[Analyse d’une suspension de particules en sédimentation à proximité d’une paroi verticale]
We consider a sedimenting suspension in a Stokes flow, in the presence of a vertical wall. We study the effect of a particle-depleted fluid layer near the wall on the bulk dynamics of the suspension. We show that this effect can be captured by an appropriate wall law of Navier type. Under appropriate lower bound for the minimal distance and the size of the depletion layer, we provide in this way a rigorous justification of the apparent slip observed in many experiments. We also discuss the phenomenon of intrinsic convection predicted in some physics articles.
Nous considérons des particules sédimentant dans un fluide de Stokes en la présence d’une paroi verticale. Nous étudions l’effet du bord ainsi que de la couche limite appauvrie en particules sur la dynamique de la suspension. Nous montrons que cet effet peut être modélisé par des conditions au bord de type Navier. Sous certaines hypothèses concernant la distance minimale entre particules ainsi que la taille de la couche limite, nous proposons une justification rigoureuse du phénomène de glissement apparent observé dans certaines expériences. Nous discutons également du phénomène de convection intrinsèque étudié dans certains articles de physique.
Accepté le :
Publié le :
Keywords: Sedimentation of particles, Stokes flow, method of reflections, boundary layer analysis
Mots-clés : Sédimentation de particules, fluide de Stokes, méthode de réflexions, analyse de type couche limite
David Gérard-Varet 1 ; Amina Mecherbet 1

@article{JEP_2025__12__523_0, author = {David G\'erard-Varet and Amina Mecherbet}, title = {Analysis of a sedimenting suspension near a~vertical wall}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {523--546}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.296}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.296/} }
TY - JOUR AU - David Gérard-Varet AU - Amina Mecherbet TI - Analysis of a sedimenting suspension near a vertical wall JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 523 EP - 546 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.296/ DO - 10.5802/jep.296 LA - en ID - JEP_2025__12__523_0 ER -
%0 Journal Article %A David Gérard-Varet %A Amina Mecherbet %T Analysis of a sedimenting suspension near a vertical wall %J Journal de l’École polytechnique — Mathématiques %D 2025 %P 523-546 %V 12 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.296/ %R 10.5802/jep.296 %G en %F JEP_2025__12__523_0
David Gérard-Varet; Amina Mecherbet. Analysis of a sedimenting suspension near a vertical wall. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 523-546. doi : 10.5802/jep.296. https://jep.centre-mersenne.org/articles/10.5802/jep.296/
[1] - “Apparent slip in colloidal suspensions”, J. Rheol. 66 (2022), p. 79-90 | DOI
[2] - “Hydrodynamic thickening of depletion layers in colloidal solutions”, Europhysics Letters 14 (1991) no. 1, p. 33-38 | DOI
[3] - “Wall laws for fluid flows at a boundary with random roughness”, Comm. Pure Appl. Math. 61 (2008) no. 7, p. 941-987 | DOI | MR | Zbl
[4] - “Sedimentation in a dilute dispersion of spheres”, J. Fluid Mech. 52 (1972) no. 2, p. 245-268 | DOI | Zbl
[5] - “Sedimentation of blood corpuscles”, Nature 104 (1920), p. 532 | DOI
[6] - “Intrinsic convection in a settling suspension”, Phys. Fluids 8 (1996), p. 2236-2238 | DOI
[7] - “Three-dimensional intrinsic convection in dilute and dense dispersions of settling spheres”, Phys. Fluids 10 (1998) no. 1, p. 55-59 | DOI | MR | Zbl
[8] - “Corrector equations in fluid mechanics: Effective viscosity of colloidal suspensions”, Arch. Rational Mech. Anal. 239 (2021) no. 2, p. 1025–1060 | DOI | MR | Zbl
