[Un complexe de Morse pour les flots Axiome A]
On a smooth compact Riemannian manifold without boundary, we construct a finite dimensional cohomological complex of currents that are invariant by an Axiom A flow satisfying the strong transversality assumption. The cohomology of that complex is isomorphic to the de Rham cohomology via certain spectral projectors. This construction is achieved by defining anisotropic Sobolev spaces adapted to the global dynamics of Axiom A flows. In the particular case of Morse-Smale gradient flows, this complex coincides with the classical Morse complex.
Sur une variété riemannienne compacte, lisse et sans bord, nous construisons un complexe cohomologique de courants, de dimension finie, invariant par un flot Axiome A vérifiant l’hypothèse de forte transversalité. La cohomologie de ce complexe est isomorphe à la cohomologie de de Rham via certains projecteurs spectraux. Cette construction est réalisée en définissant des espaces de Sobolev anisotropes adaptés à la dynamique globale des flots Axiome A. Dans le cas particulier des flots de gradient de Morse-Smale, ce complexe coïncide avec le complexe de Morse classique.
Accepté le :
Publié le :
Keywords: Hyperbolic dynamical systems, Axiom A flows, Pollicott-Ruelle resonances, Morse complex, anisotropic Sobolev spaces, microlocal analysis
Mots-clés : Systèmes dynamiques hyperboliques, flots Axiome A, résonances de Pollicott-Ruelle, complexe de Morse, espaces de Sobolev anisotropes, analyse microlocale
Antoine Meddane 1

@article{JEP_2025__12__641_0, author = {Antoine Meddane}, title = {A {Morse} complex for {Axiom~A} flows}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {641--712}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.299}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.299/} }
TY - JOUR AU - Antoine Meddane TI - A Morse complex for Axiom A flows JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 641 EP - 712 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.299/ DO - 10.5802/jep.299 LA - en ID - JEP_2025__12__641_0 ER -
Antoine Meddane. A Morse complex for Axiom A flows. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 641-712. doi : 10.5802/jep.299. https://jep.centre-mersenne.org/articles/10.5802/jep.299/
[1] - “Geodesic flows on closed Riemannian manifolds of negative curvature”, Trudy Mat. Inst. Steklov. 90 (1967), p. 209 | MR | Zbl
[2] - “The set of Axiom A diffeomorphisms with no cycles”, Bol. Soc. Brasil. Mat. (N.S.) 23 (1992) no. 1-2, p. 21-65 | DOI | MR | Zbl
[3] - Dynamical zeta functions and dynamical determinants for hyperbolic maps, Ergeb. Math. Grenzgeb. (3), vol. 68, Springer, Cham, 2018 | DOI | MR
[4] - “Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms”, Ann. Inst. Fourier (Grenoble) 57 (2007) no. 1, p. 127-154 | DOI | Numdam | MR | Zbl
[5] - “Ruelle-Perron-Frobenius spectrum for Anosov maps”, Nonlinearity 15 (2002) no. 6, p. 1905-1973 | DOI | MR | Zbl
[6] - “Dynamical zeta functions in the nonorientable case”, Nonlinearity 34 (2021) no. 10, p. 7322-7334 | DOI | MR | Zbl
[7] - “Symbolic dynamics for hyperbolic flows”, Amer. J. Math. 95 (1973), p. 429-460 | DOI | MR | Zbl
[8] - Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes in Math., vol. 470, Springer-Verlag, Berlin-New York, 1975 | DOI | MR
[9] - “Smooth Anosov flows: correlation spectra and stability”, J. Modern Dyn. 1 (2007) no. 2, p. 301-322 | MR | Zbl
[10] - “Resonant spaces for volume-preserving Anosov flows”, Pure Appl. Anal. 2 (2020) no. 4, p. 795-840 | DOI | MR | Zbl
[11] - “The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds”, Invent. Math. 229 (2022) no. 1, p. 303-394 | DOI | MR | Zbl
[12] - “Dynamical torsion for contact Anosov flows”, Anal. PDE 17 (2024) no. 8, p. 2619-2681 | DOI | MR | Zbl
[13] - “The gradient structure of a flow. I”, Ergodic Theory Dynam. Systems 8 * (1988), p. 11-26 | MR | Zbl
