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MOVEMENT OF SOLID FILAMENTS IN
AXISYMMETRIC FLUID FLOW

BY Davip Mever

Asstract. — We consider the movement of slender toroidal filaments immersed in a 3D fluid
described by the incompressible Euler equations. The filaments are described by Newtonian
mechanics and interact with the fluid through the pressure exerted at the boundary. We assume
that the filaments are almost rigid in the sense that the only non-rigid movement they can
undergo is a change of length and that the fluid is irrotational, but can have a nonzero circulation
around the filaments. We show that this kind of system can be described through an ODE in
the positions of the bodies and that in the limit, where the bodies shrink to massless filaments,
the system converges to an ODE system similar to the dynamics of the corresponding vortex
filaments.

Résumic (Mouvement de filaments solides dans un écoulement fluide axisymétrique)

Nous considérons le mouvement de minces filaments toroidaux immergés dans un fluide a
trois dimensions dont la dynamique est décrite par les équations d’Euler incompressibles. Les
filaments sont régis par la mécanique newtonienne et interagissent avec le fluide par le biais de
la pression exercée & leur bord. Nous supposons que les filaments sont quasiment rigides, dans
le sens ot le seul mouvement non rigide qu’ils peuvent subir est un changement de longueur, et
aussi que le fluide est irrotationnel, avec une circulation non nulle autour de chaque filament.
Nous démontrons que ce type d’interaction fluide-structure peut étre décrit par un systéme
d’EDO sur les positions des axes des filaments et qu’a la limite ou la masse des filaments se
réduit a zéro, ce systeme converge vers un systeme d’EDO similaire a la dynamique des anneaux
tourbillonnaires.
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359 D. MEvER

1. INTRODUCTION AND MAIN RESULTS

We would like to understand the movement of toroidal slender filaments in ax-
isymmetric fluid flow with no vorticity and the limiting dynamics where the filaments
shrink to massless circles.

To get a nontrivial motion of these bodies, one needs to allow them to change their
shape because otherwise, they can only move in one direction without breaking the
axisymmetry, which does not allow for any nontrivial dynamics (for instance a single
body will never change its speed due to momentum conservation).

To still keep the dynamics simple, we shall assume that the only non-rigid move-
ment that the bodies may undergo is a change of length, while still keeping their
volume fixed. Furthermore, for the sake of simplicity, we shall assume that the bodies
have circular cross-sections.

Due to the nonzero circulation around the bodies, one would expect that in the
limit these behave similarly to the corresponding vortex filaments. The main result,
aside from well-posedness of the system, is that this is indeed the case, which is
described in more detail below in Section 1.1.

Mathematically, the setup for this is as follows: We use axisymmetric coordinates
(r,z) and denote the right half-plane by H. We fix the number of filaments k € N
and numbers vq,...,vr > 0, which we interpret as the volumes of the bodies and
which should remain constant along the evolution. We set

[ Vi .
(11) pi = R BZ(R,,Zz) = Bpl((RuZ'L)) CH fori=1,...,k,

here p; denotes the minor radius, R; the major radius and Z; the Z-coordinate.
With respect to the measure rdrdz, which corresponds to 1/27 times the three-

dimensional volume, the bodies B; then have the fixed volume v; = ﬁp?

R;. See also
the figure above.

Formally, we describe the configuration of the bodies through the manifold M C
(R2)* of all (Ry,Z1),..., (R, Zx) such that the bodies B; all have positive distance
from each other and from OH.

For ¢ € M, we shall write g; for the i-th component and gr, and gz, for the two
components of ¢;. We shall also write B;(q) for clarity instead of B; sometimes. Let n

denote the outer normal of | J, 0B;.
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MOVEMENT OF SOLID FILAMENTS IN AXISYMMETRIC FLUID FLOW 353

Each body can undergo two different kinds of motion, the rigid one in the
Z-direction and the non-rigid change of length. To make this precise, we use the
natural correspondence between tangent vectors and normal velocities on the 0B;,
as every C''-curve in M corresponds to a continuous movement of each B;.

For a tangent vector ¢*, let t% ,t7 ,1%,,... denote its components. We say that a
tangent vector is associated with B; if only its R;- and Z;-component are non-zero,
and write T,, M for the subspace of those tangent vectors.

Then, for a C'-curve ¢, the normal velocity is given by
qR,pPi
2R;
Here eg and ez are the unit vectors and the purpose of the last summand is to make
sure that if the major radius changes, the minor radius also changes so that the volume
of B; is conserved under the motion.

(1.2) u(q) :==qz,n ez +qr,n-er — n 0B;.

