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A MORSE COMPLEX FOR AXIOM A FLOWS

BY ANTOINE MEDDANE

AsstracT. — On a smooth compact Riemannian manifold without boundary, we construct a
finite dimensional cohomological complex of currents that are invariant by an Axiom A flow
satisfying the strong transversality assumption. The cohomology of that complex is isomorphic
to the de Rham cohomology via certain spectral projectors. This construction is achieved by
defining anisotropic Sobolev spaces adapted to the global dynamics of Axiom A flows. In the
particular case of Morse-Smale gradient flows, this complex coincides with the classical Morse
complex.

Résumft (Un complexe de Morse pour les flots Axiome A). — Sur une variété riemannienne
compacte, lisse et sans bord, nous construisons un complexe cohomologique de courants, de
dimension finie, invariant par un flot Axiome A vérifiant I’hypothese de forte transversalité. La
cohomologie de ce complexe est isomorphe a la cohomologie de de Rham via certains projecteurs
spectraux. Cette construction est réalisée en définissant des espaces de Sobolev anisotropes
adaptés a la dynamique globale des flots Axiome A. Dans le cas particulier des flots de gradient
de Morse-Smale, ce complexe coincide avec le complexe de Morse classique.
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642 A. MEDDANE

1. INnTRODUCTION

Axiom A flows are a class of dynamical systems introduced by Smale [68] to describe
chaotic dynamical systems. It arises in numerous physical problems and it contains
two very interesting examples: Morse gradient flows and Anosov flows. On the one
hand, the first one is well-known for its link with topology: notably through the Morse
inequalities [55], stated by Morse in 1920, which relate the Betti numbers of the
manifold and the number of critical points of a Morse function. Given a Riemannian
metric on the manifold, Smale [67] later gave another proof using dynamical arguments
and ideas going back to Thom [69]. On the other hand, Anosov flows were defined first
by Anosov in [1] to describe the properties satisfied by geodesic flows on negatively
curved manifolds and their links with the topology of the manifold are more subtle.

From a purely dynamical point of view, Axiom A flows are interesting because,
once they satisfy a dynamical assumption called the strong transversality assumption,
they form an open subset of the set of vector fields and the flow induced by any small
perturbation of the vector field X is topologically conjugated to the flow induced by X.
Moreover, we have for any vector field on a compact manifold without boundary the
equivalence:

Axiom A + strong transversality assumption <= Cl-structurally stable,

which motivated for a long time the study of Axiom A flows. This equivalence is often
referred to as the Cl-structural stability conjecture and it was solved by Robinson [60]
for the first implication and by Hu [48] (in dimension 3) and Hayashi [45], Wen [72]
(in all dimensions) for the converse statement. The proof of the C!-structural stability
conjecture for diffeomorphisms was previously obtained by Robbin [59] for the first
implication and by Marie [54] for the converse statement. A good review on structural
stability conjectures can be found in the book of Wen [73]. Up to now, a proof of
the C"-stability conjecture for » > 1 is out of reach due to regularity needed in the
closing lemma and in the Franks lemma. There exist other transversality assumptions,
such as the Kupka-Smale transversality, which was originally introduced (in the case
of Axiom A flows) by Smale under the terminology “Axiom B’ ”. The Kupka-Smale
transversality is weaker than the strong transversality since its definition only deals
with the periodic orbits of an Axiom A flow. It also has the nice property to be
generic, as it was proved by Palis-de Melo [56] on surfaces and by Peixoto [57] in the
general case. Using the contributions of many authors for the proof of the stability
conjectures, Aoki [2] (for Axiom A diffeomorphisms) and Gan [39] (for Axiom A flows)
proved that the set of Axiom A flows satisfying the strong transversality assumption
is exactly the interior of the set of Kupka-Smale flows™"). If we denote by KS(M)
the set of Kupka-Smale flows on M, by ST(M) the set of Axiom A flows satisfying
the strong transversality assumption and by SS(M) the set of Cl-structurally stable

(D These are the flows with a countable set of periodic orbits and with a finite set of fixed points
which are all hyperbolic and which satisfy the Kupka-Smale transversality assumption.

JEP. — M., 2095, tome 12



A MoORSE cOMPLEX FOR Ax1oM A FLOWS 643

flows, then the previous discussion can be summarized by the equality

SS(M) = ST(M) = Int KS(M).
Equivalently, an Axiom A flow satisfying the Kupka-Smale transversality assumption
is structurally stable if and only if it lies in the interior of KS(M).

In another direction, the concept of currents(® turns out to be very useful in the
study of gradient flows. More precisely, Laudenbach [51] and Harvey-Lawson [44]
gave a new interpretation of Morse homology in terms of currents by proving the
following statement. Let us consider a smooth compact Riemannian manifold (M, g)
of dimension n and a smooth Morse function f. If = denotes a critical point of index
k € [1,n], then the stable manifold W*(z) for the flow induced by V, f is an embedded
submanifold of dimension k& and we have (in the sense of currents)

(1) oW ()] =[PW @)= Y nlzy)W(y)]

ind y=ind z—1
y critical point

for some n(z,y) € Z often called the instanton numbers. For every ¢ € [0,n], the
space D" ~¢(M) of currents of degree n — £ is defined as the topological dual of the
space of differential /-forms Qf(M), i.e., the space of smooth sections T'(M; A“T* M).
An equivalent formulation for equation (1) is:

Vw € QF (M), / dw = Z n(m,y)/ w.
W () Ws(y)

ind y=ind z—1
y critical point

This relation is often presented in the following algebraic form. Consider the differ-
ential on the complex of critical points defined by

Ox = Z n(z,y) -y for every x € C*(f) = {critical points of index k},

ind y=ind z—1
y critical point

with the same numbers n(x,y) as before. The cohomological complex (C*(f),0) is
referred to as the Morse complex and is in fact quasi-isomorphic to the de Rham
complex, in the sense that the cohomology groups are the same. A remarkable feature
of (1) is that it gives a representation of this algebraic complex in terms of currents
that are invariant by the gradient flow. Morse inequalities have been generalized to
more general dynamical systems as one can witness in the book of Franks [36]. Yet,
to the best of our knowledge, the previous algebraic procedure does not extend to
Axiom A flows and there is no analogue of its analytical version as constructed by
Laudenbach. In this direction, we can mention the article of Ruelle and Sullivan [63] in
which they constructed similar closed invariant currents for Axiom A diffeomorphisms.
Nevertheless, their construction was only local (near a basic set) and was not enough to
recover the whole de Rham cohomology. More recently, Dang and Riviére showed how
to use the theory of Ruelle resonances [15] to define a natural cohomological complex

)1n coordinates, differential forms with value in the set of distributions. We refer to the book
of Schwartz [65] and the lecture notes of Laudenbach [52] for a comprehensive introduction.

JE.P. — M., 2095, tome 12



644 A. MEDDANE

of currents associated with Morse-Smale and Anosov flows which are two particular
examples of Axiom A flows. Precisely, for a Morse-Smale gradient vector field V =
V,f, they interpreted the Morse complex (C*(f), ) as the complex (C*(V), d) where

1

(2) Ck(V) = Ran(wék) L we QMM C) o o / (£ 4+ 2) "N w)dz € D“’“(M;(C)).
wm Yo

Here, the right term is the set of generalized eigencurrents associated with the Ruelle

resonance 0 of the Lie derivative of V' = V, f which is usually defined by
d %
£y e QF(M;C) — %\ () ue QF (M C).
t=

Moreover, 7y denotes a sufficiently small closed curve surrounding 0 and d is the
exterior derivatives acting on currents. In order to make sense of this linear map W(()k)
for every k € [0,n], they proved in [15, Prop. 4.2] the meromorphic continuation of

the resolvent

s [ (e 42) @nu= [ [T et et @n

for all (¢,1) € QF(M;C) x Q*~*(M;C) and for all k € [0, n]. Moreover, they verified
that their Morse complex coincides with the complex of currents defined by Lauden-
bach in [51] by

(3) CH(Vf) = Vectc{[W"(z)] € D"¥(M), V,f(z) =0, ind(z) = k}.

This complex is in fact quasi-isomorphic to the de Rham complex, i.e., the cohomol-
ogy induced by the Morse complex is isomorphic to the cohomology of the de Rham
complex. In this article, we associate a natural cohomological complex to every
Axiom A flow satisfying the strong transversality assumption using similar ideas.
Namely, we first prove:

Taeorewm 1. Let V' be an Axiom A wvector field which satisfies the strong transver-
sality assumptions (11). There exists Cy > 0 such that, for every k € [0,n], the
resolvent operator

2 (LW 4 2)71 QF(M;C) — DF(M;C)

is holomorphic on Re(z) > Cy and continues meromorphically to the whole complex
plane C.

We call resonances the poles of the resolvent operators (LgC ) + 2)7! viewed as a
meromorphic function on C. In order to prove that (L%f )+ z)~1 admits a meromor-
phic extension, one needs to find good Hilbert spaces Hy, called anisotropic Sobolev
spaces, on which the Lie derivative operators —Lgc ) have discrete spectrum of res-
onances. Moreover, due the anisotropic order of the Sobolev spaces, the generalized
eigencurrents in such spaces are very regular along the unstable manifolds and are very
irregular along the stable manifolds. Although the anisotropic Sobolev spaces strongly
depend on the dynamics of the flow, the spectrum of —£ i/k ) is somehow intrinsic and
does not depend on such spaces (as claimed in Theorem 1). This spectral approach

JEP. — M., 2095, tome 12



A MorsE coMpLEX FOR AX1OM A FLOWS 645

has a long history that we shall briefly recall after the statement of the main theo-
rems. Furthermore, using analytic Fredholm theory [26, App. C], we will extend the
resolvent operator on the half planes Re(z) > —C}, (for arbitrarily large C) as a mero-
morphic family of Fredholm operators. In particular, we will find that the residue of
(Lgf )+ 2)~!tat z = 0 is a finite rank projector whose explicit expression is given by

1 :
m) = Res,—o(— L)) = 27/ (L + )7 dz : QF(M;C) — D"*(M;C).
”T o
Here, vy denotes a positively oriented closed curve which surrounds the resonance 0
and no other resonances. The quasi-isomorphism with the de Rham complex is then

given by the maps Wék). Precisely, we prove:

Turorem 2. — Let V' be an Aziom A wvector field which satisfies the strong transver-
sality assumption (11). The complex (C*(V'),d) defined in (2) is finite dimensional,
is quasi-isomorphic to the de Rham complex (0*(M;C),d) and the quasi-isomorphism
s given by the complex morphism 7T(()*).

Moreover, for every k € [0,n], there exist a Hilbert space Q*(M;C) C Hy C
D'"*(M;C) (with continuous injection) and a positive integer my(0) such that

CH(V) = Ker ((—£{))™)], ).

In addition, the complex (C*(V),d) of Theorem 2 generalizes the usual Morse
complex, in the sense that (3) is satisfied, when V' is reduced to a Morse-Smale gradient
flow V, f. Theorem 2 is a consequence of Theorem 1 which relies on the construction
of the Hilbert space Hj presented earlier and which is the main technical issue of
this article. This last theorem shows the existence of a finite dimensional complex
representing the de Rham cohomology and generated by dynamical currents that are
almost invariant by the Axiom A flow, in the sense there may be Jordan blocks (the
constant my(0) may be greater than 1).

The Hilbert spaces Hy, of the statement are anisotropic Sobolev spaces adapted to
the spectral analysis of transfer operators,

L'(u) =uop" Yu € C*(M),

as it was initiated by Ruelle [62, 61]. Such an operator extends to the space of differ-
ential forms by setting

Lipy(u) = (¢7")"(w),  Vue Q°(M)

and is related with the Lie derivative operator by the formula %Lfk) = Lgf )sz) for
every t € R.

1.1. EARLIER RESULTS ON MEROMORPHIC CONTINUATIONS FOR AXIOM A FLOWS

These functional constructions were originally made by Ruelle using Markov par-
titions in view of studying the mixing properties of these dynamical systems and the

JE.P.— M., 2095, tome 12



646 A. MEDDANE

analytical properties of the zeta functions associated with their periodic orbits. Simi-
lar results have been obtained by Bowen, Fried, Rugh, Dolgopyat and others [7], [38],
[64], [20] also relying on symbolic dynamics.

Building on some earlier work [5] with Blank and Keller for Anosov diffeomor-
phisms, Liverani introduced in [53] Banach spaces of distributions with anisotropic
Holder regularity adapted to contact Anosov flows. Among other things, these spaces
enabled him to prove the meromorphic continuation of the resolvent in some half
plane slightly beyond Re(z) = 0. This approach was further developed in subsequent
works with Butterley [9] and Giuletti-Pollicott [40] to show the meromorphic contin-
uation of (Lg«c ) 4 z)~1 to the whole complex plane for every k € [0,n] and for any
smooth Anosov flow. We also refer to [41, 42] for earlier results with Gouézel in that
spirit for Axiom A diffeomorphisms, where the resolvent acts on compactly supported
functions near a compact locally maximal hyperbolic set. We can also mention [4] for
a different approach (still for diffeomorphisms and still locally near a hyperbolic set
called basic) by Baladi and Tsujii using anisotropic Sobolev spaces and methods from
Fourier /microlocal analysis.

From another perspective, the general theory of semiclassical resonances [26], [46]
was used to derive alternative approaches to construct Hilbert spaces adapted to
the dynamics. First, for smooth Anosov diffeomorphisms, Faure, Roy and Sjéstrand
recovered in [29] the existence of a discrete spectrum for the transfer operator. Then
for general Anosov flows, Faure and Sjdstrand constructed in [30] Hilbert spaces,
referred to as anisotropic Sobolev spaces, on which the Lie derivative L%? ) has discrete
spectrum on a large part of the complex plane. Their analysis used the machinery
of microlocal analysis as a toolbox and it reduced in some sense the problem to
a dynamical question, i.e., constructing an escape (or Lyapunov) function adapted
to the dynamics on the cotangent space. In [30], the meromorphic extension of the
resolvent was obtained for £ = 0 and this result was extended to every k € [0,n]
in [24] by Dyatlov and Zworski in view of applications to the Ruelle zeta function.
More information on the spectrum (e.g. band structure) has also been obtained by
Faure and Tsujii [70, 71, 31, 32, 33, 34] in the context of Anosov flows and contact
Anosov flows using these kinds of methods.

Subsequently, the meromorphic extension of the resolvent has been extended to
Axiom A flows by Dyatlov-Guillarmou [22, 23] under the assumption that the re-
solvent acts on differential forms supported near a fixed basic set. Although this
analysis was enough to prove the meromorphic continuation of the Ruelle zeta func-
tion for Axiom A flows, it does not seem to be sufficient to deduce Theorem 1 (and
thus Theorem 2) which does not require any support restriction. In that direction,
Dang and Riviére [15, 16, 17, 19] proved meromorphic continuation for globally sup-
ported test forms in the case of Morse-Smale gradient flows, a generic subset of Morse
gradient flows which satisfy the strong transversality assumption. In this series of
articles, Dang and Riviere gave a complete description of Pollicott-Ruelle resonances,
giving a band structure for the spectrum, computed the dimensions of eigenspaces

JIEP. — M., 2095, tome 12



A MoORSE cOMPLEX FOR Ax1oM A FLOWS 647

by making explicit the eigenvectors in terms of de Rham’s currents and gave a new
proof of Morse-Smale inequalities. In particular, the link with the topology was made
possible through their global construction of Sobolev spaces adapted to the dynamics
of Morse-Smale flows. In this article, we gather the approaches of Dyatlov-Guillarmou
and Dang-Riviere so that we obtain the meromorphic continuation of the resolvent
acting on globally supported forms for general Axiom A flows. Finally, we emphasize
that, besides its applications to topology, Theorem 1 also answers a question raised
by Baladi in [3, p. 152] for hyperbolic diffeomorphisms.

1.2. Back 1o ToroLoGy. Recently, the developments of these analytical tools led to
much progress on the link between the topology of the manifold and the spectrum of
the Lie derivative, at least for the examples where the functional setup was globally
defined, namely Morse-Smale and Anosov flows. We recall here some of these advances.

— Contact Anosov flows in dimension 3. In that geometric framework, Dyatlov
and Zworski [25] computed the dimension of Ker(Li/k))mk(o) for every k € [0, 3] and
expressed it in terms of the Betti numbers of the manifold. They used this to generalize
earlier results of Fried [37] on the order of vanishing of the Ruelle zeta function.
In particular, their computation holds true for any geodesic flow acting on the unitary
cotangent bundle S*¥ =: M of a compact negatively curved surface . Borns-Weil
and Shen [6] extended [25] to the non-orientable case and Hadfield [43] showed a
similar result for compact negatively curved surfaces with boundaries.

— Anosov flows in high dimension. Kiister-Weich [50] computed the dimension of
Ker(Lg,1 ) )™1(0) in terms of the first Betti number for hyperbolic manifolds of dimension
= 3. Their result also holds for perturbations of hyperbolic metrics.

— Perturbation of Anosov flows. Cekié-Paternain [10] gave the first examples of
Anosov flows in dimension 3 which preserve a volume form where the vanishing order
of the Ruelle zeta function jumps under perturbation of the flow. Again this was
achieved by computing explicitly the dimension of the spaces appearing in the coho-
mological complex of Theorem 2. In dimension 5, Cekié¢-Dyatlov-Kiister-Paternain [11]
found a similar result for geodesic flows on nearly hyperbolic 3-manifold (the unitary
cotangent bundle is 5-dimensional).

— Fried’s conjecture [37, 38]. Dang-Guillarmou-Riviére-Shen [14] established, in the
case of Anosov flows, a criterion in terms of the spaces appearing in Theorem 2 to
ensure that the value at 0 of the twisted Ruelle zeta function is locally constant.
It allowed them to prove Fried’s conjecture on the Reidemeister torsion for nearly
hyperbolic 3-manifolds. This was further pursued by Chaubet and Dang [12] who used
the cohomological complex of Theorem 2 to define a dynamical torsion for contact
Anosov flows in any dimension.

— Morse-Smale flows. Dang-Riviere [19] proved Theorem 2 in the case of Morse-
Smale and Anosov flows. In the specific case of Morse-Smale gradient flows [18], they
also considered the Lie derivative operator as a limit of the Witten Laplacian and
they obtained the Ruelle spectrum as a limit of the Witten spectrum. It enabled them

JE.P. — M., 2095, tome 12



648 A. MEDDANE

to recover the Witten-Helffer-Sjostrand instanton formula and to prove the Fukaya
conjecture on Witten deformation of the wedge product.

1.3. OurLINe oF THE PrOOF. — We use the microlocal approach to Pollicott-Ruelle
resonances of the Lie derivative operator Ly as it was developed by Faure and Sjos-
trand. Recall that the proof of Theorem 1 relies on the construction of Hilbert spaces
adapted to the dynamics. Following [30], defining such spaces can be reduced through
some microlocal procedure to the construction of an escape function. More precisely,
one has to exhibit a family of functions that are decreasing along the Hamiltonian
flow of H(z,£) = &(V(z)) on the cotangent bundle T*M of M. The existence of
such decreasing functions, called energy or Lyapunov functions, is already known for
the flow on M as soon as V is an Axiom A flow satisfying the strong transversality
assumption. We can cite for example the articles of Conley [13], Wilson [74] for flows
and Pugh-Shub [58] for Axiom A diffeomorphisms satisfying Smale’s transversality
assumptions. One of the main novelty of this article is to do the same for the induced
Hamiltonian flow on T*M. It was already done by Faure-Sjostrand [30] for Anosov
flows, by Dyatlov-Guillarmou [22] near a basic set and by Dang-Rivieére in [15, 16] for
Morse-Smale flows. To construct a decreasing function along this Hamiltonian flow,
Dang and Riviére highlighted in the case of gradient flows [15] that one needs to prove
the compactness of the conormal distribution
U {£eSiM : &T,WH(x_)) =0, for x_ the critical point s.t x € W"(z_)},
xeM

where W"(z_) denotes the unstable manifold of the critical point x_. Nevertheless,
to do so, they made a restriction on the class of Morse-Smale flows, namely, the exis-
tence of Cl-linearization charts near critical points. Such a restriction is not available
for more general Axiom A flows and we need to proceed differently. In particular,
we note that our proof allows to remove this linearization assumption in the specific
case of Morse-Smale flows. To prove a similar result for Axiom A flows, we proceed
in three steps.

— We recall the definition of the strong transversality assumption for Axiom A
flows which generalizes the one used for Morse-Smale gradient flows.

— Then, we generalize the compactness result for conormal distributions without
using @!-linearizing charts. This step will require an analysis similar to the local
analysis near basic sets performed by Dyatlov-Guillarmou [22].

— We deduce the existence of a global escape functions for Axiom A flows which
satisfies the strong transversality assumption by adapting the construction of Faure-
Sjostrand [30].

Concerning the proof of Theorem 2, we recall that that there is a strong analogy
with the Hodge-de Rham Laplace operator® A = dod* 4+ d* od = (d + d*)? acting
on differential forms Q*(M) if we remark that

LV:dOLV+LVOd:(d+LV)2.

