reason is that changes of variables mixing high modes and low
modes are, a priori, not compatible with our measure estimates (and in particular
that it suffices to draw the low modes of the initial datum randomly to get the almost
global existence of the solution to (NLS)). Thus, contrary to [BFM24], we have to
consider two kinds of Birkhoff-like normal forms for (NLS).

– On the one hand, we consider (in the proof of Proposition 2.18) a normal form
in which we have removed all the terms whose small divisors are larger or equal
to 1. It allows us to prove, under a bootstrap assumption, the almost preservation
of the high super-actions in Proposition 2.18. It does not require any non-resonance
condition but just small and smooth solutions.

– On the other hand, in Section 2.6, we consider a normal form in which we essen-
tially(11) remove all non-resonant terms that do not involve high modes. By construc-
tion, the associated change of variable is the identity on high mode which is good

(11)It would be true if Td
L satisfied a stronger Diophantine condition. Here, since we did not

assume non-resonance conditions for terms of degree larger than or equal to 6, some quasi-resonant
terms may remain. However, these terms do not pose significant difficulties and can be ignored in a
first reading.
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for the measure estimates. This normal form allows us to decouple (in the new vari-
ables), up to a bootstrap assumption, the low modes dynamics from the the high
modes dynamics (thanks to the mismatch lemmas 2.22 and 2.23). In other words,
it reduces the analysis of the stability of the low modes of (NLS) to the one of a finite
(but high) dimensional resonant Hamiltonian system (of which the rest of the paper
is devoted).

2.1. A first Hamiltonian formalism. — We first introduce a set of multi-indices to
describe the polynomials:

Definition 2.1. — For q ⩾ 1, we define N2q the set of multi-indices of degree 2q with
zero momentum

N2q =
{
n⃗ = (n1, . . . , n2q) ∈ (Zd)2q |

∑2q
i=1(−1)ini = 0

}
.

Given n⃗ ∈ N2q, we denote the decreasing rearrangement of (|n1|, . . . , |n2q|) by

n∗
1 ⩾ · · · ⩾ n∗

2q.

Now, we introduce our main class of polynomials.

Definition 2.2 (Real homogeneous polynomial). — Let q ⩾ 2 and A ⊂ Zd. The set
H2q(A) of real homogeneous polynomials of degree 2q supported on ℓ1(A) corresponds
to the set of functions

Q(u) =
∑

n⃗∈N2q

Qn⃗un1
un2

· · ·un2q
=:

∑
n⃗∈N2q

Qn⃗un⃗,

where (Qn⃗) ∈ CN2q satisfies
(1) (symmetry condition)

Qn⃗ is symmetric in (n1, n3, . . . n2q−1) and in (n2, n4, . . . n2q).

(2) (reality condition)

For all n⃗ = (n1, n2, . . . , n2q) ∈ N2q, Q(n1,n2,...n2q) = Q(n2q,n1,...n2q−1).

(3) (boundedness condition)

∥Q∥∞ := sup
n⃗∈N2q

|Qn⃗| < +∞.

(4) (support)
Q(n1,n2,...n2q) ̸= 0 =⇒ n⃗ ∈ A2q.

Remark 2.3. — Thanks to the boundedness condition, these polynomials are smooth
functions on ℓ1(Zd) and the support condition only means that Q = Q ◦ΠA.

Remark 2.4. — Note that this definition is well suited to the Hamiltonian H of (NLS)
(defined by (1.13)). More precisely, in Fourier variables, the Taylor expansion of H

writes
H(u) =

u→0

1

2

∑
n∈Zd

λ2
n|un|2 +

1

2

∑
q⩾2

f (q−1)(0)

q!

∑
n⃗∈N2q

un⃗
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or more quantitatively, for all r ⩾ 2,

H(u) =
1

2

∑
n∈Zd

λ2
n|un|2 +

1

2

r∑
q=2

f (q−1)(0)

q!

∑
n⃗∈N2q

un⃗ +R(2r+2)(u)

=: H(⩽2r)(u) +R(2r+2)(u),

(2.1)

where R(2r+2) is a remainder term of order 2r + 2 in the sens that for all u ∈ Bs(1),
s > d/2

(2.2) ∥∇R(2r+2)(u)∥hs ≲r,s ∥u∥2r+1
hs .

Definition 2.5 (Resonant function). — Given a multi-index n⃗ ∈ N2q, the resonant
function Ωn⃗ is

Ωn⃗ =

2q∑
n=1

(−1)n+1λ2
n.

Definition 2.6 (Quasi-resonant Hamiltonian). — Let κ > 0, q ⩾ 2. A real homoge-
neous polynomial Q ∈ H2q is κ-resonant if for all n⃗ ∈ N2q,

|Ωn⃗| > κ =⇒ Qn⃗ = 0.

2.2. Dynamics of the low modes : main result. — We set c∗ := 2τ∗ + 1 depending
only on the geometry of the torus (τ∗ is the exponent associated to the admissibility
of Td

L , see Definition 1.1).

Theorem 2.7. — For all r ⩾ 9, there exists ν ⩽ min((2c∗)
−1, (2d)−1) such that for

all s > d, if ε ≲r,s 1 is small enough, M ⩾ 2 is a truncation parameter satisfying

M ⩽ ε−ν ,

and Hlo is a real valued polynomial supported on ℓ1(Zd
⩽M ) of the form

(2.3) Hlo(u) =
1

2

∑
|n|⩽M

(
λ2
n − f ′(0)

2
|un|2

)
|un|2 +

2r∑
j=3

P (2j)(u),

where P (2j) ∈ H2j(Zd
⩽M ) is a real homogeneous polynomial of degree 2j which is εc∗ν

resonant and satisfies ∥P (2j)∥∞ ⩽ ε−c∗νj, then there exists an open set Θ♭
ε ⊂ ΠMBs(ε)

such that

(2.4) meas(Θ♭
ε) ⩾ (1− ε1/39)meas(ΠMBs(ε)),

and, if u ∈ C1([−Tε, Tε]; ΠMhs) is such that u(0) ∈ Θ♭
ε and

sup
0⩽t⩽Tε

∥i∂tu−∇Hlo(u)∥hs ⩽ ε3rρ

for some Tε ⩽ ε−r and some ρ > 0 satisfying ∥u(0)∥hs ⩽ ρ ⩽ 2ε, then

(2.5) sup
0⩽t⩽T

∑
|n|⩽M

⟨n⟩2s
∣∣|un(t)|2 − |un(0)|2

∣∣ ⩽ ε

2
ρ2.
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2.3. A Birkhoff normal form theorem and some basic estimates. — In the energy
estimates we will need the following estimate, which is a consequence of Cauchy–
Schwarz and Young’s convolution inequalities:

Lemma 2.8. — Let q ⩾ 1, ι ∈ {−1, 1}2q and a(1), . . . , a(2q) ∈ ℓ1(Zd;R+). We have

∑
n⃗=(n1,...,n2q)∈(Zd)2q

ι1n1+ι2n2+···+ι2qn2q=0

a(1)n1
. . . a(2q)n2q

⩽ min
σ∈S2q

∥a(σ(1))∥ℓ2 ∥a(σ(2))∥ℓ2
2q∏
i=3

∥a(σ(i))∥ℓ1 .

As usual, we deduce some useful estimate for the vector fields.

Corollary 2.9 (Vector field estimates). — Given q ⩾ 2, P ∈ H2q(Zd), s ⩾ 0,
P defines a smooth function on hs ∩ ℓ1, ∇P is smooth from hs ∩ ℓ1 to hs ∩ ℓ1 and for
all u ∈ hs ∩ ℓ1, we have

∥∇P∥hs(u) ≲q,s ∥P∥∞∥u∥hs∥u∥2q−2
ℓ1 .

Then, as usual, we deduce the local existence of the Hamiltonian flows of the
polynomials of which we summarize the properties that will be useful for us in this
paper.

Corollary 2.10 (Hamiltonian flows). — Let s > d/2, r ⩾ 2, C ⩾ 1, A ⊂ Zd. For
all κ ∈ (0, 1), there exists ε∗ ≳r,s,C

√
κ such that for all real polynomial χ of degree

smaller than or equal 2r of the form

χ = χ(4) + · · ·+ χ(2r),

where
∀j ∈ {2, . . . , r}, χ(2j) ∈ H2j(A) satisfies ∥χ(2j)∥∞ ⩽ Cκ−j+1,

there exists a smooth map

Φχ :

{
[−1, 1]×Π−1

A ΠABs(ε∗) −→ hs(Zd)

(t, u) 7−→ Φt
χ(u)

such that, for all u ∈ Π−1
A ΠABs(ε∗),

i∂tΦ
t
χ(u) = (∇χ) ◦ Φt

χ(u) ∀t ∈ [−1, 1],

and for all t ∈ [−1, 1], Φt
χ is symplectic,

– close to the identity

∥Φt
χ(u)− u∥hs ⩽

(∥ΠAu∥hs

ε∗

)2

∥ΠAu∥hs ,

– its derivative is not too big, i.e.,

(2.6) ∥dΦt
χ(u)∥hs→hs ⩽ 2

– and provided that Φt
χ(u) ∈ Π−1

A ΠABs(ε∗), we have Φ−t
χ (Φt

χ(u)) = u.
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Remark 2.11. — These projections may seem unusual but they are just a consequence
of the block diagonal structure of Φt

χ :

Φt
χ = ΠA(Φ

t
χ)|hs(A) ⊕ idhs(Ac).

We also recall the following continuity estimates of the Poisson brackets when
applied to polynomials.

Lemma 2.12. — Let A ⊂ Zd be a subset of Zd, P ∈ H2p(A) a homogeneous real
polynomial of degree 2p ⩾ 4 supported on ℓ1(A) and Q ∈ H2q(A) a real homogeneous
polynomial of degree 2q ⩾ 4 supported on ℓ1(A) then their Poisson bracket {P,Q} ∈
H2(p+q−1)(A) is a real homogeneous polynomial of degree 2(p + q − 1) supported on
ℓ1(A) satisfying the bound

∥{P,Q}∥∞ ≲ pq∥P∥∞∥Q∥∞.

As usual, we deduce of these estimates the following Birkhoff normal form theorem.

Theorem 2.13 (Quasi-resonant normal form). — Let r ⩾ 2, s > max(d/2, 1), A ⊂ Zd,
κ ∈ (0, 1) and P = P (4) + · · ·+P (2r) be a real Hamiltonian of degree 2r supported on
ℓ1(A) with P (2j) ∈ H2j(A) for all j ∈ {2, . . . , r} and set

H = ZA
2 + P where ZA

2 (u) =
1

2

∑
n∈A

λ2
n|un|2.

There exist some polynomials χ(2j) ∈ H2j(A), 2 ⩽ j ⩽ r, satisfying

∥χ(2j)∥∞ ≲C,r κ−j+1,

where C = maxj⩾2 κ
2−j∥P (2j)∥∞ such that, on Π−1

A ΠABs(ε∗) (where ε∗ is given by
Corollary 2.10),

H ◦ Φ1
χ = ZA

2 +Q(4) + · · ·+Q(2r) +Υ,

where χ = χ(4) + · · · + χ(2r), the polynomials Q(2j) ∈ H2j(A) are some κ resonant
real homogeneous polynomials satisfying for all j ∈ {2, . . . , r} and all n⃗ ∈ (Zd)4

∥Q(2j)∥∞ ≲C,r κ−j+2 and Q
(4)
n⃗ = 1|Ωn⃗|⩽κP

(4)
n⃗ ,

and Υ ∈ C1(Π−1
A ΠABs(ε∗);R) is a remainder of order 2(r + 1) in the sense that for

all u ∈ Π−1
A ΠABs(ε∗),

(2.7) ∥∇Υ(u)∥hs ≲C,r,s

(∥ΠAu∥hs

√
κ

)2r

∥ΠAu∥hs .

This is a formulation of Birkhoff normal form theorem, which is by now standard.
For the proof, see [BG25, Th. 2.15] or [BGR23, Th. 2.12].
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2.4. Almost preservation of the high-super actions. — In this subsection, we prove
Proposition 2.14, in which we show that up to a bootstrap assumption we control
the Hs norm of the high modes of the solution of (NLS) for very long times. Note
that we do not need to use any internal or external parameters.

Proposition 2.14. — There exist δ > 0 and N0 ⩾ 2 depending only on L such that
given T > 0, c > 1, s > d, ρ > 0 and u a solution to (NLS) in C([0, T ], hs) with
∥u(0)∥hs ⩽ ρ and

(2.8) sup
t∈[0,T ]

∥u(t)∥hs ⩽ cρ,

then for all N ⩾ N0, for all r ⩾ 2, provided that ε ≲c,r,s 1 is small enough and t ⩽ T ,

∥Π⩾Nu(t)∥2hs ⩽ 22s∥u(0)∥2hs + ρ3 + TN−(δ/2)(s−d)ρ3 + Tρ2r+1.

The proof is based on Birkhoff normal forms, and on the extension of Bourgain’s
cluster decomposition lemma [Bou98] to any flat tori, which was proved by Berti and
Maspero in [BM19, Th. 2.1]. The use of this decomposition in the context of Birkhoff
normal forms was recently initiated by Bambusi, Feola and Montalto in [BFM24].
It is a way to overcome the small divisor degeneracy discussed in Section 1.3.3. In
the following, we will mainly focus on the proof of Proposition 2.18, from which
Proposition 2.14 easily follows.

Lemma 2.15 (Clustering of eigenvalues of −∆L , [BM19, Th. 2.1]). — There exist con-
stants δ ≡ δ(d) ∈ (0, 1) and C(L , d) ⩾ 2 and a partition of Zd

Zd =
⋃
υ

Cυ,

satisfying the following properties:
(1) The sets Cυ are finite and, up to a bounded set Cυ0

such that

max
n∈Cυ0

|n| ⩽ C(L , d) and |n| < 2 =⇒ n ∈ Cυ0
.

(2) They are dyadic in the sense that

(2.9) max
n∈Cυ

|n| ⩽ 2min
n∈Cυ

|n| =: 2mυ.

(3) If one denotes [n1] the class of equivalence of n1 ∈ Zd, that is,

[n1] = Cυ, where υ is such that n1 ∈ Cυ,

then we have the separation property: for all n1, n2 ∈ Zd,

[n1] ̸= [n2] =⇒ |n1 − n2|+ |λ2
n1

− λ2
n2
| > (|n1|+ |n2|)δ(d).

Remark 2.16. — As usual, we identify the set of the indices υ with the set of the
equivalence classes.

We stress out that this lemma holds for any flat torus, without any Diophantine
assumption on the metric. As in [BFM24], this decomposition allows us to design
some almost conserved quantities of (NLS) called super-action.
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Definition 2.17 (Super actions). — Given a mode n0 ∈ Zd the corresponding super-
action is defined by

Sn0
(u) :=

∑
n∈[n0]

|un|2.

The cluster being dyadic (see (2.9)), Proposition 2.14 can easily be deduced from
the following:

Proposition 2.18 (A priori estimates for the high super-actions). — Let T, u, c, s, ρ

be as in Proposition 2.14. For all M ⩾ 2, for all r ⩾ 2, provided that ρ ≲r 1 is small
enough and t ⩽ T , we have

(2.10)
∑

mυ⩾M

m2s
υ

∣∣Sυ(u(t))− Sυ(u(0))
∣∣ ≲r,s,c

(
ρ4 + TM−(δ/2)(s−d)ρ4 + Tρ2(r+1)

)
,

where mυ was defined in (2.9).

Proof of Proposition 2.14 from Proposition 2.18. — Indeed, to deduce Proposition 2.14
from Proposition 2.18, thanks to the dyadicity of the clusters (see (2.9)), it is enough
to set N0 = 3C(L , d) and M = N/2 to get that

∥Π⩾Nu∥2hs ⩽ 22s
∑

|n|⩾N

m2s
[n]|un|2 ⩽ 22s

∑
mυ⩾M

m2n
υ Sυ(u),

and so, thanks to Proposition 2.18, that

∥Π⩾Nu(t)∥2hs ⩽ 22s
∑

mυ⩾M

m2n
υ Sυ(u(0)) + Cr,s,c ρ

(
ρ3 + TN−(δ/2)(s−d)ρ3 + Tρ2r+1

)
,

where Cr,s,c is a constant depending only on (r, s, c). We then conclude the proof
of Proposition 2.14 by using the estimate

∑
mυ⩾M m2s

υ Sυ(u(0)) ⩽ ∥u(0)∥2hs and by
absorbing the constant Cr,s,c thanks to the smallness of ρ. □

Before proving Proposition 2.18, let us consider the following technical lemmas.

Lemma 2.19. — Let n⃗ ∈ N2q for some q ⩾ 2 be such that |Ωn⃗| ⩽ 1. If there exists a
frequency cluster Cυ such that

{Sυ, un⃗} ≠ 0,

then
n∗
1 ⩾ mυ and n∗

3 ≳q (mυ)
δ/2.

Proof. — First, we note that

{Sυ, un⃗} = 2i

( q∑
j=1

1n2j∈Cυ
− 1n2j−1∈Cυ

)
un⃗.

As a consequence, if {Sυ, un⃗} ≠ 0, there exists j0 ∈ {1, . . . , 2q} and an odd number
θ ∈ Z such that nj0 ∈ Cυ and nj0+θ /∈ Cυ. By symmetry, without loss of generality,
we assume that j0 = 1 and j0 + θ = 2. Since n1 ∈ Cυ, we have n∗

1 ⩾ mυ. Moreover,
thanks to the separation property of the clusters, we have

|n1 − n2|+ |λ2
n1

− λ2
n2
| > (|n1|+ |n2|)δ ⩾ mδ

υ.
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As a consequence, either (by the zero momentum condition)

(2q − 2)max
j⩾3

|nj | ⩾ |n1 − n2| ⩾
mδ

υ

2
,

or (since |Ωn⃗| ⩽ 1)

(2q − 2)max
j⩾3

|nj |2 + 1 ≳L |λ2
n1

− λ2
n2
| ⩾ mδ

υ

2
.

In any case, we have
n∗
3 ⩾ max

j⩾3
|nj | ≳L ,q mδ/2

υ . □

Lemma 2.20. — Let s ⩾ σ ⩾ 0, q ⩾ 2 and Q ∈ H2q. If Q is 1-resonant then for all
u ∈ hs ∩ ℓ1σ, we have∑

υ

m2s+σδ/2
υ |{Sυ, Q}(u)| ≲q,s ∥Q∥∞∥u∥2hs∥u∥ℓ1σ∥u∥

2q−3
ℓ1 .

Proof. — First, we note that if υ = υ0 then mυ = 0 so we do not have to consider
this class in the sum. Therefore, we consider a class υ ̸= υ0. Note that it implies that
mυ ⩾ 2. Then, we note that

{Sυ, Q} =
∑

n⃗∈N2q

Qn⃗{Sυ, un⃗}.

Using Lemma 2.19, we deduce that we can reduce the sum to the set of the indices
satisfying n∗

1 ⩾ mυ ⩾ 2 and
n∗
3 ≳q mδ/2

υ .

Moreover, using the zero momentum condition, we note that n∗
2 ⩾ (2q)−1n∗

1 ⩾
(2q)−1mυ. It follows that∑

υ

m2s+σδ/2
υ |{Sυ, Q}(u)| ≲q

∑
υ

m2s+σδ/2
υ

∑
n∗
2≳qmυ

n∗
3≳qm

δ/2
υ

|Qn⃗||un1
| · · · |un2q

|

≲q,s ∥Q∥∞
∑

n⃗∈N2q

(n∗
1)

s(n∗
2)

s(n∗
3)

δσ/2|un1
| · · · |un2q

|

≲q,s ∥Q∥∞
∑

φ∈S2q

∑
n⃗∈N2q

|nφ1
|s|nφ2

|s|nφ3
|δσ/2|un1

| · · · |un2q
|.

And so we get the expected estimate by applying the Young estimate of Lemma 2.8.
□

By applying this lemma with σ = s − d and by considering only the classes such
that mυ is large enough we deduce the following estimate.

Corollary 2.21. — Let s ⩾ d, q ⩾ 2 and Q ∈ H2q. If Q is 1-resonant, then, for all
u ∈ hs and M ⩾ 2, we have

(2.11)
∑

mυ⩾M

m2s
υ |{Sυ, Q}(u)| ≲q,s ∥Q∥∞M−(δ/2)(s−d)∥u∥3hs∥u∥2q−3

ℓ1 .
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Now we start proving Proposition 2.18 about the preservation of the super-actions
of (NLS).

Proof of Proposition 2.18. — Recall the Hamiltonian formulation (1.13) of (NLS) and
the Taylor expansion H = H(⩽2r) + R(2r+2) of its Hamiltonian (2.1). We apply the
Birkhoff normal form theorem 2.13 with κ = 1 and A = Zd to the Hamiltonian H(⩽2r)

of degree 2r to put it in 1-resonant normal form up to order 2r. This gives an auxiliary
Hamiltonian χ = χ(4) + · · ·+ χ(2r) with ∥χ(2j)∥∞ ≲r 1 and, through Corollary 2.10,
a radius ε∗ ≳r,s 1 such that on Bs(ε∗)

H̃ := H(⩽2r) ◦ Φ1
χ = Z2 +

r∑
q=2

Q̃(2q) +Υ =: H̃(⩽2r) +Υ,

where Q̃(2q) ∈ H2q are 1-resonant homogeneous polynomials satisfying ∥Q(2q)∥∞ ≲q 1,
and the remainder Υ is of order 2(r + 1) in the sense that for all w ∈ Bs(ε∗)

(2.12) ∥∇Υ(w)∥hs ≲r,s ∥w∥2r+1
hs .

From now on, we assume that the solution u of (NLS) satisfies ∥u(0)∥hs⩽ρ⩽10−2c−1ε∗.
It follows that for all t ∈ [0, T ], we have ∥u(t)∥hs ⩽ cρ ⩽ 10−2ε∗ and so that
v = Φ−1

χ (u) ∈ C0([0, T ];hs) is well-defined for t ∈ [0, T ]. Moreover, Φ−1
χ being close

to the identity, we have

(2.13) ∥u(t)− v(t)∥hs ⩽ ε−2
∗ ∥u(t)∥3hs ≲r,c ρ

3, and so ∥v(t)∥hs ≲r,c ρ.

Without loss of generality, we can assume that(12) u(0) ∈ hs+2, so that u ∈
C1([0, T ];hs) and v ∈ C1([0, T ];hs). Since Φ−1

χ is symplectic, using the chain rule,
we get that

i∂tv = ∇H̃(⩽2q)(v) +∇Υ(v) + dΦ−1
χ (u)

(
∇R(2r+2)(u)

)
.

As a consequence, one can bound the variation of the super-actions as follows:

(2.14)
∑

mυ⩾M

m2s
υ

∣∣∣ d
dt

Sυ(v(t))
∣∣∣ ⩽ ∑

mυ⩾M

m2s
υ |{Sυ, H̃

(⩽2r)}(v)|+ ∥∇Υ(v)∥hs∥v∥hs

+ ∥dΦ−1
χ (u)∥hs→hs∥∇R(2r+2)(u)∥hs∥v∥hs .

According to Corollary 2.21 the first term on the right-hand side is bounded (up to a
constant depending only on r and s) by

max
2⩽q⩽r

∥Q̃(2q)∥∞M−(δ/2)(s−d)∥v(t)∥3hs∥v(t)∥2q−3
ℓ1 ≲r,s,c M

−(δ/2)(s−d)ρ4.

Moreover, the estimate (2.6) on dΦt
χ together with the estimate (2.2) on ∇R(2r+2)

yield
∥dΦ−1

χ (u)∥hs→hs∥∇R(2r+2)(u)∥hs ≲r,s,c ρ
2r+1.

(12)It can be done by approximating any u(0) by smoother initial data (e.g. trigonometric poly-
nomials) and using the preservation of the regularity for (NLS) (i.e., that while the ℓ1 norm of the
solution is bounded, its hs+2 norm does not blow up). Such an approximation is classical and is done
in details, for example, in [BG25].
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Using also the estimate (2.12) on ∇Υ, we conclude that∑
mυ⩾M

m2s
υ

∣∣∣ d
dt

Sυ(v(t))
∣∣∣ ≲c,r,s M

−(δ/2)(s−d)ρ4 + ρ2r+1.

Finally, using the fundamental theorem of calculus and that v is close to u (see (2.13),
it provides the term ρ4 without factor T in (2.10)), and we get the expected estimate.

□

2.5. Mismatch lemmas. — In order to deduce Theorem 1.3 from Theorem 2.7, we will
have to consider truncated subsystems. In this subsection, we establish two technical
lemmas proving that the associated truncation remainder terms are very small.

Lemma 2.22 (Mismatch vector field estimate: I). — For all q ⩾ 2, s > d, u ∈ hs, all
M,N ⩾ 2 with N < 1

2qM, and for all Q ∈ H2q such that Q ◦ΠM = 0, we have

∥ΠN∇Q(u)∥hs ≲q M−(s−d)∥Q∥∞∥u∥3hs∥u∥2q−4
ℓ1 .

Note that we do not ask for any constraint on the size of the resonance function.
The gap between N and M is sufficiently large to directly have the mismatch estimate.