Indeed by using Gauss’s theorem, we see

/ ru(q) dz :/ div (r(dz,ez + Gr,er)) dz — 4R pPi / rds
oB; B 2R, o5,

(1.3)
— 2 25 0 —
and hence by the Reynolds transport theorem this normal velocity keeps the volume

(with respect to rdr dz) fixed.
Let

3.‘:3.‘(0 ::H\UB'L'

denote the (time-dependent) domain of the fluid. Let L% and H} denote the L2
resp. H' spaces with respect to the measure r dr dz. We assume that:

Conprrron 1.0.1. In F(t) the fluid fulfills the azisymmetric Euler equations with
zero worticity and no swirl for t € [0,00), i.e.,

(1.4) O+ (u-V)u+ Vp =0,
(1.5) div(ru) = 0,
(1.6) curl(u) =0,
(1.7) u, =0 on OH.

Here the div and curl are taken with respect to the variables (r,z) and u is R%-valued.

These equations are equivalent to the usual Euler equations for v with no vorticity
and no swirl (that is, no velocity in the direction perpendicular to the (r, z)-plane)
after going back to three-dimensional coordinates. The boundary condition (1.7)
encodes the fact that there should be no singularity at {r = 0}.

Conprrion 1.0.2. — We assume that the solution of (1.4)—(1.7) is strong in the sense
that u, Vu, dyu € L% N CHTF) and that q is C? in time. In particular this should hold
for the initial data.

JE.P. — M., 2095, tome 12



354 D. Mever

We define the circulation around each body as

Vi = / w-Tdx,
OB;

where 7 = nt. This is a conserved quantity by Kelvin’s circulation law. For technical
reasons, we will assume:

Conpirion 1.0.3. — None of the v; are 0.

This condition is not necessary for the well-posedness (nothing in the proof
changes), but necessary for the convergence to the limit system, for instance it
follows directly from the ODE reformulation (2.16) that a single body with no
circulation which is initially moving in the e,-direction will keep moving in that
direction with the same speed as every term in (2.16) is 0 in that case.

We assume that the normal velocity of the boundary of each B; matches the velocity
of w in the corresponding direction:

Conprtion 1.0.4. For all i we have
(1.8) u-n=u(g) ondB;,

where we use the identification between tangent vectors and normal velocities men-
tioned above.

For simplicity we will assume that all bodies and the fluid have constant density 1,
though all the arguments still work for different densities.

Conprrion 1.0.5. — We assume that in the z-direction, the momentum is (formally)
preserved, which yields the condition
(1.9) vi{z, = —/ rpn - ey dx
aB;
for all i.

It remains to derive a condition for the interaction of the fluid and the solids in the
r-component. As the solids can change their shape, we make the Ansatz of prescribing
an interior velocity field and assuming that the kinetic energy of each B; only changes
through the force exerted by the pressure at the boundary.

We associate to each tangent vector/normal velocity ¢ associated with B; such an
interior velocity field u; ing(t;) € H'(B;) with

(1.10) divru;ing =0 in B,
(1.11) curlu; jne =0 in By,
(1.12) Ui ing -1 = u(t;) on 0B;.

Existence and uniqueness can be obtained by standard elliptic theory [11, Chap. 6],
as uing(tf) can be written as V¢ with div(rVe¢) = 0 and the boundary condition
On® = u(ty) by the assumption of curl-freeness. The compatibility condition for the

JIEP. — M., 2095, tome 12



MOVEMENT OF SOLID FILAMENTS IN AXISYMMETRIC FLUID FLOW 355

Neumann boundary condition [, rd,¢dz = 0 is fulfilled since [,, ru(t;)dz =0
by (1.3). Note that this is linear in ¢}, and that

(1.13) Uit (t,) = th.e2.

We can use this to associate a quadratic form on T,, M by

(1.14) (T Eut] = [ rlusan (60),usan(67) do
B;

for tangent vectors ti,t;,

associated with u; in¢. Clearly, this is symmetric and positive definite. Because of the

explicit form (1.13), we know that

associated with B;, which describes the kinetic energy

(e2)i Eq,(ez)i = vi,
where (ez); € (R?)* is the vector with ez in the i-th component. We set

(1.15) (er)! Eq,(er)i = fi(ar,),

here the function f; depends on the volume v; and (eg); is the vector with eg in the
i-th component.
In summary, the quadratic form can be written in components as

i(qr,) O
(1.16) oy () V) ),
0 Vi
as one can see from the explicit formula (1.13) and the fact that u; int(t};,) must be
asymmetric in z in the second component and hence % and t7, are orthogonal to
each other with respect to E,.