(3)The derivative d* denotes the formal adjoint of d in L2 (M; AFT* M).

JEP. — M., 2095, tome 12



A MoORSE cOMPLEX FOR Ax1oM A FLOWS 649

Note also that both operators A and £y commute with the exterior derivative d.
These analogies are at the heart of the proof of Theorem 2.

1.4. ORGANIZATION OF THE ARTICLE

— In Section 2, we recall the definition of an Axiom A flow and introduce the
dynamical tools we will need. Furthermore, we present in this part a few key notions
for our analysis which turn out to be related: Smale’s order relation on basic sets,
strong transversality assumption, filtrations (with open sets) and unrevisited neigh-
borhoods. We also explain how to bypass the C!-linearizing charts used in Dang-
Riviere’s articles.

— In Section 3, we present a possible construction of an escape function and we
state a generalization of the compactness result for conormal distributions which takes
into account the neutral direction given by the flow direction. The results stated in
this part were in fact the most challenging ones to prove.

— In Section 4, we define anisotropic Sobolev spaces, in which the Lie derivative
operators Li,k ) have discrete spectrum (see Theorem 5 from which Theorem 1 derives).

— In Section 5, we recall how the methods from [15, 19] can be adapted to deduce
Theorem 2 from Theorem 1.

— In Section 6, 7 and 8 we give the proof of the dynamical results such as the
construction of energy functions for Axiom A flows, the proof of the compactness of
conormal distributions and the construction of the global escape functions.

Acknowledgements. — The author would like to warmly thank Gabriel Riviere for
many explanations about his work with Nguyen Viet Dang and for his careful reading
and remarks which contributed a lot to improve this paper. We also thank the anony-
mous referee for the many suggestions and comments that also helped to improve the
exposition of this article.

2. DYNAMICAL PRELIMINARIES.

Throughout this paper, we denote by (M™, g) a smooth compact Riemannian man-
ifold without boundary of dimension n > 1 together with some smooth Riemannian
metric g. We also denote by d, the geodesic distance associated to the metric g and
by |.lg = v/¢(.,.) the norm induced on the fibers of the tangent bundle TM or on
the cotangent bundle 7% M. To a smooth vector field V' € I'(T'M), we can associate a
flow (¢)¢er which solves the Cauchy problem:

d t
(4) Ve e M, Vt e R, a? (z) = V{e' (),

() = .
The system (4) is highly non-linear in general, which makes difficult to predict the
large-time behavior of trajectories, especially in the case of hyperbolic dynamics.

Derinition 2.1 ([68, p.796]). — A point x € M is said to be non-wandering if for
every neighborhood U of x and every T > 0 there exists ¢t € R such that |¢| > T and
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650 A. MEDDANE

(W) NU # @. The non-wandering points form a closed invariant subset of M, called
the non-wandering set, that we will denote by Q := Q(¢?).

We refer to Appendix A or to the books [56], [49], [35] for a definition of hyperbolic
set.

Derinition 2.2 (Axiom A flow, [68, p.803], [35, Def.5.3.29]). — A flow o' : M — M
is said to be Axiom A if its non-wandering set {2 is hyperbolic and can be written
as the union of the fixed points and of the closure of its periodic orbits with positive
period, i.e.,

Q= F U Per(p?).

From the definition, one can remark that an Axiom A flow on a compact manifold
must have a finite number of fixed points (since they all are hyperbolic) which are
isolated in Q. It is known from the works of Smale and Bowen that an Axiom A
flow has a non-wandering set which splits into a finite number of hyperbolic invariant
compact sets called basic sets:

Proposition 2.3 (Spectral decomposition, [68, §IL.5], [7], [35, Th. 5.3.37])
If ©t is an Aziom A flow, then its non-wandering set Q decomposes into a finite
union of basic sets K;:

(5) Q=K UKy - UK,
where K basic means:

— K is compact and hyperbolic;
— K s locally maximal: there exists some open set O C M such that
K = (N ¢"(0);
teR

— K s topologically transitive, i.e., there exists a point x € K such that
(@t(x))teﬂh =K.

From now on, ¢! will denote an Axiom A flow on (M, g). We call attractor for "
a basic set K which satisfies

K= N ¢(0),

teR,
for some open set O D K. Similarly, we call repeller for ¢! a basic set K which satisfies

K= N ¢0),

teR_

for some open set O D K.

Remark 2.4

— The basic sets K; of the decomposition (5) are the maximal (for the inclusion)
locally maximal, ¢?-invariant, compact, hyperbolic sets which are topologically tran-
sitive. A basic set is equal to the closure of its periodic orbits which can possibly be
reduced to a fixed point, i.e., have period 0.

JIEP. — M., 2095, tome 12
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~If N = 1, then M = Q(¢') = Ki. This result is a consequence of the local
maximality of basic sets. It can be proved using Proposition B.3 (which uses the
definition of a stable/unstable set of a basic set introduced in the next paragraph)
together with the definition of the non-wandering set.

2.1. STABLE AND UNSTABLE MANTFOLDS. — We begin by recalling some well-known facts
concerning uniformly hyperbolic dynamics which can be found in [49] or [21]. Fix a
basic set K. For all € > 0 and all z € K, the stable manifold, weak stable manifold,
local stable manifold and local weak stable manifold at the point z are defined by

W3(2) = A{z € M : dg(p"(2),¢"(2)) ,—>_ 0}, W*(2) = U ¢" (W3(2)),

t——+o0 tER
Wez) = {o € W3(2) : dyl(¢'(2),0'(2)) <&, VEERLY,
W2o(2) == {z € M : dyg(p'(2),¢'(2)) <e, V€ Ry}

¢ in the previous equalities, we could have defined

By replacing s by u and ¢! by ¢~
similarly the &/weak/local/local weak unstable manifolds. From this remark, let us
only deal with stable manifolds by keeping in mind that everything can be adapted
for unstable manifolds. Thanks to the Hadamard-Perron theorem, also called stable
manifold theorem, there exists g < 1 such that, for all z € K, the sets Wsso/so(z) are
smooth submanifolds of M of dimension d/s,, which is constant on each basic set.
Precise statements and proof of this result can be found in [49, Th.6.4.9, p. 267] for
the case of diffeomorphisms and in [21, Th. 5, p. 34] for the case of flows. In general,
stable manifolds are not embedded submanifolds but only immersed submanifolds,
except in the case of Morse flows. Moreover, the stable manifold is related to the local
stable manifold thanks to the following formula [21, p. 24]:

W3 (z) = go 7" (W5 (¢"(2)), (neN),
which does not depend on g( given by the stable manifold theorem. If K denotes a
basic set, then we define its stable set by

W3(K):={x e M: d(¢'(z),K) — 0}.

t——+o0

Thanks to the shadowing lemma [49, Th. 18.1.6 p. 569] and to the local maximality of
basic sets, this last set decomposes into the stable manifolds of elements of K, namely

WOE) = U W),

A proof can be found in [35, Th. 5.3.25] for Axiom A flows and in [8, Prop. 3.10, p. 53],
[72, Th. 6.26, p. 131] for Axiom A diffeomorphisms. For every ¢ > 0, we can define the
local stable set of K by setting

(6) W2(K) = EJK W2 ().

Now, let us present a lemma which was originally given by Smale.
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WE(K;)

Ficure 1. Tllustration of Lemma 2.6. Note that the closure of the
global stable set of K; contains the global stable set of K.

Lemma 2.5 (Partition by stable manifolds, [68, Cor.11.5.3] ). — We have the following
decomposition of M in stable sets:

(7) M= L] WK

Lemma 2.5 dictates the behavior of the trajectories outside the non-wandering set.
Precisely, if we take an element 2 € M, then there exists a unique pair (4,5) € [1, N]?
such that x € W"(K,;)NW?3(K;) and the decomposition (7) provides elements z_ € K;
and x4 € K such that z € W"(z_) N W*(z4). The point z is unique modulo the
equivalence relation on K; given by:

21~ R2 < 21,22 € Kj and z1 € WS(ZQ).

A similar remark holds for z_.

Let us mention one more lemma concerning the closure of stable sets. The following
lemma is illustrated in Figure 1 and emphasizes the fact that the closure of the local
stable manifold of a basic set is still contained in the stable set of this basic set.

Lemva 2.6. — For every € < €y, where gg is the positive constant given by the stable

manifold theorem for the basic set K, we have WE(K) C WE (K).

Proof. — Thanks to the stable manifold theorem, there exist C, A > 0 such that for
every z € K and every € < gg,

(8) r € Wi(z) <= Vt =0, d, (¢'(z),¢'(2)) < min(Ce*/\tdg(x, z),¢€).

Now, if we fix ¢ > 0 and if we consider a sequence ((2n,zn))n € M x K which
converges to some limit (oo, 200) such that x,, € W2(z,,) for all n € N, then the rela-
tion (8) applied to (x,, z,) passes to the limit when n — 400 and gives in particular
Too € WE (200)- O
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2.2, LLIFTING THE DYNAMICS ON THE COTANGENT. Since we will use the analysis
through escape functions developed in [30, p.329], we start by introducing the lifted
flow on the cotangent bundle T* M

I\ T *
O'(2,8) = (¢'(2), (D' (x) ") (€)), V(2,§) €T"M
and its restriction to the unitary cotangent bundle S*M = {(z,§) € T*M, |¢], = 1}

(9) @' =kod® on S*M, where k: T*M \ 0pr — S*M, (2,&) — (z,£/[€],).

Note that the flow ® extends the flow ¢ to the cotangent bundle in the sense that
7o ® = ¢! o, where m denotes the projection from T*M to M identified with the
zero section, and that it is linear on each fiber. Moreover, the flow ® sends T* M \. 0,
into 7* M . 0ps because the linear map D¢’ (z) is invertible. Therefore, the flow Pt is
well-defined on S*M and is generated by a smooth vector field which will be denoted
by Xpu. To summarize, we have the following commutative diagrams:

T M T*M T*"M ~\ 0p T*M \ 0pf
ot P!
M ; M S*M = S*M
14 P!

Since our analysis will take place in T*M, we also define the dual distributions
associated with the neutral E,, stable E5 and unstable E, distributions® which

appear in the definition of hyperbolicity (see Appendix A) at any point z € Q by
(E5(2))(Eu(z) ® Es(2)) = 0,
(EL(2))(Bu(z) ® Eo(2)) =0, (E{(2))(Es(2) @ Eo(2)) = 0.
This gives us a hyperbolic splitting of the cotangent bundle:
T;M = E;(2) ® E;(2) ® E}(2).

2.3. EXTENSION OF THE INVARIANT DISTRIBUTIONS OUTSIDE THE NON-WANDERING SET
Thanks to the partition’s lemma 7 by stable manifolds, we can extend the previous
definitions outside the non-wandering set.

Derinirion 2.7. — For every x € W3(zy) N W"(z_) with z_ € K; and 24 € Kj,
we define the spaces EX(z), EX (z), EX(z), E,(x) to be the largest spaces satisfying:
EX(x)(TeW™(24)) =0, EL(x)(T:W*(x4)) =0,
EL(@)(TeW™(z-)) =0,  EL(2)(TaW"(z-)) =0.

Moreover, the definition does not depend on the choice of x4 and z_ in W*(z;) N K
and W"(z_) N K; respectively.

(4)On a basic set K, we also use the notations E}, for Ef + E} and E} for Ef + EJ.
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K, P K, Ky Ko P Ky Ko
T 2 2
A A
K

K3 < 2 > K3 Ky < K3 > Ky

K, K K, Ky K, K,
(a) Axiom A flow which does not satisfy (b) Axiom A flow which satisfies the
the (strong) transversality assumption: ex- (strong) transversality assumption.

istence of a saddle-connection.

Ficure 2. Some Axiom A flows on the 2-torus.

Remark 2.8

—If 24 is a fixed point, then W*°(z;) = W3(z;) and consequently EX(z) =
Bz, (x) € {£(V (2)) = 0}.

— The distributions E¥, E, EX and E;, are defined on the whole manifold and are
dl-invariant.

— Recall that fixed points are isolated (Remark 2.4). So if 24 is not a fixed point
then we get that dim Fso (24 ) = dim Eg(z4)+1 and dim W*° (21 ) = dim W3(x,) + 1.
Therefore, we obtain EX(x) = EX (z)N{{(V(z)) = 0} and dim EZ (z) = dim EX(z)+1.

— We can extend the neutral distribution outside the non-wandering set by fixing,
for every x € W (z_) N W*(z4),

(@) i= Bi(a_) N Ely(0y) = {€ € T*M, & (T,W"(a_) + T,W*(+)) = 0}.

2.4, STRONG TRANSVERSALITY ASSUMPTION. — In this part, we briefly recall the defi-
nition of the strong transversality assumption presented in the introduction, which
turned out to be the good transversality assumption to prove the structural C'-sta-
bility conjecture.

We say that ¢! satisfies the strong transversality assumption if for every (z_,z,) €
K; x K; and for every x € W"(z_) N W®(z1) we have

(10) T, W (x_) + Ty W (2y) = Ty M.

Since both spaces T, W"°(x_) and T, W3°(z) contain the flow direction RV (z), an
equivalent formulation to (10) is:

(11) T, W () + ToW™(2y) = T,W™ (x_) + TuWS(zy) = T, M.

Moreover, one can remark that the strong transversality assumption does not depend
on the choice of z_ € K; and x4 € K; such that z € W"(z_) N W5(z4+) in (10)
or (11).
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L

Ficure 3. Order relation Ficure 4. Order relation
between two fixed points. between two basic sets.
Remark 2.9. — If x_ or zy is a fixed point then the strong transversality assumption

reads

T W x_) + TpyWe(ay) = Ty M.
This is in particular the case for Morse-Smale gradient flows [15] where both x_
and x4 are fixed points.

From (11) and directly from the definitions, we can deduce the following disjoint-
ness properties:
E: N E:;o =0p and E:O N E:; = 07,
where 0, denotes the null section of T*M.

2.5. OrpER RELATION. — When Smale [68] defined Axiom A flows, he exhibited a
relation between basics sets of an Axiom A flow. Precisely, for two basic sets K;
and K, he defined the relation < by

K, <K; < WU(KZ) N Ws(Kj) * O

< Jzxe M, Iz_,zq) € K; x Kj, v € W (x_) N W¥(xy).
This relation is illustrated in Figures 3 and 4 and gives a graph structure on the family
of basic sets, where the edges of the graph are the basic sets and an arrow between
two basic sets (from K; to K;) is given by the relation K; < K;. When ¢ satisfies
the strong transversality assumption, then the next theorem (originally due to Smale)
states that the relation < is a partial order relation. Since we were not able to find

(12)

out an explicit proof in the literature and for the sake of completeness, we present its
proof in Appendix B.

Turorewm 3 (Smale, [68, Prop. 8.5, p. 784]). — If ¢! is an Aziom A flow, then we have
for every basic set K

WHK)NW3(K) =K.
Moreover, if o' satisfies the strong transversality assumption (11), then the relation
< defines a partial order relation. An equivalent definition of the relation < is then
given by

and we have
(14) Wu(K;) = U WUK;) and WS(K;)= U W3(K;).
5K Z2K; 1, K; <K,
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K1 Kl

K\ / KS K\ / K4
K4 KZ
Iicure 5. Both graph correspond to the Axiom A flow on the 2-torus
of Figure 2(b). A path in the oriented graph corresponds to a con-

necting orbit between the basic sets. The left one has its indices
compatible with the graph structure contrary to the right one.

As we can see in Figure 2(a), relation (12) may not be an order relation when the
strong transversality assumption does not hold. Another consequence of this theorem
is that strong transversality implies the no-cycle property: the induced graph has
no cycle. This fact is necessary to ensure the existence of non-constant Lyapunov
functions for the flow .

2.5.1. Total order relation. — In order to use mathematical induction, we need to
consider a total order on the family of basic sets. It can be achieved as soon as the
Axiom A flow (! satisfies the no-cycle property. Therefore, if we assume the no-cycle
property, then we define a total order relation from Smale’s order relation < on the
basic sets as an order relation on [1, N] compatible with the partial order relation <
in the sense that

(15) King — i< J.

From now on, we assume the no-cycle property and we fix a total order relation.
In Appendix B, we prove that the set U]?i WY(K,) is compact for every i € [1, N]J.

Be aware that W"(K;) and |J;; W"(Kj) are not equal in general, see for example
Figure 5.

2.6. FILTRATIONS AND UNREVISITED NEIGHBORIHOODS

An important concept throughout our analysis is the concept of filtration. Even
though the term of filtration usually refers to an increasing sequence of subcomplexes
of a simplicial complex, we give here an open version deeply related to Morse homology
where the subcomplexes are open sets, i.e., submanifolds of dimension n = dim M
without boundary. To see the analogy, let us consider a Morse function f : M — R
which has N critical points z1,...,2y that all satisfy f(x;) = ¢ to simplify. Then,
a filtration is given by the family of open sets (f~!(] — oo,i + 1/2[))o<i<n. For a
general Axiom A flow, we give a definition of a filtration which appeared in the works
of Smale [68], Robbin [59, Lem. 7.9, p.471].

Derinvirion 2.10 (Filtration). — Let ¢! be an Axiom A flow which satisfies the no-
cycle property. Let us consider a total order relation on the basic sets in the sense
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Ky

Ficure 6. Example of a filtration on the sphere S2.

of (15). A sequence of open sets (O )o<i<n is said to be a filtration for ¢ =1 if the
following conditions hold:

(i) The sequence is increasing:
=05 C0O;C---COy=M.

(i) For every i € [1,N], the open sets and their closures are ¢~ !-stable:

g H(07) cor et (07) cor
(iii) For every i € [1, N], we have K; C O; \O,_;.

Remark 2.11

— Any filtration for ¢~
complementary of each open set, i.e., by setting Oj = Int ((ON_Z-)C) for every i.
Indeed, from ¢! (O;\Lz) C Oy_;, we deduce

P (0f) = ¢! (Int ((ON%)C)) C ol ((ozfvfi)c) < (oirfi)c'

So, ¢'(0;) is an open subset of (ON_i)C, and by definition of the interior we get
eHOf) C Int((OR,_i)c) = Of. Moreover, we still have @ = Of C Of C --- C
Of =M and K; COY_,,, ~ O} ..

— O; is a neighborhood of |_|j<1- W3(K;). Indeed, O; contains every basic set K
for j < i and if z € W*(K;) then there exists k € N such that ¢*(z) € O; . Thus,
we deduce z € ¢~F(0;) C O} .

— For every i € [1, NJ, let us define the set

L induces a filtration for ¢! by taking the interior of the

Vii=07NOK ;i1
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One can check that V; is a neighborhood of K; which satisfies V,NQ = K; and the
following property: for all m € N and for all z € V;, if we have z € V; and ¢™(z) € V;
then we must have ¢*(z) € V; for all k € [0, m]. In the example presented in Figure 6,
the basic set K3 belongs to O3 N O3 .

This last remark brings us to the next definition.

Derinirion 2.12 (Unrevisited set, [59, p.463] and [66]). Let X be a smooth man-
ifold. A set W C X is called unrevisited for a diffeomorphism f : X — X if for any
integer m € N,

z, f(z) e W = VYke{0,...,m}, ff¥(z)eW.

We say that a set is unrevisited for the flow ¢! if it is unrevisited for the time-1
map ¢!'. According to the last point of Remark 2.11, the existence of unrevisited
neighborhoods is a consequence of the existence of a filtration for ¢ and of a filtration
for ¢ ~t. Moreover, the existence of a filtration can be deduced from the existence of
a continuous Lyapunov function for the flow which goes back to the work of Conley
[13, p.20] and which can be found in [35, Th.1.5.44 & 5.3.47]:

Turorem 4 (Conley’s fundamental theorem of dynamical systems). — Let o' be an
Aziom A flow which satisfies the no-cycle property.®® There exists a continuous func-
tion E : M — R which is constant on each basic set and take distinct values such
that,

E (¢'(z)) < E(z), Vi >0, VeeM\Q,
and E o ot < E everywhere for all t > 0.

Considering the sublevel sets associated with such a function E, it is not hard to
deduce

Cororrary 2.13 (Existence of a filtration). — Under the same hypothesis, there exists
a filtration for the flow ¢t and there ewists a filtration for the flow ¢~*
of Definition 2.10.

in the sense

Furthermore, intersecting two filtrations (one for ¢! and one for ), we get:

Cororrary 2.14 (Definition and existence of unrevisited neighborhoods)

Let K be a basic set. We say that an open set V of K is an unrevisited neigh-
borhood of K if K C V, V is an unrevisited set, V is also an unrevisited set and
QNYV = K. According to Theorem 4 and Corollary 2.13, there exist arbitrarily small
unrevisited neighborhoods V of K.

(5)We use here the fact that the chain recurrent set is equal to the non-wandering set when the
Axiom A flow satisfies the no-cycle property, which can be found in [35, Th.5.3.47]. We refer to [35,
Def. 5.3.42] for a definition of the no-cycle property.