[14] - “The Fried conjecture in small dimensions”, Invent. Math. 220 (2020) no. 2, p. 525-579 | DOI | MR | Zbl
[15] - “Spectral analysis of Morse-Smale gradient flows”, Ann. Sci. École Norm. Sup. (4) 52 (2019) no. 6, p. 1403-1458 | DOI | Numdam | MR | Zbl
[16] - “Spectral analysis of Morse-Smale flows I: construction of the anisotropic spaces”, J. Inst. Math. Jussieu 19 (2020) no. 5, p. 1409-1465 | DOI | MR | Zbl
[17] - “Spectral analysis of Morse-Smale flows, II: Resonances and resonant states”, Amer. J. Math. 142 (2020) no. 2, p. 547-593 | DOI | MR | Zbl
[18] - “Pollicott-Ruelle spectrum and Witten Laplacians”, J. Eur. Math. Soc. (JEMS) 23 (2021) no. 6, p. 1797-1857 | DOI | MR | Zbl
[19] - “Topology of Pollicott-Ruelle resonant states”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 21 (2020), p. 827-871 | MR | Zbl
[20] - “On decay of correlations in Anosov flows”, Ann. of Math. (2) 147 (1998) no. 2, p. 357-390 | DOI | MR | Zbl
[21] - “Notes on hyperbolic dynamics”, 2018 | arXiv
[22] - “Pollicott-Ruelle resonances for open systems”, Ann. Henri Poincaré 17 (2016) no. 11, p. 3089-3146 | DOI | MR | Zbl
[23] - “Afterword: dynamical zeta functions for Axiom A flows”, Bull. Amer. Math. Soc. (N.S.) 55 (2018) no. 3, p. 337-342 | DOI | MR | Zbl
[24] - “Dynamical zeta functions for Anosov flows via microlocal analysis”, Ann. Sci. École Norm. Sup. (4) 49 (2016) no. 3, p. 543-577 | DOI | Numdam | MR | Zbl
[25] - “Ruelle zeta function at zero for surfaces”, Invent. Math. 210 (2017) no. 1, p. 211-229 | DOI | MR | Zbl
[26] - Mathematical theory of scattering resonances, Graduate Studies in Math., vol. 200, American Mathematical Society, Providence, RI, 2019 | DOI | MR
[27] - One-parameter semigroups for linear evolution equations, Graduate Texts in Math., vol. 194, Springer-Verlag, New York, 2000 | MR
[28] - “Smoothing Lyapunov functions”, Trans. Amer. Math. Soc. 371 (2018) no. 3, p. 1677-1700 | DOI | MR | Zbl
[29] - “Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances”, Open Math. J. 1 (2008), p. 35-81 | DOI | MR | Zbl
[30] - “Upper bound on the density of Ruelle resonances for Anosov flows”, Comm. Math. Phys. 308 (2011) no. 2, p. 325-364 | DOI | MR | Zbl
[31] - “Band structure of the Ruelle spectrum of contact Anosov flows”, C. R. Acad. Sci. Paris 351 (2013) no. 9-10, p. 385-391 | DOI | Numdam | MR | Zbl
[32] - “The semiclassical zeta function for geodesic flows on negatively curved manifolds”, Invent. Math. 208 (2017) no. 3, p. 851-998 | DOI | MR | Zbl
[33] - “Fractal Weyl law for the Ruelle spectrum of Anosov flows”, Ann. H. Lebesgue 6 (2023), p. 331-426 | DOI | MR | Zbl
[34] - “Micro-local analysis of contact Anosov flows and band structure of the Ruelle spectrum”, Commun. Amer. Math. Soc. 4 (2024), p. 641-745 | DOI | MR | Zbl
[35] - Hyperbolic Flows, Zurich Lect. in Advanced Math., European Mathematical Society, Zürich, 2019 | DOI | MR
[36] - Homology and dynamical systems, CBMS Regional Conf. Series in Math., vol. 49, American Mathematical Society, Providence, RI, 1982 | DOI | MR
[37] - “Lefschetz formulas for flows”, in The Lefschetz centennial conference, Part III (Mexico City, 1984), Contemp. Math., vol. 58, American Mathematical Society, Providence, RI, 1987, p. 19-69 | DOI | Zbl
[38] - “Meromorphic zeta functions for analytic flows”, Comm. Math. Phys. 174 (1995) no. 1, p. 161-190 | DOI | MR | Zbl
[39] - “Another proof for stability conjecture for flows”, Sci. China Ser. A 41 (1998), p. 1076-1082 | DOI | MR | Zbl
[40] - “Anosov flows and dynamical zeta functions”, Ann. of Math. (2) 178 (2013) no. 2, p. 687-773 | DOI | MR | Zbl
[41] - “Banach spaces adapted to Anosov systems”, Ergodic Theory Dynam. Systems 26 (2006) no. 1, p. 189–217 | MR | Zbl
[42] - “Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties”, J. Differential Geometry 79 (2008) no. 3, p. 433-477 | MR | Zbl
[43] - “Zeta function at zero for surfaces with boundary”, 2018 | arXiv