Proof. — For n ∈ Zd with |n| ⩽ N and u ∈ hs,

⟨n⟩s|∂unQ(u)| ⩽ 2q⟨n⟩s
∑

n⃗∈N2q
n2q=n

|Qn⃗||un1 | · · · |un2q−1 |

⩽ 2q∥Q∥∞⟨n⟩s
∑

n⃗∈N2q
n2q=n

1n∗
1⩾M |un1 | · · · |un2q−1 |.

From the zero momentum condition, we have that n⃗ ∈ N2q contributes only if n∗
1 ⩾ M

and
n∗
2 ⩾

n∗
1

2q
⩾

M

2q
> N ⩾ n.

As a consequence, we have |n| ⩽ n∗
3 and so

⟨n⟩s|∂unQ(u)| ⩽ 2qM−(s−d)∥Q∥∞
∑

n⃗∈N2q
n2q=n

⟨n∗
1⟩s−d⟨n∗

3⟩s|un1 | · · · |un2q−1 |

⩽ 2qM−(s−d)∥Q∥∞
∑

n⃗∈N2q

n=(ℓ,n2q)

⟨ℓ∗1⟩s−d⟨ℓ∗2⟩s|un1
| · · · |un2q−1

|

≲q M−(s−d)∥Q∥∞
∑

φ∈S2q−1

∑
n⃗∈N2q
n1=n

⟨nφ1
⟩s−d⟨nφ2

⟩s|un2
| · · · |un2q

|.

Finally by applying the Young convolution inequality (see Lemma 2.8) we get that

∥ΠN∇Q(u)∥hs ≲q M−(s−d)∥Q∥∞∥u∥2q−4
ℓ1 ∥u∥2hs∥u∥ℓ1s−d

≲q M−(s−d)∥Q∥∞∥u∥2q−4
ℓ1 ∥u∥3hs . □
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Lemma 2.23 (Mismatch vector field estimate: II). — Let Clo ∪Chi ⊂ Zd be a partition
of Zd compatible with the Bourgain’s partition given by Lemma 2.15, i.e.,

n ∈ Clo =⇒ [n] ⊂ Clo

such that Cυ0 ⊂ Clo and set
N = min

n∈Chi

|n|.

For all q ⩾ 2, all 1-resonant homogeneous polynomial Q ∈ H2q of degree 2q satisfying
Q ◦ΠClo

= 0, and all u ∈ hs with s > d, we have
∥ΠClo

∇Q(u)∥hs ≲q,s ∥Q∥∞N−(δ/2)(s−d)∥u∥3hs∥u∥2q−4
ℓ1 .

Proof. — For clarity, in this proof, we highlight the dependencies with respect to L .
For n ∈ Clo, by symmetry, we have

⟨n⟩s|∂un
Q(u)| ⩽ 2q⟨n⟩s

∑
n⃗∈N2q
n1=n

|Qn⃗||un2
| · · · |un2q

|

≲q ∥Q∥∞⟨n⟩s
( ∑

n⃗∈N2q
n1=n
n2∈Chi

|Ωn⃗|⩽1

|un2 | · · · |un2q |+
∑

n⃗∈N2q
n1=n
n3∈Chi

|Ωn⃗|⩽1

|un2 | · · · |un2q |
)

=: ∥Q∥∞(E(2)
n + E(3)

n ),

and so
∥ΠClo

∇Q(u)∥hs ≲q ∥ΠClo
E(2)∥ℓ2 + ∥ΠClo

E(3)∥ℓ2 .

Case 1: Suppose that n3 ∈ Chi. — First, we have

1 ⩾ |Ωn⃗| ⩾
q∑

j=1

λ2
n2j−1

−
q∑

j=1

λ2
n2j

≳L |n|2 − q max
1⩽j⩽q

λ2
n2j

.

As a consequence, we have
max
1⩽j⩽q

⟨n2j⟩2 ≳L ⟨n⟩2

and so, we have

E(3)
n ≲q,L ,s

∑
n⃗∈N2q
n1=n

|n3|⩾N

⟨n2⟩s|un2 | · · · |un2q | ≲q,L N−(s−d)
∑

n⃗∈N2q
n1=n

⟨n2⟩s⟨n3⟩s−d|un2 | · · · |un2q |.

Thus applying the Young convolutional inequality, we get
∥ΠClo

E(3)∥ℓ2 ≲q,L ,s N
−(s−d)∥u∥3hs∥u∥2q−4

ℓ1 .

Case 2: Suppose that n2 ∈ Chi. — Since [n1] ̸= [n2], thanks to the separation property
of the clusters, we have

|n1 − n2|+ |λ2
n1

− λ2
n2
| > (|n1|+ |n2|)δ ⩾ Nδ.

As a consequence, either

(2q − 2)max
j⩾3

|nj | ⩾ |n1 − n2| ⩾
Nδ

2
,
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or
(2q − 2)max

j⩾3
|nj |2 + 1 ≳L |λ2

n1
− λ2

n2
| ⩾ Nδ

2
.

In any case, we have
max
j⩾3

⟨nj⟩ ≳L ,q Nδ/2.

Moreover, as previously, we have max1⩽j⩽q⟨n2j⟩2 ≳L ⟨n⟩2. Thus, since δ ⩽ 1, it fol-
lows that(13)

E(2)
n ≲q,L ,s

∑
n⃗=(n,ℓ)∈N2q

⟨ℓ∗2⟩≳L ,qN
δ/2

⟨ℓ∗1⟩s|un2
| · · · |un2q

|

and reasoning as previously, we get that ∥ΠClo
E(2)∥ℓ2 ≲q,L N−(δ/2)(s−d)∥u∥3hs∥u∥2q−4

ℓ1 .
□

2.6. Proof that Theorem 2.7 implies Theorem 1.3. — We recall that the flat
torus Td

L is fixed and admissible in the sense of the Definition 1.1. It provides an
exponent τ∗ (which can typically be chosen equal to d(d + 1)/2 + 1). We recall the
associated constant c∗ = 2τ∗ + 1. We will also need the Bourgain decomposition
of Lemma 2.15 and the corresponding exponent δ ≡ δ(d). We also recall that the
nonlinearity f of (NLS) is fixed and satisfies the condition f ′(0) ̸= 0. Then we divide
the proof into three main steps : preparation, dynamics and measure estimates.

Step 1 : Preparation. — Let r ⩾ 9, ν ⩽ min((2c∗)
−1, 1/(2d)) be the associated con-

stant given by Theorem 2.7, and assume that

(2.15) s0 := d+ 20δ−1ν−1r.

We also set ε ⩽ ε0 where ε0 is a constant depending only on r, s (and L and f) that
will be chosen small enough. Let M > 0 be a real number such that

(2.16) ε−(8/δ)r/(s−d) ⩽ M ⩽ ε−ν

and define
N = (8r + 1)−1M.

Note that the existence of such a M is ensured by construction of s0. Then we set a
partition Clo ∪ Chi ⊂ Zd of Zd by

(2.17) Clo :=
⋃

|n|⩽N

[n] and Chi := Zd ∖ Clo.

Note that since the clusters are dyadic (see (2.9)), we have

(2.18) 1

2
N ⩽ min

n∈Chi

|n| and max
n∈Clo

|n| ⩽ 2N ⩽ M ⩽ ε−ν .

We recall that the Hamiltonian H of (NLS) (defined by (1.13)) admits the Taylor
expansion H = H(⩽4r) +R(4r+2) (see (2.1)). Then, setting

κ := εc∗ν ,

(13)for details it is convenient to distinguish the case |n2|2 = max1⩽j⩽q |n2j |2.
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we apply the Birkhoff normal form theorem 2.13 to H(⩽4r)◦ΠM . We get a polynomial
χ = χ(4)+ · · ·+χ(4r) supported on ℓ1(Zd

⩽M ) (with ∥χ(2j)∥ ≲r κ−j+1) and ε∗ ≳r,s
√
κ

(through Corollary 2.10) such that on Π−1
M ΠMBs(ε∗)

(H(⩽4r) ◦ΠM ) ◦ Φ1
χ = Z2 ◦ΠM +Q(4) + · · ·+Q(4r) +Υ

=: Z2 ◦ΠM +Q(4) +Q(⩾6) +Υ,
(2.19)

where Q(2j) ∈ H2j(Zd
⩽M ) is κ resonant and satisfies ∥Q(2j)∥∞ ≲r κ−j+2, and Υ is of

order 4r + 2.
Then we set

(2.20) Hlo := Z2 ◦ΠM +Q(4) +Q(⩾6) ◦ΠClo
− f ′(0)

2
∥ΠM · ∥4ℓ2 .

As a consequence, if Hlo satisfies the assumptions of Theorem 2.7, then, provided
that ε0 is small enough, we get an open set Θ♭

ε ⊂ ΠMBs(ε) and we just have to define
our set of good initial data by

(2.21) Θε :=
(
ΠMBs(ε)

)
∩ (Φ−1

χ )−1Θ♭
ε.

Now, we just have to check that Hlo satisfies the assumptions of Theorem 2.7. First,
it is clear that the homogeneous terms P (2j) := Q(2j)◦ΠClo

, j ⩾ 3, of Hlo are κ = εc∗ν

resonant and satisfy ∥P (2j)∥∞ ≲r κ−j+2 and so ∥P (2j)∥∞ ⩽ ε−jc∗ν provided that ε0
is small enough. So, the only thing we have to check is the form of the quartic terms
of Hlo. To do this, it is enough to compute Q(4). We recall that by the Birkhoff normal
form theorem 2.13, we have, for all n⃗ ∈ N4

Q
(4)
n⃗ =

f ′(0)

4
1|Ωn⃗|⩽κ1n⃗∈(Zd

⩽M
)4 .

We will see that if n⃗ ∈ (Zd
⩽M )4 satisfies |Ωn⃗| ⩽ κ then {n1, n3} = {n2, n4}. Note that

it directly implies, by the Poincaré formula, that, as expected, for all u ∈ CZd
⩽M ,

Q(4)(u) =
f ′(0)

2

( ∑
|n|⩽M

|un|2
)2

− f ′(0)

4

∑
|n|⩽M

|un|4.

So, let n⃗ ∈ (Zd
⩽M )4 be such that |Ωn⃗| ⩽ κ. It means that

κ ⩾ |λ2
n1

− λ2
n2

+ λ2
n3

− λ2
n4
|

= |g(n1, n1)− g(n2, n2) + g(n3, n3)− g(n4, n4)|
= |g(n1, n1)− g(n2, n2) + g(n3, n3)− g(n1 + n2 − n3, n1 + n2 − n3)|
= 2|g(n1 − n2, n3 − n2)|.

Now, assuming by contradiction that n1 ̸= n2 and n3 ̸= n2, since the torus is admis-
sible we get that

εc∗ν = κ ≳ |n1 − n2|−τ∗ |n3 − n2|−τ∗ ≳ M−2τ∗ ≳ ε2τ∗ν ,

which is impossible, provided that ε0 is small enough, by definition of c∗ = 2τ∗ + 1.
As a consequence, we have proved that n1 = n2 or n3 = n2, and so, using the zero
momentum condition that {n1, n3} = {n2, n4}.
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Step 2 : Dynamics. — We now prove stability of the low frequency actions and high-
frequency super-actions over very long times T ⩽ ε−r.

Substep 2.1 : Setting of the bootstrap and low modes reduction. — We consider a max-
imal solution u ∈ C0([−T−, T+];h

s) of (NLS) such that u(0) ∈ Bs(2ε) ∩ Π−1
M Θε.

We denote
ρ := ∥u(0)∥hs ⩽ 2ε.

Without loss of generality, we focus only on positive times. As usual, we proceed by
bootstrap: we consider 0 < T < T+ such that

T ⩽ ε−r and sup
0⩽t⩽T

∥u(t)∥hs ⩽ 2s+2ρ,

and we aim at proving that

(2.22) sup
0⩽t⩽T

∥u(t)∥hs ⩽ 2s+1ρ.

It will prove that (2.22) holds for T = ε−r. First, since Chi contains only high modes,
by applying Proposition 2.14, we know that, provided that ε0 is small enough, we have,
for t ∈ [0, T ]

∥ΠChi
u(t)∥2hs ⩽ ∥Π⩾N/2u(t)∥2hs ⩽ 22s∥u(0)∥2hs + ρ3 + T (N/2)−(δ/2)(s−d)ρ3 + Tρ2r+1.

Then, using the lower bound on M and the upper bound on T , we have

∥ΠChi
u(t)∥2hs ⩽ ρ2(22s + ρ+ Cr,sρε

−rε2r + ε−rρ2r−1),

where Cr,s is a constant depending only on r and s (and d). It follows that, provided
that ε0 is small enough, we have

(2.23) sup
0⩽t⩽T

∥ΠChi
u(t)∥2hs ⩽ 22s+1ρ2.

To close the bootstrap, it remains to control ∥ΠClo
u∥2hs . To do it, we will prove that

(2.24) sup
0⩽t⩽T

∑
n∈Clo

⟨n⟩2s
∣∣|un(t)|2 − |un(0)|2

∣∣ ⩽ ερ2.

The conclusion (2.22) of the bootstrap is just then a consequence of the triangular
inequality, the Pythagorean identity and (2.23). So, from now, we focus on proving
(2.24).

Substep 2.2 : Normal form and remainders. — First, we note that since ν ⩽ (2c∗)
−1,

we have

(2.25) ε∗ ≳r,s κ = εc∗ν ⩾
√
ε,

where ε∗ was introduced in Corollary 2.10. It follows that, provided that ε0 is small
enough, we have ε∗ ≫ ε and so (thanks to the bootstrap assumption) it makes sense
to define

z := Φ−1
χ (u).
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As previously, without loss of generality (i.e., up to a standard approximation pro-
cess), we assume that u(0) ∈ hs+2, so that u ∈ C1([0, T ];hs) and z ∈ C1([0, T ];hs).
Since Φ−1

χ is symplectic, using the chain rule, we get that

i∂tz = ∇(H(⩽4r) ◦ Φ1
χ)(z) + E(1),

where
E(1) := idΦ−1

χ (u)(−i∇R(4r+2)(u)).

Then, using that χ is supported on ℓ1(Zd
⩽M ), we deduce that

i∂tΠMz = ∇(H(⩽4r) ◦ΠM ◦ Φ1
χ)(ΠMz) + ΠME(1) +ΠME(2),

where, setting H>M := H(⩽4r) −H(⩽4r) ◦ΠM ,

E(2) := ΠM∇(H>M ◦ Φ1
χ)(z).

By definition of Q(⩾6) and Υ (see (2.19)), this evolution equation rewrites

i∂tΠMz = ∇(Z2 +Q(4) +Q(⩾6))(ΠMz) +∇Υ(ΠMz) + ΠME(1) +ΠME(2).

Then, projecting on CClo , by definition of Hlo (see (2.20)), we get

i∂tΠClo
z = ∇Hlo(ΠClo

z) + 2f ′(0)∥ΠMz∥2ℓ2ΠClo
z + E(tot),

where

(2.26) E(tot) := ΠClo
∇Υ(ΠMz) + ΠClo

E(1) +ΠClo
E(2) +ΠClo

E(3)

and, setting Hhigh = Q(⩾6) −Q(⩾6) ◦ΠClo
,

E(3) := ∇Hhigh(ΠMz).

Observing that Hlo is invariant by gauge transform (because it commutes with the ℓ2

norm) and setting

w = ei2f
′(0)

∫ t
0
∥ΠMz(τ)∥2

ℓ2
dτΠClo

z,

we have
i∂tw = ∇Hlo(w) + ei2f

′(0)
∫ t
0
∥ΠMz(τ)∥2

ℓ2
dτE(tot).

Finally, setting

(2.27) vn(t) =


wn(t) if n ∈ Clo,

0 if |n| > M,

e−itλ2
n+itf ′(0)|zn(0)|2zn(0) else,

we have v(0) = ΠMz(0) and as previously

(2.28) i∂tv = ∇Hlo(v) + ei2f
′(0)

∫ t
0
∥ΠMz(τ)∥2

ℓ2
dτE(tot).
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Substep 2.3 : Control of the remainder terms. — To apply Theorem 2.7 to v, we have to
prove that ∥E(tot)(t)∥hs ⩽ ε3rρ for all t ∈ [0, T ]. First, using the bound (2.6) on dΦ1

χ

and the bound (2.2) on ∇R(4r+2) (and the bootstrap assumption), we have
(2.29) ∥E(1)(t)∥hs ≲r,s ρ

4r+1.

To estimate the other remainder terms, we have to estimate ∥z(t)∥hs . To do it, we use
that Φ−1

χ is close to the identity, to get
(2.30) ∥z(t)− u(t)∥hs ≲r,s ρ

3κ−1

and so, recalling that κ ⩾
√
ε (provided that ε0 is small enough),
∥z(t)∥hs ⩽ 2∥u(t)∥hs ⩽ 2s+2ρ.

Then, using the estimate (2.7) on ∇Υ, we have
(2.31) ∥∇Υ(ΠMz(t))∥hs ≲r,s κ

−2rρε4r ≲r,s ρε
3r.

To control E(2) and E(3), we will apply the mismatch lemmas. First, for E(3), using
the definition (2.19) of Q(⩾6), we have

ΠClo
E(3) =

2r∑
j=3

ΠClo
∇(Q(2j) −Q(2j) ◦ΠClo

)(ΠM (z))

and so, since Chi contains only high modes (see (2.18)), by Lemma 2.23, we have

∥ΠClo
E(3)(t)∥hs ≲r,s

2r∑
j=3

∥Q(2j)∥∞(N/2)−(δ/2)(s−d)ρ2j−1

≲r,s

2r∑
j=3

κ−j+2ε4rρ2j−1 ≲r,s ε
3rρ5.

(2.32)

The estimate on E(2) is more technical. First, we set

K(2j) :=
f (j−1)

2j!
∥ · ∥2jL2j ∈ H2j(Zd)

and we note that the linear terms vanish in the definition of E(2), i.e.,
E(2) = ΠM∇(K>M ◦ Φ1

χ)(z),

where K>M = K(4),>M + · · ·+K(4r),>M and K(2j),>M = K(2j) −K(2j) ◦ΠM . Then,
doing the Taylor expansion of Φt

χ in t = 0, we get, as usual

K>M ◦Φ1
χ =

2r∑
q=0

adqχK
>M

q!
+

∫ 1

0

(1− τ)2r

(2r)!
ad2r+1

χ K>M ◦Φτ
χdτ =:

2r∑
q=0

adqχK
>M

q!
+ Γ.

From the expansions of χ and K>M , we have

adqχK
>M =

(q+1)(2r−1)+1∑
j=q+2

Lq,j ,

where, by Lemma 4.13,
Lq,j :=

∑
a1+···+aq+1=j+q

adχ(2a1) · · · adχ(2aq)K(2aq+1),>M ∈ H2j(Zd).
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Since ∥χ(2j)∥∞ ≲r κ−j+1 and ∥K(2j),>M∥∞ ≲j 1 ≲j κ−j+2, we get by Lemma 4.13
that

∥Lq,j∥∞ ≲r κ−j+2,

and so, by Corollary 2.9,

∥∇adqχL
q,j∥hs ≲r,s κ

−j+2∥ · ∥2j−1
hs .

As a consequence, if j ⩾ 2r + 1, we have

∥∇adqχL
q,j(z(t))∥hs ≲r,s ρε

3r.

Similarly, since j ⩾ q + 2, using that Φτ
χ is close to the identity, we have that

∥∇Γ(z(t))∥hs ≲r,s ρε
3r.

Recalling that Clo contains only low modes (see (2.18)), it follows that

∥ΠClo
E(2)(t)∥hs ≲r,s ρε

3r +

2r−2∑
q=0

2r∑
j=q+2

∥Π2N∇Lq,j(z(t))∥hs .

Now, we note that since the polynomials χ(2a) are supported on ℓ1(Zd
⩽M ) (i.e., they

do not depend on (ua)|a|>M ) and the polynomials K(2a),>M vanish on ℓ1(Zd
⩽M ) (i.e.,

they do depend on (ua)|a|>M ) then the polynomials Lq,j vanish on ℓ1(Zd
⩽M ), i.e.,

Lq,j ◦ΠM = 0. As a consequence, since M = (8r+1)N > 4rN , applying the mismatch
lemma 2.22 and using the lower bound on M (see (2.16)), we have

(2.33) ∥ΠClo
E(2)(t)∥hs ≲r,s ρε

3r +

r∑
j=2

M−(s−d)κ−j+2ρ2j−1 ≲r,s ρε
3r.

Putting together the estimates (2.29), (2.33), (2.32) and (2.31) on the remainder terms
forming E(tot) (defined by (2.26)) and recalling that r ⩾ 9, we have proved that

∀t ∈ [0, T ], ∥E(tot)(t)∥hs ⩽ ε3rρ.

Substep 2.4 : Application of Theorem 2.7 and conclusion. — Since w solves the equation
(2.28), we have proved that

sup
0⩽t⩽T

∥i∂tv −∇Hlo(v)∥hs ⩽ ε3rρ.

Now, we aim at checking that v(0) ∈ Θ♭
ε. We recall that, by assumption,

ΠMu(0) ∈ Θε =
(
ΠMBs(ε)

)
∩ (Φ−1

χ )−1Θ♭
ε,

and so, since χ is supported on ℓ1(Zd
⩽M ),

v(0) = ΠMz(0) = ΠMΦ−1
χ u(0) = Φ−1

χ ΠMu(0) ∈ Θ♭
ε.

Applying Theorem 2.7 and by definition of v (see (2.27)), we have that

sup
0⩽t⩽T

∑
n∈Clo

⟨n⟩2s
∣∣|zn(t)|2 − |zn(0)|2

∣∣ = sup
0⩽t⩽T

∑
|n|⩽M

⟨n⟩2s
∣∣|vn(t)|2 − |vn(0)|2

∣∣ ⩽ ε

2
ρ2.
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Finally, by using that ∥u(t) − z(t)∥hs ≲r,s ρ5/2 (see (2.30)), we get, as expected
(provided that ε0 is small enough),
(2.34) sup

0⩽t⩽T

∑
n∈Clo

⟨n⟩2s
∣∣|un(t)|2 − |un(0)|2

∣∣ ⩽ ερ2.

Step 3 : Measure estimates. — First, we note that, by time reversibility of Φt
χ (see the

last property of Corollary 2.10), provided that ε is small enough, we have
Φ1

χΘ
♭
ε ⊂ (Φ−1

χ )−1Θ♭
ε, and therefore Φ1

χΘ
♭
ε ∩ΠMBs(ε) ⊂ Θε.

Then, since Φ1
χ is symplectic, it is volume preserving and so

meas(Φ1
χΘ

♭
ε) = meas(Θ♭

ε).

Now, since Φ1
χ is close to the identity and κ ⩾ ε, we have (provided that ε is small

enough)
Φ1

χΘ
♭
ε ⊂ ΠMBs(ε+ ε2).

As a consequence, we have
(2.35) meas(Θε) ⩾ meas(Θ♭

ε)−measAε,

where
Aε = {u ∈ ΠMhs | ε ⩽ ∥u∥hs ⩽ ε+ ε2}.

On the one hand, the measure estimate of Theorem 2.7, ensures that
(2.36) meas(Θ♭

ε) ⩾ (1− ε1/39)meas(ΠMBs(ε)).

On the other hand, by homogeneity, we have

(2.37) measAε

measΠMBs(ε)
= (1 + ε)2♯Z

d
⩽M − 1 ⩽ (1 + ε)(9M)d − 1 ⩽ eε(9M)d − 1 ≲

√
ε,

the last estimate coming from the upper bound M ⩽ ε−ν and assumption ν ⩽ 1/(2d).
Putting together the three last estimates (2.35), (2.36) and (2.37), we conclude that,
as expected,

meas(Θε) ⩾ (1− ε1/40)meas(ΠMBs(ε)).

This completes the proof that Theorem 2.7 implies Theorem 1.3.

3. Re-centered polynomials

The rest of the paper is devoted to the proof of Theorem 2.7.

3.1. Set-up. — We start by defining some parameters within the framework of The-
orem 2.7.

– In the rest of the paper we only need s > 0 (the reason for this is that the reduced
system is finite dimensional).

– We can choose (any) ν > 0 such that

(3.1) 108c∗drν ⩽ 10−4.

– ε∗ > 0 is a small parameter given by Corollary 2.10 which depends only on r, s

and on the torus Td
L .

– We fix ε ∈ (0, ε∗). It measures the amplitude of the initial data.
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– The frequency-truncation parameter M depends on ε:
2 ⩽ M ⩽ ε−ν .

– We set
r = 105r.

Then, s, ε, ν and M are defined once and for all.

Remark 3.1. — In the Section 2, to prove the main Theorem 1.3 from Theorem 2.7
and in order to control the contribution of high frequencies, we required that

s ≳ rν−1 ≳ r2,

where the first (resp. second) inequality is a consequence of (2.15) (resp. (3.1)). The
implicit constants depend on d and on the geometry of the torus Td

L .