JEP. — M., 2095, tome 12



A MorsE cOMPLEX FOR AXIOM A FLOWS 659

Filtrations and unrevisited neighborhoods play an important role in the dynamical
proof of this article. The existence of Lyapunov functions, of filtrations and of un-
revisited neighborhood are related and almost equivalent. To make it easier to read,
we sketch the nonlinear dependencies between these three notions:

(1) We recall that if an Axiom A flow satisfies the strong transversality assumption
then it satisfies the no-cycle property.

(2) According to Conley, for an Axiom A flow satisfying the no-cycle property, there
exists a continuous Lyapunov function, and this implies the existence of a filtration.

(3) From this filtration, we can obtain arbitrarily small unrevisited neighborhoods.

(4) Once we have one filtration, we can construct filtrations for any total order
relation—see Lemma 6.3. This lemma mainly(®) relies on Proposition B.3 of Appen-
dix B.

(5) Using filtrations for every total order relation constructed in Lemma 6.3, we can
deduce Corollary B.5. Namely, we get the compactness of all the sets U,L< j WY(K;)
and |J,¢; W*(Kj), for every total order relation defined in Section 2.5.1.

(6) Once we have the compactness of these sets, we can construct smooth Lya-
punov functions adapted to the total order relation. Precisely, we can construct Lya-
punov functions with arbitrary values on the basic sets accordingly to the total order
relation—see Proposition 3.1.

Remark 2.15. — Theorem 4 implies actually something stronger. Indeed, the filtra-
tion given by the sublevel sets of the continuous Lyapunov function is stable by ¢~*
for every t > 0 and, for every basic set K, there exists an open neighborhood V D K

such that: for all T > 0,
z,07 () €V = Vt€[0,T)], ¢'(x) € V.

Even if this last definition seems to be more natural for flows, we chose the diffeo-
like definition which will be more convenient for the analysis of the lifted Hamiltonian
dynamics on the phase space as we will see later on. Unrevisited neighborhoods will be
a very important tool of our analysis. They will be a purely dynamical alternative to
the C! linearizing charts near critical points which were used in [15] for Morse-Smale
gradient flows, as we can witness in Figure 7.

Let us mention some properties satisfied by the unrevisited neighborhoods. All the
results mentioned below about unrevisited neighborhoods were not precisely stated
in the literature. They should be attributed to Conley, Robbin, Hirsch, Palis, Pugh,
Shub to the best of our knowledge. Precisely,

(P1) The intersection of two unrevisited sets is also an unrevisited.
(P2) We have a uniform approximation of the stable and unstable manifolds by
unrevisited neighborhoods in the sense of the following lemma.

(6)1n particular, its proof does not use the compactness of the sets |
Ui<; W*(K;) which is claimed in Theorem 3.

i< WY(K;) and
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WH(K)

€

W (K)

Figure 7. Illustration of some unrevisited neighborhoods near a basic set.

Levya 2.16 (Uniform convergence of unrevisited neighborhoods). — Let V be an
unrevisited neighborhood of a basic set K which satisfies VN Q = K. The following
equalities are satisfied:
(16) N Vne™(V)=W*K)NV, N VNne™(V)=WHK)NWV.

meN meN
Therefore, the sequence of unrevisited neighborhoods V N @™ (V) is decreasing with
respect tom € N and tends to W*(K)NV as m tends to +oo for the geodesic distance
to a compact set, in the sense that

(17) sup  dg (y, WH(K)NV) — 0.

yEVNE™ (V) morteo
A similar statement holds for the stable manifolds if we replace ™ by = ™.
Remark 2.17. For K and 'V as in the previous lemma, we deduce from the first

equation in (16) that the sets W3(K)NV and W (K)NV are compact sets (as claimed
implicitly in (17)). This yields the inclusions

Ws(K)NVCWS(K)NV and Wu(K)NVC WY K)NV.
Proofof Lemma 2.16. — Fix a basic set K and an unrevisited neighborhood V of K
such that VN Q = K. Note first that (17) can be deduced from (16) by contradiction.

Indeed, let us assume by contradiction that we can find ¢ > 0 and an increasing
sequence of integers (m;);cn satisfying m; — +o0o as i — +oo such that

dyg(Ym,,2) > e, Vz2e WHK)NV, VieN,
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where
Ym: € VN V), dy(Ym,, W (K)NV) = sup  dg4 (y,W“(K)ﬁV) , VieN.
yeVNE™i (V)
By compactness of M, one can extract a subsequence (yz; ); of (Ym, ); which converges
to a point Yoo as ¢ tends to +o0o. Assuming (16), we have on one hand that
Yo € N VNE™ (V)= N VN™(V)=W"K)NV
€N meN

and on the other hand that

dy(Yoo, WH(K)NV) > e.

It leads to the expected contradiction. Now, it remains to prove (16). We begin by
proving the direct inclusion for the first equation in (16). To do so, consider a point y
which belongs to ,,,cn VN ¢™ (V) and let us show that y lies in W"(K). Thanks to
Lemma 7, M decomposes into the unstable sets of the basic sets and thus there exists a
unique basic set K’ such that y € W"(K’). We claim that K’ = K. By contradiction,
if K' # K, then we choose 7 > 0 sufficiently small so that {z, d,(z, K') < n}nV =g
and we choose m € N sufficient large so that =™ (y) € WY (K') € M \'V (which
is possible by definition of the unstable set of K). But, by definition of y, we have
for all m > 0 that " (y) € ¢ ™(V N ¢™(V)) C V, which leads to the expected
contradiction. Therefore, we must have K’ = K and thus y € W"(K) N V. The
reverse inclusion for the first equation of (16) is a consequence of the fact that V is
unrevisited together with the definition of W"(K).

Now, it remains to prove the second equation of (16). To do so, it is enough to
remark that the inclusions
WHK)NVYCVN N VNe™(V) CVn N VNe™ (V) =VnIW*(K)NV = W*(K)NV

meN meN

are actually equalities thanks to the first equation of (16). This ends the proof of the
lemma. ]

Putting together the properties (P1) and (P2) we deduce the next property.

(P3) If V is an unrevisited neighborhood of a basic set K such that VN Q = K,
then the sequence (™ (V) N~ ™(V))men tends to

(WEK)NV)Nn (WHEK)NV) = (WH(K)NWHK)NV =K
in the sense that
sup dg (y,K) — 0.
y€e™ (M)Ne=m (V) moee
Remark 2.18. — The property (P3) rests on the relation WS(K)NW"(K) = K which
is a consequence of Theorem 3, but whose proof does not need the strong transversality

assumption. Moreover, they are both related with the local maximality of the basic
set K. Indeed, from (P3) we deduce

KSNME N @M= N ¢"M)Ne™"(V) = K
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3. EscaPE FuncTIONs FOR AxtoMm A FLOWS

Following the strategy of Faure and Sjostrand [30], we will construct some function,
called an escape function, which will enable us to define anisotropic Sobolev spaces
on which the Lie derivative operator —£Ly has nice spectral properties. This function
is related to the construction of energy functions (also called Lyapunov functions)
whose existence will be stated in paragraph 3.2 and proved in Sections 6 and 7.

According to the strategy of [30], we need to construct an energy function on the
unitary cotangent bundle S* M which is increasing along the (projected) Hamiltonian
flow ®. We choose here to split its construction into that of two energy functions
which are slightly easier to build independently: one on the base manifold M and one
on the fibers of S*M.

3.1. Exercy runcrions on M. — As recalled in Proposition 4, it is known from the
work of Conley [13] that any continuous flow on a compact manifold behaves like a gra-
dient flow outside an invariant set called the chain recurrent set (see for instance [56]
of [35] for a definition). For example, it is the case for gradient flows of Morse func-
tions where the chain recurrent set equals the set of hyperbolic fixed points and an
energy function is given by the Morse function itself. For Axiom A flows satisfying
the no-cycle property, the chain recurrent set equals the non-wandering set—see [35,
Th.5.3.47]. Later, Wilson [74], Fathi and Pageault [28] explained how to regularized
Conley’s Lyapunov function. For the sake of completeness and since its proof will be
very instructive for the construction of energy functions on S*M, we will provide a
smooth version to Conley’s result (recalled in Theorem 4) using filtrations and unre-
visited neighborhoods. Furthermore, the next proposition has the advantage to give
> Lyapunov functions with arbitrary values on the basic sets of any Axiom A flow
satisfying the no-cycle property. The proof of next Proposition is given in Section 6
and the analysis on S*M will be made in Section 7.

Prorosition 3.1 (Energy function for Axiom A flows). — Let ¢! be an Aziom A flow
which satisfies the no-cycle property. For every € > 0 and for every family of pairwise
distinct real numbers (A\;)1<i<n compatible with the graph structure in the sense that

there exist an energy function E € C°(M), e-neighborhoods N; of K; and a constant
n > 0 such that:

N
LyE>0 on M, and LyE >n onM\<UNi>.
i=1

Moreover, for all i € [1, N], the map E is close to A\; on each N; in the sense that

E=X onK; and sup |E(x)—\|<e.
zeN,
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From now on, the vector field V € T'(T' M) will be considered to be Axiom A and
to satisfy the strong transversality assumption (11) and in particular the no-cycle

property.

3.2. ENERGY FUNCTIONS FOR THE HAMILTONIAN FLOW. Let us define the following
dt-invariant subset of S*M:
Euo = U H(E;,ko(x) N OM), Es = U H(E:;(Z‘) N OM'),
xeM zeM
Soi= U &(EI(z) N 0n), Yoo = U K(Ef(z) ~ On),
reM zeM

where k denotes the projection on the unitary cotangent bundle defined in (9). They
will be our basic ingredients to construct energy functions on S* M. Indeed, following
the ideas of Faure-Sjostrand [30] and Dang-Riviére [15, 16], we will see that (X, Xs)
and (X, Ys) are both a pair of repelling and attracting compact invariant sets for
the Hamiltonian flow ®!. It will be enough to construct an energy function on the
fiber. First, let us recall that the strong transversality assumption implies that

Yo NYs =2 =3, N Xg.
The following lemma proved in Section 7.4 tells us that they are indeed attracting

and repelling sets for the Hamiltonian flow:

Levmma 3.2, — For every (x,€) € S*M \ (X5 UXy,), we have
dsens (®4(,€),5) 2 0 and ds (27(2.6), Buo) 72 0.

t——+oo

Similarly, for every (x,£) € S*™M \ (Xs U Xy), we have
st (P (2, €), Tso) 20 and ds-rr (7 (2,),50) — 0.

t—+oo
Moreover, contrary to Anosov flows for which it is rather immediate, we need to
make sure that these sets are compact sets. The next proposition is similar to the
compactness result of Dang and Riviére [15, Lem. 3.7, p.15]. Its proof is given in
Section 7.3.

Prorosition 3.3 (Compactness). — Let @' be an Aziom A flow which satisfies the
strong transversality assumption (11). Then, the subsets Xy, Yo, Zso, 2s of S*M
are ®'-invariant compact sets.

To construct energy functions, we also need the existence of arbitrarily small stable
neighborhoods. The proof of next lemma is given in Section 7.5.

Lemma 3.4 (Invariant neighborhoods). For every e > 0, there exist e-neighborhoods
US/5° (resp. UM/"°) of Ys/so (T€sp. Lyjuo) which are ®l-stable (resp. ®~1-stable).

As a consequence of these three results, we obtain energy functions on the fiber
of S*M. The proof of the following proposition is given in Section 7.6.
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Prorosirion 3.5 (Energy functions for the Hamiltonian flow)

Let ¢t be an Aziom A flow which satisfies the strong transversality assump-
tion (11). For every ¢ > 0, there exist energy functions Ex € C>(S*M;|0,1)),
e-neighborhoods W3/5° of Y /507 Wue/u of Yuwosu and a constant n > 0 such that:

Lx,Er >200nS*™Mand Lx,Er >n on S*™M ~ (W' UW?),
Lx,E_>20o0nS"Mand Lx,E_ >n on S*M ~ (W*UW®).

Moreover, the map E+ are constant on each ¥, and we have the estimate

sup  |Ba(w,§)—0/<e and  sup |Es(r,6) -1 <e
(z,6)eWu/ue (,8)EWs/s0
3.3. THE ESCAPE FUNCTIONS. Next, we give a global escape function which extends

the construction of Dyatlov and Guillarmou [22] to the whole manifold and coincide
with the one of Dang and Riviere [15] for Morse-Smale gradient flows and the one
of Faure-Sjostrand [30] for Anosov flows. The proof of next proposition is given in
Section 8.

Prorosition 3.6 (Escape function). — Let u, s,ng € R be such that u < 0 < ng < s.
There exists a smooth function m(xz,£) € C*°(T*M) called an order function and an
escape function G, € C®°(T*M) defined by:

Gm(2,§) = m(x,§)log v1+ f(x,8)?
where f € C®(T*M) is positive everywhere and homogeneous of degree 1 in £ as
soon as || = 1, and where m is defined by m(z,&) = x(|€?) E(z,&/|€]) with x
being a smooth cut-off function such that x =0 on | —00,1/2], x =1 on [1,40o0],
X = 0 everywhere as in Figure 8, and E being a linear combination of previous energy
functions:

E(z,§) := —E(x) 4+ 25+ (2u — no) E4 (2, &) + (no — 2s) E_(x,§).
Moreover, we have the following estimates:
(1) There exist conical neighborhoods Ns/°/v of U.enr Ejopu(2) N Onr such that
f=1&(V)| on N° and for |£] > 1,
1

§n0 <m<2ng on N",

m > s onifs, and m<u on NU.
Also, the open sets can be chosen arbitrarily close to the invariant distributions Ef,
EY and E as in Proposition 3.5.

(2) The map G, is strictly decreasing along the flow ®° except at points (z,€)
where || is small or where x is in a small neighborhood of the non-wandering set
and & is in a conical neighborhood of EZ: for all i € [1,N], there exist an open
neighborhood N; of K; and a radius R > 0 such that for all (x,§) € U, ¢, T;‘M\ﬁfo
such that || > R and for all (x,§) € UZ¢U1~ ~, T M such that |€] > R

X(Gp)(x,&) < —cmin(s, |u|) =: —=C,, <0,
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Nl= 1

Ficure 8. Cut-off function .

with ¢ > 0 being independent of the constants u,ng,s and of the size of the conical
neighborhoods.
(3) More generally, for every (x,§) € T*M such that || > R, we have

X(Gm)(x,€) < 0.

4. ANISOTROPIC SOBOLEV SPACES

The purpose of this section is to construct some Hilbert spaces in which the operator
L gf) acting on sections of &, := A*T* M ® C has good spectral properties. For k = 0
and for Anosov flows, Faure and Sjostrand defined an anisotropic Sobolev space which
can be roughly written as exp(G,, (z, —iD))~*L?(M;C) using the escape function G,,
of Proposition 3.6. This construction can be extended to the fiber bundle A*T*M @ C
of differential forms with complex values for every k € [0,n] as explained in [24].
So, we construct a pseudodifferential operator acting on sections of £, which has for
principal symbol

Agﬁ)(x,f) = exp(Gm(7,§)) Ide, (2) € € (T*M, Hom(ﬂ'*ﬁk,ﬂ*Ek)),

with G,,, being the escape function obtained in Proposition 3.6 and were 7*€, — T M
denotes the pull-back bundle by the projection 7 : T*M — M. We denote this sym-
metric(”) pseudodifferential operators by A% : QF(M;C) c L2(M; &) — QF(M;C)
and we refer for instance to [75, Chap. 4, p. 56] for a definition of the Weyl quantization
on R™ and to [24, App. C.1, p.29],[16, §9.2 p. 40] for pseudodifferential operators on
manifolds and vector bundles. Furthermore, the symbols A,(ﬁ) (z,€) belong to a class of
symbols with variable order whose properties are discussed in the appendix of [29] and
they are elliptic in the sense of [29, Def. 8, p. 40]. It implies the existence of a smooth-
ing operator 7 : D'F(M;C) — QF(M;C) such that A% = A% 4+ 7. Qk(M;C) —
Q% (M; C) is formally self-adjoint, elliptic and invertible—see [29, Lem. 12, p. 42]. Thus,

(M This pseudodifferential operator is defined using Weyl quantization in a coordinate system.
This quantization is known for mapping a real symbol to a symmetric operator. We refer the reader
to the book [75, Chap. 4, Th. 4.1] for Weyl quantization on R™ and to the book [26, App. E| for Weyl
quantization on a variety.
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we choose (;155))*1 to be a representative of the inverse of Agj) modulo smoothing
operators by setting (Ag{))’1 = (A% £ 7)~1 and we define, following [29] and [30],
the anisotropic Sobolev space

H o= (AW TTLA (M3 Ex),  (w,v)aep = (A u, AW 2 apie .-

The space 3" endowed with (., .)s¢ is isometric to the space L?(M; &;). Moreover,
it is isomorphic® to the space HjJ* @ Q¥ (M;C), and the following inclusions

QF(M;C) c HP* ¢ D"*(M;C).
are continuous, where D"*(M; C) is endowed with the weak topology—see [65].

4.1. SPECTRAL PROPERTIES. Adapting the proof of [30, Th. 1.4] to the case of vector
bundles and using the properties'?) of the escape function stated in Proposition 3.6
(which is the exact analogue of Lemma 1.2 in [30]), one can establish the existence of
a discrete spectrum on these anisotropic Sobolev spaces:

Turorem 5 (Discrete spectrum). Let o be an Aziom A flow satisfying the strong
transversality assumption (10). Let G, be an escape function. For every k € [0,n],
the operator —Lgf) defines a mazimal closed unbounded operator on H}* with domain

DL = {uerp: —LWue 3} and £ DLWy c 3 — Hp.

Moreover, there exists a constant Cy € R (which depends on the choice of the escape
function G, ) such that

—L%f) has empty spectrum on Re(z) = Cy,

and there exists a constant C; > 0 (which only depends on the vector field V' and the
metric g) such that

_[,g“) has discrete spectrum on Re(z) = —C,, + C1,

where Cp, > 0 is the constant given by Proposition 3.6.

The eigenvalues of —£ gf ) on the anisotropic Sobolev space are called the Pollicott-
Ruelle resonances of —LE,k ). There are many (equivalent) definitions of resonances.

In particular, they can be viewed as the poles of the resolvent operator (—£ &/k) —2)7 Lt

QF(M;C) — D"*(M;C). Let us make a few remarks about them:

Remark 4.1

— The discrete spectrum of —Li,k ) is intrinsic in the sense that it does not depend
on the escape function, and the essential spectrum can be chosen as far as we want
to the origin by taking m such that C,, > 1. We refer to [30, Th.1.5, p.134] for a

proof in the case of Anosov vector fields.

(®)The idea is that any current u € D’»* (M) writes in coordinates as a k-form with coefficients in
D'(M), e, u=3u;,.. i dz"t A Ada's where u;,
gives the result.

,,,,,,,,,, ir, € D'(M). A partition of unity argument

(9 These are the only properties used in the proof of [30].
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Ficure 9. Ilustration of Pollicott-Ruelle resonances of —£ Ef )

anisotropic Sobolev space H}*. The fact that 0 is a resonance or not

on the

depends on k.

— The set of resonances is symmetric along the real axis since the vector field V' is
real.

— When k = 0, the resonances are included in the set {Re(z) < 0} and the point
z = 0 is a resonance since the constants are solutions of £y u = 0. This fact is not true
in general for £ > 0 and the optimal constant h € R such that there is no spectrum
in the set Re(z) > h is related to the topological entropy of the basic sets.

— From the previous remark, we can see that the resonance 0 is somehow related
to Morse inequalities:

dim(Ker(—Ly)) = by = dim Ho(M),

where by(M) is the number of connected components of M and where Ker(—Ly )
denotes the kernel of the Lie derivative viewed as an unbounded operator on JH{".

— From the first point, we can deduce that the space Ker((—£ gf ))5) does not depend
on the space function m for any ¢ € N (provided m is chosen such that —C,,,+Cy < 0).

Before going deeper into topological considerations, let us recall some useful prop-
erties of the operators —LV).

Remark 4.2

— When proving the discrete spectrum theorem for Anosov vector fields, precisely in
[30, Lem. 3.3, p. 343], Faure and Sjostrand obtained a bound on the resolvent operator
which remains true in our context. For every z such that Re(z)>Cy, we have

1
Re(z) — Cy’
An application of the Hille-Yosida theorem [27, Cor. 3.6, p. 76] yields that

1S + 2) M aep ooy <

(0™ H*: HE — H, Y= 0,
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generates a strongly continuous semi-group whose norm is bounded by e“°t. Therefore,
for every z such that Re(z) > Cy we can write the resolvent as follows:
E e
L +2)7 :/ e (@t dt : P — P
0
where the integral converges absolutely. Note that it is convenient to use the conven-
k
tion (¢~t)* = e~V H 5 H,
— If zg is any resonance of —£ gf) such that Re(zp) > —C,,, +C1, then we can define
the Riesz projector
1
ng’g) = —/ (Lgf) +2) 7tz s HP — HY,
2m J,
where the integral is over a positively oriented closed curved +,, which surrounds the
resonance zg and no other resonances. Moreover, it commutes with L§f ) and it has
finite rank. Note that this definition still makes sense when zq is not a resonance and
in that case, ngg) is identically 0. Note also that 7753) commutes with the exterior
derivatives d because L&f ) commutes with d thanks to the Cartan formula.