[9] - “Sedimentation of random suspensions and the effect of hyperuniformity”, Ann. PDE 8 (2022) no. 1, article ID 2, 66 pages | DOI | MR | Zbl
[10] - An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems, Springer Monographs in Math., Springer, New York, 2011 | DOI | MR
[11] - “Sedimentation of homogeneous suspensions in finite vessels”, J. Stat. Phys 53 (1988), p. 137-173 | DOI | MR
[12] - “A simple justification of effective models for conducting or fluid media with dilute spherical inclusions”, Asymptot. Anal. 128 (2022) no. 1, p. 31-53 | DOI | MR | Zbl
[13] - “Analysis of the viscosity of dilute suspensions beyond Einstein’s formula”, Arch. Rational Mech. Anal. 238 (2020) no. 3, p. 1349-1411 | DOI | MR | Zbl
[14] - “Mild assumptions for the derivation of Einstein’s effective viscosity formula”, Comm. Partial Differential Equations 46 (2021) no. 4, p. 611-629 | DOI | MR | Zbl
[15] - “On the correction to Einstein’s formula for the effective viscosity”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 39 (2022) no. 1, p. 87-119 | DOI | MR | Zbl
[16] - “Apparent wall-slip of colloidal hard-sphere suspensions in microchannel flow”, Colloids and Surfaces A 491 (2016), p. 50-56 | DOI
[17] - “Simple and efficient representations for the fundamental solutions of Stokes flow in a half-space”, J. Fluid Mech. 776 (2015), article ID R1, 10 pages | DOI | MR | Zbl
[18] - “A proof of Einstein’s effective viscosity for a dilute suspension of spheres”, SIAM J. Math. Anal. 44 (2012) no. 3, p. 2120-2145 | DOI | MR | Zbl
[19] - “On the periodic fundamental solutions of the Stokes’ equations and their application to viscous flow past a cubic array of spheres”, J. Fluid Mech. 5 (1959), p. 317-328 | DOI | MR | Zbl
[20] - “Hindered settling of well-separated particle suspensions”, Pure Appl. Anal. 6 (2024) no. 2, p. 581-609 | DOI | MR | Zbl
[21] - “Inertial migration of rigid spheres in two-dimensional unidirectional flows”, J. Fluid Mech. 65 (1974) no. 2, p. 365–400 | DOI | Zbl
[22] - “Sedimentation of inertialess particles in Stokes flows”, Comm. Math. Phys. 360 (2018) no. 1, p. 55-101 | DOI | MR | Zbl
[23] - “Convergence of the method of reflections for particle suspensions in Stokes flows”, J. Differential Equations 297 (2021), p. 81-109 | DOI | MR | Zbl
[24] - “The influence of Einstein’s effective viscosity on sedimentation at very small particle volume fraction”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 38 (2021) no. 6, p. 1897-1927 | DOI | Numdam | MR | Zbl
[25] - “Sedimentation of particles with very small inertia in Stokes flows I: convergence to the transport-Stokes equations”, 2023 | arXiv
[26] - “On the boundary conditions at the contact interface between a porous medium and a free fluid”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996) no. 3, p. 403-465 | Numdam | MR | Zbl
[27] - “Slip flow and wall depletion layer of microfibrillated cellulose suspensions in a pipe flow”, Annual Transactions of the nordic rheology society 27 (2019), p. 13-20
[28] - “Sedimentation of particles in Stokes flow”, Kinet. and Relat. Mod. 12 (2019) no. 5, p. 995-1044 | DOI | MR | Zbl
[29] - “Rough boundaries and wall laws”, in Qualitative properties of solutions to partial differential equations, Jindřich Nečas Cent. Math. Model. Lect. Notes, vol. 5, Matfyzpress, Prague, 2009, p. 103-134
[30] - “A local version of Einstein’s formula for the effective viscosity of suspensions”, SIAM J. Math. Anal. 52 (2020) no. 3, p. 2561-2591 | DOI | MR | Zbl
[31] - “Radial particle displacements in Poiseuille flow of suspensions”, Nature 189 (1961), p. 209-210 | DOI
[32] - “Behaviour of macroscopic rigid spheres in Poiseuille flow”, J. Fluid Mech. 14 (1962) no. 1, p. 136-157 | DOI | Zbl
Cité par Sources :