3.2. Modulation parameters and re-centered actions. — In the subsequent analy-
sis, the amplitudes of Fourier coefficients of a function ϕ in (say) ΠMBs(20ε), serve
as internal modulation parameters for the frequencies. We set

ξn(ϕ) = |ϕn|2, n ∈ Zd
M .

We define
(3.2) Us(ε) =

{
ξ ∈ RZd

M |
∑

|n|⩽M ⟨n⟩2s|ξn| < 400ε2
}
,

an open set of RZd
M endowed with the natural topology of ℓ2s1 (Zd

M ;R), made of internal
parameters. In particular,

ϕ ∈ ΠMBs(20ε) ⇐⇒ ξ(ϕ) ∈ Us(ε).

To modulate the frequencies, we center the actions around the parameters ξ =

(ξn)|n|⩽M ∈ Us(ε) in the Hamiltonian, and define
yn(ξ, u) = |un|2 − ξn, n ∈ Zd

M .

Then, the Hamiltonian’s coefficients depend on the parameters ξ, and we shall intro-
duce another Hamiltonian formalism more convenient for the analysis.

3.3. Parameter dependent polynomials. — In Definition 2.2, we denoted H2q(Zd
M )

a class of real homogeneous polynomials of degree 2q, supported on ℓ1(Zd
M ). We set

H⩽2r(Zd
M ) :=

⊕
0⩽q⩽r

H2q(Zd
M ), H(Zd

M ) :=
⊕
0⩽q

H2q(Zd
M ),

where H0(Zd
M ) is the class of constant real functions.

3.3.1. Extended class of real polynomials. — We now motivate the subsequent defini-
tions and notations. In the expansions of polynomials in H(Zd

M ) we would like to keep
track of the actions and formally see them as new variables:

un, un, |un|2.

To a multi-index n⃗ in the class N defined in Definition 2.1 corresponds a sequence
n ∈ (NZd

M )3 where

n = (k, ℓ,m), with k = (kn)|n|⩽M , ℓ = (ℓn)|n|⩽M , m = (mn)|n|⩽M .
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For n ∈ Zd
M , the integer mn (resp. kn, ℓn) is the multiplicity of |un|2 (resp. un, un).

Such a decomposition only make sense, and is unique, under a non-pairing condition
between un and un.

Definition 3.2. — We define the class of multi-index with zero momentum condition

(3.3) N :=
{
n = (k, ℓ,m) | ∀n ∈ Zd

M , knℓn = 0 and∑
n∈Zd

M
kn − ℓn =

∑
n∈Zd

M
n(kn − ℓn) = 0

}
.

The degree of a multi-index n is its total degree:

deg(n) :=
∑

n∈Zd
M

2mn + kn + ℓn.

Remark 3.3. — In the above definition, knℓn = 0 is the non-pairing condition
between un and un,

∑
|n|⩽M kn − ℓn = 0 ensures that u and u have the same

multiplicity and
∑

|n|⩽M n(kn − ℓn) = 0 is the zero momentum condition.

For further use we also denote by Ñ the set of multi-indices satisfying only the
non-pairing condition

(3.4) Ñ = {n = (k, ℓ,m) | knℓn = 0 ∀n ∈ Zd
M}.

If q ⩾ 0,

(3.5) N2q = {n ∈ N | deg(n) = 2q}, N⩽2q = {n ∈ N | deg(n) ⩽ 2q},

with similar definitions for Ñ2q and Ñ⩽2q.

Notation 3.4. — We denote by n− the size of the smallest frequency that is not
completely paired:

(3.6) n− = min{|n| | n ∈ Zd
M , kn + ℓn ⩾ 1}.

The class of integrable monomials is denoted by

(3.7) I = {n = (k, ℓ,m) ∈ N | k = ℓ ≡ 0}.

For convenience, given n ∈ Zd
M , we introduce special multi-indices (that are not in N,

but in Ñ):

em(n) := (δ(n, ·), 0, 0), ek(n) := (0, δ(n, ·), 0), el(n) := (0, 0, δ(n, ·)),

where δ is the Kronecker symbol. They correspond to the following monomials:

zem(n)(u, y) = yn, zek(n)(u, y) = un, zel(n)(u, y) := un.
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3.3.2. The class of polynomials. — We now define the corresponding class of extended
polynomials H♯(Zd

M ).

Lemma 3.5. — For every H ∈ H⩽2q(Zd
M ) there exists a unique sequence of coefficients

(Hn) ∈ CN⩽2q , such that

H(u) =
∑
n∈N

Hn

∏
n∈Zd

M

ukn
n un

ℓn |un|2mn .

Given a multi-index n = (k, ℓ,m) ∈ N⩽2q we use the short-hand notation:

uk :=
∏

n∈Zd
M

ukn
n , uℓ :=

∏
n∈Zd

M

un
ℓn , I(u)m :=

∏
n∈Zd

M

|un|2mn ,

so that, alternatively,
H(u) =

∑
n∈N

Hnu
kuℓI(u)m.

We can now define the new formalism.

Definition 3.6 (Extended class of real polynomials). — Let q ⩾ 0. The set H♯
⩽2q(Zd

M )

of real polynomials is the set of functions defined on CZd
M × RZd

M

Q(u, y) =
∑

n∈N⩽2q

Qnzn(u, y),

where the coefficients (Qn) ∈ CN⩽2q satisfy the reality condition:

Qk,ℓ,m = Qℓ,k,m,

and
zn(u, y) := ukuℓym =

∏
n∈Zd

M

ukn
n un

ℓnymn
n .

Lemma 3.7. — By associating to H ∈ H⩽2q(Zd
M ) its coefficients (Hn)n∈N⩽2q

the
following map is an isomorphism

A : H⩽2q(Zd
M ) −→ H

♯
⩽2q(Z

d
M )

H 7−→
∑
n∈N

Hnu
kuℓym,

the inverse of A being

A−1 : H♯
⩽2q(Z

d
M ) −→ H⩽2q(Zd

M )

Q(u, y) 7−→ Q(u, I(u)),

where I(u) = (|un|2)n∈Zd
M

.

In particular, we have

H(u) = A(H)(u, I(u)) ∀H ∈ H⩽2q(Zd
M ).
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3.3.3. Centering procedure. — With this formalism, we can interpret the centering of
a polynomial H with respect to a sequence of parameters ξ, as a translation of ξ in
the y-variable of A(H), in the space H♯(Zd

M ):

Definition 3.8. — Let ξ ∈ Us(ε). We define the translation operator

Tξ : H♯
⩽2q(Z

d
M ) −→ H

♯
⩽2q(Z

d
M )

such that for all H ∈ H
♯
⩽2q(Zd

M ),

(3.8) TξQ(u, y) := Q(u, y − ξ).

With these operators at hand, for H ∈ H⩽2q(Zd
M ), centering H around ξ boils

down to write(14)

(3.9) H(u) = A(H)(u, I(u)) = (A−1◦Tξ◦T−ξ◦A)(H)(u) = (T−ξ◦A)(H)(u, I(u)−ξ).

We stress out that the coefficients of (T−ξ ◦A)(H) depend polynomially on ξ. Never-
theless, this dependency is quite artificial: the polynomial function H does not really
depend on ξ. However, our normal form procedure will naturally generate Hamil-
tonian functions really depending on ξ (due to the small divisors). For this reason,
we introduce a class of parameter-dependent real polynomials.

Definition 3.9 (Class of parameter-dependent real polynomials). — We define

(3.10) X2q(ε) := C∞(
Us(ε),H2q(Zd

M )
)
,

and
X⩽2q(ε) := C∞(

Us(ε),H⩽2q(Zd
M )

)
, X(ε) := C∞(

Us(ε),H(Zd
M )

)
.

In addition, we define the class of integrable polynomials of degree less than or equal
to 2q by

X2q,Int(ε) := {H ∈ X2q(ε) | ∀n ∈ N⩽2q,∀ξ ∈ Us(ε), (Hn(ξ) ̸= 0 =⇒ n ∈ J)}.

We can now introduce the main notation.

Notation 3.10. — Centering H ∈ X⩽2q(ε) around ξ ∈ Us(ε) gives a function of ξ

valued in H
♯
⩽2q(Zd

M ), denoted H[·] and defined by

H[·] : Us(ε) −→ H
♯
⩽2q(Z

d
M )

ξ 7−→ H[ξ] := [T−ξ ◦A](H(ξ)).

According to (3.9), a parameter-dependent polynomial H ∈ X⩽2q(ε),

H : ξ ∈ Us(ε) 7−→ H(ξ; ·) ∈ H⩽2q(Zd
M ),

once re-centered, can be represented by

(3.11) H(ξ;u) = H[ξ](u, I(u)− ξ).

(14)In the following formula we are just writing |un|2 = |un|2 − ξn + ξn and then expanding
around |un|2 − ξn in the expansion of H given by Lemma 3.5.
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In the expanded form, we have

H(ξ;u) =
∑

n∈N⩽2q

(H[ξ])nzn(u, I(u)− ξ),

where we recall that zn is defined by

zn(u, y) = ukuℓym =
∏

n∈Zd
M

ukn
n un

ℓnymn
n .

3.3.4. Operations for re-centered polynomials

Lemma 3.11 (Poisson bracket with an action). — If H ∈ X⩽2q(ε), then, for all n ∈ Zd

and ξ ∈ Us(ε),

(3.12) {In, H(ξ; ·)}(u) = 2i
∑
n∈N

(kn − ℓn)(H[ξ])nu
kuℓ(I(u)− ξ)m.

By linearity, we deduce the following.

Corollary 3.12. — Given a sequence of real numbers (ωn)n∈Zd
M

(the frequencies), if

Z2(ξ;u) :=
∑

n∈Zd
M

ωn(|un|2 − ξn),

and H ∈ X⩽2q(ε), then we have

{Z2, H}(u) = 2i
∑
n∈N

Ωn(ω)(H[ξ])n ukuℓ(I(u)− ξ)m,

where Ωn(ω) is the resonance function:

(3.13) Ωn(ω) :=
∑

n∈Zd
M

(kn − ℓn)ωn.

4. Functional setting for re-centered polynomials

4.1. Parameters. — We have recalled the set-up of Theorem 2.7 in Section 3.1.
We now introduce the new parameters that play a role in the subsequent finite-
dimensional analysis, to control the frequencies of the solution smaller than M . Recall
that the small parameter ε ∈ (0, ε∗) was fixed in paragraph (3.1).

– η > 0 is a large portion of ε

η = ε1−1/100.

– For α ∈ N, the frequency scale Nα = ε−α/200s (which is not necessarily an
integer), satisfies

N0 = 1, (Nα+1/Nα)
s = ε−1/200.

– We set β = 100r. In this way, Nβ (which will be our largest scale) satisfies

(4.1) N−2s
β = εβ/100 = εr.
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– τ (proportional to s) is a small parameter compared to s:

τ =
s

10β
=

s

103r
.

We ensure that for all α ∈ {0, . . . , β},

(4.2) (η−1ε)N5τ
α = ε1/100−5ατ/200s ⩽ ε1/100−5βτ/200s = ε3/500 ⩽ ε1/200.

– r (proportional to r) is large enough to ensure that

(4.3) rτ ⩾ 6s.

In view of the definition of τ , we can set

r = 105r.

– Recalling the definition (3.5) of the set of multi-indices N⩽2q observe that, at
least when q ⩽ r2,

(4.4) ♯N⩽2q ⩽ ♯Ñ⩽2q ⩽ ♯(Zd
M )2q ≪ ε−1/106 .

– γ (and γ(α)) are numbers in (0, 1), depending on ε, which give the large measure
of the non-resonant parameter set, but they also appear in the small divisor estimates.
The following choice is acceptable (although other choices are also possible):

(4.5) γ = ε1/30, γ(α) := 4αγ.

We have the following key relationships between the parameters (if ε∗ is small
enough):

γ(α)−1(ε−1η)2(Nα+1/Nα)
2s ⩽ ε−1/15.(4.6)

4.2. Frequency-scales

Definition 4.1 (Weights for the coefficient bounds). — For α ∈ {0, . . . , β} and n ∈
Zd
M set

D(α) := η−2−1/5N2s
α ,

Cn(α) := η−1 min(|n|, Nα)
sNτ

α .

Given a multi-index n = (k, ℓ,m) ∈ N defined in (3.3) we set

w0
n(α) := N−6s

α η6
∏

n∈Zd
M

D(α)mn Cn(α)
kn+ℓn ,

w1
n(α) := N−4s

α η4
∏

n∈Zd
M

D(α)mn Cn(α)
kn+ℓn .and

Remark 4.2. — Note that our choice of weights D(α) differs slightly from the choice
of Bourgain [Bou00a], where (adapting the notation) we would have the following:

D(α) = η−2−1/10N2s
α min(|n|, Nα)

s.

The above choice has some advantages when moving from the scale α to the scale
α+1 for the integrable quartic terms generated in the algorithm. In our case, however,
we measure these quartic terms in the norm Z (defined below) that does not depend
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on the scales. This allows us to have smaller weights. We emphasize that such a saving
is crucial to obtain the bounds on the symplectic transformations (e.g. Lemma 6.16)
to measure the size of the non-resonant initial data set (a task not addressed in
[Bou00a]).

4.3. Norms and vector field estimate. — We now define suitable norms for re-cen-
tered parameter-dependent polynomials, which are written as in (3.11). Recall that
we defined the set of parameters Us(ε) in (3.2).

Definition 4.3 (Norms for the re-centered polynomials). — Given α ∈ {0, . . . , β} and
a parameter-dependent polynomial H ∈ X(ε) (defined in (3.10)), we define two norms
at scale α:

∥H∥Y sup
α

:= sup
ξ∈Us(ε)

max
n∈N

w0
n(α)

−1|(H[ξ])n|,

∥H∥Y lip
α

:= sup
ξ∈Us(ε)

max
n∈N

max
|n|⩽M

w1
n(α)

−1|∂ξn(H[ξ])n|

and

∥H∥Zsup := sup
ξ∈Us(ε)

max
n∈N

|(H[ξ])n|,

∥H∥Zlip := sup
ξ∈Us(ε)

max
n∈N

max
|n|⩽M

|∂ξn(H[ξ])n|.

The norm Y sup
α is nothing but a weighted ℓ∞-norm on the coefficients of the

re-centered polynomial H[ξ] (as introduced in Notation 3.10), with scale-dependent
weights as in Definition 4.1. We will extensively use that for all n ∈ N and ξ ∈ Us(ε),

|(H[ξ])n| ⩽ ∥H∥Y sup
α

w0
n(α),

and, for all |n| ⩽ M ,

|∂ξn(H[ξ])n| ⩽ ∥H∥Y lip
α

w1
n(α).

We say that a Hamiltonian operates at frequency scale α (see Theorem 6.2) when its
Y sup
α -norm is small compared to ε−1/103 , say.

Remark 4.4. — For all H of order greater than 6 (in the sense that for all ξ ∈ Us(ε),
Hn[ξ] ̸= 0 only if deg(n) ⩾ 6), we have that

(4.7) ∥H∥Y sup
0

⩽ ∥H∥Zsup , ∥H∥Y lip
0

⩽ ∥H∥Zlip .

The reason is that N0 = 1.

Given ξ and α we introduce the annulus

(4.8) Vα,s(ε, ξ) :=
{
u ∈ ΠMBs(ε) |

∑
n∈Zd

M
⟨n⟩2s||un|2 − ξn| ⩽ ε2+1/5N−2s

α

}
.

We now estimate a multilinear quantity for functions in the above neighborhood. The
set Ñ was defined in (3.4).
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Lemma 4.5 (Weighted multilinear estimate). — For all α ∈ {0, . . . , β}, ξ ∈ Us(ε),
n ∈ Ñ and u ∈ Vα,s(20ε, ξ),

(4.9) w0
n(α)|zn(u, I(u)− ξ)| ⩽ N−6s

α η6.

The above lemma can be understood as follows. When u ∈ Vα,s(20ε, ξ), which is an
additional smallness condition on the centered actions (|un|2−ξn)n∈Zd

M
, we gain a fac-

tor N−6s
α η6 in the multilinear estimate (4.9). We emphasize that the zero momentum

condition is not required, and we assume that n is in the set Ñ defined in (3.4).

Proof. — Fix u ∈ Vα,s(20ε, ξ) and n ∈ Ñ. According to the definition 4.1 of the
weights,

(4.10) w0
n(α)zn(u, I(u)− ξ)

= N−6s
α η6

∏
n∈Zd

M

Cn(α)
kn+ℓnukn

n un
ℓn D(α)mn(|un|2 − ξn)

mn .

For all n ∈ Zd
M and α ⩽ β,

Cn(α)|un| ⩽ ⟨n⟩sNτ
αη

−1|un| ⩽ ∥⟨n⟩sun∥ℓ∞Nτ
β η

−1 ⩽ 20εη−1Nτ
β ⩽ 1,

under Condition (4.2). In addition,

D(α)||un|2 − ξn| ⩽ η−2−1/5N2s
α ∥|un|2 − ξn∥ℓ∞ ≲ (εη−1)2+1/5 ⩽ 1.

Multiplying over the contributions where mn + kn + ℓn ⩾ 1, for n ∈ Zd
M , gives the

multilinear estimate (4.9). □

We can now state the key vector field estimate, which motivates the definition of
the norm Y sup

α and the normal form Theorem 6.2.

Proposition 4.6 (Vector field estimate at scale α). — Given α ∈ {0, . . . , β} and
Q ∈ X⩽r2(ε), we have that for all ξ ∈ Us(ε) and u ∈ Vα,s(20ε, ξ),

(4.11) ∥∇Q(ξ;u)∥hs ⩽ ∥Q∥Y sup
α

N−4s
α ε4−1/4∥u∥hs .

Proof. — We fix ξ∈Us(ε) and, without loss of generality we suppose that ∥Q∥Y sup
α

=1.
For n ∈ Zd

M , we have

(∇Q(ξ;u))n = 2
∑

n∈N⩽cr

(Q[ξ])n∂un
zn(u, I(u)− ξ).

Observe that

∂un
zn(u, I(u)− ξ) = ℓn

zn(u, I(u)− ξ)

un
+mn

unzn(u, I(u)− ξ)

|un|2 − ξn
.
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Hence,
∥∇Q(u)∥hs

= 2

( ∑
n∈Zd

M

⟨n⟩2s
∣∣∣ ∑
n∈N⩽2q

(Q[ξ])n

(
ℓn

zn(u, I(u)− ξ)

un
+mn

unzn(u, I(u)− ξ)

|un|2 − ξn

)∣∣∣2)1/2

⩽ ♯(Zd
M )♯(N⩽2q) max

n∈Zd
M

n∈N⩽2q

w0
n(α)⟨n⟩s

(∣∣∣ℓn zn(u, I(u)− ξ)

un

∣∣∣+ ∣∣∣mn
unzn(u, I(u)− ξ)

u2
n − ξn

∣∣∣)

⩽ ε−1/104 max
n∈Zd

M

max
n∈N⩽2q

w0
n(α)⟨n⟩s

(∣∣∣ℓn zn(u, I(u)− ξ)

un

∣∣∣+ ∣∣∣mn
unzn(u, I(u)− ξ)

|un|2 − ξn

∣∣∣),
where we used the counting estimate (4.4). Then, for fixed n ∈ Zd

M and n ∈ N⩽2q,
suppose that ℓn ⩾ 1. We have from the zero momentum condition that there exists
j ∈ Zd

M ∖ {n} with

max(kj , ℓj) ⩾ 1, |j| ≳ |n|
r2

.

We only consider the situation when kj ⩾ 1 (the situation when ℓj ⩾ 1 is analogous),
in which case we have

w0
n(α)⟨n⟩sℓn

∣∣∣zn(u, I(u)− ξ)

un

∣∣∣ ≲r,sCn(α) Cj(α)⟨j⟩s|uj |
w0

n(α)

Cn(α) Cj(α)

∣∣∣zn(u, I(u)− ξ)

ujun

∣∣∣
≲r,sCn(α)Cj(α)∥u∥hs w0

n′(α)|zn′(u, I(u)− ξ)|,

where
n′ = n− ek(j)− el(n) ∈ Ñ.

Note that
wn′(α) =

w0
n(α)

Cn(α) Cj(α)
.

It follows from Lemma 4.5 that

w0
n′(α)|zn′(u, I(u)− ξ)| ⩽ N−6s

α η,

and therefore

w0
n(α)⟨n⟩sℓn|

zn(u, I(u)− ξ)

un
| ≲r,s Cn(α)Cj(α)N

−6s
α η6∥u∥hs

≲r,s N
2τ
α η4N−4s

α ∥u∥hs

≲r,s η
4− 1

10N−4s
α ∥u∥hs ,

according to the constraint (4.2) on the parameters. Similarly, if mn ⩾ 1 then

w0
n(α)⟨n⟩smn

∣∣∣unzn(u, I(u)− ξ)

|un|2 − ξn

∣∣∣ ≲r,s D(α)⟨n⟩s|un|
w0

n(α)

D(α)

∣∣∣zn(u, I(u)− ξ)

|un|2 − ξn

∣∣∣
≲r,s D(α)∥u∥hs w0

n′(α)|zn′(u, I(u)− ξ)|,

where
n′ = n− em(n) ∈ N, w0

n′(α) =
w0

n(α)

D(α)
,
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and we deduce from Lemma 4.5 that

w0
n(α)⟨n⟩smn

∣∣∣unzn(u, I(u)− ξ)

|un|2 − ξn

∣∣∣ ≲r,s η
4−1/5N−4s

α ∥u∥hs .

The desired inequality (4.11) follows when ε∗(s, r) is small enough. □

In the next lemma, we provide a fundamental example of a polynomial that oper-
ates at scale α. Recall that n− = min{|n| | n ∈ Zd, kn + ℓn ⩾ 1} and I denotes the
set of integrable monomials, as defined in (3.7).

Notation 4.7. — Given α ⩾ 1 we define the set of multi-indices with an unpaired
frequency smaller than Nα:

(4.12) Λα := {n ∈ N∖ I | n− < Nα},

Then, for H ∈ X(ε) and ξ ∈ Us(ε), we define ΠΛα
H(ξ) ∈ H(Zd

M ) by

(4.13) ΠΛα
H(ξ;u) :=

∑
n∈Λα

(H[ξ])nzn(u, I(u)− ξ).

Moreover, for q ⩾ 1,

Πdeg=2qQ(ξ;u) :=
∑

n∈N : degn=2q

(Q[ξ])nzn(u, I(u)− ξ),

Πdeg⩽2qQ(ξ;u) :=

q∑
p=1

Πdeg=2pQ(ξ).

Lemma 4.8. — For all α ⩾ 0, if n ∈ N∖ Λα+1 with deg(n) ⩾ 6, we have

w0
n(α) ⩽ w0

n(α+ 1), w1
n(α) ⩽ w1

n(α+ 1).

Remark 4.9. — As a consequence, if Q ∈ X⩽r2(ε) satisfies, for all ξ ∈ Us(ε)

ΠΛα
Q(ξ) = 0, Πdeg⩽4Q(ξ) = 0,

(as defined in (4.13)), then Q operates at scale α in the sense that

∥Q∥Y sup
α

⩽ ∥Q∥Y sup
α−1

⩽ · · · ⩽ ∥Q∥Y sup
0

.

We deduce from Proposition 4.6 the vector field estimate: for all ξ ∈ Us(ε) and
u ∈ Vα,s(20ε, ξ),

∥∇Q(ξ;u)∥hs ⩽ ∥Q∥Y sup
0

N−4s
α ε3∥u∥hs .

Proof. — Recall from Definition 4.1 that the weight w0
n(α) is made of two parts:

a prefactor N−6s
α η6, which is a gain, and the product with the coefficients Cn(α)

and D(α).
When comparing the prefactor from scale α to scale α+ 1 we have a loss:

(Nα/Nα+1)
−6s.

On the other hand, increasing the weights Cn(α) to Cn(α + 1) gives a saving when
|n| ⩾ Nα+1:

Cn(α) = η−1Ns+τ
α = (Nα/Nα+1)

s+τCn(α+ 1).
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Note also that increasing the weight D(α) to D(α+ 1) always gives a saving:

D(α) = (Nα/Nα+1)
2sD(α+ 1).

We complete the proof of Lemma 4.8 from the assumption that deg(n) ⩾ 6 :

w0
n(α) = (Nα/Nα+1)

−6s
∏

|n|⩽M

(Nα/Nα+1)
2mns+(kn+ℓn)(s+τ) w0

n(α+ 1)

⩽ (Nα/Nα+1)
(deg(n)−6)s w0

n(α+ 1).

We proceed similarly to prove that w1
n(α) ⩽ w1

n(α+ 1). □

To conclude this subsection, we state a lemma in the same spirit. It is helpful when
dealing with monomials of large degree.

Lemma 4.10 (Weights for monomials with large degree). — For all n ∈ N, if

(4.14) τ deg(n) ⩾ 6s,

then for all α ⩾ 0,
w0

n(α) ⩽ w0
n(α+ 1).

Remark 4.11. — As a consequence of Proposition 4.6, if a polynomial R ∈ X⩽r2(ε)

has order greater than 6sτ−1 then for all u ∈ Vβ,s(20ε, ξ),

∥∇R(u)∥hs ≲r ∥R∥ZsupN−4s
β ε3∥u∥hs .