— The resolvent operator writes as a Laurent series near zg:

my(zo0) (k) 0—1 (k)
k _ (L +2)
(L +2)7 = Z (=D V(z—zo)e =+ R k(2),
=1

where R, is holomorphic near zj.

20,

~
5. Construction or THE Morse-pDE Ruam compLEx

Let us define Resi(V) as the set of resonances z € C of the operator —Lgc),
i.e., the set of points zg € C such that we can find an escape function G,, with
Re(zp) > —C,,, +C; and such that the algebraic multiplicity of zg, denoted by myg(zo),
satisfies my(20) # 0. We can then define C¥(29) as the range of the projector 77213)

defined on the space of k-forms QF(M;C). Equivalently, we have
CF (20) = Ker (L3 + z0)™(0)),

and since wé’? has finite rank, the vector space C"’i- (20) is finite dimensional. Recall
that this space is independent of the choice of the escape function used to define
Hilbert spaces—see [30, Th. 1.5 p. 334]. Also, the exterior derivative d maps the space
C"ﬁ (20) into C‘k;rl (20) because d commutes with the spectral projector wglj), a property
which follows from the fact that d commutes with ng ) thanks to Cartan’s formula.
We will denote by H(C3,(0),d) the cohomology of the spectral complex associated
with the eigenvalue 0 and by H k (M;C) the complex k-th de Rham cohomology:

HH(C3(0):d) = Kb 0) Ran(ay g1 )

koar o = Ker(d|qgr o
H"(M;C) = er(djo (M’C))/Ran(d\m—l(M;C))'

Theorem 2 of the introduction is a consequence of the next theorem.
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Tueorem 6. Suppose that the vector field V generates an Axiom A flow which
satisfies the strong transversality assumption (10). For every integer k € [0,n], the
map

W(()k) - QF(M;C) — CF(0)
induces an isomorphism between H*(M;C) and H*(C(0), d).

The proof of this theorem is given in [19, Th.2.1]. It was actually proved in the
case of Morse-Smale flows but the proof also works for Axiom A flows since it rests on
algebraic arguments. Its starting point is the commutation formula Wékﬂ) od = dow(()k)
which is a consequence of the fact that the Lie derivative commutes with the exterior
derivative, due to the Cartan formula. Then, the (quasi-)isomorphism of the statement
can be deduced from the following de Rham theorem.

Tueorewm 7 (de Rham). — The following statements are true:

(1) Let u be an element in I satisfying du = 0. There exists w € Q¥ (M;C) such
that u —w € d (}C;C”fll)

(2) If u = dv with u € QF(M;C) and v € D"*~1(M;C), then there exists w €
QOF=Y(M;C) such that

u = dw.

This result can be found in [65, p.355] or in [19, p.16] for this version using
anisotropic Sobolev spaces.

6. ENERGY FUNCTIONS AND APPLICATION TO AXIOM A FLOWS

6.0.1. A useful lemma. — In this part, we recall a general analysis introduced in [30]
which will be applied to both flows ¢! : M — M and t: S*M — S*M.

Let us consider some smooth vector field v € T'(T'X) on a compact Riemannian
manifold (X, go) and let us denote by exp(t - v) the flow generated by v. A pair of
compact sets (K, K_) is said to be attractor-repeller for the flow exp(t - v) on X if
it satisfies the two following conditions:

(i) Ve € X N (K- UKY), dg,(exp(t - v)(z), K4) T 0.
(ii) There exist open neighborhoods Vi of K1 stable by exp(£1 - v) such that

V_nV,=2.

Lemma 6.1 (Faure-Sjostrand, [30]). — Let (K_, K}) be an attractor-repeller pair for
the flow exp(t - v) on the compact Riemannian manifold (X, go) and fix € > 0. There
exist e-neighborhoods Wy of K1, an energy function m € € (X;[0,1]) and a constant
n > 0, which depends on €, such that v(m) > 0 everywhere and v(m) > n outside
W_UW,. Moreover, we have m > 1—e on Wy and m =1 on K. Similarly, we have
m<¢eonW_ and m=0 on K_.

This lemma is proved in a way similar to Lemma 2.1 of Faure-Sjostrand [30, p. 336].
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Ficure 10. Tllustration of an attractor-repeller system.

6.1. Exercy runcrions ror Axiom A rLows. — In this part, we explain how to con-
struct an energy function for the flow ¢? from the previous lemma. More precisely,
we prove Proposition 3.1. The construction of an energy function presented here splits
in three parts:

— First, for every total order relation in the sense of Section 2.5.1 and for every
€ > 0, we define an e-filtration from the unrevisited neighborhoods. It is stronger to
the existence of a filtration given by Corollary 2.13 since it holds for every total order
relation and not only for the one induced by the continuous Lyapunov function of
Theorem 4. It will enable us to choose the value of the Lyapunov function on the
basic sets, as in the statement of Proposition 3.1.

— Then, we prove that for any total order relation and for every j € [2, N], the
pair (Uys; W*(Kk),U,;; W*(K;)) is an attractor-repeller pair.

— Finally, as a consequence of Lemma 6.1 we obtain a family of energy functions F;
and a linear combination of them gives the global energy function for .

Levwva 6.2 (Invariant neighborhoods on the base). — For every total order relation
given in Section 2.5.1 and for every j € [2, N], U,.; W3(K;) and U,»; W"(Ky) are
disjoint invariant compact sets such that:

(18) Vo d U We(K:), d(e'(z), U WU(Ky) — 0
i<j k>4 t—+oo
and
(19) Vo g U WH(Ky), d(e~"(x), U W3(K;)) — 0.
k>j i<j t——4o0
Proof. The fact that these sets are disjoint and compact is a direct consequence

of the order relation’s properties. Now, consider x ¢ (J; ; W*(K;). From the decom-
position (7) of M into stable manifolds of the basic sets, there exists k € [1,N]
such that © € W®(K}). Thanks to our choice of a total order relation in the sense
of Section 2.5.1, we necessarily have k > j. This proves the convergence (18). Up to
replacing the flow ! by ¢, we also get the convergence (19). O
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Now, the key point is to prove the second property of an attractor-repeller. This is
given by the next lemma which is slightly more precise, is a corollary of Theorem 4,
and is inspired by the filtration lemma of Robbin [59, 7.9]

Lemma 6.3. — For every total order relation (Section 2.5.1) and for every e > 0,
there exists a filtration (0, (€))1<e<n on M for o= which is within a distance € of
the stable manifolds and there exists a filtration (0] (€))1<exn on M for ot which is
within o distance € of the unstable manifolds, in the sense that Vj € [1, N],
sup dg (y, U Ws(Ki)) <e, sup dg (y, U W“(Kk)) <e.
y€0; (¢) 1< y60x7j+1(5) k2j

The proof rests on the next sub-lemma which enables us to construct the filtration
by induction from a total order relation on the basic sets. This sub-lemma will also
be used in the proof of Proposition 3.5 in order to lift the filtration on S*M.

Sus-Levma 6.4 (Uniform traveling time for unstable annulus). — Let V be an unre-
visited neighborhood of a basic set K such that VNQ = K. Let O be an open set such
that V C M\ O, *(0) C O and such that O is a neighborhood of {K;, K < K;}.
For every m € N, we define the annulus A(m) by

A(m) == ™(V) NV~ o (V).
If K is not an attractor, i.e., W (K) \ K # &, then O # &, the compact set A(m)
satisfies A(m) # @, A(m) N W(K) = A0) N WYK) for every integer m > 0 and
there exist ko, mg € N such that for every m = myg
o™ (A(m)) C O.
Proof. We split the proof in 4 steps.

Step 1. — We show that for every m € N we have A(m) # @ and W*(K) N A(m) =
WY (K) N .A(0). Since the relation W'(K) N ¢™(V) NV = WYK) NV is satisfied,
we must have

WYEK)NA(m) = WYEK)NA0) = {z c WYK)NV, p'(z) ¢V}

for all m € N. Let us prove that the last set is non-empty. If = belongs to
WHY(K)NV~ K, which is non-empty as K is not an attractor, then one can find
an integer o > 0 such that ¢%(z) € WYK) NV and ¢**(z) ¢ V by fixing
ly = sup{l € N, ¢*(z) € V} (which is finite by definition of z).

Step 2. — We find for every z in W"(K)NA(0) an integer k(x) > 0 such that we have
©*@)(z) € O. Thanks to Lemma 2.5, we know that there exists a basic set K’ such
that € W5(K’). Thus x € W*(K) N WS(K'). By definition of the Smale relation,
it implies K < K’. Also, we must have K # K'. Indeed, otherwise we would have
x € WHK)NW?(K) = K, according to Theorem 3, which is in contradiction with the
fact that = € A(0) C M ~ K. Consequently, we must have K’ C O and the claimed
existence of the integer k(x) follows from the definition of the stable manifold of K’
together with the inclusion K’ C O.
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Step 3. We prove by contradiction that there exists kg € N such that
M (WY(K) N.A(0)) C O.

By contradiction, assume that for every integer k € N* there exists z;, € W"(K)NA(0)
such that ©*(x1) ¢ O. By compactness of V, we can extract a subsequence (zy,)een
which converges to some x., € V. According to Remark 2.17, we must have z, €
WY(K) N'V. Also, by definition of A(0), the elements ¢'(xy,) belong to M ~ V.
So, letting ¢ tend to +oo, we deduce that p'(xs) € M ~ V. Therefore, we have
Too € WU(K) N A(0) and step 2 implies that p*@=)(z,) € O. By continuity of
@*(@=) and since O is open, there exists £y > 0 such that ¢*=)(z,) € O for every
{ > {y. By stability of O, this leads to

O (k) €0, VE=k(zao), VL= 4o,

which is in contradiction with the construction of zy, for ¢ sufficiently large.

Step 4. — We extend step 3 to A(m) for m large enough. Thanks to Lemma 2.16,
we obtain that

sup dgy (z, AQ)NW*K)) — 0.

z€A(m) m—r+00

Therefore, we deduce by continuity from step 3 that there exists an integer mg € N
such that

(20) o™ (A(m)) € O, Ym = my.
This concludes the proof of the sub-lemma. O
Proof'of Lemma 6.3. — Consider a total order relation on the family of basic sets. Let

us proceed by induction to construct a filtration on M stable by o!'. The following

-1 1

arguments adapt easily to construct a filtration ¢~ !-stable if we change ©! by p~1.

Base case (construction of OF). — Fix ¢ > 0. Since the indices of (K;)1<i<ny have
been chosen compatible with the relation <, the basic set K must be an attractor.
So if we consider some unrevisited neighborhood Vy of Kx small enough so that
Vi C W3(Ky), then Vy and Vy are ¢!-stable and we will simply define

Of ==V Ne* (V)

for a large enough value of k. Indeed, thanks to Lemma 2.16, we can choose k so that
SUDyev gk (V) Do (¥, WH(KN) NVn) < e. Since Ky is an attractor, the equality
WY(Ky) = Kn holds and it implies

sup dy(y, Kn) <e.
yeoy (e)
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Induction step. Fix ¢ > 0 and assume that the open sets OF () C 05 (¢) C --- C
Oj_l(s) C Oj () are constructed for some j € [1, N] so that they define a filtration
for the family of basic sets (K n_;)o<i<;j—1 which is e-close to the unstable manifolds,
in the sense that, for every i € [1, ],
sup dg4 (y, U W“(Kk)> <e.
yeO; (e) E>N—it+1

We want to construct a @!-stable e-neighborhood O;ﬁrl(s) of Upsn_; W"(Kk).
To lighten the proof, let us denote by K the basic set Ky_;. If K is an attractor,
then we can proceed exactly as in the base case and take the union of this open
set with O;r. So let us assume that K is not a attractor, i.e., W*(K) # K, and
consider some unrevisited neighborhood V of K such that VN Q = K. Applying
the sub-lemma 6.4 to K, V, O = Of (¢), we obtain integers ko,mo > 0 as in the
statement. Therefore, for every m > mg, we define

O(m) =07 U U (V) V)

which is ¢!-stable by construction of Oj(s) if we remark that

P (™ (V)N Y) € R (§m(V) N (V) Lgh (A(m)
C ot (T V) V) LM (A(m) € O(m).

Cem(V)NV cof(e)

Note that O(m) is also ¢!-stable. Now, if we choose m sufficiently large according to
Lemma 2.16 so that

ko—1 _
sup dgly, WH(K)Nn gpk(\?)) <eg,
veUpy" ok (em (V)V) h=0

then we get the claimed result by setting Oj++1(£) = 0O(m). O

Remark 6.5. — Thanks to the total order relation (15), the compact sets ;o ; W*(K;)
and (- W"(Kk) intersect on Kj, i.e.,
(21) U WK n U WH(Ky) = K;.

1<y k>j

Therefore, from Remark 2.11, the set
Vi(m) =" (07 () N ™ (O5_141(9))

defines a decreasing (for the inclusion) family of unrevisited neighborhoods of Kj.
Moreover, if we choose m sufficiently large, then V;(m) can be made arbitrarily close
to K in the sense that

sup dg(z,K;) — 0.

<€V, (m) m——+00
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This fact can be proved by contradiction (similarly to the proof of Lemma 2.16) by
using the relations

N Vitm)= N ¢7™(0;(e)) N N ¢ (Ox_j41(e)) = U W (K) N U W (Kp).

meN meN meN i<y k>j

A direct application of these lemmas gives what we were looking for. Namely:

Prorosition 6.6. — For every j € [2,N], (Uys; W"(Kk), U;; W3(K:)) defines an

attractor-repeller pair.

1<j

Proof. It is a direct application of Lemmas 6.2 and 6.3 once we have chosen ¢ < 1
small enough to ensure that
By(U WK, 22) (B, (U W(Ki),2¢) =@, Vi, 1<j<N,
kzj 1<j
where By(S,2¢) denotes the geodesic ball at distance 2¢ to a compact set S. O

Now, we are ready to construct an energy function for .

Proof of Proposition 3.1. — Let € > 0 as in the previous proof and fix a sequence of
pairwise distinct real numbers (\;)1<i<n compatible with the graph structure in the
sense that \; < \; & K; < Kj. Up to a permutation of the indices of the basic
sets, we can assume that A\; < Ay < --- < Ay. In order to find an energy function
E such that £ = ); on K, we will apply Lemma 6.1 for each attractor-repeller
given in Proposition 6.6. Thanks to Lemma 6.3 together with Remark 6.5, there exist
filtrations Oy (¢) C 07 (€) C --- C Oy(e) and O} (e) D --- D OF (¢) D OF (¢) which
are respectively ¢~ !-stable and !-stable such that
Vi, 1<j <N, OJJ(,_j_H(E) no; (¢) is a e-neighborhood of K.
Thanks to Lemma 6.1, we obtain for every j € [2, N] a smooth energy function E; €
€>(M;[0,1]), e-neighborhoods W; C 0} (¢) and Wj C O}7j+1(5) of U;; W*(Kj)
and (s ; W"(K}) respectively, a constant 79 > 0 (which only depends on ) such
that Ly (E;) > 0 on M and
— Lv(Ej) > 1 on M\ (W]_ UW;'_);

- Ej <eonW; and Ej = 0 on {J;.; W*(K;); in particular, we have E; = 0 on

i<j
Ui<j Ki;
- E;j>1—-con Wj and Ej =1 on {J;5; W"(Ky); in particular, we have Ej; =1
on Uk>j K.

We define a global energy function E € C*°(M) as a linear combination of previous

energy functions:
N

E=XM+Y_(\—X-1)E;.
j=2
Thanks to the properties of the energy functions stated above, we deduce that

N N c
Ly(E)=> (A —Xj-1)Lv(E;) > min (Xj—Xj_1)n0 =:7 on < N Wy UW}F)) :
= 1<j<N =2
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It remains to prove that ﬂjVZQ(W]_ U Wj') is an e-neighborhood of the non-wandering
set and that F is close to A\; near K; with equality on K. One has:
X = LWt A
ﬂ (Wj U Wj ) = U ﬂ Wj
j=2 7:[1,N]—={£} j=2
N N
=UN;=U Wsn---nWynwy,, n---nWy),
j=1 j=1
using the convention N1 = W5 N---N'Wjy. Note that the second equality is a conse-
quence of the fact that the intersection O;ﬁl(s)ﬂ(‘)}_jﬂ(e) is empty for all j € [2, N]
for € small enough, which implies:

N ,
if 2 <i < jand (r(i),7(j)) = (—,+) then (| WV =2
j=2
Furthermore, thanks to the definition of the sets W= for £ € [2, N] and since (OF),
is a e-filtration for p*!, the sets N ; satisfy the inclusion

Nj COx_y(e)n---n OE7j+1(5) NO;(e)N---NOx_y(e) = O}fﬂ»l({‘:) NO; (e)

and are therefore e-neighborhoods of the K; according to remark 6.5. Moreover,
we have on each Kj;:

E= >\1+Z JlEfMJrZ Aj—1)0i<i = i

It remains to prove that F is close to A; on the nelghborhood N; of K;. To that aim,
let us note that for every x € M and for every i € [1, N], we have

N
|B() = Xl <Y (0 = A1) B () = bj<il-
j=2
For any j € [2,N] and = € N; we will bound |E;(z) — d;<;| by a small quantity
independent of z in N;. We have two cases to deal with:
- If i < j, then d;<; = 0 and |E;(z) — 0| = E;(z) < € by definition of Ej.
— Ifi > j, then d;<; = 1 and |E;(z) — 1| = 1 — E;(x) < € again by definition of E;.
Finally, we obtain the upper bound

N
sup sup |E(z ez (A —Ajm1) < (Av — Ap)e.
1<<N z€N; =

Up to dividing € by max(1, Ay — A1) everywhere, we get the claimed result. O

Now, the idea will be to perform the same analysis for the (projected Hamiltonian)
flow ®t acting on S*M. However, in that case, proving that one has an attractor-
repeller structure for (3, Xy0) and (Xso, Xy) reveals to be more challenging because
we need to understand what happens to the fiber part of %t(m, ¢) when the orbit of
(z,€) comes close to a basic set. The next part is devoted to the local analysis of the
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Hamiltonian near basic sets in view of applications to the proofs of Proposition 3.1,
Lemmas 6.2 and 6.3 and finally the existence of the energy function on S*M.

7. COMPACTNESS RESULT AND ENERGY FUNCTIONS FOR THE HAMILTONIAI\ FLOW

On a basic set K, one can define conical neighborhoods of the unstable distri-
butions E} and E}, which are stable under the Hamiltonian flow ®' as soon as
t > 0. This characterization of hyperbolicity is sometimes referred to as the Alekseev
cone field criterion [35, Prop.5.1.7]. The goal of this part is to extend cones of the
weak /stable/unstable distributions in an invariant fashion on a small neighborhood of
the non-wandering set according to the global dynamics given by the Smale ordering
of the basic sets.

7.1. ADAPTED METRIC ON A BASIC SET. — From the fixed Riemannian metric g on M,
we can define on any basic set K not reduced to a fixed point the following new
metric called adapted metric for the flow !. More precisely, for every x € K and
every v = vUs + vy + U, € Eg(2) ® Ey(z) ® Eo(x) =T, M, we set

/g\<U7 v) = §(vs, vs) + /g\(viu Uu) + /g\(vov 7)0)
(22) +oo +oo
= / eM/? (0" g) (vs,vs)dt + / ext/z(@_t*g)(uu, vy )dt 4+ o) (v,)?,
0 0

where X\ denotes the hyperbolic exponent on the basic set K (see Appendix A) and «
denotes the Anosov 1-form defined on K by

Ker a(z) = Ey(z) ® Es(x), a(z)(V(z)) = 1.

In the case where the basic set is reduced to a fixed point, we call adapted metric for
the flow a metric which satisfies (22) without the term a(z)(vo)?.

This new metric is well-defined thanks to hyperbolicity and to the invariance prop-
erties of the vector bundles on K. Recall also that the distributions Fjs, E,, are only
Holder continuous in general. Precisely, g will be seen as a continuous section of the
vector bundle of metrics (i.e., symmetric (2,0)-tensors) ®Z ,, TM — M defined on
the compact set K. Let us denote by |.|5 the norm induced by g, i.e., [v|g := \/g(v,v).
The metric is said to be adapted due to the following hyperbolic estimates: for every
reK,

|D<pt(x)vs\§ < e_’\t/2|vs|§, YVt = 0, Vs € Eg(x)
(23) Do~ () vyl < e 2 |valg, Yt >0, Yo, € Ey(x)
|Dg0t(x)vo\§ = |vo|g, vt € R, Yu, € Ey(x).