We define the kinetic energy of B; as
1, .
(117 £, = 5l By
We assume that the kinetic energy of each B; only changes through the force exerted

at the boundary, that is,
(1.18) &g, = —/ rpu(g;) de.
BBi

After using the decomposition (1.16) and subtracting the condition (1.9), one obtains
that

3o i, + 500, Fian ) ir ) =~ [

. ( Pi )
rpdr, |\ M- er — dz.
oB;

2R;

We make the extra assumption that one can divide out ¢g,, which is equivalent to
saying that whenever ¢r, = 0 and the force at the boundary is nonzero, then §g, is not
zero, which rules out bodies with fixed R;-coordinate. This gives the final equation:

Conprrion 1.0.6. — For all ¢« we have

(L19)  flan)in, + 50, Hlan)(in)* == [

P )d
Birp(n eR SR, x.

JE.P. — M., 2095, tome 12



356 D. MEvER

We can also write (1.9) and (1.19) as a single equation
1
(1.20) ()7 Eudi + 5 0n B )i =~ [ rpult))do.
0B;
where t7 is an arbitrary tangent vector associated with B;.

1.1. Mai~ resurts. — Our first main result is well-posedness:

Tueorem 1.1.1 (Informal). — For every initial datum ¢(0), ¢(0) the system detailed
in the previous section has a unique solution up to some time T > 0. If T' < oo, then q
blows up at T in the sense that some of the bodies either collide with each other, the
boundary or escape to co. The solution is completely determined by the circulations y;
and the initial data ¢(0), ¢(0).

Furthermore, the system preserves energy.

The more precise statements can be found in Corollary 2.2.7, Lemma 2.2.8 and
Theorem 2.2.10. In Theorem 2.2.2 the system is recast as a second-order ODE in gq.
We remark that singularities in the form of collisions can indeed occur for Euler-rigid
body systems, see for instance [25].

For the zero-radius limit, we shall first introduce some notation. We will use a
rescaling parameter ¢ and denote the manifold of configurations associated with the
bodies with the “volumes” vie2,...,vze2 by M. (recall that the “volumes” were
defined in (1.1)). We still denote the minor radii with py,...pr. We write p; for
the unrescaled radii p;/e.

Generally, what we would expect for the limiting dynamics is that the fluid velocity
and the velocity of the bodies behaves like the solution to the system

div(ru) =0,
curl(u Z Vi, -

This w can be recovered for instance by going back to three-dimensional coordi-
nates and using the Biot-Savart law, which after some computations (see for instance
[7, Lem. 4] for a detailed derivation) yields that

r—q)* 1 1+ |z — q
1.21) w(x ; lo ( )e + lower order terms
( ZwQﬂq —z|? %47TRZ- & |z — ¢ c
(here “17 is defined in axisymmetric coordinates as the linear map with e- = e, and
i
ey = —ep).

Here we would expect that the term of order —1 only leads to interaction of the rings
with each other, but no self-interaction, while the log-term induces a self-interaction,
but is of lower order regarding the interaction between different rings. We would like
to work in a critical regime where both effects are of the same order. For this, we need
the rings to be very close to each other, hence we fix some (1;3) with Ry > 0.

There are now two different regimes that one can consider.

JIEP. — M., 2095, tome 12



MOVEMENT OF SOLID FILAMENTS IN AXISYMMETRIC FLUID FLOW %57

1.1.1. The first regime. For vortex rings, this one is also considered in [9] and [29].
We set all ; to be equal to one and set the centers to be

4R, qz;
(1.22) g (Ro n N Zo + \/@)’
where the rescaled initial positions q(0) := (gg, (0), gz, (0), ... ), should be independent
of € and of order 1. We will further rescale time by a factor |log | and work with the
rescaled positions ¢; := (qr,, 4z, )-

In this regime, the main part of the self-induced velocity (in rescaled time and
space), that is (—1/47Rg)[loge|'/%ez, is the same for all rings, hence we may neglect
this part. The next order part is of the form (g, /4mR3)ez in rescaled time and space
by Taylor’s theorem. The velocity induced by the i-th ring on the j-th ring is of the
form 5= (q; — @)/l — ;1>

We hence expect that in the limit € — 0, the velocities g; should solve the system

1 (¢ —qj)* qR;
1.23 7= iy R
( ) o ; lgi —q;|>  AmR3

in the rescaled time, up to the subtracted term —(1/47Ry)[loge|'/%ey.

Tueorewm 1.1.2. — Assume that the solution of (1.23) exist until time T (in the sense
that no components of the solution go to oo and the distance between the different
components stays positively bounded from below). Assume that the shifted initial velo-
cities ¢, + (Jloge|'/? /4w R2)ey (in the rescaled time and space) are bounded uniformly
me.

Then G + t(1/4nRo)|loge|'/%ey converges to the solution of (1.23) weakly” in
WL(0,T)) in rescaled time.

loc

This ODE system has been studied for instance in [29], where the existence of
periodic solutions for two rings has been shown. Such periodic solutions correspond
to a “leapfrogging” motion of the rings, which was predicted already by Helmholtz in
his famous work [22, 23].