Proof. — We proceed as in the proof of Lemma 4.8. In this case we leverage on the
the factor Nτ

α in Cn(α) to get the saving: for all n ∈ Zd
M ,

Cn(α) = η−1 min(|n|, Nα)
sNτ

α ⩽ (Nα/Nα+1)
τCn(α+ 1).

This yields

w0
n(α) = (Nα+1/Nα)

6s−2s deg(m)−τ(deg(k)+deg(ℓ)) w0
n(α+ 1)

⩽ (Nα+1/Nα)
6s−τ deg(n) w0

n(α+ 1),

where we used that Nα+1 ⩾ Nα and s ⩾ τ . Assuming (4.14) concludes. □

4.4. Poisson bracket and point-wise estimate on the coefficients. — We will prove
in Proposition 4.15 (resp. Proposition 4.16) fundamental bounds on the Y sup

α -norm
(Y lip

α -norm) of the Poisson bracket of two polynomials. As a warm-up we first state
some explicit computations for the Poisson bracket of two re-centered polynomials.

Lemma 4.12 (Poisson bracket between two monomials). — For fixed multi-indices
n = (k, ℓ,m) and n′ = (k′, ℓ′,m′) one has

(4.15) {zn(u, I(u)− ξ), zn′(u, I(u)− ξ)}

= 2i
∑

n∈Zd
M

(k′nℓn − knℓ
′
n)

zn(u, I(u)− ξ)zn′(u, I(u)− ξ)

|un|2

+ (mn(k
′
n − ℓ′n) +m′

n(ℓn − kn))
zn(u, I(u)− ξ)zn′(u, I(u)− ξ)

|un|2 − ξn
.
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In particular, we observe from (4.15) that a Poisson bracket either kills a pair un, un

when k′nℓn − knℓ
′
n ̸= 0, and a term |un|2 − ξn when mn(k

′
n − ℓ′n) +m′

n(ℓn − kn) ̸= 0.

Proof. — We compute explicitly the Poisson bracket using (1.20):

{ukuℓ(I(u)− ξ)m, uk′
uℓ′(I(u)− ξ)m

′
}

= 2i
∑

n∈Zd
M

( ∏
j∈Zd

M∖{n}

u
kj+k′

j

j uj
lj+l′j (|uj |2 − ξj)

mj+m′
j

)
×
[
(k′nℓn − knℓ

′
n)un

ℓn+ℓ′n−1u
kn+k′

n−1
n (|un|2 − ξn)

mn+m′
n

+ (mn(k
′
n − ℓ′n) +m′

n(ℓn − kn))u
kn+k′

n
n un

ℓn+ℓ′n(|u2
n − ξn|)mn+m′

n−1
]
.

Organizing the terms gives the identity (4.15). □

The next lemma follows from (4.15), and gives a useful expression of the coefficients
of the re-centered polynomial generated by the Poisson bracket of two re-centered
polynomials.

Lemma 4.13. — If Q,H ∈ X(ε), with min(deg(Q),deg(H)) =: 2q, then {Q,H} ∈
X(ε) and we have for all n′′ ∈ N and ξ ∈ Us(ε),

(4.16) ({Q,H}[ξ])n′′ = 2i
∏

|j|⩽M

∑
0⩽bj⩽aj⩽q

(
aj
bj

)
ξ
aj−bj
j

∑
n∈Zd

M

∑
(n,n′)∈N2

(Q[ξ])n(H[ξ])n′

×
(
1
E

(1)

n′′,a,b
(n)

(n,n′)(k′nℓn−knℓ
′
n)+1

E
(2)

n′′,a,b
(n)

(n,n′)(mn(k
′
n−ℓn′)+m′

n(ℓn−kn))
)
,

where, given n′′ = (m′′
j , k

′′
j , ℓ

′′
j )|j|⩽M , a = (aj)|j|⩽M , b = (bj)|j|⩽M with 0 ⩽ bj ⩽

aj ⩽ q, and n ∈ Zd
M , the sets of multi-indices

E
(1)
n′′,a,b(n), E

(2)
n′′,a,b(n) ⊂ N2

are defined as follows:
(1) (n,n′) ∈ E

(1)
n′′,a,b(n) if and only if k′nℓn − knℓ

′
n ̸= 0, with

an = min(kn + k′n − 1, ℓn + ℓ′n − 1),

m′′
n = mn +m′

n + bn,and
k′′n = kn + k′n − 1− an,

ℓ′′n = ℓn + ℓ′n − 1− an.

For all j ∈ Zd
M ∖ {n},

aj = min(kj + k′j , ℓj + ℓ′j),

m′′
j = mj +m′

j + bj ,and
k′′j = kj + k′j − aj ,

ℓ′′j = ℓj + ℓ′j − aj ,

J.É.P. — M., 2025, tome 12



758 J. Bernier & N. Camps

(2) (n,n′) ∈ E
(2)
n′′,a,b(n) if and only if mn(k

′
n − ℓ′n) +m′

n(ℓn − kn) ̸= 0, with

an = min(kn + k′n, ℓn + ℓ′n),

m′′
n = mn +m′

n − 1 + bn,and
k′′n = kn + k′n − an,

ℓ′′n = ℓn + ℓ′n − an.

For all j ∈ Zd
M ∖ {n}, we impose the same conditions as for the above definition of

E
(1)
n′′,a,b(n).

Let us briefly comment on formula (4.16).
– For fixed n ∈ Zd

M we collect in E
(1)
n′′(n) (resp. E(2)

n′′(n)) the contributions of
the Poisson bracket between two monomials (n,n′) where a pair un, un goes away
(resp. a term yn goes away).

– The parameters a = (aj)|j|⩽M and b = (bj)|j|⩽M come form the centering
procedure: aj represents the multiplicity of the pairing |uj |2, which is less than
min(deg(Q),deg(H)), while bj determines the number of terms yj . More precisely,
when we center |uj |2aj = (yj + ξj)

aj we obtain

|uj |2aj =

aj∑
bj=0

(
aj
bj

)
ξ
aj−bj
j y

bj
j .

– Observe that the non-pairing condition is preserved:

kjℓj = 0 and kj′ℓj′ = 0 ∀j =⇒ k′′j ℓ
′′
j = 0 ∀j.

Lemma 4.14. — Given n′′ ∈ N⩽2q, we let

Cn′′(q) := {(n,n′) ∈ N2
⩽2q | {zn, zn′} −→ zn′′}

be the set of multi-indices whose Poisson bracket contributes to zn′′ . We have

(4.17) ♯(Cn′′(8r2)) ⩽ ε−1/104 .

To prove this lemma we count the total number of terms generated by the Poisson
bracket between two monomials. The obtained estimate (4.17) is very crude, but it is
sufficient for our needs.

Proof. — Suppose that (n,n′) ∈ N⩽2q. According to (4.15) we see that {zn, zn′}
generates 2♯(Zd

M ) terms. Each of them gives at most ♯(Zd
M )q2 new terms, up to some

universal constant C. Summing over all the possible pairs (n,n′) concludes:

♯(Cn′′) ⩽ C♯(N⩽2q)
2♯(Zd

M )2q2 ⩽ C♯(Zd
M )4q+2q2.

The inequality (4.17) then follows from our choices of parameters. □

The fundamental bilinear estimate is presented in the following proposition. Given
two Hamiltonian polynomials Q and H, this estimate controls the Y sup

α -norm of the
Poisson bracket between H and Q by the product of the Y sup

α -norms of Q and H.
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Proposition 4.15. — For all Q,H ∈ X⩽r2(Zd
M ) and for all ξ ∈ Us(ε),

(4.18) ∥{Q,H}∥Y sup
α

⩽ η4−1/4N−4s
α ∥Q∥Y sup

α
∥H∥Y sup

α
.

Moreover, for Q ∈ X⩽r2(ε) and for all integrable Z ∈ X4,Int(ε), we have

(4.19) ∥{Q,Z}∥Y sup
α

⩽ η2+1/5−2/104N−2s
α ∥Q∥Y sup

α
∥Z∥Zsup .

The saving in η and in N−s
α is remarkable and it will compensate for the loss

from the small divisor. In the second case (4.19), this saving is a consequence of the
smallness of the centered actions |un|2 − ξn, which is encoded in the weight D(α).

Proof. — Let us first prove (4.18). We denote

P (u) = {Q,H} =
∑

n′′∈N⩽2r2

(P [ξ])n′′zn′′(u, I(u)− ξ).

By homogeneity we can assume that

∥Q∥Y sup
α

= ∥H∥Y sup
α

= 1.

In particular, for all (n,n′) ∈ N we have

|(Q[ξ])n(H[ξ])n′ | ⩽ w0
n(α) w

0
n′(α),

and our goal is to prove that for all n′′ ∈ N and ξ,

|(P [ξ])n′′ | ⩽ η4−1/4N−4s
α w0

n′′(α).

Reduction to fixed monomials (n,n′). — Formula (4.16) (from Lemma 4.13) expresses
(P [ξ])n′′ in terms of the coefficients (Q[ξ])n and (H[ξ])n′ of the re-centered polyno-
mials associated with Q and H. We deduce from it that for all ξ ∈ Us(ε)

|(P [ξ])n′ | ≲r ♯(Cn′′(cr2)) sup
a,b,n,n,n′

( ∏
|j|⩽M

|ξj |aj−bj
)
w0

n(α) w
0
n′(α)

[
1
E

(1)

n′′ (n,a,b)
(n,n′)|k′nℓn − knℓ

′
n|+ 1

E
(1)

n′′ (n,a,b)
(n,n′)|mn(k

′
n − ℓn′) +mn′(ℓn − kn)|

]
.

According to the (crude) counting estimate (4.17), we obtain

(4.20) |(P [ξ])n′ | ≲r ε−1/104 sup
a,b,n,n,n′

( ∏
|j|⩽M

|ξj |aj−bj
)
w0

n(α) w
0
n′(α)

[
1
E

(1)

n′′ (n,a,b)
(n,n′)|k′nℓn − knℓ

′
n|+ 1

E
(1)

n′′ (n,a,b)
(n,n′)|mn(k

′
n − ℓn′) +mn′(ℓn − kn)|

]
.

Let us fix n ∈ Zd
M , a = (aj)|j|⩽M , b = (bj)|j|⩽M with 0 ⩽ bj ⩽ aj ⩽ r. Let (n,n′) be

a pair of indices for which the Poisson bracket {zn, zn′} of the associated monomials
contribute to zn′′ . We organize the terms in two cases.
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Case 1: A pair (un, un) goes away. — This corresponds to the case when (n,n′) ∈
E

(1)
n′′,a,b(n). In such a case, we have

(4.21) w0
n(α) w

0
n′(α) = N−6s

α η6 Cn(α)
2
( ∏

|j|⩽M

Cj(α)
2(aj−bj)

(Cj(α)
2

D(α)

)bj)
w0

n′′(α).

– The killing of the pair un, un is responsible for the loss Cn(α)
2, whereas the pre-

factor N−6s
α η6 is a saving that comes from this prefactor in one of the two weights

w0
n(α), w0

n′(α).
– In addition, the term

∏
|j|⩽M D(α)−bj (Cα(n))

2bj is a second saving—which we
will not exploit. It comes from the centering of bj-terms |un|2 that were changed into
|un|2 − ξn.

– Note also that (aj−bj) terms |uj |2 are also changed into ξj , and the extra weights
(namely

∏
|j|⩽M Cj(α)

2(aj−bj)) will be absorbed by
∏

|j|⩽M ξj . We deduce

(4.21) ⩽ N−6s
α η6 Cn(α)

2
( ∏

|j|⩽M

Cj(α)
2(aj−bj)

)
w0

n′′(α)

⩽ N−4s+2τ
α η4

( ∏
|j|⩽M

Cj(α)
2(aj−bj)

)
w0

n′′(α).

Hence, for these contributions to (4.20) we have

(4.20) ≲r ε−1/104N−4s+2τ
α η4

( ∏
|j|⩽M

(Cj(α)
2|ξj |)aj−bj

)
w0

n′′(α)

≲r ε−1/104N−4s+2τ
α η4 w0

n′′(α).

Case 2: A term |un|2−ξn goes away. — In this case (n,n′) ∈ E
(2)
n′′,a,b(n) and we simply

modify the analysis from Case 1. It holds

w0
n(α) w

0
n′(α) = N−6s

α η6 D(α)
( ∏

|j|⩽M

Cj(α)
2(aj−bj)

(Cj(α)
2

D(α)

)bj)
w0

n′′(α).

⩽ N−4s
α η4−1/5

( ∏
|j|⩽M

Cj(α)
2(aj−bj)

)
w0

n′′(α).(4.22)

Hence, the contribution of these terms to (4.20) is controlled by

(4.20) ≲r ε−1/104η4−1/5N−4s
α

( ∏
|j|⩽M

(Cj(α)
2|ξj |)aj−bj

)
w0

n′′(α)

≲r ε−1/104η4−1/5N−4s
α w0

n′′(α).

In both case, by choosing ε∗(s, r) sufficiently small we conclude that

(4.20) ⩽ η4−1/4N−4s
α w0

n′′(α).

which is conclusive. We now turn to the proof of (4.19). Once again we may assume
that

∥Q∥Y sup
α

= 1, ∥Z∥Zsup = 1.
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By expanding Z

Z =
∑

|j1|,|j2|⩽M

(Z[ξ])em(j1)+em(j2)(|uj1 |2 − ξj1)(|uj2 |2 − ξj2),

we obtain

{Q,Z}(ξ;u) = 2i
∑

n∈N⩽r2

|j1|,|j2|⩽M

(kj1 − ℓj1)(Q[ξ])n(Z[ξ])em(j1)+em(j2)(|uj2 |2− ξj2)zn(u, I(u)− ξ)

=:
∑
n′′

(P [ξ])n′zn′′(u, I(u)− ξ),

In particular, a term |uj1 |2−ξj1 goes away while a term |uj2 |2−ξj2 appears. This term
provides a saving D(α). We also stress out that there is no new pairing. Organizing
the terms gives

(4.23) (P [ξ])n′′ = 2i
∑

n∈N⩽r2

|j1|,|j2|⩽M

1
E

(2)

n′′,0,0(j1)
(n, em(j1) + em(j2))(kj1 − ℓj1)

× (Q[ξ])n(Z[ξ])em(j1)+em(j2).

For |j1|, |j2| ⩽ M and n ∈ N⩽r2 , n′′ ∈ N, we have that

(4.24) (n, em(j1) + em(j2)) ∈ E
(2)
n′′,0,0(j1) =⇒ n′′ = n+ em(j2),

and, in such a case, we have

w0
n(α) =

1

D(α)
w0

n′′(α) = N−2s
α η2+1/5 w0

n′′(α).

We deduce from the explicit formula (4.23) that for all ξ ∈ Us(ε),

(4.25) |(P [ξ])n′ | ≲r ε−1/104 w0
n(α) ⩽ N−2s

α η2+1/5−2/104 w0
n′′(α).

This completes the proof of Proposition 4.15. □

We now establish another bilinear estimate in the same spirit, but this time we
measure the dependence on ξ of the coefficients of re-centered polynomials. The output
polynomial P depends on the coefficients through the coefficients of Q and H and the
terms ξ coming from the centering of new actions generated by the Poisson bracket.

Proposition 4.16. — For all Q,H ∈ X⩽r2(ε) we have

(4.26) ∥{Q,H}∥Y lip
α

⩽ η4−1/4N−4s
α(

∥Q∥Y sup
α

∥H∥Y sup
α

+ ∥Q∥Y lip
α

∥H∥Y sup
α

+ ∥Q∥Y sup
α

∥H∥Y lip
α

)
.

Moreover, for all integrable quartic term Z ∈ X4,Int(ε),

(4.27) ∥{Q,Z}∥Y lip
α

⩽η2+1/5−2/104N−2s
α

(
∥Q∥Y lip

α
∥Z∥Zsup +η2N−2s

α ∥Q∥Y sup
α

∥Z∥Zlip

)
.

Since the proof of this proposition is relatively long (although close to the previous
one) we postpone it to Section A.1 of the appendix.
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5. Small-divisor estimate for the modulated frequencies

Initially, the frequencies are

ωn = λ2
n = g(n, n).

At each step of the iteration scheme, the centering procedure modulates the frequen-
cies with internal parameters ξ as introduced in the beginning of Section 3. These
parameters should be viewed as the actions of the initial data ϕ ∈ ΠMhs in the final
coordinates. Recall that n−, defined in (3.6), is the size of the smallest index in suppn

that is not fully paired.
We also recall that r = 105r.

Definition 5.1 (Non-resonant set of initial data). — Given a sequence of modulated
frequencies ω(ξ) = (ωn(ξ))n∈Zd

M
and a multi-index n ∈ N⩽2r, we denote the (modu-

lated) resonance function by

Ωn(ω(ξ)) := (k − ℓ) · ω(ξ) =
∑

n∈Zd
M

(kn − ℓn)ωn(ξ).

For γ ∈ (0, 1) and E ⊂ N⩽2r the non-resonant set of internal parameters restricted
to E is

Ξε,γ(ω,E) :=
{
ξ ∈ RZd

M | min
n∈E

|Ωn(ξ)|n2s
− > γε2

}
,(5.1)

and the non-resonant set of functions is

Uε,γ(ω,E) :=
{
ϕ ∈ ΠMBs(ε) | ξ(ϕ) ∈ Ξε,γ(ω,E)

}
.(5.2)

When E = N⩽2r we just write Ξε,γ(ω) and Uε,γ(ω).

Remark 5.2. — Note that the non-resonant set Uε,γ(ω) is an open subset of ΠMBs(ε).

By construction, if ξ ∈ Ξε,γ(ω) then for all n ∈ N⩽2r we have

|Ωn(ξ)| > γε2n−2s
− .

Lemma 5.3. — Let A ⊂ Zd be a non-empty finite set, let N = ♯A ⩾ 1 and ρ > 0.
We have

meas(ΠABs(ρ)) =
πNρ2N

(N + 1)!

∏
n∈A

⟨n⟩−2s,

where meas is the (canonical) Lebesgue measure on CA ∼= (R2)A.

Proof. — Set
F : ΠABs(ρ) −→ BCA(0, 1)

(ϕ)n 7−→ (xn)n = ρ−1(⟨n⟩2sϕn)n.
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A (linear) change of variables gives

meas(ΠABs(ρ)) = ρ2♯A
∏
n∈A

⟨n⟩−2s meas(F (ΠABs(ρ)))

= ρ2N
∏
n∈A

⟨n⟩−2s meas(BCA(0, 1)).

We conclude by using the explicit formula for the volume of the unit Euclidean ball
of Rd:

Vol(BRd(0, 1)) =
πd/2

Γ(d/2 + 1)
.

This completes the proof of Lemma 5.3. □

We are now ready to state the measure estimate of the non-resonant set of functions,
for a given sequence of modulated frequencies ω(ξ) := (ωn(ξ))n∈Zd

M
.

Proposition 5.4 (Measure estimate of the non-resonant set)
Let ω ∈ C1(Us(ε),RZd

M ) be a sequence of modulated frequencies such that for all
k, n ∈ Zd

M ,

(5.3) |∂ξk(ωn(ξ)− ξn)| ⩽ ε1/2.

Then, provided that ε∗(s, r) is small enough, we have that for all γ ∈ (0, 1),

meas(Uε,γ(ω)) ⩾ meas(ΠMBs(ε))(1− γε−1/104).

Proof. — Fix n ∈ N⩽2r, γ ∈ (0, 1), ε ∈ (0, ε∗) and set

Sn,γ,ε(ω) :=
{
ϕ ∈ ΠMBs(ε) | |Ωn(ξ(ϕ))| ⩽ γε2n−2s

−

}
.

Let us prove that there exists C > 0 such that for all n and γ

(5.4) meas(Sn,γ,ε(ω)) ≲ γ(♯Zd
M )meas(ΠMBs(ε)).

We shall conclude by observing that

ΠMBs(ε)∖Uγ,ε =
{
ϕ ∈ ΠMBs(ε) | min

n∈N⩽2r

|Ωn(ξ(ϕ))|n2s
− ⩽ γε2

}
=

⋃
n∈N⩽2r

Sn,γ,ε(ω),

and the result follows from (5.4):

meas(ΠMBs(ε)∖Uγ,ε) ≲ γ♯(N⩽2r)♯(Zd
M )meas(ΠMBs(ε))

⩽ γε−1/104 meas(ΠMBs(ε)),

where we used the bound (4.4). It remains to prove (5.4), for fixed n ∈ N⩽2r. Take
n0 ∈ supp(n) such that

|n0| = n−, |kn0 − ℓn0 | ⩾ 1.

To decide whether a function belongs to Sn,γ,ε(ω) or not, it suffices to move the its
n0-th action ξn0

(ϕ). Hence, we will freeze the other variables and, abusing notation,
we write

ω(ξ) = ω(ξn0
),
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and see the frequencies ωn as functions

ξn0 ∈ In0 7−→ ωn(ξn0) ∈ R, In0 = [−⟨n0⟩−2s400ε2, ⟨n0⟩−2s400ε2] ⊂ R.

Once the variables (ξn)n ̸=n0
are fixed, we deduce from the mean value theorem and

from the assumption (5.3) that for all (ξn0 , ξ
′
n0
) ∈ I2n0

,

|ωn0
(ξn0

)− ωn0
(ξ′n0

)− (ξn0
− ξ′n0

)| ⩽ ε1/2|ξn0
− ξ′n0

|,

and, for all n ̸= n0,

|ωn(ξn0)− ωn(ξ
′
n0
)| ⩽ ε1/2|ξn0 − ξ′n0

|.

We deduce from the triangle inequality that

|Ωn(ξn0)− Ωn(ξ
′
n0
)| ⩾ |kn0 − ℓn0 ||ωn0(ξn0)− ωn0(ξ

′
n0
)|

−
∑

n∈Zd
M∖{n0}

|kn − ℓn||ωn(ξn0
)− ωn(ξ

′
n0
)|

⩾ |ξn0
− ξ′n0

|(|kn0
− ℓn0

| − 2rε1/2)

⩾
1

2
|ξn0

− ξ′n0
|.

It follows that for all ϕ, ϕ′ ∈ ΠMBs(ε) such that ϕn = ϕ′
n when n ̸= n0,

(5.5) ϕ, ϕ′∈En,γ,ε(ω) =⇒ 1

2
|ξn0(ϕ)−ξn0(ϕ

′)|⩽ |Ωn(ξ(ϕ))−Ωn(ξ(ϕ
′))|⩽2γn−2s

− ε2.

We deduce from this that

(5.6) sup
z∈ΠZd

M
∖{n0}Bs(ε)

∫
C
1Sn,γ,ε(ω)(z;ϕn0

)dϕn0
⩽ 4πγn−2s

− ε2.

Indeed, using polar coordinates for ϕn0 and using that the condition to belong to
Sn,γ,ε only depends on |ϕn0

|2, we obtain, for fixed z ∈ ΠZd
M∖{n0}, that∫

C
1Sn,γ,ε(ω)(z; |ϕn0

|2)dϕn0
=

∫
(0,2π)

dθ

∫
(0,1)

1Sn,γ,ε(ω)(z; ρ
2)ρdρ

= π

∫
(0,1)

1Sn,γ,ε(ω)(z; ρ
2)dρ2.

Then, to prove (5.6) we just observe from (5.5) that if ρ, ρ′ ∈ (0, 1)2 are such that

1Sn,γ,ε(ω)(z; ρ
2) = 1Sn,γ,ε(ω)(z; (ρ

′)2) = 1,

then
|ρ2 − (ρ′)2| ⩽ 2γn−2s

− ε2.

To conclude the proof of (5.4), we freeze the variables z = (ϕn)n∈Zd
M∖{n0} in the

measure estimate by applying Fubini’s theorem:

meas(Sn,γ,ε(ω)) =

∫
ΠMBs(ε)

1Sn,γ,ε(ω)(ϕ)dϕ

⩽
∫
ΠZd

M
∖{n0}Bs(ε)

(∫
C
1Sn,γ,ε(ω)(z;ϕn0

)dϕn0

)
dz.
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According to (5.6), we deduce that

meas(Sn,γ,ε(ω)) ⩽ 4πγn−2s
− ε2 meas(ΠZd

M∖{n0}Bs(ε)).

Lemma 5.3 gives

meas(ΠZd
M∖{n0}Bs(ε)) =

♯Zd
M

πε2
⟨n0⟩2s meas(ΠMBs(ε)),

and we obtain

meas(Sn,γ,ε(ω)) ⩽ 2γ(♯Zd
M )n−2s⟨n0⟩2s meas(ΠMBs(ε)) ≲ γ(♯Zd

M )meas(ΠMBs(ε)).

This completes the proof of Proposition 5.4. □

6. Normal form with internal parameters

We state in this section our main normal form theorem from which we will deduce
Theorem 2.7 in Section 7. This normal form is based on an induction on the frequency
scales Nα, for α ∈ {0, . . . , β}.