7.2. EXTENSION OF THE INVARIANT DISTRIBUTIONS NEAR BASIC SETS. In order to ana-
lyze the dynamics near basic sets, it will be convenient to extend the previous hyper-
bolic estimates in some neighborhood of K. To that aim, we need to extend the
distributions E, Ey, E, and |.|; near each basic set. This can be achieved thanks to
the following lemma:
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Levmva 7.1 (Extension lemma, [47, Lem. 4.4 p.128]). Let X be a smooth manifold
and let m: € — X be some fiber bundle over X. IfI"' : K — & denotes a continuous
section defined on a compact set K C M, then I' extends as a continuous section
T:N — E on a neighborhood N of K.

7.2.1. Extension of the adapted metric near a basic set. — Let us apply this lemma with
Xi=M and &=T"M Qum T*M.

The Riemannian metric g can be seen as a continuous section g : K — &. Since the
basic set K is a compact subset of M, the lemma applies and it enables to extend g
continuously on an open neighborhood Ny of K. Up to considering smaller Ny, we can
assume that the extended metric remains Riemannian on Ny as positivity and semi-
definiteness are open conditions. Since we can do this extension near each basic set
and since the metric g is Riemannian, a partition of unity argument enables to prove:

Lemma 7.2. — For any Aziom A flow on a compact manifold, there exists a continuous
Riemannian metric (globally defined) which is adapted to the dynamics on each basic
set, in the sense that (23) holds on each basic set.

In what follows, we will always assume that g is a continuous Riemannian metric
adapted to the dynamics on each basic set and we will denote by |.| its norm on the
fibers of TM and T*M to lighten notations.

7.2.2. Fxtension of distributions. — We now apply Lemma 7.1 in order to extend the
distributions E*, EX, E* E*_ (defined on K) continuously on a neighborhood of K.
Note that we already explained that EJ, EY, ... are well-defined all over M using
the partition into unstable manifolds. The point of this new extension based on the
bundles on K (and not on the global dynamics) is that we expect that these new
bundles have good hyperbolic properties in the sense of (23). We will also need to
make sure that our local analysis is related to the invariant distributions £
E:/SO defined all over M.

Fix a basic set K and recall that the dimension of the distributions Fg, E,, F, are
constant on K. We denote by ds = dim Fg and d, = dim F, their dimension on K.

According to Lemma 2.6, the inclusions W2(K) C W (K) and W2 (K) € WL (K)
are satisfied as soon as € < g9 where g9 > 0 is given by the stable manifold theorem.

Juo and

Lemma 7.3. — Forevery 0 < e < gg, with g > 0 given by the stable manifold theorem,
the map

I:Ws(K) — Gs(M), TI'(x)=E(zx)
with value in the Grassmann vector bundle of subspaces of dimension ds, is continuous.
An important remark is that we aim to extend the stable distribution Eg, defined
on the stable set of K, on a neighborhood of K in a continuous fashion. This extension

will be denoted by E, to avoid confusion. The subtle point is the following fact: Fj is
not continuous in general on a neighborhood of K but only on the stable set W2 (K)
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of K. Here, Es will be equal to Ey on the stable set of K and will be continuous on a
neighborhood of K by construction.

Proof. — The result is a direct consequence of the stable manifold theorem when
the basic set is reduced to a fixed point. So let us assume that the basic set K is
not reduced to a fixed point. In this setting, the proof will be a consequence of the
A-lemma (also called inclination lemma) in a slightly more general version than usual
which is recalled in Proposition B.1 from Appendix B. Indeed, we first consider a
sequence (z,) € KV, a family of elements z,, € W2(z,), v, € Es(z,) = Tp, WS(2,)
and we assume that the three sequences (z,), (z,), (v,) are converging respectively
toz € K,z € M, v € T, M. Proceeding as in the proof of Lemma 2.6, we deduce
that 2 € WZ (2). Now, we assume by contradiction that v ¢ Eg(x) = T,WZ (2) and
we will use the A-lemma to get the contradiction. Precisely, we are going to prove
first that v € Fy(z) = T, WE(2) using the A-lemma and then we will deduce that
v € Eg(z). First, we suppose that v ¢ Es.(r) and we consider a € disk D which
intersects W29 (z) transversally, so that it satisfies the hypothesis of the A-lemma, such
that DN W (z) = {z} and such that v € T,D. The A-lemma implies that ¢* (D)
is arbitrarily close to the weak-unstable manifold W2 (¢*(z)) for the €' topology
when k — 400 up to considering a smaller disk D (of same dimension) containing z,
where 7 is the constant given in Proposition B.1. In particular, the vector D" (x)v €
Do*(x) (TyD) = Ty ()" (D) can be made arbitrarily close to Ey(¢*(2)) as k — +oo
in the sense that D" (z)v belongs to any conical neighborhood C,(¢*()) defined as
follows. For all y € U sufficiently small which is given by Lemma 7.1, we denote by

Culy) = {w = weo +wy € T,M = Fuo(y) & Fuly), [wal > weo] }

the conical neighborhood of the extended weak-unstable distribution. Here, Ty M =
ESO ® Eu denotes a continuous extension of the hyperbolic splitting of the tangent
space in the neighborhood U of K given by Lemma 7.1, which follows from the
continuity of the stable/weak-unstable distributions on K [35, Prop. 5.1.4]. Moreover,
thanks to the stable manifold theorem, we know that the stable manifold WZ (2') at
each point 2’ € K satisfies by continuity the inclusion T,W? (') C Cs(y) (which is
defined similarly to the weak-unstable cones exchanging v and so) as long as y is close
enough to K. Now, we fix k sufficiently large so that D" (z)v € Cy(¢*(z)). Since,
on one hand, Dy*(z¢)v, converges to De*(x)v, and since we proved that it belongs
t0 T () WE (9%(2¢)) C Cs(¢*(2¢)) on the other hand, we must have by continuity
Dy*(x)v € Cs(p*(z)). Finally, putting all together, we obtain Do*(z)v € C,(p*(z))
from the A\-lemma and we obtain Dy*(z)v € Cs(¢*(z)) by our continuity argument.
Therefore, since Cs(p*(z)) N Cu(¢*(z)) = @, we get that v € Ey(z). It remains to
prove that v € Eg(z). To do so, we write v = v + v, € Es(x) @ RV (x) (v, # 0) and
we see that

D! ()o] = IDg! (@) + Dt ()] |~ DG (@] = e,
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where the last equality follows from the choice of an adapted metric on K. Thus,
there exists to € R such that

Vt = tg, Do'(z)v € Cuole’(z)).

Moreover, since, we also have that Do*(z)v € Cy(¢*(x)) for any sufficiently large
integer k, we get that Dp*(z)v € Cs(¢*(z)) N Cuo(¢*(x)) = @ for such a k. This
leads to the expected contradiction and it implies that v € Eq(x). ]

In the next paragraph, we aim to extend the hyperbolic splitting of the tangent
space on a neighborhood of the local stable manifold W#(K) using the previous lemma
together with Lemma 7.1. It will give us a hyperbolic splitting with some invariance
properties in the stable manifold and the unstable manifold of K which will be essen-
tial in the proof of Proposition 3.3.

If we apply Lemma 7.1 to the continuous section defined inNthe previous lemma,

then we obtain an open set Ny D Wg(K) and an extension Eg of the distribution
Uxem Eq(xz) on Ng. If we replace s by u in the previous construction then we

S EWH () E,(x) on a neighborhood N,

of W(K). Next, we define E?, (resp. E%) by taking the dual orthogonal of Ej
(resp. Eu) The notation ES*O can seem a little ambiguous at first, because we extend
first and then take the dual orthogonal. Yet, everything is consistent here since ES*O
also extends continuously the distribution [ J, W (E) EZ* (z). A similar remark holds
for E%,. Moreover, by setting EX := EX N{¢ € T:M, £(V(z)) = 0} we obtain a
continuous extension of | J, W (E) E*(zx). The different steps can be summarized in

obtain similarly a continuous extension F,, of | J

the next diagram (which of course also hold if we replace s by u):

U  Es(@)---3Ey---3E* ---3 E*.

zeWs(K)
Moreover, the distributions ES*O /s extend E7 /s ON 2 neighborhood of the local stable

manifold of K:

Vo e Wi(K), EX(x)=E%(x) and E(z) = E*(z).
Similarly, we have

Vo e WNK), Ef(z)=E*(z) and Ef(z) = E*(z).

These two last statement will be crucial in the proof of the compactness proposi-
tion 3.3.

Finally, in order to extend continuously the neutral direction, we define for all
z € N =Ng NNy,

Ei(z):={€ e T:M, £(Es(z) + Ey(z)) = 0}.

Remark 7.4. It is important to note that for every z € WZ(K) NN, we have
EX(x) C EX (x). Similarly, we have for every z € W*(K) NN, the inclusion EX(z) C
Ejo(@)-
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W (K)

€

W2(K)
Ficure 11. Tllustration of some neighborhoods used in the extension
of distributions

Up to considering smaller N, we can assume that
(24) E(x) o El(x)® EX(z) =Ty M, vz e N.

Note that this decomposition of the cotangent space is not invariant by the flow ®¢
in general. Despite that, hyperbolic estimates as well as stability of good conical
neighborhoods of these bundles should extend by continuity on a neighborhood of K.

7.2.3. Stability of conical neighborhoods near a basic set. — We set for all 6 > 0 and
all z € N,

Cu@) = {€ € Ty M, dl&u| > |6 + 1ol },

Cho(@) = {z € Ty M, 8(I&u +[&l) > I},

where we used the decomposition (24) on the fibers, i.e., £ = & + & + & € EX(z) @

E*(z)@® E*(x). If we replace s by u in (25), then we can define similarly the stable and
weak-stable conical neighborhoods €2 and €2, on N. The main technical statement of

(25)

this section is:

Lemma 7.5. — Let K be a basic set and let N be the open neighborhood appear-
ing in (24). There exists €1 > 0 such that, for every unrevisited neighborhood V C
NN ~Y(N) contained in an e1-neighborhood of K, the following hold:

(i) For every ég € (0,1], one can find ms, > 0 so that, for every ¢ € [0,d], for
every m = mgs, and for every x € VN o™ (V), one has the inclusions

(26) ol (€(2)) C €5 (¢M(x)), @' (€ (x)) C Colp(x))

where §' = e=3§ and with \ being the constant appearing in the definition (22).

(ii) Moreover, there exists 01 € (0,1] such that for every 6 < 61, one can find
ms = 0 so that, for every m > ms, for every x € VN @™ (V) and for every £ € C(x),
we have

@ (,6)] = Mg
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Proof. The first step of the proof consists in extending the hyperbolic estimates
on the unstable manifold of K. Let us denote by 7, the continuous projector on E,
for each a € {s,0,u} and let us define

Va,B € {s,0,u}, Anp:i=mo0® omgand Byg =m0 @ oms.

We will also use the notation & for 1, o ®1(£). For every z € NN =1 (N), we have
{=&+&+6& € Bi(a) ® EX(2) © Ey(x) = Ty M and ®L(6) = &L+ & + ¢ €
E* (¢ (z)) ® E*(¢'(2)) ® E*(¢'(z)). The dynamics of ®* and &' can be encode
within the two following matrices of linear morphisms:

111 Auu Aou Asu fu gu Buu Bou Bsu 5&
5(1) = Auo Aoo Aso fo and fo = Buo Boo Bso gcl)
5; Aus Aos Ass gs gs Bus Bos Bss gsl

To be more precise, we should have written A,g(z) and Bag(¢!(z)) to indicate that
&€ € T M. In the particular case where x € WY(K) N NN ¢~ 1(N), both matrices are

upper triangular block matrices thanks to our definition of £, E; and E‘S*, ie.,

Ao = Aus = Aos = Buo = Bus = Bos =0 on WY(K)N NN H(N).

(10)

However, on the whole open set N N ¢~(N) this is not the case anymore. Now,

we extend the hyperbolic estimates (23) on the unstable manifold of K. For every
e > 0, we define the set N(g) of points y € NN o 1(N) on which we have for all
§eT, M,
|Auu (&u)| = (eA/Q —&)[&ul, ‘Bbb(gi)l (eA/Q - €)|£sl|7
(27) [Aoo(€o)l = (1= )[&ol,  [Boo(&5)] = (1 —2)l&5]
[Aoull <&, |lAsull <&, [Asoll <&,
|Boull <€, |IBsull €&, [Bsoll <5,
Auo = Aus = Aos = Byo = Bus = Bos = Oa

VoWV

where ||.|| denotes the operator norm defined by:

Va,f € {u,0,5}, [Aasli=  sup Hap(ta)l

tucBin(oy [l
Note that the map A,s and the norm |.|| depend on the point y, but we will not
precise the point y if everything is clear. For every € > 0 and for every unrevisited
neighborhood V sufficiently close to K, we have VN W"(K) C N(g). Let first check
that the inclusions (26) hold on the unstable manifold of K for some &' < de=*/? as
soon as ¢ is sufficiently small. The result on the whole neighborhood will then follow
by continuity.

(10)This follows from the fact that in the general case (where E: and Ey are both non trivial)
none of the extended distribution E¥, E} or EX are invariant by ®¢ on N.
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First inclusion, on unstable cones CJ. Let us fix 6 € (0,1], . € WY(K)NNNe L(N)

and ¢ € C(x). Our goal is to find a parameter ¢’ < Je~*/2 such that ¢! := ®L(¢) €
@Y (p!(x)). The first step consists in computing |£1[2 in order to find a lower bound

which depends on |&| and |&,|. Precisely, we have
S1€L] = 8l Auubu + Asus + Aoubol > 6| Auuul — 8| Asubs + Avubol
(28) > (e? — £)8]¢u| — de(1&] + [€ol)
> (eM? — & = 5e) (J&] + 16o]) = Cr(e) (& + I&)-

The second inequality is obtained thanks to the estimate on Ay, in (27) and the third
one follows from our choice of ¢ € @3 (x). Note that we implicitly show the following
estimate which will imply the exponential estimate (as we will see later on) for § < 1:

(29) €l > Cre)l&] = (M —2¢) 6.

Now, let us do a similar computation for the matrix B. Again using Cauchy-Schwarz
inequality on J and using again estimates (27), we deduce

|65 + |€] = [Bus&s | + [Bsobs + Booko| > |Bss&il + | Booko| — | Bso&s |
(30) > (M o)l + (1 - e)l&g] — el
> (1-e)(& | + &) = Ca(e)(I& ] + 1)

where the last inequality holds for £ small enough such that e*/? —2¢ > 1 —¢. Putting
together equations (28) and (30), we deduce

3] > Cu(e)Cale) (16| + 1))

Finally, we obtain ¢! = ®1(¢) € €' (¢'(x)) for

0

“@:a@@@’

where the polynomial functions C7 and Cs (with respect to the variable ¢) satisfy
C1(e) < e for every € > 0 and
22
Ci(e) e and Cs(e) = 1.

If we fix e sufficiently small so that

(31) C1(e)Ca(e) = M3, Cyi(e) = &3,

then we get for every § € (0,1] and for every x € N(¢) N W"(K) the inclusion
' (€(x)) C €5 (9" ()

for &' (¢) < de=*3. Moreover, we deduce from (29) the bound

(32) L] > eM3e,|
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Second inclusion, on weak unstable cones €2 .. Let us fix z € WY(K)NNN e 1(N)
and ¢ € C_(x). By definition of the conical neighborhood, we have 6(|&,|+[&]) > |&|-
The idea of the proof is very similar to the proof of the inclusion for the unstable
conical neighborhood Gg. However, we won’t have an exponential estimate because of
the neutral direction E(’)‘ . Let us check the computations for this case. Using Cauchy-
Schwarz inequality, we have

IE0] + |€a] = [Auuéa + Asués + Aoubol + [Asols + Aoool
> [Auual = [Asués] = [Aouol + [Aoobol — |Asobs]
> (eM? = o)l + (1 - 2)[&o| — 264
> (1 —e)(|€ul + &) — 2¢[&|.

Now, multiplying by < 1 on both side of the previous inequalities and using the fact
that £ € € (), we get

(33) 3(1€al + & 1) = (1 = 3e)l&] = Ca(e)I&sl-
It remains to find a lower bound for |&|. This case is much simpler since we have
(34) 66l = [Bos&s] 2 (€2 = 2)I&5| = Cule)l&s -
Putting together equations (33) and (34), we deduce that
3(€al + 1€ 1) = Cs(e)Cale)l&s]-

Therefore, we have £ = ®1(¢) € €% (p'(x)) for

_ )
 Cs(e)Cale)’

where the polynomial functions C3 and Cy (w.r.t the variable €) satisfy |C3(g)| < 1
for all € € (0,1/3], Cs(e) =, 1 and Cy(¢) =, e, For ¢ sufficiently small so that
e— e—

&' (e)

(35) C3(e)Ca(e) = e,
we get for every § € [0, 1] and for every x € N(e) N W*(K) the inclusion
@' (€l (2)) € Cla(! (),
with ¢’(g) < e~*/2. Tt ends the proof of the inclusions along the unstable manifolds.

Now, fix a value of ¢ > 0 sufficiently small so that (31) and (35) are satisfied. There
exists 1 > 0 such that VAW (K) C N(e) hold for every unrevisited neighborhood V
contained in a e;-neighborhood of K. Let V be an unrevisited neighborhood contained
in a e;-neighborhood of K. Thanks to our choice of €, the inclusions (26) are satisfied
on VN WY (K) and we would like to extend them to V N ¢™ (V) as stated in (26).

Recall that each point of V N ¢™ (V) converges to the compact set VN W' (K) as
m — 400 according to Lemma 2.16. The remaining of the proof consists in extending
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the inclusions in (26) by continuity on VN ™ (V) for m large enough. Fix § € (0, 1].
By continuity of the maps

] 1 1 1 1 1
F(M):(IQHI&I) (I£b|+\5o|>7 Glo, ) = &1+ 1Sl

al B G
_ &l N1l . €]
Fa - 5 Ga e E——
o= (el Gara) €9 =gl

there exists an integer ms, € N such that the claimed inclusions are satisfied on
V N @™ (V) for the parameter &' = §e~*/%. This ends the proof of (i).

Exponential estimate (proof of (ii)). — Applying (i) to § = dp € (0,1], we get the
existence of ms € N such that the inclusions (26) are satisfied on VN ™4 (V). Extend-
ing (32) by continuity, we can find my € N such that for every z € VN ¢™° (V) and
for every ¢ € C(z), we have
EL] > e,

Up to considering a larger mg, we can assume that mgs > mg. The exponential estimate
follows by equivalence of the norms |£],, := |&,| and |.| on the conical neighborhoods
€% (x) and €5 (p!(z)). Indeed, we have ¢! € €2 (¢! (x)) thanks to our previous analysis
and therefore

1 1 e2/™ 24
o = > — ¢ = .
for every 6 < 01 := min(1,e?™ — 1) and every z € VN o™ (V). O

The following corollary states in a quantitative manner that, if the trajectory of a
point (z, &) stays for a long time near a basic set, then the fiber part of ®!(z,&) gets
attracted to the E} or E} distribution:

CoroLrary 7.6. — Let K be a basic set and let N be the open neighborhood ap-
pearing in (24). There exists €1 > 0 such that, for every unrevisited neighborhood
V C @' (N) N~ Y (N) contained in an e1-neighborhood of K, the following hold:

— For every 4,8 € (0,1] satisfying &' < 6, one can find mg > 0 such that, for every
m = mg and for every x € o~ ™(V) NV, one has

£ ¢ Cpule) = B"(2,€) € B (9™ ().
— For every § € (0,1], there exist C > 0, my € N such that, for every m > my,

for every x € o=™(V) NV and for every & € T M such that & ¢ €2 (x), we have the
inequality

(36) 2™ ()] = Ce™MA g,

with A being the constant appearing in the definition (22).
The idea of the proof is the following. Thanks to Lemma 7.5, we know that the
conical neighborhoods are ®'-stable near the unstable manifold of the basic set, so our

goal is to use the different unrevisited neighborhoods represented in Figure 7 to show
that we can iterate the lemma.
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Proofof the corollary. — Fix 6,8 € (0,1] satisfying & < 6 and let V be some un-
revisited e1-neighborhood of K contained in ¢!(N) N ¢~1(N) so that we can apply
Lemma 7.5 for the flows ! and ¢! (with &1 given by the lemma). Doing so for the
flows ¢! and ¢!, we obtain the existence of an integer ms as in the statement of the
lemma (we take dg := 6’ and we assume that msg is the same integer obtained for ¢°
and ¢~!). Now, fix an even integer mq > 2ms which will be chosen sufficiently large
later on. For all m > mg and all x € VN =™ (V), we have the inclusions

Vk € [[0,7710/2}]7 @k(m) c (pkO?) N %0—m+k(v) cvn <p_m0/2(\7)

and
Vk € [mo/2,m], ¢*(x) € oF(V) N HE(V) C ™ 2(V) NV,

see Figure 7. The remaining of the proof consists in interacting m times the lemma
for (z,€) € T*M such that z € VN ™(V) and £ ¢ Ggo/s(x): mo/2 times for the
backward flow ¢ ~* when the orbit of 2 belongs to VN¢~"0/2(V) and m —mg/2 times
for ¢t when the orbit of # goes in ¢™°/2(V)NV. For m sufficiently large, we will get the
result. Let us consider (z, &) as above. Two analyses are needed: first for 0 < k < mg/2
and then for my/2 < k < m.

