Movement of solid filaments in axisymmetric fluid flow
[Mouvement de filaments solides dans un écoulement fluide axisymétrique]
Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 351-419.

Nous considérons le mouvement de minces filaments toroïdaux immergés dans un fluide à trois dimensions dont la dynamique est décrite par les équations d’Euler incompressibles. Les filaments sont régis par la mécanique newtonienne et interagissent avec le fluide par le biais de la pression exercée à leur bord. Nous supposons que les filaments sont quasiment rigides, dans le sens où le seul mouvement non rigide qu’ils peuvent subir est un changement de longueur, et aussi que le fluide est irrotationnel, avec une circulation non nulle autour de chaque filament. Nous démontrons que ce type d’interaction fluide-structure peut être décrit par un système d’EDO sur les positions des axes des filaments et qu’à la limite où la masse des filaments se réduit à zéro, ce système converge vers un système d’EDO similaire à la dynamique des anneaux tourbillonnaires.

We consider the movement of slender toroidal filaments immersed in a 3D fluid described by the incompressible Euler equations. The filaments are described by Newtonian mechanics and interact with the fluid through the pressure exerted at the boundary. We assume that the filaments are almost rigid in the sense that the only non-rigid movement they can undergo is a change of length and that the fluid is irrotational, but can have a nonzero circulation around the filaments. We show that this kind of system can be described through an ODE in the positions of the bodies and that in the limit, where the bodies shrink to massless filaments, the system converges to an ODE system similar to the dynamics of the corresponding vortex filaments.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.293
Classification : 35Q31, 35Q70, 76B47
Keywords: Fluid-Solid system, axisymmetric fluid flow, vortex rings, leapfrogging, vanishing body limit
Mots-clés : Système fluide-structure, écoulement fluide axisymétrique, anneaux tourbillonnaires, phénomène de « leapfrogging », limite des filaments de masse nulle

David Meyer 1

1 Instituto de Ciencias Matemáticas, Calle Nicolás Cabrera 13-15, 28049 Madrid, Spain
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2025__12__351_0,
     author = {David Meyer},
     title = {Movement of solid filaments in axisymmetric~fluid flow},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {351--419},
     publisher = {\'Ecole polytechnique},
     volume = {12},
     year = {2025},
     doi = {10.5802/jep.293},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.293/}
}
TY  - JOUR
AU  - David Meyer
TI  - Movement of solid filaments in axisymmetric fluid flow
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2025
SP  - 351
EP  - 419
VL  - 12
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.293/
DO  - 10.5802/jep.293
LA  - en
ID  - JEP_2025__12__351_0
ER  - 
%0 Journal Article
%A David Meyer
%T Movement of solid filaments in axisymmetric fluid flow
%J Journal de l’École polytechnique — Mathématiques
%D 2025
%P 351-419
%V 12
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.293/
%R 10.5802/jep.293
%G en
%F JEP_2025__12__351_0
David Meyer. Movement of solid filaments in axisymmetric fluid flow. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 351-419. doi : 10.5802/jep.293. https://jep.centre-mersenne.org/articles/10.5802/jep.293/

[1] C. Amrouche, V. Girault & J. Giroire - “Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator: An approach in weighted Sobolev spaces”, J. Math. Pures Appl. (9) 76 (1997) no. 1, p. 55-81 | DOI | MR

[2] W. Ao, Y. Liu & J. Wei - “Clustered travelling vortex rings to the axisymmetric three-dimensional incompressible Euler flows”, Phys. D 434 (2022), article ID 133258, 26 pages | DOI | MR | Zbl

[3] V. Banica & E. Miot - “Evolution, interaction and collisions of vortex filaments”, Differential Integral Equations 26 (2013) no. 3-4, p. 355-388 | MR | Zbl

[4] D. Benedetto, E. Caglioti & C. Marchioro - “On the motion of a vortex ring with a sharply concentrated vorticity”, Math. Methods Appl. Sci. 23 (2000) no. 2, p. 147-168 | DOI | MR | Zbl

[5] P. Buttà, G. Cavallaro & C. Marchioro - “Vanishing viscosity limit for concentrated vortex rings”, J. Math. Phys. 63 (2022) no. 12, article ID 123103, 23 pages | DOI | MR | Zbl

[6] P. Buttà, G. Cavallaro & C. Marchioro - “Leapfrogging vortex rings as scaling limit of Euler equations”, SIAM J. Math. Anal. 57 (2025) no. 1, p. 789-824 | DOI | MR | Zbl

[7] P. Buttà & C. Marchioro - “Time evolution of concentrated vortex rings”, J. Math. Fluid Mech. 22 (2020) no. 2, article ID 19, 21 pages | DOI | MR | Zbl

[8] P. F. Byrd & M. D. Friedman - Handbook of elliptic integrals for engineers and physicists, Grundlehren Math. Wissen., vol. 67, Springer, Berlin-Göttingen-Heidelberg, 1954 | DOI | MR

[9] J. Dávila, M. del Pino, M. Musso & J. Wei - “Leapfrogging vortex rings for the three-dimensional incompressible Euler equations”, Comm. Pure Appl. Math. 77 (2024) no. 10, p. 3843-3957 | DOI | MR | Zbl

[10] M. Donati, C. Lacave & E. Miot - “Dynamics of helical vortex filaments in non viscous incompressible flows”, 2024 | arXiv