6.1. Preparation. — Let Hlo ∈ H⩽4r(Zd
M ) be a real polynomial of degree less than or

equal to 4r as in the assumptions of Theorem 2.7 where, without loss of generality,(15)

we supposed that f ′(0) is suitably chosen such that

(6.1) Hlo(u) =
1

2

∑
n∈Zd

M

(λ2
n + 1

2 |un|2)|un|2 +
2r∑
j=3

P (2j)(u).

For j ∈ {3, . . . , 2r}, the real homogeneous polynomial P (2j) ∈ H2j(Zd
M ) satisfies

(6.2) ∥P (2j)∥∞ ⩽ ε−4c∗νr.

Moreover, it is εc∗ν-resonant in the sense that

P (2j)(u) =
∑

n⃗∈N2j

P
(2j)
n⃗ un⃗, P

(2j)
n⃗ ̸= 0 =⇒

∣∣∣∣ 2j∑
i=1

(−1)iλ2
ni

∣∣∣∣⩽ εc∗ν .

We re-center Hlo around parameters ξ, and we introduce a decomposition into qua-
dratic terms, quartic integrable terms and terms of order greater than or equal to 6.

Lemma 6.1. — Let Hlo be as in (6.1). There exist two polynomials Q ∈ X⩽4r(ε),
Z4 ∈ X4,Int(ε), and some modulated frequencies, such that the following decomposition
holds for all ξ ∈ Us(ε):

(6.3) Hlo(u) =
1

2

∑
n∈Zd

M

ωn(ξ)(|un|2 − ξn) + Z4(ξ;u) +Q(ξ;u),

where
Πdeg=2Q = Πdeg=4Q = 0.

We have the bounds

∥Q∥Zsup + ∥Q∥Zlip + ∥Z4∥Zsup + ∥Z4∥Zlip ≲ ε−4c∗νr ⩽ ε−1/104 .

(15)Since we are in the small data regime the sign of f ′(0) has indeed no role to play.
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The modulated frequencies are

ωn(ξ) = λ2
n + ξn + hn(ξ),

where the last term hn(ξ) is a polynomial function of (ξℓ)ℓ∈Zd
M

. For all ξ ∈ Us(ε) and
|k|, |n| ⩽ M ,

|∂ξk(ωn(ξ)− ξn)| ≲ ε2−1/104 ⩽ ε.

Proof. — We set

Z4[ξ] := Πdeg=4Hlo[ξ], Q[ξ] := Hlo[ξ]− Z4[ξ]− Z2[ξ],

where
Z2[ξ](u, y) =

1

2

∑
n∈Zd

M

ωn(ξ)yn

and we define

Q(ξ;u) := Q[ξ](u, I(u)− ξ), Z4(ξ;u) := Z4[ξ](u, I(u)− ξ).

Then, the decomposition (6.3) follows from the identity

Hlo(u) = Hlo[ξ](u, I(u)− ξ).

Since P (2j) is ε−c∗ν-resonant, we have from Step 1 in paragraph 2.6 that the quartic
terms are integrable, which proves that Z4 ∈ X4,Int(ε).

The bounds on the polynomial norms and on the modulated frequencies follow from
the estimates (6.2) on the coefficients of P (2j) (before the re-centering around ξ), and
from the fact that ξ is a small parameter. □

6.2. Statement. — In the previous section, we described the structure of the initial
Hamiltonian Hlo ∈ X⩽2r(ε), written in (6.3). We are now ready to formulate the
main normal form theorem, which is based on an induction on frequency scales. The
current iteration step is α ∈ {0, . . . , β}. Before giving the results we recall that the
formalism was described in Section 3 and in particular in notation 3.10. We also recall
that the non-resonant set of parameters Ξ(ω) was defined in Definition 5.1.

For α ∈ {0, . . . , β} and c > 0 a universal constant to be determined later, we in-
troduce

εα := 10ε− cαr ε3/2,(6.4)

Given the parameter γ(α) = 4αγ, the modulated frequencies ω(α)(ξ) defined itera-
tively in Theorem 6.2, and the non-resonant set defined in (5.2), we fix

Ξα := Ξε,γ(α)(ω
(α),Λα+1).(6.5)

We are now ready to state the main normal form theorem.

Theorem 6.2 (Normal form at scale α). — For all α ∈ {1, . . . , β} and ξ ∈ Us(ε), there
exists a symplectic transformation τα,ξ : hs(Zd

M ) → hs(Zd
M ) such that

Hlo ◦ τα,ξ(u) = Z
(α)
2 (ξ;u) + Z

(α)
4 (ξ;u) +Q(α)(ξ;u) +R(α)(ξ;u),

where the different terms are organized as follows:
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(1) Z
(α)
2 collects the quadratic terms: for all ξ ∈ Us(ε)

Z
(α)
2 (ξ;u) =

1

2

∑
n∈Zd

M

ω(α)
n (ξ)(|un|2 − ξn),

where ω
(α)
n ∈ C1(Us(ε),R) for all |n| ⩽ M , with, for all |k| ⩽ M and ξ ∈ Us(ε),

|∂ξk(ω(α)
n (ξ)− ξn)| ⩽ (α+ 1)ε.(6.6)

In addition, the modulated frequencies are stable in the sense that (when α ⩾ 1)

|ω(α)
n (ξ)− ω(α−1)

n (ξ)| ⩽ N−4s
α−1ε

3.(6.7)

(2) Z
(α)
4 ∈ X4,Int(ε) collects quartic terms, and

(6.8) max(∥Z(α)
4 ∥Zsup , ∥Z(α)

4 ∥Zlip) ≲α ε−1/104 .

(3) Q(α) ∈ X⩽2r(ε) operates at scale α:

(6.9) ∥Q(α)∥Y sup
α

≲α ε−1/104 , ∥Q(α)∥Y lip
α

≲α ε−1/15.

It is at least of order 6, and (cr)cαrεc∗ν-resonant for some universal constant c > 0:

(6.10) (Q(α)[ξ])n ̸= 0 =⇒ deg(n) ⩾ 6,
∣∣∣ ∑
n∈Zd

M

(kn − ℓn)λ
2
n

∣∣∣ ⩽ (cr)cαrεc∗ν .

(4) R(α) is a smooth map on Us(ε) × hs(Zd
M ), and for all ξ ∈ Ξα−1 and u ∈

Vα,s(εα, ξ),

(6.11) ∥∇uR
(α)(ξ;u)∥hs ≲α,r ε2r+1∥u∥hs .

(5) The symplectic transformation satisfies, for all ξ ∈ Us(ε) and u ∈ Vα,s(εα, ξ),

∥τα,ξ(u)− u∥hs ≲α,r ε3/4∥u∥hs ,(6.12)

∥dτα,ξ(u)− Id ∥hs→hs ≲α,r ε3/4.(6.13)

Moreover, for all ϕ ∈ ΠMBs(εα) and u ∈ Vα,s(εα, ξ(ϕ)),

∥dϕτα,ξ(ϕ)(u)∥hs→hs ≲α,r ε1−2/5.(6.14)

Here are some comments on the above theorem.

Modulated frequencies. — In the iterative procedure of increasing the scales α, the
successive polynomials we generate have new integrable terms that modulate the fre-
quencies when we re-center the actions around ξ. The condition (6.6) guarantees that
the modulated frequencies satisfy the Lipschitz assumption (5.3) from Proposition 5.4
(which is essential to prove the small-divisor bounds for parameters in a set with an
asymptotically full measure).
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Terms of type Q. — These terms (once re-centered) are of order greater than 6. They
are either integrable, or associated to multi-indices n ∈ Λα (the unpaired indices are
larger than Nα) (even if this property is not explicitly stated in Theorem 6.2). These
polynomials operate at scale α (in the sense that their Y sup

α -norm is controlled by a
small negative power of ε). If Nα is very large, we see from the vector field estimate
of Proposition 4.6 that they generate stable dynamics.

Non-resonance condition and terms of order four. — The condition (6.10) ensures that
every term of order less than or equal to 4 are integrable. Indeed, we proved in
Section 2.6 Step 1 that (cr)cαrεc∗ν-resonant terms of order 4 are integrable.

Modulation parameters. — The non-resonance condition for the modulation parame-
ters ξ ∈ Ξα−1 ensures that R(α) is a remainder order r (this is encoded by (6.11)).
Recall that this condition is dictated by the modulated frequencies ω(α−1) at scale
α−1, and allows us to use a Birkhoff normal form to remove ΠΛα

Q(α−1) (up to a term
of order r), which do not commute with the actions with a frequency lower than Nα

(and which a priori do not operate at scale α). We will prove in Lemma 6.5 that the
stability condition (6.7) and the definition (6.5) of Ξα imply that

Ξα ⊂ Ξα−1.

This ensures that non-resonant parameters ξ at scale α (in the sense of (6.5)) are also
non-resonant on the previous scale α− 1.

The symplectic transformations. — At scale α, the symplectic transformations (which
are well-defined on the finite dimensional space ΠMhs) depend on the modulation
parameter ξ ∈ Us(ε). In addition, τα,ξ is close to the identity on the annulus
Vα,s(εα, ξ).

Remark 6.3. — We observe from (6.12) that

τα,ξ(Vα,s(εα, ξ)) ⊂ V0,s(10ε, ξ),

and from (6.13) that for all u ∈ Vα,s(εα, ξ),

∥dτα,ξ(u)∥hs→hs + ∥(dτα,ξ(u))−1∥hs→hs ≲ 1.

In particular, if u := τ−1
α,ξ(v) ∈ V0,s(10ε, ξ), then, for fixed ξ,

(6.15) ∥dτ−1
α,ξ(u)∥hs→hs = ∥(dτα,ξ(v))−1∥hs→hs ≲ 1.

The rest of this section is devoted to the proof of the normal form Theorem 6.2.
It consists in an induction on the frequency scales, and we first give an outline of the
proof in the paragraph below.
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6.3. Proof: Induction on the frequency scales. — We fix a scale α ∈ {1, . . . , β−1},
and we assume that Theorem 6.2 is proved up to scale α. In this paragraph, we briefly
introduce the strategy we use to get from the scale α to the scale α + 1. For this
purpose, we will remove non-integrable terms from Q(α) which are associated to multi-
indices in Λα+1 (defined in (4.12))

n ∈ Λα+1,

up to some new terms that are remainders if ξ ∈ Ξα is a non-resonant parameter.
Using Lemma 4.8 and Remark 4.9, this will imply that the new Hamiltonian Q(α+1)

operates at scale α+ 1.
The algorithm to get from step α to step α + 1 requires at most κ ⩽ 100r steps,

which are detailed in Sections 6.6 and 6.7. At each step, we introduce a new Lie trans-
form, whose properties are presented in Section 6.4. To control the terms generated
by the Taylor expansion of the Hamiltonian in the new coordinates, we will use the
main multilinear estimates for the Poisson bracket with respect to the Y sup

α -norm,
already proved in Section 4.4.

If we reach the scale α = β, where β is sufficiently large, then the vector field
generated by Q(β) is smoothing when it is restricted to the open set Vα,s(10ε, ξ), and
the saving of N−4s

β in the vector field estimate is sufficient to control the actions over
a very long time T ∼ N2s

β = ε−r.

6.4. The Lie transforms. — We introduce and study the Lie transforms used to
remove the undesirable terms from the Hamiltonian (namely the ones with a frequency
smaller than Nα+1 that is not paired).

6.4.1. Truncation argument. — Let α ∈ {0, . . . , β − 1} and Ξα be the admissible sets
of parameters defined in (6.5), just before the statement of Theorem 6.2. We first
introduce a cutoff function, which essentially ensures that the Lie transform is defined
for all ξ, but is only effective for non-resonant parameters ξ ∈ Ξα.

Definition 6.4 (Truncation). — Fix φ ∈ C∞
c (R) valued in [0, 1] such that

suppφ ⊂ [−1, 1], φ ≡ 1 on [− 1
2 ,

1
2 ], φ < 1 on R∖ [− 1

2 ,
1
2 ].

Then, given ω(α) and γ(α) = 4αγ (constructed at scale α in Theorem 6.2 by the
induction assumption) we define the cutoff-function

h(α) : ξ ∈ Us(ε) 7−→
∏

n∈Λα+1

deg(n)⩽2r

(
1− φ

(
γ(α)−1n2s

− ε−2Ωn(ω
(α)(ξ))

))
,

where Λα+1 was defined in (4.12).

We now prove important properties of the cutoff function h(α).

Lemma 6.5. — Let α ∈ {1, . . . , β}, and suppose that Theorem 6.2 is proved up to
scale α. Then,

ξ ∈ Ξα =⇒ h(α)(ξ) = 1.(6.16)
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Moreover, for all ξ ∈ Us(ε)

ξ ∈ supp h(α) =⇒ ∀n ∈ Λα+1, |Ωn(ω
(α)(ξ))| > 1

2
γ(α)n−2s

− ε2,(6.17)

and

ξ ∈ supp h(α) =⇒ ξ ∈ Ξα−1.(6.18)

Remark 6.6. — In particular, we can deduce from (6.16) and (6.17) that Ξα ⊂ Ξα−1.

Proof. — The proof of (6.16) follows from the construction: suppose that ξ ∈ Ξα,
in which case for all n ∈ Λα+1

|Ωn(ω
(α)(ξ))| > γ(α)n−2s

− ε2.

Hence, we have that for all n ∈ Λα+1,

φ
(
γ(α)−1n2s

− ε−2Ωn(ω
(α)(ξ))

)
= 0,

and we deduce that h(α)(ξ) = 1.
We now show (6.17), and suppose that ξ is in the support of h(α). Then, we have

from the construction of φ and h that, for all n ∈ Λα+1,

|Ωn(ω
(α)(ξ))| > 1

2
γ(α)n−2s

− ε2.

This proves (6.17). Lastly, to show (6.18), we observe from the stability property for
the modulated frequencies claimed in (6.7) that

|Ωn(ω
(α−1)(ξ))| ⩾ |Ωn(ω

(α)(ξ))| − |Ωn(ω
(α−1)(ξ))− Ωn(ω

(α)(ξ))|

⩾
1

2
γ(α)n−2s

− ε2 − 2rN−4s
α−1ε

3.

When n ∈ Λα+1 then n− ⩽ Nα+1 and we obtain that for all n ∈ Λα+1,

|Ωn(ω
(α−1)(ξ))| > 1

4
γ(α)n−2s

− ε2 = γ(α− 1)n−2s
− ε2,

under the condition
(Nα+1/Nα−1)

2sN−2s
α−1ε <

1

4
γ(α),

which, under our choice of parameters in Section 4.1, is equivalent to ε1−1/100N−2s
α <

4α−1ε1/30. This shows that ξ ∈ Ξα−1, which is precisely the claim (6.18). □

Lemma 6.7 (Small divisor estimate). — Let α ∈ {0, . . . , β} such that Theorem 6.2
is proved up to scale α. Suppose that (w̃n(ξ))n∈Zd

M
satisfies, for all ξ ∈ Us(ε), and

k, n ∈ Zd
M ,

|ω(α)
n (ξ)− ω̃n(ξ)| ≲r ε3N−4s

α ,(6.19)

|∂ξk(ω(α)
n (ξ)− ω̃n(ξ))| ≲r εN−2s

α .(6.20)

Then for all ξ ∈ Us(ε) and n ∈ Λα+1,
h(α)(ξ)

|Ωn(ω̃(ξ))|
⩽ 4γ(α)−1ε−2n2s

− ,(6.21)
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and, for all k ∈ Zd
M ,∣∣∣∂ξk( h(α)(ξ)

Ωn(ω̃(ξ))

)∣∣∣ ⩽ 2ε−1/104(γ(α)−1ε−2n2s
− )2,(6.22)

Proof. — First, we proceed as in the proof of (6.18) to deduce from (6.17), together
with the stability assumption (6.19), that

(6.23) ξ ∈ supp h(α) =⇒ ∀n ∈ Λα+1, |Ωn(ω̃(ξ))| ⩾
1

4
γ(α)n−2s

− ε2.

from which we deduce (6.21). To show (6.22), we take n ∈ Zd
M and we first observe

that, thanks to (6.6), for all n ∈ Λα+1 and ξ ∈ Us(ε),

|∂ξnΩn(ω
(α)(ξ))|+ |∂ξnΩn(ω̃(ξ))| ≲ r.

We deduce that for all ξ ∈ Us(ε),

|∂ξnh(α)(ξ)| ⩽
∑

n∈Λα+1

γ(α)−1n2s
− ε−2

∣∣∣∂ξnΩn(ω
(α)(ξ))φ′(γ(α)−1n2s

− ε−2Ωn(ω
(α)(ξ))

)∣∣∣
⩽ ε−1/104γ(α)−1ε−2N2s

α+1.

Hence, for n ∈ Zd
M , n ∈ Λα+1 and ξ ∈ Us(ε),∣∣∣∂ξn( h(α)(ξ)

Ωn(ω̃(ξ))

)∣∣∣ ⩽ ∣∣∣∂ξnh(α)(ξ)
Ωn(ω̃(ξ))

∣∣∣+ h(α)(ξ)
|∂ξnΩn(ω̃(ξ))|
Ωn(ω̃(ξ))2

⩽ 2ε−1/104(γ(α)−1ε−2N2s
α+1)

2,

which concludes the proof of Lemma 6.7. □

6.4.2. Definition of the transformation. — Let us introduce linear operator used to
solve the cohomological equations.

Definition 6.8. — Given some modulated frequencies (ω̃n(ξ))n∈Zd
M

satisfying (6.19)
and (6.20). We define the linear operator

(6.24) Lα,ω̃ =


X⩽2r(ε) −→ X⩽2r(ε)

H 7−→ i

2
h(α)(ξ)

∑
n∈Λα+1

(H[ξ])n
Ωn(ω̃(ξ))

zn(u, I(u)− ξ)

When the context is clear we may abuse notations and simply write

L := Lα,ω̃.

The purpose of L is to solve a cohomological equation.

Lemma 6.9. — For all Q ∈ X⩽2r(ε), and frequencies (ω̃n)n∈Zd
M

, if

Z2(ω̃, ξ;u) :=
∑

|n|⩽M

ω̃n(ξ)(|un|2 − ξn),
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then for all ξ ∈ Us(ε) the polynomial L(Q)(ξ) ∈ H⩽2r(Zd
M ) solves the cohomological

equation

(6.25) Q(ξ;u) + {Z2(ω̃),L(Q)}(ξ;u) = (Id−h(α)(ξ)ΠΛα+1
)Q(ξ;u).

In particular, when ξ ∈ Ξα then

Q(ξ;u) + {Z2(ω̃),L(Q)}(ξ;u) = (Id−ΠΛα+1
)Q(ξ;u).

Proof. — The equality (6.25) follows directly from the Definition 6.8 of Lα,ω̃:

{Z2(ω̃),L(Q)(u)}(ξ;u) = −h(α)(ξ)
∑

n∈Λα+1

(Q[ξ])nzn(u, I(u)− ξ)

= −h(α)(ξ)ΠΛα+1
Q(ξ;u).

(6.26)

The second equality is a consequence of the construction of the truncation h(α), which
satisfies h(α)(ξ) = 1 for all ξ ∈ Ξα. □

Lemma 6.10. — For all Q ∈ X⩽2r(ε), we have

∥Lα,ω̃(Q)∥Y sup
α

≲γ(α)−1ε−2N2s
α+1∥ΠΛα+1Q∥Y sup

α
,

∥Lα,ω̃(Q)∥Y lip
α

≲γ(α)−1ε−2N2s
α+1

(
ε−1/30−3/100−1/104∥ΠΛα+1

Q∥Y sup
α

+ ∥ΠΛα+1
Q∥Y lip

α

)
.

Proof. — The proof of the Y sup
α -bound is a direct consequence of the small divisor

estimates (6.21) from Lemma 6.7. For the second bound, we also use the Leibniz rule:
recall that for n ∈ N and ξ ∈ Us(ε),

(Lα,ω̃(Q)[ξ])n = 1Λα+1
(n)

h(α)(ξ)

Ωn(ω̃(ξ))
(Q[ξ])n,

and given k ∈ Zd
M we have from the Leibniz rule that for n ∈ Λα+1 and ξ ∈ Us(ε),

∂ξk(Lα,ω̃(Q)[ξ])n = ∂ξk

( h(α)(ξ)

Ωn(ω̃(ξ))

)
(Q[ξ])n +

h(α)(ξ)

Ωn(ω̃(ξ))
∂ξk(Q[ξ])n.

According to the small divisor bounds (6.21) and (6.22), we obtain

|∂ξk(Lα,ω̃(Q)[ξ])n|

⩽ 2ε−1/104(γ(α)−1ε−2n2s
− )2|(Q[ξ])n|+ 4γ(α)−1ε−2n2s

− |∂ξn(Q[ξ])n|

⩽ 2ε−1/104(γ(α)−1ε−2n2s
− )2 w0

n(α)∥Q∥Y sup
α

+ 4γ(α)−1ε−2n2s
− w1

n(α)∥Q∥Y lip
α

≲ w1
n(α)

(
ε−1/104(γ(α)−1ε−2n2s

− )2N−2s
α η2∥Q∥Y sup

α
+ γ(α)−1ε−2n2s

− ∥Q∥Y lip
α

)
.

Therefore, we have from the the assumption n ∈ Λα+1 and the relation (4.6) between
the parameters that

(w1
n(α))

−1|∂ξk(Lα,ω̃(Q)[ξ]
)
n
|

≲ γ(α)−1ε−2N2s
α+1

(
ε−1/30−3/100−1/104∥Q∥Y sup

α
+ ∥Q∥Y lip

α
).

This completes the proof of the second estimate, recalling the Definition 4.3 of the
Y lip
α -norm. □
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Corollary 6.11. — For all Q ∈ X⩽2r(ε), H ∈ X⩽r2(ε) and Z4 ∈ X4,Int(ε) we have

∥{H,Lα,ω̃(Q)}∥Y sup
α

⩽ ε3/2N−2s
α ∥H∥Y sup

α
∥ΠΛα+1Q∥Y sup

α
,

∥{Z4,Lα,ω̃(Q)}∥Y sup
α

⩽ ε1/15∥Z4∥Zsup∥ΠΛα+1
Q∥Y sup

α
.

Moreover, if we suppose that

(6.27) ∥ΠΛα+1Q∥Y sup
α

+ ∥H∥Y sup
α

+ ∥Z4∥Zsup + ∥Z4∥Zlip ⩽ ε−1/103

and

(6.28) ∥ΠΛα+1Q∥Y lip
α

+ ∥H∥Y lip
α

≲ ε−1/15,

then
∥{H,Lα,ω̃(Q)}∥Y lip

α
⩽ εN−2s

α , ∥{Z4,Lα,ω̃(Q)}∥Y lip
α

⩽ ε1/50.

Proof. — It suffices to combine the (bilinear) estimate on the Poisson bracket between
two polynomials given by Proposition 4.15 with the operator bound from Lemma 6.10,
recalling the relation 4.6 between the parameters:

∥{H,Lα,ω̃(Q)}∥Y sup
α

⩽η4−1/4N−4s
α ∥H∥Y sup

α
∥Lα,ω̃(Q)∥Y sup

α

≲γ(α)−1(ηε−1)2(Nα+1/Nα)
2sη2−1/4N−2s

α ∥H∥Y sup
α

∥ΠΛα+1
Q∥Y sup

α

⩽ε3/2N−2s
α ∥H∥Y sup

α
∥ΠΛα+1

Q∥Y sup
α

.

As for the Lipschitz estimates, we have from the assumptions and from Lemma 6.10
that:

∥Lα,ω̃(Q)∥Y sup
α

≲ γ(α)−1ε−2N2s
α+1ε

−1/103 , ∥Lα,ω̃(Q)∥Y lip
α

≲ γ(α)−1ε−2N2s
α+1ε

−1/15.

Then, Proposition 4.16 gives

∥{H,Lα,ω̃}∥Y lip
α

⩽ η4−1/4N−4s
α γ(α)−1ε−2N2s

α+1(ε
−1/103∥H∥Y sup

α
+ ε−1/15∥H∥Y sup

α
+ ε−1/103∥H∥Y lip

α
)

⩽ εN−2s
α .

Similarly,

∥{Z4,Lα,ω̃}∥Y lip
α

≲ η2+1/5−2/104N−2s
α γ(α)−1ε−2N2s

α+1(ε
−1/15∥Z∥Zsup

4
+ η2N−2s

α ε−1/103∥Z4∥Zlip)

⩽ ε1/50.

This completes the proof of Corollary 6.11. □

Notation 6.12. — Given Q ∈ X⩽r2 , and t ∈ R, we denote by Φt
L(Q) the Hamiltonian

flow on hs(Zd
M ) generated by L(Q)(ξ). For ξ ∈ Us(ε) and u ∈ hs(Zd

M ) we denote by
v(ξ; t) (or implicitly v(t)) the solution of the finite-dimensional ODE

(6.29)
{
i∂tv = ∇(L(Q))(ξ)(v),

v(0) = u.
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Remark 6.13. — Using the preservation of the ℓ2-mass, we note that the ODE (6.29)
is globally well-posed, and Φt

L(Q) is well-defined on hs(Zd
M ) for all t ∈ R. Moreover,

Φ−t
L(Q) = (Φt

L(Q))
−1.