— First, since @F(z) € VN~ ™/2(V) € VN~ ™ (V) for all k € [0,mg/2 — 1],

a straight application of the lemma for the flow ¢! instead of ¢! yields

£¢ € (1) = ™/ (,€) ¢ €L/ (pmo/2(x))
where §,,,/0 = min(e*0/8§,1). In particular, if we choose mg € N large enough so
that
e*mo)\/s < 5, g 5’
then we get d,,,/2 = 1,
72 (x,6) ¢ €L, (pm0/2(x)) and thus ®70/%(2,€) € € 0™ (2)).

— For every k € [mg/2,m — 1], we can apply the lemma™) to the flow ¢* and it
yields

—mq/2

gok(x) eVN™ (V) and @k(x,f) IS Gﬁjuo (@k(x))

k+1—mg/2

— o (2,6) e e (I (@),

with p = e~*/*. Finally, we obtain ®™(z,¢) € momor @™ (x)). Thanks to our choice
h M4, Finall btain ™ (z, &) € €+, "

u/uo
of m and myg, we have p~"0/2 L ymo/2 = ¢=moA/8 < §'. This gives the first point.
To prove the exponential estimate (36), we first need to introduce the constant
01 € (0,1] given by Lemma 7.5(ii). From the above analysis, there exists an integer

my > mg such that for every m > m; and for every k € [my,m], we have ®*(z,¢) €

Gil/uo(cpk(:r)). The result is a direct application of Lemma 7.5(ii) and the constant C'
is obtained by continuity of &, O

(11)Note that we use here the uniformity in 6 € [6’,1] stated in Lemma 7.5.
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7.3. ProoF OF PROPOSITION 3.3: COMPACTNESS. We are now in position to prove the
compactness of ¥, /. Compactness of ¥/, can be proved similarly if we exchange !
with =1, Let ((Zm,&m))men be a sequence of elements in Yu/uo- Up to extraction
of a subsequence, we can assume that there exists an integer j € [1, N] such that
every point z,, belongs to W*(K;). Up to another extraction, we can suppose that
((m, &m))m has a limit in S*M that we denote by (2o, Exo) € S*M. Our goal will be
to prove that (zoo,&x0) belongs to X, /. First of all, we know from our assumption

on &, that the limit x., must lie in the closure of the set W*(Kj), i.e., £ € W3(Kj).

Since W*(Kj;) = Ujo,KjOSKj W*(Kj,), we can find some integer jo < j such that
Too € W3(Kj,). Now, let us assume by contradiction that (oo, o) & L uo-

To obtain a contradiction, we split the analysis in four steps. First, we deal with the
case where j = jo. In steps 2-4, we treat the case j # jy. Precisely, in the second step,
we construct by induction a family of integers jo < j1 < --- < j¢ = j such that for
each k € [1,/] one can find an element (ng)), é’é’) with 2% € W3(K;, ) "NW™Kj, )
and a sequence (xﬁ),gﬁ,f)) = O™k (2, &), for some parameter Tm,k = 0 satisfying

T k+1 — Tm,k m:-oo 400, which accumulates to (xé’é),gé’é)) as m tends to infinity.

In a third step, we apply our previous analysis near the basic sets of Corollary 7.6 to
prove that if (mgf,), S..]f)) & Yy uo, then (J:QZH), S..]fﬂ)) must belong to ¥, /s. In the
last step, we deduce the expected contradiction.

Step 1: we assume that j = jo. — The contradiction follows from an application of
Lemma 7.3 and more precisely from the continuity of 3, /,, on WE(Kj;) for ¢ < &g
as in the statement of Lemma 7.3 (for example € = (/2), where ¢y is given by
the stable manifold theorem. Let V be an unrevisited neighborhood of K; such
that V C By(Kj,e') = {z € M, dy(z,K;) < €'} for ¢ > 0 which will be cho-
sen sufficiently small. If zo, € W®(Kj), then there exists T'(¢’) > 0 such that
©T) (25) € WH(K;) NV (by definition of the stable set). Since x,, € W3(K;) and
since the sequence (Z,)men converges to Zoo as m tends to +oo, we can find an
integer mq(e’) > 0 such that 7 (z,,) € W3(K;) NV for every m > mq(e’). Since V
is unrevisited, we get that

Vm € [mo(e'), 400, Vk =0, Tz, ) e W (K;) N V.
In particular, we get that
Vm € [mo(e"), +o0], Vk =0, d, (@T(E/)+k(xm)7Kj) <é.

As an application of the shadowing lemma [35, Th. 5.3.3] similar to the one used in
the proof of the In-Phase theorem [35, Th. 5.3.25], we get that ©7)(z,,) € W3(K;)
for all m € [mo(e’), +o0] as soon as &’ is sufficiently small (depending on ¢).

From the continuity of ¥, /,, on WZ(Kj), we deduce that (7o, &) must belong to
Yu/uo- Therefore, we get

(:L'ooafoo) € Eu/u07
which is in contradiction with the assumption on (e, &0 ). From now on, we assume
that Jo < J.
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Ficure 12. Tlustration of some element used in the proof

Step 2: construction of the sequence by induction. Since jo has already been defined,
we just have to set (még), ég)) ‘= (Zoo, o) to end the base case. Now, let us assume
the integers j; < jo < -+ < jx(< j), the elements of the unitary cotangent bundle
(azg,), c(xlj)), el (zgz), é’.f)) and the parameters 7, 1, . . ., Tm i are constructed as in the
above discussion. Our goal is to define a sequence (x£f+1), §£f+1)) = BT (2, €,
the family 7., x4+1 = 0 such that 7, r41 — T,k tends to +o0o as m goes to +oo
and to exhibit a new accumulation point (xgéﬂ),féﬁﬂ)) with 28+ € WU(K;,) N
we (Kjk+1)'

Definition of Ty, j+1. — Let us consider an unrevisited neighborhood V of K, so that
VN Q= Kj, and sufficiently small to be in the range of application of Corollary 7.6.
Recall that z8) belongs to W*(Kj,), so there exists T > 0 such that cpT(ach)) €
WS(K;,)NV. Since every xgk), a:ék)7 .. 73355), ... are in W*(K) and since the sequence

conver (k)
ges to Too

as m — 400, there exists an integer mgo > 0 such that for every
m = mg we have goT(ng)) € V. To lighten notations, let us denote by y,, the point
(pT(ng)) and by 7, the cotangent vector /@((D@T(ng))_l)—r( 5,’5))) € S, M for every
m € NU {oo}. For every m > mg, we can define the exit time of the unrevisited set V

for the point y,, as follows:

Tm = inf{p €N, ¢"(y,) ¢ V} — 1.
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It is well-defined by definition of y,, and it depends on k. Note that 7, is finite

for all m since vy, ¢ W?3(Kj,) (because y, € WS5(K;) with j > ji) and since

Npen ¥ P (V) = W2(Kj,) N'V. Also, the convergence Yy, T Yo € W*(Kj,) im-
m—r

1 _

= ¢ (Ym)

and ny) = (D™ (Ym) ™) T (7). Up to extraction, we can assume that (y%), nf,p)

plies that 7, goes to +o0o when m tends to +o0o. Now, we define ym,

converges to an element (ygé), néo)) € S*M by compactness of S*M. Let us define

(I£§+1 ’§£r123+1 ) ( (1) g)) _ (I)Tm,,k+7m+T(

Y’ Ty Em)
for every m € NU {oo} and also
T, k1 = Tm e +Tm + 1 = 0.
Thanks to Lemma 2.16 and to Remark 2.17, the point yso () belongs to m =

SO RN ((X)) together with
m——+oo

the fact that yi, € ™ (V)N'V and 7, -, oo Moreover, we have ¢! (y (1)) ¢V

+oo

WY(K;,) N'V. Indeed, it follows from the convergence ym

and thus y<(x1> ¢ K, because ¢ (ym ) ¢ V by definition. Furthermore, there exists an
integer jr4+1 € [1 N]] such that y ) € W?*(Kj,,,). Now, using the properties of the
Smale order relation given in Theorem 3 together with the total order on the indices
of Section 2.5.1, we deduce from y&t) € W“( i) N W3(Kj,,,) and g e Ws(K;)
(given by construction) that jp < jr+1 < j. ThlS ends the induction step. Note
that the algorithm stops once we have reached Kj, in which case we have defined
Jo<npn<--<ji=j.

Step 3: local analysis near a basic set. — For every k € [1,¢ — 1], we will prove the
implication

(37) (x(ol;),gélg)) ¢Eu/uo and Tm,k+1 - Tm,k 4)—! +o00 — (x(()z+1)1£glg+1)) GESO/S‘

Let us fix k € [1,£ — 1]. To simplify, we will use the same notations as the one

(k+1) €(k+1)) € Sy if
and only if ng) € E*/uo(yoo) Since Yoo € W5(K;,) NV, since gD = yg};) €
WY(K;, )NV~ ¢~ 1(V) and since the conical neighborhoods €2 are well-defined on V,
we have by construction

used in the previous induction. By definition, we have (s

*

E:a/s(yoo) = E:o/s(yoo) and Eu/uo(y(()o)) = u/uo(y((xla))’

Assume that 7., ¢ Eso/s(yoo) and let us prove that néo) belongs to E*/uo(yéo))

7

equivalently, that for any 4’ > 0 we have
(38) (1) € ei/uo( (1))
Fix ¢’ > 0. By hypothesis, we can find a small constant § > 0 such that
oo ¢ ego/s(yoo)
Since Ty k41 —Tm,k  —  +00, we can apply Corollary 7.6 which gives (38) and thus

—+00

k k
(x<(30+1)a §£0+1)) € Eso/s-
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Step 4: at the end of the algorithm. — According to step 2, we have defined (xgﬁ,), éﬁ)) €

S*M with 2% € W3(K;) as well as o) e W3(K;) for every m € N. Furthermore,
since we have assumed at the beginning (oo, &) & u/uo, We deduce from the (37)
of step 3 that

(xooyfoo) ¢ Eu/uo g (xg)afé};)) € Z:so/s - (m&)agc(xlg)) ¢ Eu/uo = -

== (xf)i)vgc(f))) € Eso/sv
where the strong transversality assumption is used extensively through the relation
Yu/uo N Bso/s = @. However, proceeding similarly to the first step, we also have the

convergence

Zu/uo > (-’I;%)aé—%)) = EIV)TmJ (xmagm) — (xg?7§<(>f;)> € Zso/57
—— m—+00

€Xu/uo
which leads by continuity of X/, on W(Kj;) for e < 1 (according to Lemma 7.3)

to (a:fﬁ,), éﬁ)) € Xy /uo and thus gives the expected contradiction.

Conclusion. In all cases we obtained a contradiction and therefore we must have
(:17007500) S Eu/uO' O

Let us state a corollary which will be used to construct the map f which appears
in the definition of the escape function—see Proposition 3.6.

CoroLLARY 7.7. For every € > 0, there exists € > 0 such that, for every point x
which is €'-close to K, every element of H(Ez/uo(x) ~ OM) is e-close to the compact

set U ek H(E:;/UO(Z) N 0pr) for the distance dg«p associated with the Sasaki metric
on S*M.

Proof. By contradiction, assume that there exists ¢ > 0 such that for every m € N*,
there exist x,,, and &, € n(E‘j/uo(xm) ~ OM) which satisfy

(39) dg($m7K) < l/m and dS*M((mv‘mgm)? EKK( z/uo(z) ~ 0M)> Z €.

By compactness of S*M, we can extract a converging subsequence ((Zm,,&m,))k
which converges to an element (Zs,&s) € S*M as k — +o0o. Taking the limit in the
inequalities (39) implies that zoc € K and &uo ¢ #(E} ), (%o0) \0ar). However, the set
Ss/so = k(B

o 0 M) is a compact set thanks to the compactness proposition 3.3.

Therefore, we must have (Zoo, {oo) € Xg/s0 OF, equivalently, &, € K(Ez/uo(xoo) \OM)7
which gives the contradiction. |

7.4. THE COMPACT SETS ARE ATTRACTING AND REPELLING SETS FOR THE HAMILTONIAN FLOW

Now that we have proved the compactness of ¥/, and X/, it remains to show
that (Xg/s0, Luo/u) defines an attractor-repeller pair. Equivalently, we have to prove
Lemmas 3.2 and 3.4. In the upcoming argument, we generalize the convergence pre-
sented in Figure 13 to Axiom A flows satisfying the strong transversality assump-
tion (10). The proof is very similar to that given in [22, Lem. 2.10 (4), p. 13], except
we allow our phase point £ to have a neutral component, i.e., {(V') can be non zero.
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B B (¢! (2) £:(2)
(e @) Fa2)
z @) ~r0
t=20 t>1 t = 400

Ficure 13. Convergence of the dual unstable distribution. The
point z denotes an hyperbolic fixed point and the point z belongs
to the stable manifold of z.

Proof'of Lemma 3.2. — Let us take (z,§) € S*M such that (z,£) ¢ X,/ and let
us prove that Eﬁ(x,{) tends to ¥/s, as t — +o0o. The case t — —oc is obtained by
applying the result to the vector field —V. From the spectral decomposition of M
(Lemma 2.5), we have M = |_|fi1 W*(K;) and consequently there exists a unique
integer ¢ € [1, N] such that z € W5(K;). Let V be an unrevisited neighborhood of K;
sufficiently small to be in the range of application of Corollary 7.6. Also, there exists
T > 0 such that p'(z) € W3(K;)NV for every t > T. Now, let us recall that for every
y € W3(K;) NV we have

EX(y) = Ei(y) and EL(y) = Ex(y)
by construction. Since ¥/, is &)t—invariant, the condition (z,&) ¢ 3 /u implies that
&)t(x,f) ¢ Yuo/u = /<;(ES*O/S) for every t > 0. Therefore, there exists § > 0 such that
®T(x,¢) ¢ €2, and Corollary 7.6 implies that
It 5 /
dsr (@ (x,f),zg(in(Gu/uo(z)))tI)OO 0, V& >0,

or, equivalently, that

dS*M(&)t(xvg)v U W(Ei/uo(z)» — 0.

zeK; t=+00

This ends the proof. |

7.5. Proor oF LEMMA 3.4: INVARIANT NEIGHBORHOODS FOR THE HAMILTONIAN FLOW

Now, we need to find invariant neighborhoods of ¥/, and X, /y, i-e., we have to
prove Lemma 3.4. The idea of the proof follows from two remarks:

— In the case where K is an attractor, we can construct a ®1-stable neighborhood
of {(z,§) € X550 : @ € K} as follows: if V is an unrevisited neighborhood of K
small in the sense that the conical neighborhood €2 are well-defined on V, then for
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all § € (0,1] the sets
U K(Ci(z)) and fi(@ﬂo(z))

z€V z€V

are ®'-stable neighborhoods of {(z,£) € ¥y : # € K} and {(z,£) € Yo : z € K}.
— In the general case, thanks to Lemma 7.5 we can note that if V is an unrevisited
neighborhood of K (to be in the setting of this lemma), then the set
U K(ei/uo(z))
zEP™(V)NV
defines an unrevisited neighborhood containing UzGW“( K)nv K(El’i /uo(x)) for every
0 € (0,1] and for every m > 1.

Our strategy will be to construct invariant neighborhoods /s, and ¥, u0 by
induction from the unrevisited neighborhoods exhibited above. In the upcoming proof,
we construct a filtration*® by open sets for the Hamiltonian flow Pt starting from
the filtration on the base.

Proofof Lemma 3.4. Let us only treat the case of ¥4, as the other cases can
again be treating similarly by considering ®~! instead of ®'. Consider a filtration
(Oj) ; of the manifold M for ¢' which is arbitrarily close to the unstable manifolds.
The distance of the filtration to the unstable manifolds will be chosen sufficiently
small in order to have the claimed quantitative result for the lifted filtration. First,
we want to construct by induction a filtration for the diffeomorphism P!

(40) Uj-/so e-close to U Ys/s0(2)
ZEU@>N7]' W“(KZ)

For j = 1, we define Ui/so as a neighborhood of the attractor UzeKN Ys/s0(2) by

fixing
W= U (@),
2€om(VN)NV N
where V denotes an unrevisited neighborhood of the attractor Ky sufficiently small
to be in the range of application of Corollary 7.6 and where m is an integer. By choos-
ing ¢ small enough and then m sufficiently large, i.e., m > mg, the conical neighbor-
hoods and Ui/ ** are ®!-stable and we can assume that
max dS*M((x,f), U ZS/SO(Z)) <e.
(z.£)euy 2Ky

Note that this construction only uses the fact that Ky is an attractor.

Now, let us deal with the induction step and assume that we can find for every
e > 0 some open sets U,j-/so satisfying (40) for any j < i. Fix ¢ > 0. We want to
construct U/, But before doing that, we consider an unrevisited neighborhood V
of K := Ky_;y1 small enough in the range of application of Corollary 7.6. Also,
we consider the family of unstable annuli A(m) of Sub-lemma 6.4 and we choose V

(12)Even if the definition of filtration was given for the flow ¢!, it can be adapted for the Hamil-
tonian without too much effort, see [66] or [68].

JE.P. — M., 2095, tome 12



692 A. MEDDANE

sufficiently small as in the sub-lemma. According to Lemmas 6.2 and 3.2 and thanks
to the fact that /s N Xyo/u = Oar (given by the strong transversality assumption),
we have for all m >0

V(l‘,f) € U Es/so(z)v dS*M<(ik(x7§)7 U Es/so(z)> — 0.

zEA(m) 2€Ups n—ion WH(KE) k—+oo

Furthermore, from the compactness proposition 3.3, thanks to Lemma 3.2 and by

construction of uj{ Slo ,

of the sub-lemma) such that for all m > my,

(41) V@ e U Bywlx) @@ Wy,
z€A(m)

there exist integers ko, mg > 0 (potentially larger than the one

By continuity and since Uf/_ °] is an open set, we can extend (41) on small conical

neighborhoods: there exists dg > 0 such that
Ve U m€l, (),  B,6) WY,

z€A(m)
Now, for all m > 0 and for all 6 € (0, 1], we define the set
W(m7 6) = U H‘(ei/uo(z))'

Z€VNe™ (V)

According to Lemma 7.5, for every § > 0 there exists an integer m(4) > 0 such
that for all m > m(J) the open set W(m,d) is an arbitrarily small (as m — +o0
and 0 — 0) unrevisited neighborhood containing U, ey (s k(E* /uo(z)). Actually,
we have something better. For every m > m(d), the conical neighborhood €2 Juo 18
®l-stable on V N ™(V) in the sense that, for all £ € N,

(42)  (2,€) € W(m,d), ¢ (x) e VN ™(V) = Vk € [0,€], ®"(x,£) € W(m, ).

Therefore, we define for all § < §y and all m = m(d) the set

3

s/so s/so ko—1 Tk
W, (m,6) == U, ) U kL—Jo DY (W(m,9)),
which is ®!-stable because Uf-’éslo is. Also, %o (W(m,d)) is equal to

) V(U )

Pho <
z€EEM™(V)Np~1(V) V)NVNA(m)

C &R~ (W(m, §)) U 5k°< U H(Gﬂ/uo(z))) C U§/S°(m, d),
z€A(m)
where we used in the first inclusion the fact that ¢! (™ (V) Np=1(V)) C ™(V) NV
(since V is unrevisited) together with (42). For the second inclusion, we used (41).
Finally, choosing § small enough and then m large enough, we can assume the
set US/*°(m, 8) to be a e-neighborhood of UzEUj>Nﬂ- W (K;) Ss/so(2). This ends the
induction and the proof. O

Revark 7.8. — We can note that the set U%SO constructed in the previous proof
defines an arbitrarily small neighborhood of ¥/, which is stable by ol
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7.6. Proor or PROPOSITION 3.5: ENERGY FUNCTION FOR THE HAMILTONIAN FLOW

Thanks to Proposition 3.3, Lemmas 3.2 and 3.4, we deduce that (Xg,¥,)
and (Xs0,Xy,) define attractor-repeller pairs. Therefore, a straight application of
Lemma 6.1 gives the result.

8. CONSTRUCTION OF THE ESCAPE FUNCTION: PROOF OF ProprosiTiON 3.6

Let us begin with some candidate for the escape function that depends on two
auxiliary functions. We will see how the properties of the maps E and f will be related
to those of the escape function. First of all, let us assume that the maps FE and f
have been defined properly and let us recall the expression of the escape function:

Gm(xag) = m(x7€) log V1t f(xag)Qa

with m(z, &) = E (z,£/]€]) x(|€|?). To lighten notations, we will use the Japanese
bracket (r) :=v/1+ 72 and the shortcut £ for £/|¢|. Now, let us compute £ x, (Gpm),
for J¢]) > 1

LXH (Gm) (3776) = L)?H (E)(LU,S) 10g<f($,§)> + E($7§)LXH (10g<f>)

Our goal is to make sure that this quantity is non-positive and is negative outside a
conical neighborhood of E}.