[11] L. C. Evans - Partial differential equations, Graduate Studies in Math., vol. 19, American Mathematical Society, Providence, RI, 2010 | DOI | MR

[12] M. L. Filho - “Vortex dynamics in a two-dimensional domain with holes and the small obstacle limit”, SIAM J. Math. Anal. 39 (2007) no. 2, p. 422-436 | DOI | MR | Zbl

[13] T. Gallay & V. Šverák - “Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations”, Confluentes Math. 7 (2015) no. 2, p. 67-92 | DOI | Numdam | MR | Zbl

[14] O. Glass, C. Lacave, A. Munnier & F. Sueur - “Dynamics of rigid bodies in a two dimensional incompressible perfect fluid”, J. Differential Equations 267 (2019) no. 6, p. 3561-3577 | DOI | MR | Zbl

[15] O. Glass, A. Munnier & F. Sueur - “Point vortex dynamics as zero-radius limit of the motion of a rigid body in an irrotational fluid”, Invent. Math. 214 (2018) no. 1, p. 171-287 | DOI | MR | Zbl

[16] O. Glass & F. Sueur - “Uniqueness results for weak solutions of two-dimensional fluid–solid systems”, Arch. Rational Mech. Anal. 218 (2015), p. 907-944 | DOI | MR | Zbl

[17] O. Glass & F. Sueur - “Dynamics of several rigid bodies in a two-dimensional ideal fluid and convergence to vortex systems”, 2019, to appear in Bull. Soc. math. France | arXiv

[18] L. Grafakos - Modern Fourier analysis, Graduate Texts in Math., vol. 250, Springer, New York, 2014 | DOI | MR

[19] P. Grisvard - Elliptic problems in nonsmooth domains, Classics in Applied Math., vol. 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011 | DOI | MR

[20] J. He & D. Iftimie - “A small solid body with large density in a planar fluid is negligible”, J. Dynam. Differential Equations 31 (2019) no. 3, p. 1671-1688 | MR | Zbl

[21] J. He & P. Su - “The vanishing limit of a rigid body in three-dimensional viscous incompressible fluid”, Math. Ann. (2024), online first | DOI

[22] H. v. Helmholtz - “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. reine angew. Math. 55 (1858), p. 25-55 | MR | Zbl

[23] H. v. Helmholtz - “LXIII. On Integrals of the hydrodynamical equations, which express vortex-motion”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 33 (1867) no. 226, p. 485-512 | DOI

[24] R. M. Höfer, C. Prange & F. Sueur - “Motion of several slender rigid filaments in a Stokes flow”, J. Éc. polytech. Math. 9 (2022), p. 327-380 | DOI | Numdam | MR | Zbl

[25] J. Houot & A. Munnier - “On the motion and collisions of rigid bodies in an ideal fluid”, Asymptot. Anal. 56 (2008) no. 3-4, p. 125-158 | MR | Zbl

[26] D. Iftimie, M. C. Lopes Filho & H. J. Nussenzveig Lopes - “Two dimensional incompressible ideal flow around a small obstacle”, Comm. Partial Differential Equations 28 (2003) no. 1-2, p. 349-379 | DOI | MR | Zbl

[27] D. Iftimie, M. C. Lopes Filho & H. J. Nussenzveig Lopes - “Incompressible flow around a small obstacle and the vanishing viscosity limit”, Comm. Math. Phys. 287 (2009), p. 99-115 | DOI | MR | Zbl

[28] R. L. Jerrard & C. Seis - “On the vortex filament conjecture for Euler flows”, Arch. Rational Mech. Anal. 224 (2017), p. 135-172 | DOI | MR | Zbl

[29] R. L. Jerrard & D. Smets - “Leapfrogging vortex rings for the three dimensional Gross-Pitaevskii equation”, Ann. PDE 4 (2018) no. 1, article ID 4, 48 pages | DOI | MR | Zbl

[30] C. Lacave & T. Takahashi - “Small moving rigid body into a viscous incompressible fluid”, Arch. Rational Mech. Anal. 223 (2017), p. 1307-1335 | DOI | MR | Zbl

[31] C. Marchioro & P. Negrini - “On a dynamical system related to fluid mechanics”, NoDEA Nonlinear Differential Equations Appl. 6 (1999) no. 4, p. 473-499 | DOI | MR | Zbl

[32] Y. Mori, L. Ohm & D. Spirn - “Theoretical justification and error analysis for slender body theory”, Comm. Pure Appl. Math. 73 (2020) no. 6, p. 1245-1314 | DOI | MR | Zbl

[33] A. Munnier - “Locomotion of deformable bodies in an ideal fluid: Newtonian versus Lagrangian formalisms”, J. Nonlinear Sci. 19 (2009) no. 6, p. 665-715 | DOI | MR | Zbl

[34] H. A. Schwarz - Formeln und Lehrsätze zum Gebrauche der elliptischen Functionen: Nach Vorlesungen und Aufzeichnungen des Herrn K. Weierstrass; Abth. 1, Springer, 1893 | DOI | MR

[35] J. Sokołowski & J.-P. Zolésio - Introduction to shape optimization, Springer Series in Computational Math., vol. 16, Springer-Verlag, Berlin, 1992 | DOI | MR

[36] V. Sverak - “Selected topics in fluid mechanics” (2011), Lecture Notes available at https://www-users.cse.umn.edu/~sverak/course-notes2011.pdf

Cité par Sources :