6.5. Estimates on the Lie transforms. — We fix some frequencies (ω̃n)n∈Zd
M

satis-
fying (6.19) and (6.20), and we consider the linear operator L = Lα,ω̃ as in Defini-
tion 6.8. We prove important properties on the flow (Φt

L(Q))t∈[−1,1], when Q ∈ X⩽2r(ε)

operates at scale α (in the sense that its Y sup
α -norm is no too large).

Lemma 6.14 (Stability). — Let Q ∈ X⩽2r(ε) be such that

(6.30) ∥Q∥Y sup
α

⩽ ε−1/103 .

For all ξ ∈ Us(ε), the transformation Φt
L(Q)(ξ) is close to the identity on the annulus

Vα,s(10ε, ξ): for all t ∈ [−1, 1] and u ∈ Vα,s(10ε, ξ),

(6.31) ∥Φt
L(Q)(u)− u∥hs ⩽ ε3/2∥u∥hsN−2s

α .

Corollary 6.15. — We deduce from (6.31) the bound

(6.32)
∑

n∈Zd
M

⟨n⟩2s||(Φt
L(Q)(u))n|

2 − |un|2| ≲ ε3/2∥u∥2hsN−2s
α ,

which gives the stability of the annulus Vα,s(10ε, ξ) under the transformations
Φt

L(Q)(ξ).

Proof of Lemma 6.14. — We denote

v(t) = Φt
Lα,ω̃(Q)(u),

solution to the ODE (6.29). We have from the Duhamel’s integral formula that for
all t,

v(t) = u− i

∫ t

0

[∇L(Q)(ξ)](v(t′))dt′.

Moreover, we deduce from the vector field estimate of Proposition 4.6 and from the
operator bound for L obtained in Lemma 6.10 that

∥[∇L(Q)(ξ)](v)∥hs ⩽ N−4s
α ε4−1/4∥L(Q)∥Y sup

α
∥v∥hs

⩽ 4γ(α)−1(Nα+1/Nα)
2sN−2s

α ε2−1/4∥Q∥Y sup
α

∥v∥hs

⩽ 4γ(α)−1(Nα+1/Nα)
2sN−2s

α ε2−1/4−1/103∥v∥hs .

Under the relation (4.6) for the parameters we deduce that

∥[∇L(Q)(ξ)](v)∥hs ⩽ N−2s
α ε3/2∥v∥hs .

Therefore, for all t,

∥v(t)− u∥hs ⩽ N−2s
α ε3/2

∣∣∣∣∫ t

0

∥v(t′)∥hsdt′
∣∣∣∣.

We conclude from a bootstrap argument, using that ∥v(t′)∥hs ≲ ε when (6.31) is
satisfied. □
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In the next lemma we estimate the differential of the vector field. Since the proof
is quite long and does not requires new ideas, we postpone it to Section A.2 of the
appendix.

Lemma 6.16. — For all Q ∈ X⩽2r, ξ ∈ Us(ε) and u ∈ Vα,s(20ε, ξ), we have

∥d∇L(Q)(ξ)(u)∥hs→hs ⩽ ε1−1/8∥Q∥Y sup
α

.

We now state and prove two important corollaries.

Corollary 6.17. — Let Q ∈ X⩽2r(ε) be such that

∥Q∥Y sup
α

⩽ ε−1/103 .

We have that for all ξ ∈ Us(ε), u ∈ Vα,s(10ε, ξ) and t ∈ [−1, 1],

∥dΦt
L(Q)(ξ)(u)− Id ∥hs→hs ⩽ ε3/4.

Proof. — We use the equation, the previous lemmas 6.14, 6.16, and a bootstrap ar-
gument. Let φ ∈ hs, and u ∈ Vα,s(10ε, ξ). Set

v(t) := Φt
L(Q)(u), φ̃(t) := dΦt

L(Q)(u)φ.

We have from the equation that

i∂tφ̃(t) =
[
d∇L(Q)(ξ)(v(t))

]
(φ̃(t)).

Since Φ0
L(Q) = Id, we have

φ̃(0) = φ.

Hence, the Duhamel’s integral formula gives

∥φ̃(t)− φ∥hs ⩽

∣∣∣∣∫ t

0

∥∥[du∇L(Q)(v(t′))](φ̃(t′))
∥∥
hsdt

′
∣∣∣∣.

We have from Lemma 6.14 (and its consequence (6.32)) that for all t ∈ [−1, 1],

v(t) ∈ Vα,s(11ε, ξ).

According to Lemma 6.16,

∥φ̃(t)− φ∥hs ⩽ ε1−1/8

∣∣∣∣∫ t

0

∥Q∥Y sup
α

∥φ̃(t′)∥hsdt′
∣∣∣∣,

and, under the assumption that ∥Q∥Y sup
α

⩽ ε−1/103 we can conclude from a bootstrap
argument. More precisely, we use that if

sup
|t′|⩽|t|

∥φ̃(t)− φ∥hs ⩽ ε3/4∥φ∥hs ,

then
sup

|t′|⩽|t|
∥φ̃(t′)∥hs ⩽ 2∥φ∥hs .

This concludes the proof of Corollary 6.17. □

The second corollary is more technical, but in the same spirit. It is crucial to
estimate the measure of the non-resonant initial data in the original coordinates (i.e.,
before the successive Lie transformations).
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Corollary 6.18. — Let Q ∈ X⩽2r(ε) be such that for all ξ ∈ Us(ε)

∥Q∥Y sup
α

⩽ ε−1/103 , ∥Q∥Y lip
α

⩽ ε−1/15,

Then for all t ∈ [−1, 1], ϕ ∈ ΠMBs(10ε) and u ∈ Vα,s(10ε, ξ(ϕ)) then

(6.33) ∥dϕΦt
L(Q)(ξ(ϕ))(u)∥hs→hs ≲ ε1−2/5.

Proof. — Let φ ∈ hs(Zd
M ), ϕ ∈ ΠMBs(10ε) and u ∈ Vα,s(10ε, ξ(ϕ)). For |t| ⩽ 1, set

v(t) = Φt
L(Q)(ξ(ϕ))(u), φ̃(t) := [dϕv(t, ϕ)](φ).

In particular, v is solution in C([−1, 1], hs(Zd
M )) to the Cauchy problem{

i∂tv(t) = ∇[L(Q)(ξ(ϕ))](v(t)),

v(0) = u.

We deduce from the stability Lemma 6.14 (and more precisely from (6.32)) that
v(t) ∈ Vα,s(20ε, ξ) for all t. In particular

∥v(t)∥hs ⩽ 2∥u∥hs ⩽ 20ε.

To control φ̃(t) in hs(Zd
M ) we use the equation and a bootstrap: differentiating (6.29)

in ϕ and applying the Leibniz rule and the chain rule gives

(6.34)


i∂tφ̃(t) = ∇H(1)(ξ(ϕ), φ)(v) +∇H(2)(ξ(ϕ), φ)(v)

+
[
d∇

[
L(Q)(ξ(ϕ))

]
(v)

]
(φ̃(t)),

φ̃(0) = 0,

where we collected in H(1) (resp. H(2)) the contributions when dϕ falls on the re-
centered variable zn(u, I(u)− ξ(ϕ)) (resp. on the coefficient of L(Q)(ξ(ϕ))), namely

H(1)(ξ(ϕ), φ; v) = −
∑

n∈Λα+1

∑
|k|⩽M

φkϕk

h(α)(ξ(ϕ))

Ωn(ω̃(ξ(ϕ)))
Q[ξ(ϕ)]nmkzn−em(k)(v, I(v)− ξ),

H(2)(ξ(ϕ), φ; v) =
∑

n∈N⩽2r

[H(2)(ξ, φ)]nzn(v, I(v)− ξ),

with, for fixed n ∈ N⩽2r,

[H(2)(ξ(ϕ), φ)]n

=
∑

|k|⩽M

φkϕk∂ξk

( h(α)(ξ(ϕ))

Ωn(ω̃(ξ(ϕ)))

)
(Q[ξ(ϕ)])n + φkϕk

h(α)(ξ(ϕ))

Ωn(ω̃(ξ(ϕ)))
∂ξk(Q[ξ(ϕ)])n.

First, we easily control the last term on the right-hand side of (6.34) from Lemma 6.16:
for all t,∥∥∥[d∇L(Q)(v(t))

]
(φ̃(t))

∥∥∥
hs

⩽ ε1−1/8∥Q∥Y sup
α

∥φ̃(t)∥hs ⩽ ε1−2/5∥φ̃(t)∥hs .

Then, we deduce from the vector field estimate of Proposition 4.6 that, for i ∈ {1, 2},

∥∇H(i)(ξ(ϕ), φ)(v)∥hs ⩽ ∥H(i)(φ)∥Y sup
α

N−4s
α ε3∥v(t)∥hs

≲ ∥H(i)(φ)∥Y sup
α

N−4s
α ε4.

(6.35)
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Let us first control the second contribution (i = 2), when the derivative falls on the
coefficients. According to the small divisor bounds (6.21) and (6.22), we obtain that
for all n ∈ N,
|[H(2)(ξ(ϕ), φ)]n|

⩽ ∥φ∥hs∥ϕ∥hsγ(α)−1ε−2N2s
α+1

×
(
2ε−1/104γ(α)−1ε−2N2s

α+1|(Q[ξ(ϕ)])n|+ max
|k|⩽M

|∂ξk(Q[ξ])n|
)

≲ w0
n(α)∥φ∥hs∥ϕ∥hsγ(α)−1(ε−2N2s

α+1)
2
(
γ(α)−1ε−1/104∥Q∥Y sup

α
+ ∥Q∥Y lip

α

)
≲α w0

n(α)∥φ∥hsε1−1/30(ε−2N2s
α+1)

2(ε−1/30−1/104−1/103 + ε−1/15).

We deduce from the Definition 4.3 of the norms that
∥H(2)(ϕ)∥Y sup

α
≲α ∥φ∥hsε1−1/30−1/15(ε−2N2s

α+1)
2,

and therefore
∥∇H(2)(ξ(ϕ), φ)(v)∥hs ≲α ∥φ∥hs(Nα+1/Nα)

4sε1−1/30−1/15

≲α ∥φ∥hsε1−1/30−1/15−1/50 ⩽ ε1−2/5∥φ∥hs .

Similarly, we prove that
∥H(1)(ξ(ϕ), φ)∥Y sup

α
⩽ ∥φ∥hs∥ϕ∥hs(γ(α)−1ε−2N2s

α+1)D(α)∥Q∥Y sup
α

≲α ∥φ∥hsε1−1/30−1/5−1/103(ε−2N2s
α+1)

2,

and therefore
∥∇H(1)(ξ(ϕ), φ)(v)∥hs ≲ (Nα+1/Nα)

4sε1−1/30−1/5−1/103∥φ∥hs

≲α ε1−1/30−1/5−1/103−1/50∥φ∥hs ⩽ ε1−2/5∥φ∥hs .

Hence, we obtain from Duhamel’s integral formula that, for all t ∈ [−1, 1],

∥φ̃(t)∥hs ⩽ 2ε1−2/5∥φ∥hs + ε1−2/5

∣∣∣∣∫ t

0

∥φ̃(t′)∥hsdt′
∣∣∣∣,

which in turn gives (6.33) from the Gronwall inequality. □

6.6. The iteration at scale α. — In this paragraph, α ∈ {1, . . . , β − 1} is fixed and
we suppose that Theorem 6.2 is proved up to scale α. We detail the main iteration
to remove the the monomials associated to the multi-indices n ∈ Λα+1, in order to
eventually go to scale α+ 1.

We now suppose that Theorem 6.2 is proved up to the step α ∈ {0, . . . , β − 1}: for
all ξ ∈ Us(ε), there exists τα,ξ such that
(6.36) Hlo ◦ τα,ξ(u) = Z

(α)
2 (ξ;u) + Z

(α)
4 (ξ;u) +Q(α)(ξ;u) +R(α)(ξ;u),

satisfying points (1)–(5) of Theorem 6.2. We define
κ := 40r,

and, for j ∈ {0, . . . , κ},
εj,α := εα − jε3/2 = 10ε− (cαr + j)ε3/2.
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The strategy to pass from the normal form at scale α to the scale α+1 essentially
consists in gaining homogeneity in ε by applying successively the Lie transformation
introduced and analyzed in Section 6.4. After κ iterations (the number κ is comparable
to a multiple of r) all the terms that are not under the normal form at scale α + 1

(namely, which contain unpaired indices smaller than Nα+1) eventually come with
a factor ε2r, provided ξ is a non-resonant parameter, and are therefore acceptable
remainders. The next proposition states this general second induction scheme (on the
homogeneity), performed between two steps of the main induction scheme (on the
frequency scales Nα).

Proposition 6.19 (Iteration at step α). — For all ξ ∈ Us(ε) and j ∈ {0, . . . , κ}, there
exists a symplectic transformation τj,α,ξ on hs(Zd

M ) such that
Hlo ◦ τj,α,ξ(u) = Z

(j,α)
2 (ξ;u) + Z

(j,α)
4 (ξ;u) +Q(j,α)(ξ;u) +R(j,α)(ξ;u),

where for all j ∈ {1, . . . , κ},
(6.37) ∥1Ξα(ξ)ΠΛα+1Q

(j,α)∥Y sup
α

⩽ εj/30−1/104 .

Moreover, the new Hamiltonian and τj,α,ξ satisfy Theorem 6.2 at scale α:
(1) The quadratic term is

Z
(j,α)
2 (ξ;u) =

1

2

∑
n∈Zd

M

ω(j,α)
n (ξ)(|un|2 − ξn),

where for all ξ ∈ Us(ε) and (k, n) ∈ (Zd
M )2,

|ω(j,α)
n (ξ)− ω(j−1,α)

n (ξ)| ⩽ ε3+1/10N−4s
α ,(6.38)

|∂ξk(ω(j,α)
n (ξ)− ω(j−1,α)

n (ξ))| ⩽ ε1+1/10N−2s
α .(6.39)

(2) The quartic integrable terms collected in Z
(j,α)
4 ∈ X4,Int(ε) satisfy

(6.40) max(∥Z(j,α)
4 ∥Zsup , ∥Z(j,α)

4 ∥Zlip) ≲α ε−1/104

(3) Q(j,α) ∈ X⩽2r(ε) operates at scale α:
(6.41) ∥Q(j,α)∥Y sup

α
≲α ε−1/104 , ∥Q(j,α)∥Y lip

α
≲α ε−1/15,

and for all ξ ∈ Us(ε),
(6.42) (Q(j,α)[ξ])n ̸= 0 =⇒ deg(n) ⩾ 6,

∣∣∣ ∑
n∈Zd

M

(kn − ℓn)λ
2
n

∣∣∣ ⩽ (cr)cαr+jε−c∗ν .

(4) If ξ ∈ Ξα−1 then for all u ∈ Vα,s(εj,α, ξ),
(6.43) ∥∇R(j,α)(ξ;u)∥hs ≲r,α ε2r+1∥u∥hs .

(5) The symplectic transformation satisfies, for all ξ ∈ Us(ε) and u ∈ Vα,s(εj,α, ξ),
∥τj,α,ξ(u)− u∥hs ≲r,α ε3/4∥u∥hs ,(6.44)

∥duτj,α,ξ(u)− Id ∥hs→hs ≲r,α ε3/4,(6.45)

Moreover, for all ϕ ∈ ΠMBs(εj,α) and u ∈ V(εj,α, ξ),

∥dϕτj,α,ξ(ϕ)(u)∥hs→hs ≲r,α ε1−2/5.(6.46)
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Let us make a few comments.
– The main idea is to remove from Q(α) the monomials associated to n ∈ Λα+1,

when ξ is in the non-resonant set Ξα. Specifically, after κ = 40r steps we are able to
replace ΠΛα+1Q

(α) by a term which is a remainder when ξ ∈ Ξα, as claimed in (6.37).
Recalling Definition 4.3 of the norms, the condition (6.37) can be formulated this way:
for all n ∈ N,

(6.47) n ∈ Λα+1 and ξ ∈ Ξα =⇒ |(Q(j,α)[ξ])n| ⩽ εj/30−1/104 w0
n(α).

– According to Lemma 4.6, after at most κ steps, the bound (6.37) implies that
ΠΛα+1

Q(j,α) is a remainder in the sense of (6.11). On the other hand, the polynomial
(Id−ΠΛα+1

)Q(j,α) operates at scale α+ 1 according to Lemma 4.8 and Remark 4.9.
– At each iteration j we generate additional terms of type Z2, Z4 and Q, and we

need to propagate the estimates for their norms.

Proof. — We proceed by induction on j, and start with the Hamiltonian from Theo-
rem 6.2 at scale α, as written in (6.36).

Initialization. — The inputs are τ0,α,ξ := τα,ξ and

ω(0,α) := ω(α), Z
(0,α)
4 := Z

(α)
4 , Q(0,α) := Q(α), R(0,α) = R(α).

At step j = 0 we ask nothing more than the estimates claimed in Theorem 6.2 at
scale α.

Iteration j → j + 1. — To pass from step j to step j + 1 we need to remove from
Q(j,α) the monomials associated to multi-indices in Λα+1, up to some new terms
ε1/30-smaller. To achieve this we consider the Lie transformation introduced and stud-
ied in Section 6.4.

The cohomological equation. — We note from the recurrence assumptions (6.38)
and (6.39) that the modulated frequencies (ω(j,α)

n ) satisfy the stability estimate (6.19)
and (6.20), and we let, for ξ ∈ Us(ε),

ω̃n(ξ) := ω(j,α)(ξ).

We introduce the corresponding auxiliary Hamiltonian

(6.48) χ(ξ) := Lα,ω̃(Q
(j,α))(ξ) =: L(Q(j,α))(ξ).

Lemma 6.7 provides the small divisor estimates (6.21) and (6.22) for the multiplication
operator L, defined in Definition 6.8. In addition, Lemma 6.9 gives that for all ξ ∈
Us(ε),

(6.49) Q(j,α)(ξ;u) + {Z(j,α)
2 (ω̃), χ}(ξ;u) = (Id−h(α)(ξ)ΠΛα+1

)Q(j,α)(ξ;u).

Hence, when ξ is non-resonant (i.e., ξ ∈ Ξα, and therefore h(α)(ξ) = 1) the Hamil-
tonian χ is tuned to solve the cohomological equation, see (6.25). In this way, the
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monomials associated to multi-indices in Λα+1 can be filtered and removed. Once
again we stress out that

L(Q(j,α)) = L(ΠΛα+1
Q(j,α)).

The new variables. — The Lie transformation was defined in Definition 6.8: for t ∈
[−1, 1], let

Φt
j,α,ξ := Φt

χ,

where the auxiliary Hamiltonian χ = χ(j, α, ξ) was defined above (6.48). According
to the recurrence assumption (more precisely the bound (6.41)), the Y sup

α -norm of
Q(j,α) is bounded by ε−1/103 . Applying Lemma 6.14, we obtain that for all ξ ∈ Us(ε),
u ∈ Vα,s(10ε, ξ) and t ∈ [−1, 1]

(6.50) ∥Φt
j,α,ξ(u)− u∥hs ⩽ ε3/2∥u(t)∥hsN−2s

α .

In particular, recalling that εj,α := 10ε− (cαr+ j)ε3/2, we have that for all ξ ∈ Us(ε),

(6.51) Φt
j,α,ξ

(
Vα,s(εj+1,α, ξ)

)
⊂ Vα,s(εj,α, ξ).

Corollary 6.17 gives that for all ξ ∈ Us(ε) and u ∈ Vα,s(10ε, ξ),

∥duΦt
j,α,ξ(u)− Id ∥hs→hs ⩽ ε3/4,(6.52)

and Corollary 6.18 gives that for all ϕ ∈ ΠMBs(10ε) and u ∈ Vα,s(10ε, ξ(ϕ)),

∥dϕΦt
j,α,ξ(ϕ)(u)∥hs→hs ≲ ε1−2/5.(6.53)

We now define the new transformation, at scale j + 1, by

τj+1,α,ξ := τj,α,ξ ◦ Φ1
j,α,ξ,

and we will deduce from the above bounds and from the recurrence assumption the
bounds (6.44), (6.45) and (6.46) at step j+1. According to (6.51) and the recurrence
assumption, we have that

(6.54) τj+1,α,ξ(Vα,s(εj+1,α, ξ)) ⊂ τj,α,ξ(Vα,s(εj,α, ξ)) ⊂ Vα,s(10ε, ξ).

The bound (6.44) at scale j + 1 follows from the triangle inequality:

∥τj+1,α,ξ(u)− u∥hs ⩽ ∥τj,α,ξ(Φ1
j,α,ξ(u))− Φ1

j,α,ξ(u)∥hs + ∥Φ1
j,α,ξ(u)− u∥hs .

When u ∈ Vα,s(εα,j+1, ξ), the property (6.51) allows to apply the estimate (6.44) at
step j and we obtain from the bound (6.50) that

∥τj+1,α,ξ(u)− u∥hs ≲r,α,j ε
3/4∥Φ1

j,α,ξ(u)∥hs + ε3/2∥u∥hsN−2s
α ≲r,α,j ε

3/4∥u∥hs .

This shows (6.44). The bound (6.45) is proved similarly, but using also the chain rule:

d τj+1,α,ξ(u)− Id = (d τj,α,ξ(Φ
1
j,α,ξ(u))− Id) ◦ dΦ1

j,α,ξ(u) + dΦ1
j,α,ξ(u)− Id .
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Thanks to (6.54), we can apply the recurrence bound (6.45) at step j together with
(6.52) to obtain

∥ dτj+1,α,ξ(u)− Id ∥hs→hs

⩽ ∥ d τj,α,ξ(Φ1
j,α,ξ(u))− Id ∥hs→hs∥dΦ1

j,α,ξ(u)∥hs→hs + ∥dΦ1
j,α,ξ(u)− Id ∥hs→hs

≲r,α,j ε
3/4∥duΦ1

j,α,ξ(u)∥hs→hs + ε3/4 ≲r,α,j ε
3/4,

which proves (6.45) at step j + 1. The proof of (6.46) goes along the same lines and
we do not give the details.

The new expansion. — We do the Taylor expansion at t = 0 of the Hamiltonian in
the new coordinates

H
(j+1,α)
lo (ξ;u) := Hlo(ξ; τj,α,ξ ◦ Φ1

j,α,ξ(u)).

Recall the standard notation

ad0χ(H) = H, ad1χ(H) = {H,χ}, adℓχ(H) = {adℓ−1
χ (H), χ}, ℓ ⩾ 1.

First, we expand

Z
(j,α)
2 (ξ; Φ1

j,α,ξ(u)) = Z
(j,α)
2 (ξ;u) + {Z(j,α)

2 , χ}(ξ;u) +
κ−1∑
ℓ=2

1

ℓ!
adℓχ(Z

(j,α)
2 )(ξ;u)(6.55)

+

∫ 1

0

(1− t)κ−1

(κ− 1)!
adκχ(Z

(j,α)
2 )(ξ; Φt

j,α,ξ(u))dt,

Z
(j,α)
4 (ξ; Φ1

j,α,ξ(u)) = Z
(j,α)
4 (ξ;u) +

κ−1∑
ℓ=1

1

ℓ!
adℓχ(Z

(j,α)
4 )(ξ;u)(6.56)

+

∫ 1

0

(1− t)κ−1

(κ− 1)!
adκχ(Z

(j,α)
4 )(ξ; Φt

j,α,ξ(u))dt,

Q(j,α)(ξ; Φ1
j,α,ξ(u)) = Q(j,α) +

κ−1∑
ℓ=1

1

ℓ!
adℓχ(Q

(j,α))(ξ;u)(6.57)

+

∫ 1

0

(1− t)κ−1

(κ− 1)!
adκχ(Q

(j,α))(ξ; Φt
j,α,ξ(u))dt.

We collect the integral remainders in

I(j,α)(ξ;u) :=

∫ 1

0

(1− t)κ

κ!
adκχ

(
Z

(j,α)
2 + Z

(j,α)
4 +Q(j,α)

)
(ξ; Φt

j,α,ξ(u))dt,

and the higher order polynomial terms in

P (j,α)(ξ;u) := {Z(j,α)
4 +Q(j,α), χ}(ξ;u) +

κ−1∑
ℓ=2

1

ℓ!
adℓχ

(
Z

(j,α)
2 + Z

(j,α)
4 +Q(j,α)

)
(ξ;u).

Note that P (j,α) ∈ X(ε) and, for all ξ ∈ Us(ε), χ(ξ) has degree less than 2r, we have
for all ξ ∈ Us(ε),

(6.58) deg(P (j,α)(ξ)) ⩽ 2r + κ(2r − 2) ⩽ 2r2.
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We obtain the expansion

(6.59) H
(j+1,α)
lo (ξ;u) = Z

(j,α)
2 (ξ;u) + Z

(j,α)
4 (ξ;u) + (Id− h(α)(ξ)ΠΛα+1

)Q(j,α)(ξ;u)

+ P (j,α)(ξ;u) + I(j,α)(ξ;u) +R(j,α)(ξ; Φ1
j,α,ξ(u)).