Definition of E. — Fix € > 0 such that

lul 7T s . mg 1 mg )
2s —2u’ 425 —2u’ 25 —ng 4ng—2u/’

We define E € C*(S*M) as
E(CL’,&) = —E(SL’) +2s + (2’LL - nO)EﬂL(wvg) + (nO - 28)E7(CE,§),

e < min(

where E,, F_ are given by Proposition 3.5 for the constant e, namely there ex-
ist smooth energy functions Ey € C>(S*M, [0, 1]), e-neighborhoods W3/*° of Vs /s0s
Wue/u of Yuo/u in S*M and a constant 1 > 0 such that:
Lz, B+20 onSM and Lg Ei>n onS™M~\ (W' UW?),
Lz, B->20 onS'M and Lg E_>n onS"M~ (W'UW?).

We also have the estimates E, > 1—con W?, B, <eon W' E_>1—¢ on W
and E_ < ¢ on W". In order to use these estimates together, let us introduce new
open sets in S*M:

N = WenWse, N :=Wsenwee, N .= "W nwh.
Moreover, E € (M) denotes the energy function on the basis given by Proposi-

tion 3.1 for some parameter ¢’ > 0 and

. _7710(]'—1) _ o
Al*o""’)\J774(]\7—1)""’)\]\[7 1
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WSO

r(Eg) R(ES)

Figure 14. Illustration of some elements used in the proof. Inspired
from the picture of [30, Fig. 6].

Thus, the map F(z) has value in the interval [0,n0/4] and there exists a family N;
of ¢’-neighborhoods of K; and a constant 79 > 0 (which only depends on ¢’) such
that(®)
N
7,5\/(E) < —np, on M\ U N;.
i=1
In addition, we choose ¢, &’ sufficiently small so that, for every i € [1, NJ,
{2, dg(z, K;i) <&} C o™ (Vi) N ™ (Vy),
U {EoeNc U s(e),
dg(Z,Ki)<6/ dg(szi)<El
for some given unrevisited neighborhood V; of K; as in the statement of Corollary 7.6
and for a fixed integer m large enough (> my of the corollary) such that Ce™* > 3
(where C, A are the constant given in the corollary). These two inclusions will be
used in the construction of f. But first, let us briefly explain why these inclusions are
satisfied for e, < 1. Since m is fixed and since ™ (V;) N ~™(V;) is a neighborhood
of Kj;, the first inclusion is true for & sufficiently small. The second inclusion is given
implicitly in the proof of Lemma 3.4. To be more precise, we apply Corollary 7.7
which states that, up to a choice of a smaller ¢,
/{(Ez/s(x) ~ 0p7) is arbitrarily close to |J K(ES/S(Z) ~ Oar)
ze€K;
for all x satisfying dy(z, K;) < €’. If we note that
U K(G;/u(z)) is an open neighborhood of [ fi(Ef;/s(z) ~ 0ar),
dg(z,K;)<e’ z€K;
and if we recall that N*/" is an e-neighborhood of Ys/u = Usem /@(E:;/S(z) ~ Onr),
then we get that

U {z9e Ns/“} is contained in U /<;((°,;/u(z))7
dg(z,K;)<e’ dg(z,K;)<e’

(13)We make the assumption that N > 2. The case N = 1 corresponds to the Anosov case.
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as soon as ¢ is small enough. Another consequence of these two inclusions is that
(43) U {(z,§ eN/"} C U R(C5u(2))-

Z€N; @™ (Vi) =™ (Vy)
This last inclusion together with Corollary 7.6 (second point) will be essential for the
definition of f.

Let us introduce another notation which will be useful: for any open set U in S*M,
we denote by Cone(U) the conical neighborhood™) of U in T*M ~ 0p;. In partic-
ular, the sets Cone(N®), Cone(N°) and Cone(N") define conical neighborhoods of
User EBi(x), Upen Ei(x) and J, o5 E3 () respectively (outside the null section).
Now that the setting is done, we need to check that the escape function satisfies the
desired properties.

— On N®, we have
E(z,8) < —E(x)+2s+ (2u—ng)(1 — 1) + (ng — 28)(1 — 1)
——

<0
< 2se+2u(l —¢) < wu.

— On N, we obtain
E(z,€) > —E(z) +2s + (2u — no)e + (ng — 2s)e
——

>—s/4
1
225(1757§)+2u5> s.
— On N°, we obtain
% < —% +no(l —¢e) 4+ 2ue < E(x,8) < no(l —¢) + 2se < 2ng.

We now explain how to construct the function f following the strategy of [30, 24].
We want to construct a function f € C*°(T*M) which is a homogeneous polynomial
of degree 1 for |¢] > 1, so that Lx,, (log(f)) is a bounded function. Since we want
Lx, (Gm) to be negative everywhere, we need to make sure that our definition of f
gives the right sign in the term E -Lx,, (log(f)). We will also seek f such that Lx,, (f)
vanishes near E* and such that f(z,£) = x(|¢[2)f(x,€), with x as before and with
f € @®(T*M . 05) which is 1-homogeneous with respect to the variable £&. We can
already check that £x,, (log(f)) is a bounded function on T*M for || > 1. Take an
arbitrary basic set K;.

~ On N8 := Cone (U.en, {(2,6) € N°}), we define the map f by

fla,€) = /m |t (x, €)|dt.

0
Thanks to Corollary 7.6, thanks to our choice of m (such that Ce™* > 3) and
thanks to the inclusion (43), we get that

Loy (F)(@,€) = [®7(2,6)] — [¢] = Ce™¢| — [¢] > 2[¢], ¥(x,€) € N},
(14)defined by Cone(U) = {(z, A¢) € T*M, X € R*, (z,£) € U}.
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Also, f is a homogeneous polynomial of degree 1 in the variable £, so we can find a
constant ¢ > 0, which does not depend on z € K, such that 0 < ¢7}|¢| < f(z,&) < c[¢]
on N*N{|¢| = 1}. For |£] > 1, we get

2
Therefore, there exists a universal constant v > () such that
2 2
(14) £ (08(1)) = 53 () > 2 3 27> 0

- On N;l := Cone (U, e, {(2,€) € N"}), we define similarly

fot) = [ oo
0
With the same remark, up to reducing the constant v, we obtain

(45) Lxy (log(f)) < =y <0,
as soon as [§| > 1

— On N? := Cone (U.en, {(2,6) e N°}), we fix f flx,€) = |&(V(x))|. This ensures
that
Lxy (log(f)) = 0.
- On UZEUiNi {(2,6) € S*M ~ (N*UN°UN")} and on UZ%Ui N, ST M, we let I
take arbitrary positive values on S*M
It now remains to show that G,, has the expected decaying properties (namely

points (2) and (3)) of Proposition 3.6.

Decaying estimates. — To compute the derivative of the map E along the flow <'l~3t,
we will need at some point the next relation:

L)}H E = —Lv(E) + (2’(1, — no)L)?HE_;_ + (no — QS)L)?HE_

and we can already see that it is non-positive everywhere. For || > 1, we can estimate
the quantity £x, Gy, in different directions.

~ On Ns := Cone(UzeU_ n, {(2,6) € N°}), we get

LxyGm =Lz, (E)log(f) + E(z,8) Lx, (log(f))
R N N — ——
<0 >0 <u >y
—7lul.
~ On N":= Cone (U, ¢y, w, {(2,€) € N"}), we get
LXHGm = L)?H (E) 10g<f> + E(IE, g) LXH (10g<f>)
L o~ Y~
<0 >0 >s <=
< s
~ On N° := Cone (U.en, {(2,€) € N°}), we obtain
LxyGm =Lz, (E)log(f)<0.
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- On Cone(UzeUi N, {(2,6) € S*M ~ (N*UN° UN")}). Or equivalently, for 2 €
Uicicn Ni with (2, &) ¢ Cone(W** UW") or (z,§) ¢ Cone(W? UW™). Since E |g«um
and L x,, (log(f)) are bounded and since f is 1-homogeneous with respect to £ for
|€] = 1, there exist constants C,Cy > 0 such that for all |§] > 1,

Lxy(Gm) = Lg, (E)log([€|Ch) + Co.

Moreover, according to the construction of E, one can find a positive constant n > 0
such that £ (E)(z,&) < —n < 0. Therefore, there exists a positive radius R > 0
such that, for every (x,&) in the set T*M ~ (Cone(N®) U Cone(N°) U Cone(N")) with

z € Uycicn Ni and [€] > R, we have
(46) Lxy(Gm) < —ymin(s, [ul).

Therefore, we define C,,, := ymin(s, |ul).

— Outside a small neighborhood of the non-wandering set, i.e., for z € M\(Ufil Ni) .
In this case, we have L5 (E) < —(no/4(N — 1))no < 0. So, using a similar argument
as in the previous point, we deduce that equation (46) still holds far away from the
null section. O

ArpeEnpix A. Hyrersovric sETs
In this appendix, we recall the definition of a hyperbolic set.

Derinirion AL, A pt-invariant compact set K is said to be hyperbolic for the
flow ¢! on M if K is the union of isolated fixed points and compact sets on which the
induced vector field V' never vanishes, where

— for each z € K, we have the following decomposition
(47) T.M = E,(z) ® Es(z) ® Eo(x),

where E,(x) = RV (x) and Es (resp. E,) is called the stable (resp. unstable) distri-
bution. Moreover, this decomposition is continuous with respect to x € K;
— the decomposition (47) is invariant by the flow ¢

Vo € K, (Du9")(Eu(w)) = Eu(¢'(z)) and (Dog")(Es(2)) = Es(¢'(2));

— there are constants C' > 0 and A > 0 such that for every x € K and for every
t > 0, the following inequalities are satisfied:

‘D:c@t(%)b < CeiAt|US|ga Vv € Eg(x),

48
(48) \Dmgp_t(vu)|g < Ce_)‘t|vu|g7 Yo, € Ey(x).

When K is reduced to a singleton {z}, we must have V' (z) =0 and thus E,(z)={0}.
In that case, we say that z is a hyperbolic fixed point. When the whole manifold is
a hyperbolic compact set on which the vector field V' never vanishes, the flow is said
to be Anosov. It was first introduced by Anosov in [1] and this formal definition
of hyperbolicity was motivated by the properties of the geodesic flow on negatively
curved manifolds. Another famous example of Anosov flow is given by the suspension
of an Anosov diffeomorphism. The notion of hyperbolicity was later extended by
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Smale who defined the notion of an Axiom A flow which is at the heart of this article.
There are many other examples of hyperbolic sets and we refer the reader to [49] and
[56] for a comprehensive study of hyperbolic dynamics. We also refer to [21], [35] for
the case of flows.

Remark A2

— The definition of hyperbolicity does not depend on the continuous metric g on M.
Indeed, if ¢’ denotes another smooth metric then, by compactness of M, ¢’ is equiv-
alent to g and (48) still holds with some constant C’ instead of C.

— The distributions F,, and E; are only Holder-continuous in general. Let d, (z) and
ds(z) be the dimensions of Ey(x) and Es(z) at any point € K. The maps ds(x) and
dy(x) are locally constants on K and E,, (resp. Es) define a Holder-continuous section
of the Grassmann bundle Gg, , (resp. Gg, ) of vector subspaces of dimension d,,
(resp. ds).

AprpPENDIX B. ABOUT SMALE ORDERING: PROOF OF THEOREM 3

In this section, we give a proof of Theorem 3. Although it seems to be well known
to specialists—see [60, p.158] or the proof of Lemma 9.1.11 in [35, p.536], we were
not able to locate a precise reference for the proof in the Axiom A case. In the par-
ticular case of Morse-Smale flows, a proof was given by Smale in [67] and a detailed
proof can for instance be found in [16, App. B]. The most technical part of the proof
consists in proving the transitivity of Smale’s relation. This step is an application of
a classical lemma of dynamical systems called the A-lemma, which can be found in
[35, Prop. 6.1.10, p. 335]. However, in the usual A-lemma for hyperbolic flows (as ref-
erenced), the statement only involves hyperbolic periodic orbit and its proof relies on
the analysis of diffeomorphisms near hyperbolic fixed points. Since we aim at dealing
with hyperbolic orbit which are not only periodic, we begin by presenting a version
of the A-lemma for non periodic hyperbolic orbits which will allow us to proceed
similarly to [16, App. B].

B.1. Proor or SMALE’Ss THEOREM. — In this part, we prove Theorem 3 by using the
following dynamical lemma whose proof will be given in paragraph B.2.

Prorosririon B.1 (Generalized A-lemma). — Let z be a point of a topologically transi-
tive hyperbolic set K. Let D be an embedded disk intersecting the local stable manifold
WEe(z) (for some small eg > 0 given by the stable manifold theorem) transversally
at some point ¢ € W (2) such that dim(D) = dim(FE,), where dim(E,) denotes the
dimension of the unstable distribution on the topologically transitive hyperbolic set K.
Then for any € > 0, there exists k1 € N such that for each k > ki there is a non-empty
embedded disk Dy, C D (of the same dimension) containing q such that ©*(Dy,) is C!
e-close™® to W2 (©%(2)), for some e1 € (0,0] which only depends on ¢*, K.

(15)It means that ©F(Dy) is the graph of a €' map over wg (¢*(2)) whose distance for the C!

norm is lower than . Particularly, it implies that ©* (D) cannot be too small.
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Lemma B.2 (Technical lemma). Let K be a basic set and fix g > 0 given by the
stable manifold theorem. Let x be in WE (x4) with vy € K and let y be in W (y-)
with y_ € K, where ¢ is given by the stable manifold theorem. If D_, D, denote
disks which respectively contain y, x and intersect WE°(y_), Wso(x+) tmnsversally at
a point, then, for all T > 0, there exists t > T and there exist disks D_, D+ contained
respectively in D_, D, of same dimension, such that y € D_, T € D+ and

©' (D) and D_ intersect transversally.
Before giving the proof of this technical lemma, we present some applications.

Prorosition B.3. — Let K be a basic set for the Axiom A flow ©' (we do not
assume the strong transversality nor the no-cycle property here). Then, we have

W3 (K)NWY(K) = K.

Proof. — Assume by contradiction that the inclusion K C W*(K)NW"(K) is strict,
i.e., there exists an element © € M\ K such that x € W*(K)NW"(K). By definition of
Ws(K) and W"(K), there exist elements z_, x4 € K such that z € WS(z )W (z_).
Since € W*(z4.), we also know that for all € > 0 there exists t. > 0 such that ¢’ (z)
is e-close of @'<(xy). For € small enough, the point x cannot belong to the non-
wandering set, because otherwise ¢t (x) would belong to 2 (by invariance) and would
also be e-close to K and thus belong to K (since the basic sets are isolated). Then,
our goal is to deduce from the fact that K is basic that x belongs to Q2. It will lead to
the contradiction. To prove that = € ), we come back to the definition and consider
an open set O which contains z. Fix T > 0. It is sufficient to exhibit a ¢ > T such that
©'(0) intersects O. To do so, we consider small disks D_, D, contained in O which
contain x and intersect respectively the unstable manifold of z_, the stable manifold
of 24 in the sense that ¢’ (D) intersects transversally W (=0 (24.)) to a point(16)
and ¢t (D_) intersects transversally Wi°(p =t (2_)) to a point!™), where e is
given by the stable manifold theorem. Now, the result follows from an application of
the technical Lemma B.2 which gives the existence of a ¢ > T" and of disks @+, @Jr
contained respectively in D, D, such that = € @4_ ND_ and

(D) ND_#o.
Therefore x € ), which leads to the expected contradiction. O

Cororrary B.4 (Transitivity of Smale relation). Let us assume that the flow ¢t
satisfies the strong transversality assumption (11). Let K;, K;, Kj, be three basic sets
such that K; < K; and K; < Ky, then we have transitivity of the Smale relation in
the sense that K; < Ky.

Proof'of Corollary B.4A. — Let x be in W (z_)NW?*(xy) with (z_,z) € K; x K; and
let y be in W"(y_) N W3(y,4) with (y—,y+) € K; x Kj. Up to replacing (z,z_,z4)

(16)This means that the disk D has the same dimension that wg (pPe0 (z4)).
(17)Similarly, the disk D_ has the same dimension that W2, (o~ b0 (z_)).
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by (@l (), pteo (z_), p'0 (24)) and (y,y—,y+) by (@ =0 (y), o "0 (y-), o "0 (y4)),

where ¢ is given by the stable manifold theorem and where t., > 0 is sufficiently
large so that @' (z) € WZ (p'=0 (x4)) and ¢~ "0 (y) € WE (¢~ 0 (y_)), we can assume
that x € W*(x_) N WE (z4) and y € W2 (y—) N W*(y). Since the intersections
W(z_) N W= (xy), WU (y_) N W3(yy) are transverse, then, for any disk Dy of
dimension n — dim W*°(x ) transverse to W*°(x) which contains z and which is
contained in W"(x_) and for any disk D_ of dimension n — dim W"°(y_) transverse
to W' (y_) which contains y and which is contained in W*(y, ), Lemma B.2 ensures
that for every T' > 0 there exists a t > T and there exist smaller disks @_, @+ (as in
the statement of the lemma) such that

(D) ND_# 2.
In particular, there exists z such that z € W"(K;) N W®(K}). O

In the next corollary of Lemma B.2, we give a proof of the claimed relations (13)
and (14).

Cororrary B.5. The following statements are satisfied.

(1) If ¢ satisfies the no-cycle property, then for every total order relation on the
basic sets (in the sense of Section 2.5.1) and for every i € [1, N| the set |J,;W" (K;)
is compact.

(2) If ¢t satisfies the strong transversality assumption, then for every basic set K,
the set Uy, e WH(K') is compact and is equal to W"(K). Moreover, we have

WY(K) D WYK') if and only if K < K'.

Proofof Corollary B.5(1). — This step only rests on the existence of filtrations given
in Lemma 6.3 for any total order relation (Section 2.5.1). Indeed, according to Lemma
6.3, for every i € [1, N], there exists an open set OE_iH which contains Uigj WY(K;,),
whose closure is (! stable and does not intersect any K, with £ < i. Now, we fix some
i € [1, N]. From the previous fact, the closure of [ J;; W"(K};) must be contained in

Oj{,_i +1- Compactness follows from the equality

U WH(E;) = N " (0% _ip1)-

i<j n>0
Proof of Corollary B.5(2). Point (2) is a consequence of (1) and of Lemma B.2, as
we shall explain. First, we fix some basic set K. As a consequence of Corollary B.4,
we can relabel the basic sets so that the set {K’ basic, K < K'}, of cardinal N — i
(for some i € [0, N — 1]), is sent bijectively to {K;, i < j < N} (with K = K;)
and so that the new label on (Ky)i1<e<n defines a total order relation in the sense
of Section 2.5.1. Now, using (1) for this new total order relation, we deduce that
Uic; WH(EK;) = Uk i WH(K') is a compact set.

In order to prove the claimed statement, we apply Lemma B.2 to show that this last

set is included in W (K), or equivalently that for every basic set K’ such that K < K’

we have W (K') C W4(K). Let K’ be a basic set such that K < K’, fix y € W"(y_)
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with y_ € K" and choose © € W™ (x_) N W5(xy) with (z_,21) € K x K’'. As in the
proof of Corollary B.4, we can assume that x € W"(x_)NWZ (z1) and y € W2 (y_).
Moreover, for every € > 0, if we choose some disks D and D_ such that

z € Dy C By(z,e), y e D_ C By(y,e),

as in the statement of Lemma B.2, there exists an element z € ¢'(D,) N D_ which
satisfies by construction

dy(z,y) <e and z€ ' (D) C WYK).

Since this last result holds for every e > 0, we deduce that every y € W"(K"’) belongs

to WU(K). Finally, for every basic set K’ such that K < K’ we have W%(K) 2
WH"(K') and thus

TRE D U W), o
K', K<K'
Proof of the technical lemma B.2. — The result is an application of the A\-lemma. Con-

sider a disk Dy which is transverse to W:°(zy) and consider a disk D_ which is
transverse to W2°(y_) such that

Dy W (xy) ={a+},  D_NWP(y-) ={q-}.