[44] - “Finite volume flows and Morse theory”, Ann. of Math. (2) 153 (2001) no. 1, p. 1-25 | DOI | MR | Zbl
[45] - “Connecting invariant manifolds and the solution of the stability and -stability conjectures for flows”, Ann. of Math. (2) 145 (1997) no. 1, p. 81-137 | DOI | MR | Zbl
[46] - Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.), vol. 24-25, Société Mathématique de France, Paris, 1986
[47] - “Neighborhoods of hyperbolic sets”, Invent. Math. 9 (1969/70), p. 121-134 | DOI | MR | Zbl
[48] - “A proof of stability conjecture for three-dimensional flows”, Trans. Amer. Math. Soc. 342 (1994) no. 2, p. 753-772 | MR | Zbl
[49] - Introduction to the modern theory of dynamical systems, Encyclopedia of Math. and its Appl., vol. 54, Cambridge University Press, Cambridge, 1995 | DOI
[50] - “Pollicott-Ruelle resonant states and Betti numbers”, Comm. Math. Phys. 378 (2020) no. 2, p. 917-941 | DOI | MR | Zbl
[51] - “Appendix. On the Thom-Smale complex”, in An extension of a theorem by Cheeger and Müller, Astérisque, vol. 205, Société Mathématique de France, Paris, 1992, p. 219-233 | Numdam
[52] - Transversalité, courants et théorie de Morse, Éditions de l’École Polytechnique, Palaiseau, 2012 | MR
[53] - “On contact Anosov flows”, Ann. of Math. (2) 159 (2004) no. 3, p. 1275-1312 | DOI | MR | Zbl
[54] - “A proof of the stability conjecture”, Publ. Math. Inst. Hautes Études Sci. (1988) no. 66, p. 161-210 | MR | Zbl
[55] - “Relations between the critical points of a real function of independent variables”, Trans. Amer. Math. Soc. 27 (1925) no. 3, p. 345-396 | MR | Zbl
[56] - Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982 | DOI | MR
[57] - “On an approximation theorem of Kupka and Smale”, J. Differential Geometry 3 (1967) no. 2, p. 214-227 | Zbl
[58] - “The -stability theorem for flows”, Invent. Math. 11 (1970), p. 150-158 | DOI | MR | Zbl
[59] - “A structural stability theorem”, Ann. of Math. (2) 94 (1971), p. 447-493 | DOI | MR | Zbl
[60] - “Structural stability of vector fields”, Ann. of Math. (2) 99 (1974), p. 154-175 | DOI | MR | Zbl
[61] - Thermodynamic formalism, Encyclopedia of Math. and its Appl., vol. 5, Addison-Wesley Publishing Co., Reading, Mass., 1978 | MR
[62] - “Resonances for Axiom flows”, J. Differential Geometry 25 (1987) no. 1, p. 99-116 | MR | Zbl
[63] - “Currents, flows and diffeomorphisms”, Topology 14 (1975) no. 4, p. 319-327 | DOI | MR | Zbl
[64] - “Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems”, Ergodic Theory Dynam. Systems 16 (1996) no. 4, p. 805-819 | DOI | MR | Zbl
[65] - Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, vol. IX-X, Hermann, Paris, 1966 | MR
[66] - Stabilité globale des systèmes dynamiques, Astérisque, vol. 56, Société Mathématique de France, Paris, 1978 | Numdam | MR
[67] - “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc. 66 (1960), p. 43-49 | DOI | MR | Zbl
[68] - “Differentiable dynamical systems”, Bull. Amer. Math. Soc. 73 (1967), p. 747-817 | DOI | MR | Zbl
[69] - “Sur une partition en cellules associée à une fonction sur une variété”, C. R. Acad. Sci. Paris 228 (1949), p. 973-975 | MR | Zbl
[70] - “Quasi-compactness of transfer operators for contact Anosov flows”, Nonlinearity 23 (2010) no. 7, p. 1495-1545 | DOI | MR | Zbl
[71] - “Contact Anosov flows and the Fourier-Bros-Iagolnitzer transform”, Ergodic Theory Dynam. Systems 32 (2012) no. 6, p. 2083-2118 | DOI | MR | Zbl
[72] - “On the stability conjecture for flows”, J. Differential Equations 129 (1996) no. 2, p. 334-357 | DOI | MR | Zbl
[73] - Differentiable dynamical systems, Graduate Studies in Math., vol. 173, American Mathematical Society, Providence, RI, 2016 | DOI
[74] - “Smoothing derivatives of functions and applications”, Trans. Amer. Math. Soc. 139 (1969), p. 413-428 | DOI | MR | Zbl
[75] - Semiclassical analysis, Graduate Studies in Math., vol. 138, American Mathematical Society, Providence, RI, 2012 | DOI | MR
Cité par Sources :