We recall that when ξ ∈ Ξα then h(α)(ξ) = 1, which removes ΠΛα+1
Q(j,α) from

H
(j+1,α)
lo .
Let us now use the multilinear estimates obtained in Proposition 4.15 and the

recurrence assumption to control the norms of the terms P (j,α) and I(j,α) generated
in the expansions. We start with (6.55). When ℓ = 1, recall that

(6.60) adχ(Z
(j,α)
2 )(ξ;u) = −h(α)(ξ)

∑
n∈Λα+1

(Q(j,α)[ξ])nzn(u, I(u)− ξ).

In particular,
∥ adχ(Z(j,α)

2 )∥Y sup
α

⩽ ∥ΠΛα+1
Q(j,α)∥Y sup

α
.

According to the recurrence assumptions (6.41) and (6.37)

(6.61) ∥ΠΛα+1
Q(j,α)∥Y sup

α
≲ ε−1/104 , ∥1Ξα

(ξ)ΠΛα+1
Q(j,α)∥Y sup

α
⩽ εj/30−1/104 .

We deduce from Corollary 6.11 that for all ℓ ∈ {2, . . . , κ},

∥ adℓχ(Z
(j,α)
2 )∥Y sup

α
⩽ ε3/2∥ adℓ−1

χ (Z
(j,α)
2 )∥Y sup

α
∥ΠΛα+1

Q(j,α)∥Y sup
α

⩽ ε3/2(ℓ−1)∥ adχ(Z(j,α)
2 )∥Y sup

α
∥ΠΛα+1

Q(j,α)∥ℓ−1
Y sup
α

≲ℓ ε
ℓ(3/2−1/104)−3/2−1/104 ,(6.62)

and, for all ℓ ∈ {2, . . . , κ},

∥1Ξα
(ξ) adℓχ(Z

(j,α)
2 )∥Y sup

α
≲ℓ ε

ℓ(3/2−1/104+j/30)−3/2−1/104 .(6.63)

Similarly, we obtain form Corollary 6.11 that for ℓ ∈ {1, . . . , κ},

∥ adℓχ(Z
(j,α)
4 )∥Y sup

α
⩽ ε1/15+(3/2)(ℓ−1)∥Z(j,α)

4 ∥Zsup∥ΠΛα+1
Q(j,α)∥ℓY sup

α

≲r εℓ(3/2−1/104)+1/15−3/2−1/104 ,
(6.64)

and for all ℓ ∈ {2, . . . , κ},

(6.65) ∥1Ξα(ξ) ad
ℓ
χ(Z

(j,α)
4 )∥Y sup

α
≲ εℓ(3/2−1/104+j/30)+1/15−3/2−1/104 .

Finally, for all ℓ ∈ {1, . . . , κ},

∥ adℓχ(Q(j,α))∥Y sup
α

⩽ ε3/2ℓ∥ΠΛα+1
Q(j,α)(ξ)∥ℓY sup

α
∥Q(j,α)(ξ)∥Y sup

α

≲r εℓ(3/2−1/104)−1/104 ,
(6.66)

and, for all ℓ ∈ {1, . . . , κ},

(6.67) ∥1Ξα(ξ) ad
ℓ
χ(Q

(j,α))∥Y sup
α

⩽ εℓ(3/2−1/104+j/30)−1/104 .

Collecting these contributions we deduce that

∥P (j,α)∥Y sup
α

≲r ε1/15−2/104 ⩽ ε1/20,(6.68)
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and

∥1Ξα
(ξ)P (j,α)∥Y sup

α
⩽ ε1/20+j/30.(6.69)

Corollary 6.11 provides the analog estimates for the Y lip
α norms of the different terms

(but this time we do not need the extra gain when ξ ∈ Ξα). We deduce form the
Leibniz rule that

∥ adχ(Z(j,α)
2 )∥Y lip

α
⩽ ε−1/15.

Indeed, for |k| ⩽ M and n ∈ Λα+1,

|h(α)(ξ)∂ξk(Q(j,α)[ξ])n| ⩽ ∥Q(j,α)∥Y lip
α

w1
n(α),

and, on the other hand, when ∂ξk falls on the truncation function h(α) then we use
the bound (6.4.1) (from the proof of the small divisor bound) to obtain

|∂ξkh(α)(ξ)Q(j,α)
n (ξ)| ⩽ ε−1/104γ(α)−1ε−2N2s

α+1∥Q(j,α)∥Y sup
α

w0
n(α)

≲ ε−2/104γ(α)−1(ε−1η)2(Nα+1/Nα)
2s w1

n(α)

≲α ε−2/104−1/30−1/50−1/100 w1
n(α) ⩽ ε−1/15 w1

n(α).

In particular adχ(Z
(j,α)
2 ) verifies the assumptions (6.27) and (6.28) of Corollary 6.11,

and we deduce by recurrence that for all ℓ ⩾ 2,

(6.70) ∥adℓχ(Z
(j,α)
2 )∥Y lip

α
= ∥adℓ−1

χ (adχ(Z
(j,α)
2 ))∥Y lip

α
⩽ εN−2s

α .

Similarly, using Corollary 6.11 we show that

∥ adχ(Z(j,α)
4 )∥Y lip

α
⩽ ε1/50,

and therefore, for all ℓ ∈ {2, . . . , κ},

(6.71) ∥ adℓχ(Z
(j,α)
4 )∥Y lip

α
⩽ εN−2s

α ,

Finally, we deduce from Corollary 6.11 that for all ℓ ⩾ 1,

(6.72) ∥adℓχ(Q(j,α))∥Y lip
α

⩽ εN−2s
α .

In particular, we proved that

(6.73) ∥P (j,α)∥Y lip
α

≲ ε1/50.

Let us now explain how to organize the new terms generated from the expansions
(6.55), (6.56) and (6.57), which are collected in P (j,α), and the new remainder terms.

New terms of type Q. — We let

Q(j+1,α)(u) := (Id− h(α)ΠΛα+1
)Q(j,α)(u) + Π6⩽deg⩽rP

(j,α)(u).

Since h(α)(ξ) = 1 for all ξ ∈ Ξα, we have that for all ξ ∈ Ξα,

ΠΛα+1Q
(j+1,α)(ξ;u) = ΠΛα+1Π6⩽deg⩽rP

(j,α)(ξ;u),

which in turn implies from the bound (6.69) that

∥1Ξα
(ξ)ΠΛα+1

Q(j+1,α)(ξ)∥Y sup
α

⩽ ε1/20+j/30 ⩽ ε(j+1)/30.
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This proves (6.37) at step j + 1. We now show that Q(j+1,α) still satisfies (6.41).
On the one hand, since h(α) is valued in [0, 1] we have

∥(Id− h(α)(ξ)ΠΛα+1)Q
(j,α)∥Y sup

α
⩽ ∥Q(j,α)∥Y sup

α
,

and we conclude from the bound (6.68) that

∥Q(j+1,α)∥Y sup
α

⩽ ∥Q(j,α)∥Y sup
α

+ ∥P (j,α)∥Y sup
α

⩽ ∥Q(j,α)∥Y sup
α

+ ε1/20 ≲α ε−1/104 .

On the other hand, we have from the chain rule and bound that

∥(Id− h(α)(ξ)ΠΛα+1)Q
(j,α)∥Y lip

α
⩽ ∥Q(j,α)∥Y lip

α
+ ε−1/15.

We deduce from the bound (6.73) that

∥Q(j+1,α)∥Y lip
α

⩽ ∥Q(j,α)∥Y lip
α

+ ε−1/15 + ∥P (j,α)∥Y lip
α

⩽ ∥Q(j,α)∥Y lip
α

+ ε−1/15 + ε1/50 ≲α ε−1/15,

which gives the bound (6.41). Finally, to prove (6.42), we observe that the resonance
function of the unmodulated frequencies is additive under the Poisson bracket of two
monomials. Since there are at most κ Poisson brackets in the new terms, we ob-
tain (6.42).

New modulated frequencies. — The polynomial P (j,α) contains terms of degree 2, cor-
responding to n′′ = em(n) for n ∈ Zd

M :

Πdeg=2P
(j,α)(ξ;u) :=

∑
n∈Zd

M

(P (j,α)[ξ])em(n)(|un|2 − ξn).

These terms modulate the frequencies. For n ∈ Zd
M , we set

ω(j+1,α)
n (ξ) := ω(j,α)

n (ξ) + (P (j,α)[ξ])em(n)(j, ξ).

By Definition 4.3 and from the bound (6.68), of the Y sup
α -norm we have, for all n ∈ Zd

M

and ξ ∈ Us(ε)

|(P (j,α)[ξ])em(n)| ⩽ w0
em(n)(α)∥P

(j,α)∥Y sup
α

⩽ ε1/20N−6s
α η6D(α) ⩽ ε3+1/10N−4s

α .

Similarly we deduce from the bound (6.73) that for (k, n) ∈ (Zd
M )2 and ξ ∈ Us(ε),

|∂ξk(P (j,α)[ξ])em(n)| ⩽ w1
em(n)(α)∥P

(j,α)∥Y lip
α

≲ ε1/50η4N−4s
α D(α) ⩽ ε1+1/10N−2s

α .

This prove the stability estimates (6.38) and (6.39) for the frequencies.

New integrable quartic terms. — The polynomial P (j,α) also contains terms of degree 4
corresponding to monomials em(n1) + em(n2) for n1, n2 ∈ Zd

M . To estimate these
contributions, and especially their Y lip

α - norms, we need to be slightly more precise.
Actually, the terms

adℓχ(Z
(j,α)
2 ), adℓχ(Z

(j,α)
4 )

generate new integrable terms only when ℓ ⩾ 2. Therefore, we let

(6.74) Z
(j+1,α)
4 := Z

(j,α)
4 +Πdeg=4P̃

(j,α),
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where

P̃ (j,α) := P (j,α) − {Z(j,α)
4 , χ} = adχ(Q

(j,α)) +

κ−1∑
ℓ=2

1

ℓ!
adℓχ

(
Z

(j,α)
2 + Z

(j,α)
4 +Q(j,α)

)
.

The reason for introducing P̃ (j,α) is that the estimates (6.68) and (6.73) are slightly
better for P̃ (j, ξ) than they are for P (j, ξ) (we gain an important factor ε for the
Y lip
α -norm): indeed, we actually proved that

∥P̃ (j, ξ)∥Y sup
α

⩽ ε3/2−2/104 , ∥P̃ (j, ξ)∥Y lip
α

⩽ εN−2s
α .

We write

Πdeg=4P̃
(j,α)(ξ;u) := 2

∑
n1,n2∈Zd

M

(P̃ (j,α)[ξ])em(n1)+em(n2)(|un1
|2 − ξn1

)(|un2
|2 − ξn2

)

−
∑

n∈Zd
M

(P̃ (j,α)[ξ])em(n)+em(n)(|un|2 − ξn)
2.

For all ξ ∈ Us(ε) and (n1, n2) ∈ (Zd
M )2, we have from the definition of the Y sup

α -norm
that

|(P̃ (j,α)[ξ])em(n1)+em(n2)| ⩽ w0
em(n1)+em(n2)

(α)∥P̃ (j,α)∥Y sup
α

⩽ ε3/2−2/104N−6s
α η6D(α)2 ⩽ ε3/2−2/5−2/104N−2s

α η2.

Similarly, for all k ∈ Zd
M ,

|∂ξk(P̃ (j,α)[ξ])em(n1)+em(n2)| ⩽ w1
em(n1)+em(n2)

(α)∥P̃ (j,α)∥Y lip
α

⩽ εN−2s
α N−4s

α η4D(α)2 ⩽ ε1−2/5N−2s
α .

This shows that for all ξ ∈ Us(ε),

∥Πdeg=4P̃
(j,α)∥Y sup

α
⩽ ε3/2N−2s

α , ∥Πdeg=4P̃
(j,α)∥Y lip

α
⩽ ε1−2/5N−2s

α ,

and therefore we have from the expression (6.74) of Z(j+1,α)
4 that under the recurrence

assumption (6.40)

∥Z(j+1,α)
4 ∥Zsup ⩽ ∥Z(j,α)

4 ∥Zsup + ε3/2N−2s
α ≲α ε−1/104 ,

and

∥Z(j+1,α)
4 ∥Zlip ⩽ ∥Z(j,α)

4 ∥Zlip + ε1−2/5N−2s
α ≲α ε−1/104 .

New remainder terms. — Four types of terms contribute to the remainder: the former
remainder in the new coordinates, the terms with degree larger than r, the integral
remainders in the Taylor expansions and the constants. We define

R(j+1,α)(ξ;u) := R(j,α)(ξ; Φ1
j,α,ξ(u)) + Πdeg>rP

(j,α)(ξ;u)

+ I(j,α)(ξ;u) + Πdeg=0P
(j,α)(ξ;u),
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and we justify that these terms are actually some remainders in the sense of the vector
field estimate (6.43), when ξ ∈ Ξα and u ∈ Vα,s(εj+1,α, ξ), with

εj,α = 10ε− (ακ+ j)ε3/2.

Fix ξ ∈ Ξα and u ∈ Vα,s(εα,j+1, ξ). First, we note that, by definition,

∇Πdeg=0P
(j,α)(ξ;u) = 0,

and so that this term can be ignored. Then we deduce from the estimate on the
symplectic transformation (6.51) that for all t ∈ [−1, 1],

v(t) := Φt
j,α,ξ(u) ∈ Vα,s(εj,α, ξ).

Using that Φ1
j,α,ξ is symplectic, we obtain

∇R(j,α)(ξ; Φ1
j,α,ξ(u)) = (dΦ1

j,α,ξ(u))
∗∇R(j,α)(ξ; v(1))

= −i(dΦ1
j,α,ξ(u))

−1i∇R(j,α)(ξ; v(1))

= −idΦ−1
j,α,ξ(v)i∇R(j,α)(ξ; v(1)).

We deduce from the estimate on the symplectic transformation (6.52) and from the
vector field estimate (6.43) at step j on Vα,s(εj,α, ξ) that for all ξ ∈ Us(ε),

∥∇R(j,α)(ξ; Φ1
j,α,ξ(u))∥hs ⩽ ∥dΦ−1

j,α,ξ(v(1))∥hs→hs∥∇R(j,α)(ξ; v(1))∥hs

≲r,α (1 + ε1/2)ε2r+1.

Similarly, given H ∈ X⩽2r(ε) we have that for all t ∈ [0, 1],

∇ adℓχ(H)(ξ; Φt
j,α,ξ(u)) = −idΦ−t

j,α,ξ(v)i∇ adℓχ(H)(ξ; v(t)).

The vector field estimate then follows from Proposition 4.6 and from the bounds
(6.62), (6.64) and (6.66): for ξ ∈ Us(ε) and u ∈ Vα,s(εj+1,α, ξ),

∥∇I(j,α)(ξ;u)∥hs

≲ sup
t∈[0,1]

∥dΦ−t
j,α,ξ(v(t))∥hs→hs∥∇adκχ(Z

(j,α)
2 + Z

(j,α)
4 +Q(j,α))(ξ; v(t))∥hs

≲ ∥adκχ(Z
(j,α)
2 + Z

(j,α)
4 +Q(j,α))∥Y sup

α
N−4s

α ε3 sup
t∈[0,1]

∥v(t)∥hs ⩽ ε3+κ/20∥u∥hs ,

which is conclusive provided κ ⩾ 40r. As for the terms with large degree, we exploit
Lemma 4.10 and the assumption rτ ⩾ 6s. We get

∥Πdeg>rP
(j,α)∥Y sup

β
⩽ ∥Πdeg>rP

(j,α)∥Y sup
α

⩽ ε1/20,

where we used the bound obtained in (6.68). On the other, since deg(P (j,α)) ⩽ r2,
we deduce from the vector field estimate at scale β of Proposition 4.6 that for all
u ∈ Vα,s(10ε, ξ),

∥∇Πdeg>rP
(j,α)(ξ;u)∥hs ⩽ ∥Πdeg>rP

(j,α)∥Y sup
β

N−4s
β ε3∥u∥hs ⩽ ε(1/20)+3N−4s

β ∥u∥hs ,

and we conclude that under our choice of parameter (4.1) (at scale β, N−2s
β = εr)

∥∇Πdeg>rP
(j,α)(ξ;u)∥hs ⩽ ε2r+3∥u∥hs .
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This concludes the proof of (6.43) at step j + 1 and completes the proof of Proposi-
tion 6.19. □

6.7. From step α to step α+ 1: — We now have all the ingredients to deduce Theo-
rem 6.2 at scale α+ 1 from Theorem 6.2 at scale α.

Proof of Theorem 6.2:. — The initialization α = 0 was done in Section 6.1, with
R(0) = Πdeg=0Q. We fix α ∈ {0, . . . , β − 1} and we suppose that Theorem 6.2 is
proved up to scale α. The inputs are the transformation τα and the Hamiltonian
functions

Z
(α)
2 , Z

(α)
4 , Q(α), R(α),

where Z
(α)
2 has modulated frequencies ω(α). We constructed the new objects at scale

α+ 1 in Proposition 6.19: for ε ∈ (0, 10−2ε∗) and ξ ∈ Us(ε), we set

τα+1,ξ := τκ,α,ξ, Z
(α+1)
2 := Z

(κ,α)
2 , Z

(α+1)
4 := Z

(κ,α)
4 .

We also set

Q(α+1) := (Id−ΠΛα+1
)Q(κ,α), R(α+1) := ΠΛα+1

Q(κ,α) +R(κ,α).

By construction

Hlo ◦ τα+1,ξ(ξ;u) = Z
(α+1)
2 (ξ;u) + Z

(α+1)
4 (ξ;u) +Q(α+1)(ξ;u) +R(α+1)(ξ;u).

Then, we make sure that the new objects satisfy the properties claimed in Theorem 6.2
at scale α+ 1. First, note that

εκ,α := 10ε− (αr + κ)ε3/2 ⩾ 10ε− cr(α+ 1)ε3/2 = εα+1,

provided that c is large enough to ensure that κ ⩽ cr (c ⩾ 40 is acceptable). Hence,
Vα+1,s(εα+1, ξ) ⊂ Vα,s(εκ,α, ξ).

The new variables. — We deduce from the above observation and from the estimates
on the transformation (6.44), (6.45) and (6.46) proved at step κ, that the estimates
(6.12), (6.13) and (6.14) (claimed in the normal form Theorem 6.2) hold at scale α+1.

Modulated frequencies at scale α + 1. — We deduce the stability property from the
bound (6.38): for all n ∈ Zd

M ,

|ω(α+1)
n (ξ)− ω(α)

n (ξ)| ⩽
κ−1∑
j=0

|ω(j+1,α)
n (ξ)− ω(j,α)

n (ξ)| ⩽ κN−4s
α ε3+1/10 ⩽ N−4s

α ε3.

This proves (6.7) at scale α+1. Similarly, we deduce from (6.39) and (6.6) at scale α

that for all k ∈ Zd
M ,

|∂ξk(ω(α+1)
n (ξ)− ξn)| ⩽ |∂ξk(ω(α)

n (ξ)− ξn)|+
κ−1∑
j=0

|∂ξk(ω(j+1,α)
n (ξ)− ω(j,α)

n (ξ))|

⩽ αε+ κε1+1/10N−2s
α ⩽ (α+ 1)ε.

This proves (6.6) at scale α+ 1.
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Quartic integrable terms at scale α+ 1. — According to (6.40),

max(∥Z(α+1)
4 ∥Zsup , ∥Z(α+1)

4 ∥Zlip) = max(∥Z(κ,α)
4 ∥Zsup , ∥Z(κ,α)

4 ∥Zlip)

≲α ε−1/104 + α+ κε1/2 ≲α ε−1/104 ,

and this proves (6.8) at scale α+ 1.

Terms of type Q at scale α+ 1. — We now verify that Q(α+1) operates at scale α+ 1:
we have from (6.41) that

∥Q(κ,α)∥Y sup
α

≲α ε−1/104 , ∥Q(κ,α)∥Y lip
α

≲ ε−1/20.

According to Lemma 4.8,

∥Q(α+1)∥Y sup
α+1

= ∥(Id−ΠΛα+1
)Q(κ,α)∥Y sup

α+1
⩽ ∥(Id−ΠΛα+1

)Q(κ,α)∥Y sup
α

≲α ε−1/104 ,

and, similarly,

∥Q(α+1)∥Y lip
α+1

= ∥(Id−ΠΛα+1
)Q(κ,α)∥Y lip

α+1
⩽ ∥(Id−ΠΛα+1

)Q(κ,α)∥Y lip
α

≲α ε−1/20.

This proves (6.9) at scale α+ 1.

Remainder term at scale α + 1. — As for the remainder term, when ξ ∈ Ξα then
ξ ∈ Ξα−1 and we deduce from (6.43) at step κ that for all u ∈ Vα+1,s(εα+1, ξ),

∥∇R(κ,α)(ξ;u)∥hs ≲α,r ε2r+1∥u∥hs .

Moreover, we have from (6.37) that

∥ΠΛα+1Q
(κ,α)∥Y sup

α
⩽ εκ/30−1/104 ⩽ ε2r,

provided, say, that κ ⩾ 100r. We conclude from Proposition 4.6 that for all u ∈
Vα+1,s(εα+1, ξ),

∥∇ΠΛα+1Q
(κ,α)(ξ;u)∥hs ⩽ ε2r+1∥u∥hs .

This proves (6.11) at scale α+ 1 and completes the proof of Theorem 6.2. □

7. Proof of the main theorem

In this section we apply the normal form Theorem 6.2 at scale β together with the
measure estimates from Section 5 to prove Theorem 2.7. Then, the finite dimensional
reduction strategy exposed in Section 2 completes the proof of the main Theorem 1.3.

Let us start with the construction of the non-resonant set of initial data Θ♭
ε and

its measure estimate. We finally handle the dynamics of the low-frequency actions in
Section 7.2.
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7.1. The good modulation data set, and its measure estimate. — Let τξ := τβ,ξ be
the parameter-dependent symplectic transformations obtained in Theorem 6.2 after β
steps. We set

(7.1)
Ψ: ΠMBs(9ε) −→ hs(Zd

M )

ϕ 7−→ τβ,ξ(ϕ)(ϕ).

Let us state some properties of Ψ that we essentially deduce from the properties of τξ,β
claimed in Theorem 6.2.

Lemma 7.1. — The function Ψ is a C1-diffeomorphism from ΠMBs(9ε) into it image
which is close to the identity: for all ϕ ∈ ΠMBs(9ε),

∥Ψ(ϕ)− ϕ∥hs ≲r ε3/4∥ϕ∥hs ,(7.2)

∥dΨ(ϕ)− Id ∥hs→hs ⩽ ε1/2.(7.3)

Proof. — Observe that 9ε ⩽ εβ and, by construction, that ϕ ∈ Vβ,s(ξ(ϕ), εβ). Hence,
the bound (7.2) corresponds to the bound (6.12). Applying the chain rule, we obtain
that for all ϕ ∈ ΠMBs(9ε),

dΨ(ϕ) = dϕτβ,ξ(ϕ)(u) |u=ϕ +dτβ,ξ(ϕ)(ϕ).

Hence, (7.3) is a consequence of (6.14) at scale β, with u = ϕ ∈ Vs(εβ , ξ(ϕ)), and
of (6.13).

It follows from (7.3) is that Ψ is a local diffeomorphism. According to the mean
value theorem applied on the convex set ΠMBs(9ε), Ψ − Id is ε1/2-Lipschitz, which
in turn implies that Ψ is an injective function on ΠMBs(9ε). This proves that Ψ is a
C1-diffeomorphism on ΠMBs(9ε). □

Note that another consequence of (7.2) is that

Ψ(ΠMBs(9ε)) ⊂ ΠMBs(10ε).

The next lemma is useful to estimate the measure of sets transported by the func-
tion Ψ.

Lemma 7.2. — For all ϕ ∈ ΠMBs(9ε),

(7.4)
∣∣|det(dΨ(ϕ))| − 1

∣∣ ⩽ ε1/20.

Proof. — Seeing ΠMBs as an R-vector space of dimension dM := 2♯(Zd
M ), we deduce

from (7.3) that
(1− ε1/2)dM ⩽ |det(dΨ(ϕ))| ⩽ (1 + ε1/2)dM .

It remains to prove that

(7.5) |(1± ε1/2)dM − 1| ⩽ ε1/20.

We have

(7.6) |(1± ε1/2)dM − 1| =
∣∣exp(dM log(1± ε1/2))− 1

∣∣ ⩽ 2dM
∣∣log(1± ε1/2)

∣∣.
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Recall that
dM ⩽ 2ε−1/104 .

Using that for all x ∈ [0, 1),∣∣log(1− x)
∣∣ ⩽ x

1− x
, log(1 + x) ⩽ x,

we obtain
dM

∣∣log(1± ε1/2)
∣∣ ⩽ 2ε1/2−1/104 ⩽

1

2
ε1/20.