Up to replacing =, and y_ by respectively ¢'(xy) and ¢! (y_) for some t, ¢ € R,
we can assume that ¢, € W2 (4 ) and ¢_ € W2 (y_). Note that the disks D, D_
are respectively of dimension d, = dim E,|g, ds = dim Eg|g = n — 1 — d,, (which
are constant since K is topologically transitive). In this proof, we are going to apply
the A-lemma (Lemma B.1) three times and thus consider smaller disks (as in the
statement of the lemma) at each application. To lighten notations, we still denote
them by D,, D_. Now, applying the A\-lemma of Proposition B.1, we deduce that,
for every € > 0, there exists t(¢) > 0 such that

@' ©(D,) is €' e-close to W2 (o' (24))

up to considering a smaller disk D, whose size depends on e, where €1 > 0 is the

t

constant appearing in the A-lemma. If we apply the A-lemma for the flow ™" instead

of ¢! then we obtain similarly
(49) e ME(D_) is @' e-close to W;l(w_t(s)(y_)),

up to taking a larger t(¢) and up to considering a smaller disk D_ (whose size also
depends on ¢). Now, we choose ¢ sufficiently small so that it ensures the uniform
transversality of G e-perturbations of the (weak) stable and unstable manifolds on K.
Such a choice is always possible because transversality of submanifolds is an open
condition for the C! topology—we refer to [52, §5.3.3, p.88] for this result(*®—and

(18)Alth0ugh the referenced result deals with the transverse intersection of a graph of a €1 map
with a fixed submanifold, it can be applied to the case of transverse intersection of two graphs of @1
maps. Indeed, since both graphs are submanifolds of M (of dimension duo and ds with n = duo + ds
for example), we can see them as the images of two injective maps i1 : R%we — M and 43 : R% — M.

JE.P. — M., 2095, tome 12



702 A. MEDDANE

the uniformity comes from the compactness of the basic set K and Hoélder regularity
of the stable and unstable foliations on K.

The main idea consists in connecting the points @t(g)(m) and @) (y—) using
periodic orbits whose distance to both points will be chosen sufficiently small. From
the assumption that K is topologically transitive, for every € > 0, there exists a point
z. € K whose positive orbit is dense in K and a time T'(¢) > 0 such that
€ €
do(0" 1) 2) < 50 g7 (o), 0" (20) < 5
By continuity of ¢”(©) and since K is the closure of its periodic orbits, we deduce that
there exists a periodic point p. (which depends on € and ¢) of period Ty(e) > 0 such

that
dg(@"(z4),pe) <€, dele "D (y-), " (pe)) <.

Now, we are going to use the Bowen brackets and their continuity, namely the conti-
nuity of the well-defined maps [.,.], /4 : {(21,22) € K x K, dgy(21,22) < ¢} — K given
by the transverse intersections

We(21) N W€ (z2) = {[z1, 22}, WI(21) N Wi(22) = {[21, 22]4}

for all 21, z2 € K and for all sufficiently small € > 0 (which only depends on K and ¢*)
as recalled™ in [35, Prop.6.2.2]. Now, we fix such a ¢ > 0 and we choose € suffi-
ciently small so that ¢ < £;/2. If we note that W*([¢"®) (x4, pc)y) = W (") (21))
and that W*° ([0 (zy),p]y) = W*(p.) and if we consider the adapted chart at
the point [p*(®)(zy),p], which sends W ([0 (24),pe],) to R x {0}%*! and

€

W ([0 (24),pe]) to {0}% x R%+1 then we get that
the disk ¢'®) (D, ) intersects W ([¢!®) (24 ), pc],) transversally at a point.

Furthermore, since WZ°(p.) contains W2°([¢"®)(2),p],) thanks to the choice of
€ < €1/2, we deduce that

©'&) (D, ) intersects WZ°(pe) transversally at the same point.
Transporting this intersection along the diffeomorphism ”(©) implies that
et EFTE (D) intersects ¢! © (W (pe)) C W;f(cpT(g) (pe)) transversally.

Now, if we apply again the A-lemma for the disk @*=)+7()(D,) which intersects
transversally the stable manifold of the periodic point ¢ (¢) (pe), then there exists a

Moreover, it is not hard to see that the two manifolds are transverse if and only if the map (41,142)
is transverse to the diagonal Ay := {(z,z),z € M}

(19)Note that the Bowen bracket has values in K means that K has a local product structure. This
local product structure follows from the fact that the basic set K is locally maximal (by definition).
Indeed, it is not hard to see that [z1, 22],, [21, 22]y € K as soon as € is chosen small enough so that
{z, dg(z, K) < €} C O, for O open set such that ,cp ¢*(0) = K. Moreover, the continuity of the

Bowen bracket follows from the continuity of the stable and unstable leaves.
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disk D C p"&)+T() (D) of same dimension than D, which contains ¢’ (p.) and
there exists an integer k sufficiently large so that

(50) " (D) is € e-close to wi (T (p)).

On the other hand, let us go back to the disk ") (D_) that we moved backward
along the flow. We consider an adapted chart near the point [ () (p), 1) (y_)];
such that W2 ([T (p.), 1) (y_)]y) is sent to R™F! x {0}% and such that
W ([T (pe), o1& (y_)]s) is sent to {0}%F! x Re%. If we note that

W (o™ (pe), 0" (y-)]) = W™ (" (pe))
and We([e" (pe), o O (y_)]y) = W3 " (y)),
then we deduce from (49) that
(D) is ! e-close to W ([0 (pe), ™" (y-)]),

up to considering a smaller disk D_ (of same dimension and whose size depends
on ¢, €). Finally, thanks to (50) and thanks to the choice of €, we deduce that

U & ((kaO(e)(D)) and ¢ ") (D_) intersect each other transversally. O

|t‘<81
WH(y-)
Wt (z4)
Dy v o
z T W(axy)
y7
\ We(y-)
@")(D)
-------------------------------------
o) /
50t<£>j,7T<€)+kTO(E) (D+)
[‘pt<s) (er)vpe] ‘:pe 4
TN F1eTO (o), 0O (y-)]
‘ @—t(s)(D_)
‘ et (yo)

®Flow direction orthogonal to the figure

Ficure 15. Illustration of some elements used in the proof of Lemma B.2.
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B.2. PrROOF OF THE GENERALIZED A-LEMMA. When the orbit z € K along the flow
is periodic (of period T' > 0), the analysis takes place on a chart near z on which
the diffeomorphism ¢? acts naturally. In the case of non periodic orbit, we need to
consider a moving chart defined at each point of the orbit (¢*(2))r>0. We in fact use
Cl-adapted charts for this trajectory used and constructed in [21, Def. 4.8, p. 36].

Derintrion B.6 (Adapted charts). Let € K. A ¢! diffeomorphism
Co:Upy —Vy, €U, C M, 0€V, CR", (,(x)=0,

is called an adapted chart for ' centered at z if:

(1) For each y € Uy, we have D, (y)V (y) = 05, = (1,0,...,0)" € T, (,)R" = R™.

(2) D¢o(7)Ey(x) = Ey(Opn) := {0}%+! x R% and the restriction of D(,(z) to
E,(x) is an isometry from the adapted metric defined in Section 7.1 to the Euclidean
metric.

(3) DCu(z)Es(7) = Es(Ogn) := {0} x R% x {0}% and the restriction of D¢, () to
E,(x) is an isometry from the adapted metric to the euclidean metric.

For the sake of our analysis, we consider such a family of adapted charts and we
explain how to modify it to straighten the weak-stable manifold and the unstable
manifold. Precisely, we construct a family of charts satisfying the following assump-
tions.

Derinition B.7 (Straightening charts). — A family of €' diffeomorphisms
Xe : U — Vo, 2€K, 2z€U,CM, 0€V,CR" x.(x)=0,
is called a family of straightening charts for ¢! at K if: for all z € K, we have
Xo(Us NWE(z)) € R%=FE x {0}
Xa(Uz N W2 (2)) C {0} x R%,
where €¢ is given by the stable manifold theorem, where WE°(x) denotes the local

weak-stable manifold at x and where W2 (x) denotes the local unstable manifold
at .

First of all, we begin with explaining how to deduce a family of straightening charts
from a family of adapted charts. Arguing as in [21, p. 36], we first consider a family of
adapted charts (¢, : U, C M =V, C R")me x- Then, we consider the rescaled chart

Coi=Tolp: Uy —Ve:=T(V,), z€K, T=06"Idg,,
for some d; > 0 and we define the family of diffeomorphisms
Yy =Cormyopt ol iV, CR" — Vi) CRY,  z€K.
AE explained in [21, §3.4], the stable manifold theorem applied to the family of maps

(Yok () kez gives the existence of a stable manifold W§ _  (Ogr») and of an unsta-
ble manifold Wiy, (Og») which are invariant under the family of diffeomorphisms

(ka(w))kez as soon as d; > 0 is sufficiently small (§; only depends on !, K). We also
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assume that ¢; is small enough so that [—2,2]™" C V, for every x € K. Recall that the
local stable and unstable manifolds on M are defined by pullback from these local
stable and unstable manifolds on R™. Moreover, the unstable and stable manifolds
restricted to [—2,2]™ can be seen as graph of functions F, : [-2,2]% — [-2,2]%+L,
Fy: [-2,2]% — [-2,2]%+! which are of class C!'!, defined as the set of € functions

whose differential is Lipschitz(??), and which satisfy the bounds
(51) [Fuller < Co1,  [|Fller < Cdy
for some constant C' > 0 depending only on ¢!, K. Here, ||.||¢1 denotes the maximum

of the €' norm and the Lipschitz norm of the differential. Following the construction
of [21], the weak-unstable is then defined by

Wiae (0) := {z + (5,0,...,0), for z € W} ,(0) and —2< s <2} N[-2,2]"

oc,x

and the weak-stable manifold W, (0) has a very similar definition. Note that the

loc,z

weak-unstable manifold Wy,  (0) is the graph of the C! map
Fyo : (21,25) € [-2,2]5, x [-2,2]% +— my(Fy(as)) € [-2,2]%,
where (21, 2,) = @, for all (v1,24) € [2,2]5, x [-2,2]%. Now, we consider the
straightening operator
S i (To, Ts, Tu) € [2,2]" — (Zo, Ts, Tu),
with (507 /j}s) = (l‘o,.')i's) - Fu(mu)a ?Uiu =Ty — Fso(xmxs)y

where (2o, s, 7,) denotes the decomposition R x R% x R% of R™. Moreover, the
bounds (51) ensure that S is a diffeomorphism on its image (which contains the ball
[-2 4 C61,2 — Cé1] and is contained in [—2 — Cd1,2 + C6;]). Furthermore, it is not
hard to see that .S is indeed straightening the weak-stable and the unstable manifolds
in the sense that S(W2, (0)) € R%F1 x {0}9 and S(Wi. ,(0)) C {0}%F! x R

loc,z

Finally, we introduce the adapted chart
Xe=80C 1 Upi=U N (] —2,2[") — V, := Ran(xa)
which satisfies all the claimed properties.
Another zoom for local estimates. — For § > 0, we consider the family diffeomorphisms
Yo = Xpi() 0@ 0 Xa ' Ve — Vpr(ay, ¥u(On) = O0zn, 7 €K,
where V, = § Vo, Xo = 67X, denoted for all y € [—1,1]" by

(A% 0 (y) AL oY)
Dyaly) = (Afo,u@) Aau(y))

(20)The regularity is not optimal here and could be improved using adapted charts with higher
regularity, as it was done in [21]. But it will be enough for the proof of the A-lemma.
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has for coefficients the linear maps

Ago,so(y) : Rds+1 — RdSJrlv Aszo,u(y) : RdSJrl — Rd“a
AL (y) i R — R Az (y) : RM — R,

which satisfy for all y € [-1,1]™

1A% o Il S T+ 76, (AT 4 () <2475,
<

(52) S0,S0 ; ) . )
[ A% u @ < C0lyul, AT o)1 < C70Jyl,

so,u u,s80

for some constant C’ > 0. These estimates are a consequence of (23). Moreover, it is
important to remark that AL, vanishes on the stable manifold Wi (0)N[=1,1]" =
[—1,1]%H1 x {0},

Proofof Proposition B.1. — We work in the family of charts (Xz)zex defined just
before the proof from a family of straightening charts (xz)zex (see Definition B.7)
for some § > 0 sufficiently small so that

(143070 e M <e ™8 (14+C0) (e N4 C'6) < e M4,
(53) / 1
(2 + C'5) (1 - 076(67)‘/2 + 0’5)) < e M4,

Consider a point z € K whose orbit (¢*(2))xez is not reduced to a fixed point and
consider a disk D C [—1, 1]™ which intersects the stable manifold W2 _(0)N[—1,1]" =

loc,z

[=1,1]%F1 x {0}% at some point ¢ € Wi .(0) in the sense that
DNWiy .(0)={¢q} and R"=T,DaT,W. (0).

oc,z oc,z
Since ¢ belongs to the stable manifold Wi _(0), we deduce from the stable manifold
theorem that there exists cq > 0 which depends on ¢!, K and § such that

—kA/2

VEEZ,  |Xpr(xo@"oXs (@) < coe lql,

and therefore

[vE(g)| < coe FM2 for g = Poh1(z) 0+ 01,

since ¥, = Xo1(2)°0¢' 0X; *(¢) (z € K). Contrary to the usual version of the A-lemma,
the diffeomorphism we apply to the disk D changes at each iteration. But since all the
diffeomorphisms k(. satisfy hyperbolic estimates which are uniform with respect
to k, we claim that the usual proof can be adapted in this setting. For the sake of
completeness, we briefly check that claim.

Step 1: Lipschitz bound for the tangent space of the iterated disks o* (D) at 1% (q)

First, we can describe the tangent space 7,D at ¢ as the graph of a linear map
Ey : R*™ — R%*1 whose norm is bounded by some constant x > 0. Similarly, for
every k € N, we describe ka(q)cpk(D) as the graph of a linear map Ej, : R% — Ré%+1
The usual strategy consists in using the recursive relation

(54) Doy (W2 (@) Tyr (U5 (D) = Typewr (05T H(D), VEEN,
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to deduce a recursive relation on the norm of Ej. To simplify the notations, let us
denote by g the point 1/¥(¢) and 2, the point ¢*(2). As a consequence of (54) and

Azt o(qr) By + AZk (%)) (Az (qu)Ex + AZ- (Qk))
55 D » S0,S0 u,so S0O,S0 u,so ,
( ) w § (Qk) < >( Afg u (Qk)Ek + Au,u (Qk) Aiku( )
since AZk

Zk , vanishes on [—1,1]%F! x {0} by stability of the weak stable manifold.
But since the terms in (55) belong to the graph of Ej1, we must have

(56) Epr1 = (AZ oo (ar) Ex + Ao (ar)) Ak (ae) ™"

Now, it remains to see that the norms of Fj satisfy an exponential bound. Thanks
to (56) and thanks to (52) again, we deduce that

1Bl < (142 so (@) N Brll + 1 A%o (@) 1) < 1A (ar)
< (1 + C'0)|| Bl + C"6lar|) (e=* + C”6)
< e MY By + e MAcge FN2,
according to the estimates on ¢ given in (53). Now, if we consider the auxiliary
sequence ug = ||Ej|le®*/*, then it is not hard to see that wup,1 < up + coe *M*
and, thus, that

—k)/4 o
VEeN, |Ey <e (”+m)'

In particular, we get that ||E| converges to 0 as k — +oco and there exists kg € N,
such that
1 1
VE> ko o<t B <)
By continuity, there exists a disk D C D (of same dimension) which contains ¢ such
that 1% (D) is contained in the adapted chart near ©*(z) and which is the graph of
a €' map Fy,. Precisely, there exists Fy, : [-1,1]% — [~1,1]%*! for some 5 € (0,1)
such that
Graph(Fy,) = ¥4(D),  (Fr (Ogau ), 0nen) = gi, sup || DFy, (zu)]| <

wue[7n3n]du

DO =

Now, we consider a C! extension?") of F},, that we denote by ﬁko, such that

~ ~ ~ 1
Fyy € € (FLU™ LU B liype = Fre sup  [DFi ()] < 5.
zuw€[—1,1]%u
Step 2: a graph transform argument for the map F ko- — We first introduce the complete

metric space
g .= {F € € ([=1,1]%; [=1,1)% ), (F(Oga ), 0gan) € Wi, (0),

1
<l sw IDFE)I<
2 z€[—1,1]"

DO | =
——

|F(Oga)

(2D Thanks to the expansivity of the unstable manifold, the €! convergence of the disk will not
depend on the extension Fy, of F},. This fact will be detailed in step 3.
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endowed with the distance dg(.,.) defined, for all F, Fe g, by

de(F,F) = max(\F(ORd.,) — F(Oga)],

sup__[|DF () = DF(z)]).
Ty €[—1,1]"

Now, we consider the family of graph transforms defined by

(57) Graph (¥ (F)) = 9., (Graph F) N [-1, 1],
for all k € Z and for all F € €. The fact that [—1,1]% C m, (1., (Graph F))) (which
is implicitly used in (57)), where m, : [~1,1]" — [~1,1]% denotes the orthogonal

projection to [—1,1]%:, follows from the stronger fact: there exists A > 1 (which
depends on ¢!, K, §) such that

d
diy Tu (Yz, (F(20),20)) = A

This last inequality is a consequence of the expansivity of the unstable manifold.
Now that the definition of the graph transforms given in (57) makes sense, our goal

is to prove that for every F € &, for all k € Z and for all £ € N,
(59) de (V},(F),0) < max(co, 1)e~8de (F,0),

(58) VF €&, Vk € Z, Vo, € [-1,1]™

where \Ilfc denotes the composed map Wy go-- oW, We can remark that (59) implies
the G convergence of \I/f;(F) to the null map, which is geometrically the unstable
manifold Wy, _(0).

In order to prove (59), let k € Z, F € CY([-1,1]%,[-1,1]%*!) and let = =
(F(zy),74) € [-1,1]" for some x, € [~1,1]%:. By definition of the graph transform
given in (57), we have

(60) D, () (DF(xu)> (Afgw(x)DF(xu)+A§kw( )).

Ia, AW (@) DF (24) + AR, (2)

so,u

From the definition of the graph transform Wy, we get that

DU(F) (2, (2)u) = (A2 0 () DF(20) + Ao () (A2, (2) DF () + A (2)

where ¥,, () = (¥2, (T)so, ¥z, (¥)). Taking the operator norm of DUy (F) (1., (z)),
we get

”D\pk(F) (wzk( u ||Aso 50 )DF(‘TU) +Aﬁkso )H x 1,
with I = || (Az ,(z)DF(z,) + Afl’ju(:c ) H Moreover, we have

sSo,u

(61) < |l(Az @) 7| H (Id +AZE (@) DF(2y) (Af;ju(x))*l) B H .

J
Since F' € &, we have that

| A2 (@) DF (20) (A2, (2)) || < ([ Az W @) || I DF ()| ]| (AZ(2) 7|
< %(6_)‘/2 +C'%) <1
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Therefore, we deduce that

“+oo

Z||A§g;u )DF(z,) (AZ,(x))~ Z( —V2+c’5))k

k=0
c's
< (1 - (e c’a))
Putting all together the last inequalities with (61) and (53), we get that

c’é

—1
I< (e M2y 0’5)(1 - e 0’5)) < e M,

Finally, if we denote by [|F”| the quantity sup, c;_1 1 [[DF(yu)| to simplify, then
we get that
IDYL(F) (2, (2)u) | < (|| A2 so @) IDF ()| + [| Ao (@)]]) e/
(L4 C'8)|F|oo + C'8|F (za)[) e
(L4 C'8)|F"|oo + C'8 (|F(Ogan )| + [ F ) €4

eiA/sdE (Fv O)a

(62)

INCININ N

where we used the estimates on ¢ given in (53).
Furthermore, since (F'(Oga. ), Ogaa) € Wi (0), we get that

Vk € Z, 2 (F(Opa),Ogau) = (VkF'(Ogan ), Opan) € Wi . (0).
Since
|2, (F(0gau ), 0z )| < coe™2|(F(Ogau ), Opau )| = coe™ 2| F(Opan ),
we deduce that
(63) VkeZ, YleN  |U(F)(Oga)| < coe™2|F(0gay)|.

Fix ¢y € N such that coe %*/® < 1. A mean value inequality leads to the stability of
the graph transforms:

(64) VEec&, VYkeZ, Y=/ ViF €&,
and the inequalities (62) and (63) leads to the claimed inequality (59).

Step 3: coming back to the disk. — Applying step 2 to the map ﬁko defined at the end
of step 1, we get in particular that

—n/8
~ e
de (\Pio(Fko),O) < max(cg, 1)e D‘/Sdg(Fk ,0) < max(co, 1) 5
In particular, thanks to the mean value inequality, we deduce that
. =
||\I’ko(Fko)Hel Z—?)oo 0.

Finally, thanks to the expansivity of the unstable manifold, to the stability given
in (64) and to the above C!-convergence, we obtain

Graph (¥}, (Fy,)) N [~1,1)" = Graph (¥ (Fy,)) N [-1,1]" = pft4(D) n[-1,1]",
for all £ > 4.
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Now, if we fix e; > 0 such that ; < g9 and

Ve K, Wiy Cxy({or&tt x [-1,1]™),

then we can deduce the following statement: for all € > 0, there exists k1 € N such
that for all k > ki, there exists a disk Dy, C D (of same dimension) which contains ¢
such that ¢*(Dy) is €' e-close to W2 (¢*(2)). O
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