We conclude from (7.6) that ∣∣(1± ε1/2)dM − 1
∣∣ ⩽ ε1/20,

which gives (7.5) and completes the proof of (7.4). □

Definition 7.3 (Non-resonant initial data). — Let ω(β−1) be the modulated frequen-
cies at step β−1 of the normal form iteration scheme. The set of non-resonant internal
parameters is Ξβ−1 as defined in (6.5) and the set of non-resonant data in final coor-
dinates is

(7.7) Uβ = Uε,γ(β)(ω
(β−1),Λβ) =

{
ϕ ∈ ΠMBs(ε) | ξ(ϕ) ∈ Ξβ−1

}
.

We first deduce from Proposition 5.4 an estimate on the density of Uβ in ΠMBs(ε).

Lemma 7.4. — For all ε ∈ (0, ε∗) we have

(7.8) meas(Uβ) ⩾ (1− ε1/38)meas(ΠMBs(ε)).

Proof. — For all ξ ∈ Us(ε), the modulated frequencies (ω
(β−1)
n (ξ))n satisfy (6.6) at

scale β−1. Hence, they satisfy the assumption of Proposition 5.4, and we obtain that
the associated non-resonant set of data Uβ has large density in ΠMBs(ε):

meas
(
ΠMBs(ε)∖Uβ

)
⩽ γ(β)ε−1/104 meas(ΠMBs(ε)).

Under our choice of parameters (in particular γ(α) = 4αγ = 4αε1/30) we deduce that

meas(ΠMBs(ε)∖Uβ) ⩽ ε1/38 meas(ΠMBs(ε)).

This gives (7.8) and concludes the proof of the lemma. □

We are now ready to estimate from below the density of the set of non-resonant
data in the coordinates obtained after the preliminary transformation τ0 of Section 2.

Proposition 7.5. — For all ε ∈ (0, ε∗), let

(7.9) Θ♭
ε := Ψ(Uβ) ∩ΠMBs(ε).

Then, Θ♭
ε is an open subset of ΠMBs(ε), with

(7.10) meas(Θ♭
ε) ⩾ (1− ε1/39)meas(ΠMBs(ε)).
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Proof. — Since Uβ is also an open subset of ΠMBs(ε) and Ψ is bi-Lipschitz, Θ♭
ε is an

open subset of ΠMBs(ε).
As for the measure estimate, we estimated the measure of Uβ in Lemma 7.4 and it

essentially remains to estimate its image by Ψ, intersected with ΠMB(ε). Note that,
according to (7.2), we have

Ψ(ΠMBs(ε)) ⊂ ΠMBs(ε+ C(r)ε7/4) ⊂ ΠMBs(ε+ ε3/2),

provided ε∗(r) is small enough, and therefore, defining

Aε = {u ∈ ΠMhs | ε ⩽ ∥u∥hs ⩽ ε+ ε3/2}.

we obtain that

Ψ(Uβ) =
(
Ψ(Uβ) ∩ΠMBs(ε)

)
⊔
(
Ψ(Uβ) ∩Aε

)
= Θ♭

ε ⊔
(
Ψ(Uβ) ∩Aε

)
,

where the second equality follows from the definition of the set Θ♭
ε. We deduce that

(7.11) meas(Θ♭
ε) ⩾ meas(Ψ(Uβ))−meas(Aε).

Then, we do a change of variable

meas(Ψ(Uβ)) =

∫
Ψ(Uβ)

du =

∫
Uβ

|det(dΨ(ϕ))|dϕ

⩾ meas(Uβ) min
ϕ∈ΠMBs(ε)

|det(dΨ(ϕ))|,

and we deduce from (7.4) and (7.8) that

meas(Ψ(Uβ)) ⩾ (1− ε1/38)(1− ε1/20)meas(ΠMBs(ε)).

On the other hand, we deduce from the bound (7.5) that, by homogeneity,
meas(Aε)

meas(ΠM (ε))
= (1 + ε1/2)dM − 1 ⩽ ε1/20.

We conclude from (7.11) that

meas(Θ♭
ε) ⩾ (1− 1

2ε
1/39 − ε1/20)meas(ΠMBs(ε)) ⩾ (1− ε1/39)meas(ΠMBs(ε)).

This completes the proof of Proposition 7.5. □

7.2. Dynamics. — It remains to prove the dynamical part of Theorem 2.7, which is
precisely the stability of the low frequency actions for initial data in the non-resonant
set Θ♭

ε defined in (7.9).

Proof of Theorem 2.7. — Let u(0) ∈ ΠMBs(ε), with ∥u(0)∥hs ⩽ ρ ⩽ ε. We suppose
that 0 < T ⩽ ε−r and u ∈ C1([−T, T ],ΠMhs) is such that

i∂tu = ∇Hlo(u) + f(t),

with u(t = 0) = u(0) and, for all |t| ⩽ T ,

∥f(t)∥hs ⩽ ε3rρ.

The Hamiltonian Hlo is given by (2.3). We constructed in Theorem 6.2 for each
ξ ∈ Us(ε) a symplectic transformation τβ,ξ, and we defined the bi-Lipschitz function Ψ

in (7.1). The set of non-resonant parameters Θ♭
ε ⊂ ΠMBs(ε) was introduced in (7.9).
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We proved in Proposition 7.5 the density estimate (2.4) of Θ♭
ε in ΠMBs(ε), and we

now suppose that u(0) ∈ Θ♭
ε. By construction of the set Θ♭

ε (see (7.9)) one can find
ϕ ∈ Uβ such that

u(0) = Ψ(ϕ) = τβ,ξ(ϕ)(ϕ).

Then, we set for |t| ⩽ T

ξ := ξ(ϕ) = (|ϕn|2)|n|⩽M , v(t) := τ−1
β,ξ(u(t)).

In particular, v is solution in C([−T, T ],ΠMhs) to the Cauchy problem

(7.12)
{
i∂tv = ∇H(β)(ξ; v(t))− i(dτβ,ξ(v(t)))

−1(if(t)),

v(0) = ϕ,

where

H(β)(ξ;u) := H
(β)
lo (ξ; τβ,ξ(v) = Z

(β)
2 (ξ;u) + Z

(β)
4 (ξ;u) +Q(β)(ξ;u) +R(β)(ξ;u),

as in Theorem 6.2. Note that we used

dτ−1
β,ξ(u(t)) = (dτβ,ξ(v(t)))

−1.

We now perform a bootstrap argument to show that for all |t| ⩽ T ⩽ ε−r,

(7.13)
∑

|n|⩽M

⟨n⟩2s||vn(t)|2 − ξn| ⩽ N−2s
β ε1/2ρ2.

This in particular implies that

(7.14) v(t) ∈ Vβ,s(2ε, ξ), ∥v(t)∥hs ⩽ 2ρ,

and, according to the bound (6.12) on the symplectic transformation τβ,ξ, we deduce
that ∑

|n|⩽M

⟨n⟩2s
∣∣|un(t)|2 − |un(0)|2

∣∣
⩽

∑
|n|⩽M

⟨n⟩2s
∣∣|un(t)|2 − |vn(t)|2

∣∣+ ∑
|n|⩽M

⟨n⟩2s||vn(t)|2 − |vn(0)|2|

+
∑

|n|⩽M

⟨n⟩2s
∣∣|vn(0)|2 − |un(0)|2

∣∣
≲r ε3/2(∥v(t)∥2hs + ∥ϕ∥2hs) +N−2s

β ε1/2ρ2 ⩽
ε

2
ρ2,

uniformly in |t| ⩽ T . This is precisely the desired bound (2.5) for the dynamics of u(t).
It remains to prove (7.13). At time t = 0, since v(0) = ϕ and ξn = |ϕn|2 for

all |n| ⩽ M the left-and-side of (7.13) vanishes. For |t| ⩽ T , we deduce from equa-
tion (7.12) a priori bounds for v under assumption (7.13), from which (7.13) follows
by a standard bootstrap argument.

Since, by assumption, ϕ ∈ Uβ−1 then ξ(ϕ) ∈ Ξβ−1 and, assuming that v(t) ∈
Vβ,s(2ε, ξ), we obtain

∥∇R(β)(ξ, v(t))∥hs ≲r ε2r+1∥v(t)∥hs .
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where we used the bound (6.11) for the remainder R. In addition, when v(t) ∈
Vβ,s(2ε, ξ), we obtain from Proposition 4.6 and the bound (6.9) at scale β that

(7.15) ∥∇Q(β)(ξ; v(t))∥hs ⩽ ∥Q(β)∥Y sup
β

N−4s
β ε3∥v(t)∥hs ≲ N−4s

β ε3−1/104ρ.

Using the equation (7.12) we obtain that for all |n| ⩽ M ,

d

dt
|vn(t)|2 = 2 Im

(
∂vn(Z

(β)
2 + Z

(β)
4 +Q(β) +R(β))(ξ; v(t))vn(t)

)
+ 2 Im

(
i
(
(dτβ,ξ(v(t)))

−1(if(t))
)
n
vn(t)

)
.

Using that Z
(β)
2 , Z

(β)
4 ∈ XInt(ε) is integrable (and, consequently, does not contribute

to the dynamics of the actions), we deduce that

d

dt
|vn(t)|2 = 2 Im

(
∂vn(Q

(β) +R(β))(ξ; v(t))vn

)
+ 2 Im

(
i
(
dτβ,ξ(v(t)))

−1(if(t))
)
n
vn

)
.

We deduce from the above an energy estimate that

∑
|n|⩽M

⟨n⟩2s
∣∣∣ d
dt

|vn(t)|2
∣∣∣ ⩽ ∥v(t)∥hs

×
(
∥∇Q(β)(ξ; v(t))∥hs + ∥∇R(β)(ξ; v(t))∥hs + ∥(dτβ,ξ(v(t)))−1∥hs→hs∥f(t)∥hs

)
.

Under the bootstrap assumption (7.13) and its consequences (7.14), we have therefore

∑
|n|⩽M

⟨n⟩2s| d
dt

|vn(t)|2| ≲r ρ2
(
N−4s

β ε3−1/104 + ε2r+1 + ε3r
)

≲r εrρ2
(
N−4s

β ε−rε3−1/104 + εr+1 + ε2r
)
,

where we used the bound (6.15) on the symplectic transformation and the assumption
on f(t). Under the conditions of subsection (4.1) on the parameters (in particular the
choice (4.1) of Nβ such that N−2s

β = εr), we deduce that

∑
|n|⩽M

⟨n⟩2s
∣∣∣ d
dt

|vn(t)|2
∣∣∣ ≲r N−2s

β εr+1ρ2.

Hence, integrating in time (with |t| ⩽ T ⩽ ε−r) gives∑
|n|⩽M

⟨n⟩2s
∣∣|vn(t)|2 − ξn

∣∣ ≲r N−2s
β ερ2.

This is a stronger bound than the bootstrap assumption (7.13), and this completes
the proof of Theorem 2.7. □
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Appendix

A.1. Proof of Proposition 4.16

Proof of Proposition 4.16. — The proof follows the same lines as the proof of Propo-
sition 4.15, with some adjustments. We first prove (4.26): given Q and H we set

P (ξ;u) := {Q,H}(ξ;u) =
∑

n′′∈N⩽2r2

(P [ξ])n′′zn′′(u, I(u)− ξ).

As in the proof of Proposition 4.15 we first reduce to fixed monomials (n,n′): for
all n′′ and k ∈ Zd

M we have

(A.1) |∂ξk(P [ξ])n′′ | ⩽ ε−1/104 sup
a,b,n,n,n′

∣∣∣∂ξk( ∏
|j|⩽M

ξ
aj−bj
j (Q[ξ])n(H[ξ])n′

)∣∣∣
[
1
E

(1)

n′′,a,b
(n)

(n,n′)|k′nℓn − knℓ
′
n|+ 1

E
(2)

n′′,a,b
(n)

(n,n′)|mn(kn′ − ℓ′n) +mn′(kn − ℓn)|
]

We separate three main cases, depending on where the derivative ∂ξk falls.

Case 1: ∂ξk falls on a term ξk coming from the re-centered actions. — In this case,
we have

(A.2)
∣∣∣∂ξk( ∏

|j|⩽M

ξ
aj−bj
j

)
(Q[ξ])n(H[ξ])n′

∣∣∣
⩽ ∥Q∥Y sup

α
∥H∥Y sup

α

(
1ak−bk⩾1(ak − bk)ξ

ak−bk−1
k

∏
j ̸=k

ξ
aj−bj
j

)
w0

n(α) w
0
n′(α).

Hence, when ak − bk ⩾ 1, a term ξk is removed, and this costs a factor Ck(α)
2.

Following the proof of Proposition 4.15 we deduce that the contribution of (A.2) to
(A.1) is bounded by

(A.2) ⩽ ∥Q∥Y sup
α

∥H∥Y sup
α

η4−1/5N−4s
α w0

n′′(α) Ck(α)
2(ak − bk)

≲r ∥Q∥Y sup
α

∥H∥Y sup
α

η2−1/5N−2(s−τ)
α w0

n′′(α)

= ∥Q∥Y sup
α

∥H∥Y sup
α

η4−1/5N−4s+2τ
α w1

n′′(α)

⩽ ∥Q∥Y sup
α

∥H∥Y sup
α

η4−1/4N−4s
α w1

n′′(α),

where we used Definition 4.1 for the weights and condition (4.2) on the parameters.

Case 2: ∂ξk falls on either (Q[ξ])n or (H[ξ])n′ . — Since the two situations are symmet-
ric, we suppose that it falls on (Q[ξ])n. In Case 2 we have to control the following
quantity:

(A.3) ε−1/104∥Q∥Y lip
α

∥H∥Y sup
α

sup
a,b,n,n,n′

( ∏
|j|⩽M

ξ
aj−bj
j

)
w1

n(α) w
0
n′(α)

[
1
E

(1)

n′′ (n,a,b)
(n,n′)|k′nℓn − knℓ

′
n|+ 1

E
(1)

n′′ (n,a,b)
(n,n′)|mn(k

′
n − ℓn′) +mn′(ℓn − kn)|

]
.

In comparison to (4.20), w0
n(α) is substituted with w1

n(α) in (A.3). Note that the
weight w1

n′′(α) has the same pre-factor as w1
n(α), so it suffices to prove that w0

n′(α)
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absorbs the losses. Reproducing the analysis performed in Cases 1 and 2 in the proof
of Proposition 4.15 gives

|(A.3)| ⩽ ∥Q∥Y lip
α

∥H∥Y sup
α

η4−1/4N−4s
α w1

n′′(α),

which is conclusive.
Let us now turn to the proof of (4.27). Given an integrable quartic term Z ∈

X4(ε), the Poisson bracket {Q,Z} =: P is explicitly written in (4.23). Once again we
stress out that P has no new integrable terms (hence there is no Case 1 as above).
Differentiating the coefficient (P [ξ])n′′ with respect to ξk gives

(A.4) ∂ξk(P [ξ])n′′ = 2i
∑

|j1|,|j2|⩽M

∑
n∈N⩽r2

1
E

(2)

n′′,0,0(j1)
(n, em(j1) + em(j2))(kj1 − ℓj1)(

∂ξk(Q[ξ])n(Z[ξ])em(j1)+em(j2) + (Q[ξ])n∂ξk(Z[ξ])em(j1)+em(j2)

)
.

As detailed in the proof of Proposition 4.15, we have the relation (4.24) and therefore

w1
n(α) =

1

D(α)
w1

n′′(α) = N−2s
α η2+1/5 w1

n′′(α).

We deduce that when ∂ξk falls on (Q[ξ])n the contribution is bounded by

≲r ∥Q∥Y lip
α

∥Z∥Zlipε−1/104 w1
n(α) ⩽ ∥Q∥Y lip

α
∥Z∥ZsupN−2s

α η2+1/5 w1
n′′(α).

On the other hand, when ∂ξk falls on (Z[ξ])em(j1)+em(j2) we reproduce the proof of
(4.25) to deduce that this contribution is bounded by

∥Q∥Y sup
α

∥Z∥ZlipN−2s
α η2+1/5−2/104 w0

n′′(α)

⩽ ∥Q∥Y sup
α

∥Z∥ZlipN−4s
α η4+1/5−2/104 w1

n′′(α).

This concludes the proof of Proposition 4.16. □

A.2. Proof of Lemma 6.16

Proof of Lemma 6.16. — We consider Q ∈ X⩽2r(ε). By homogeneity we can assume
that

∥Q∥Y sup
α

= 1.

Given ξ ∈ Us(ε), u ∈ Vα,ξ(20ε, ξ), and a normalized w ∈ hs(Zd
M ) with ∥w∥hs = 1,

we have

[d∇L(Q)(ξ)(u)](w) =
∑

n∈Λα+1

h(α)(ξ)

Ωn(ω̃(ξ))
(Q[ξ])n[d∇zn(u, I(u)− ξ)](w).

The small-divisor estimate (6.21) together with the definition of the Y sup
α -norm and

the counting estimate (4.4) give

(A.5)
∥∥[d∇L(Q)(ξ)(u)](w)

∥∥
hs

≲ ε−1/104γ(α)−1ε−2N2s
α+1 max

n∈Λα+1

deg(n)⩽2r

w0
n(α)∥[d∇zn(u, I(u)− ξ)](w)∥hs .
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We will prove that

(A.6) max
n∈Λα+1

deg(n)⩽2r

w0
n(α)∥[d∇zn(u, I(u)− ξ)](w)∥hs ≲r ε−1/104η4−2/5N−2s

α ,

and conclude from (A.5) and the relation (4.6) between the parameters:

|(A.5)| ≲r ε−2/104γ(α)−1(Nα+1/Nα)
2s(ηε−1)2η2−2/5 ⩽ ε1−1/8.

Let us show (A.6). Using that the Hamiltonian is real, we have

∥[d∇zn(u, I(u)− ξ)](w)∥hs ≲
( ∑

n′∈Zd
M

⟨n′⟩2s
∣∣∣ ∑
n∈Zd

M

∂un
∂un′ zn(u, I(u)− ξ)wn

∣∣∣2)1/2

+
( ∑

n′∈Zd
M

⟨n′⟩2s
∣∣∣ ∑
n∈Zd

M

∂un
∂un′ zn(u, I(u)− ξ)wn

∣∣∣2)1/2

≲ ε−1/104 max
|n|,|n′|⩽M

⟨n′⟩s|∂un∂un′ zn(u, I(u)− ξ)||wn|.(A.7)

For n ∈ Λα+1 and (n, n′) ∈ (Zd
M )2 we have

∂un
∂un′ zn(u, I(u)− ξ) = knℓn′

zn(u, I(u)− ξ)

un un′
(A.8)

+mnℓn′
zn(u, I(u)− ξ)

(|un|2 − ξn)un′
un(A.9)

+ knmn′
zn(u, I(u)− ξ)

un(|un′ |2 − ξn′)
un′(A.10)

+mnmn′
zn(u, I(u)− ξ)

(|un|2 − ξn)(|un′ |2 − ξn′)
unun′ .(A.11)

In the subsequent case by case analysis, we estimate each contribution separately.
We deduce from the zero momentum condition that when ℓn′ ⩾ 1, there exists

j ∈ Zd
M ∖ {n} such that

(A.12) max(kj , ℓj) ⩾ 1, |j| ⩾ |n′|
2r

.

Without loss of generality, we suppose that kj ⩾ 1.

Case 1. — In (A.8), when knℓn′ ⩾ 1 a pair (un, un′) goes away. We separate two
cases.

– Case 1(a). If |n| ≳ |n′|, then

⟨n′⟩sknℓn′ w0
n(α)

∣∣∣zn(u, I(u)− ξ)

unun′
wn′

∣∣∣ ⩽ ⟨n⟩s|wn|w0
n(α)ℓnkn′

∣∣∣zn(u, I(u)− ξ)

unun′

∣∣∣
≲r Cn(α)Cn′(α) w0

n′(α)|zn′(u, I(u)− ξ)|,

where

n′ = n− ek(n)− el(n
′) ∈ Ñ, and w0

n′(α) = Cn(α)
−1Cn′(α)−1 w0

n(α).

We deduce from the weighted estimate (4.9) for the monomials that, in Case 1(a),

(A.6) ≲r N2(s+τ)
α η−2N−6s

α η6 ≲r η4N4s−2τ
α .
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– Case 1(b). In this case, however, we have |n| ≪ |n′|, and the factor wn cannot
absorb the derivative ⟨n′⟩s. Nevertheless, the frequency j given by (A.12) is different
from n and it is therefore still available. There holds

⟨n′⟩s w0
n(α)knℓn′

∣∣∣zn(u, I(u)− ξ)

unun′
wn′

∣∣∣
≲r ⟨j⟩s|uj ||wn′ |w0

n(α)knℓn′

∣∣∣zn(u, I(u)− ξ)

unun′uj

∣∣∣
≲r εCj(α) Cn(α)Cn′(α) w0

n′(α)|zn′(u, I(u)− ξ)|,

where

n′ = n− ek(n)− el(n
′)− ek(j) ∈ Ñ, w0

n′(α) =
(
Cn(α)Cn′(α, ε)Cj(α)

)−1
w0

n(α)

We deduce from the weighted estimate (4.9) for monomials that, in Case 1(b),

(A.6) ≲r εN3(s+τ)
α η−3N−6s

α η6 ≲r η4N−3(s−τ)
α .

Case 2. — In (A.9), when mnℓ
′
n ⩾ 1 a pair (|un|2 − ξn, un′) goes away and a term un

appears.
– Case 2(a). If |n| ≳ |n′|, then

⟨n′⟩s w0
n(α)mnℓn′

∣∣∣zn(u, I(u)− ξ)

(|un|2 − ξn)un′
unwn′

∣∣∣ ≲ ⟨n⟩s|wnun|w0
n(α)mnℓn′

∣∣∣zn(u, I(u)− ξ)

(|un|2 − ξn)un′

∣∣∣
≲r εCn′(α)D(α) w0

n′(α)|zn′ |,

where

n′ = n− em(n)− el(n
′) ∈ Ñ, w0

n′(α) = (Cn′(α)D(α))−1 w0
n(α).

We deduce from the weighted estimate for monomials that, in Case 2(a),

(A.6) ≲r εN3s+τ
α η−3−1/5N−6s

α η6 ≲r η4−1/5N−(3s−τ)
α .

– Case 2(b). If |n| ≪ |n′|, then we can find j ∈ Zd
M ∖ {n, n′} such that (A.12)

holds, and deduce that

⟨n′⟩s w0
n(α)mnℓn′

∣∣∣zn(u, I(u)− ξ)

(|un|2 − ξn)un′
unwn′

∣∣∣
≲r ⟨j⟩s|ujwnun|w0

n(α)mnℓn′

∣∣∣ zn(u, I(u)− ξ)

(|un|2 − ξn)un′uj

∣∣∣
≲r ε2Cj(α) Cn′(α)D(α) w0

n′(α)|zn′(u, I(u)− ξ)|,

where

n′ = n− em(n)− el(n
′)− ek(j), w0

n′(α) = (Cn′(α)Cj(α)D(α))−1 w0
n(α).

We deduce from the weighted bound (4.9) for the monomials that, in Case 2b),

(A.6) ≲r ε2N−4s−2τ
α η−4−1/5N6s

α η6 ≲r η4−1/5N−2(s−τ)
α .
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Case 3. — In (A.10), when knmn′ ⩾ 1 a pair (un, |un′ |2 − ξn′) goes away, and a
term un′ appears. It holds

⟨n′⟩s w0
n(α)knmn′

∣∣∣ zn(u, I(u)− ξ)

un(|un′ |2 − ξn′)
un′wn

∣∣∣
⩽ ⟨n′⟩s|un′wn|w0

n(α)knmn′

∣∣∣ zn(u, I(u)− ξ)

un(|un′ |2 − ξn′)

∣∣∣
≲r εD(α)Cn(α) w

0
n′(α)|zn′(u, I(u)− ξ)|,

with
n′ = n− ek(n)− em(n

′), w0
n′(α) = (D(α)Cn(α))

−1 w0
n(α).

We deduce from the weighted estimate (4.9) for monomials that

(A.6) ≲r εN3s+τ
α η−3−1/5N−6s

α η6 ≲r η4−1/5N−3s+τ
α .

Case 4. — The last case (A.11) is a priori the worst since a pair of centered actions
goes away, and induces a loss D(α)2. Nevertheless, a pair (un, un′) appears and will
absorb the derivative in n. There is also a term wn′ , which we will not exploit. It holds

⟨n′⟩s w0
n(α)mnmn′

∣∣∣ zn(u, I(u)− ξ)

(|un|2 − ξn)(|un′ |2 − ξn′)
unun′wn′

∣∣∣
⩽ ⟨n′⟩s|un||un′ ||wn′ |w0

n(α)mnmn′

∣∣∣ zn(u, I(u)− ξ)

(|un|2 − ξn)(|un′ |2 − ξn′)

∣∣∣
≲r ε2 D(α)2 w0

n′(α)|zn′(u, I(u)− ξ)|,

with
n′ = n− em(n)− em(n

′), w0
n′(α) = D(α)−2 w0

n′(α).

We deduce from the weighted estimate for the monomials (4.9) that this contribution
is bounded by

(A.6) ≲r ε2N4s
α η−4−2/5N−6s

α η6 ≲r η4−2/5N−2s
α .

This proves that all contributions to (A.7) are acceptable to obtain (A.6), which
completes the proof of Lemma 6.16. □
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