1.1.2. The second regime. — We can also consider the regime where the self-induced
motion and the motion induced by other rings is of the same order. For this we set

(124) q; = (R0+ 98 s 40 4z )
[log €] [log e
Here the rescaled initial position g(0) should again be independent of e. We will further
rescale time by a factor [loge|? and will again work with the rescaled positions §.
In this regime, all expected velocities are of order 1 in rescaled time and space.
We hence expect that in the limit ¢ — 0 and in the rescaled time, the rescaled
velocities g should solve the system

1 (@ — )" v
1.25 g=—Y vy — ez.
( ) 27T ; J ‘QZ 7qj'|2 47TRO

JE.P. — M., 2025, tome 12



358 D. MEvER

This system was studied in [31] and one can show that if all «; have the same sign,
then solutions cannot blow up in finite time [31, Th. 2.1].

Tueorem 1.1.3. — Assume that the solution of (1.25) exists until some time T in the
same sense as in the previous theorem. Further assume that the initial velocities q;(0)
(in the rescaled time and space) are bounded uniformly in .

Then § converges to the solution of (1.25) weakly™ in W,°([0,T)) in rescaled time.

loc

Comparison with the existing literature. In a two-dimensional setting, the similar
convergence of fluid-body systems with shrinking bodies to point vortex systems in a
bounded domain has been studied in [15] and [17], while further work on fluid-body
systems has been done for instance in [14, 16, 25, 33], see also the references therein.
The simpler problem of a stationary shrinking obstacle has been studied for example
in [20, 26, 27]. The vanishing body limit for the viscous fluid-solid system was studied
for instance in [21, 30].

Somewhat similar problems for filaments immersed in 3D Stokes flow have been
considered for instance in [24, 32].

Much effort has gone to determining whether the approximation of the Euler equa-
tions by the ODE systems (1.23) and (1.25) is true for initial data whose vorticity is
strongly localized around a few points (so-called vortex rings), see for instance [4, 5, 7].
Recently it was shown in [6] that this system indeed describes the correct asymptotic.
Special solutions which behave like these systems have been constructed in [9] for the
Euler equations and in [29] for the similar Gross-Pitiaevskii equation. In [2] it was
shown that traveling wave solutions of (1.25) (i.e., solutions which are stationary in
a moving frame) can be lifted to a traveling wave solution of the Euler equations.

Similar models for the Euler equations with a helical symmetry have been justified
e.g. in [10].

For general three-dimensional filaments the justification of similar asymptotic mod-
els (such as the local induction approximation [3, §2]) is more or less completely open,
though some conditional results exist, see for instance [28].

Outline of the paper. — In Section 2 we will describe the fluid velocity through poten-
tials and streamfunctions, which are completely determined by the positions and velo-
cities of the bodies. As a result, we can reduce the system to a second order ODE,
with coefficients determined by the potentials and streamfunctions, for the positions
of the bodies. This lets us show that our system is well-posed.

The proof of the convergence of the system for shrinking bodies then requires
analyzing the limit of this system. For this, we study the asymptotics of the potentials
and the streamfunctions in Sections 3 and 4. We will be able to show that these
converge to the corresponding two-dimensional functions in the zero radius limit and
that the interaction of the different parts of the stream functions produces the same
terms as the Biot-Savart law in the limit. A brief outline of the strategies for these
convergences is given at the beginning of the respective sections.
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MOVEMENT OF SOLID FILAMENTS IN AXISYMMETRIC FLUID FLOW 359

In Section 5, we will study the convergence in the zero radius limit of the ODE;,
which is quite intricate, as the equation degenerates due to the vanishing mass.
In order to still get estimates, we use a modulated version of the kinetic energy
of the system, whose evolution only depends on the degenerating terms, which allows
one to obtain uniform estimates on the velocity and to pass to the limit.

General notation. We will use the notation ¢ for the rescaled positions in both
regimes, as most estimates work completely similarly for both regimes. We also denote
the manifold of ¢ for which the corresponding ¢ is in ME by M..

We write A < B if there is a constant C' > 0 such that A < CB, where the
constant C' is allowed to depend on the number k& and on ¢ resp. ¢ and on which of
the regimes we are in, but not on any other quantities.

Similarly, we write ¢ for irrelevant (finite) exponents, which are allowed to depend
on which regime we are in, but not on any other quantities and are allowed to change
their value from line to line.

If Q C H we write L3(Q) for the space of all functions f € L?(2) such that for
every connected component €2; of 2 we have fQ fdx=0.

If S C H, we write S® for its figure of revolution in R3.

Acknowledgements. — The author would like to thank Christian Seis for introduc-
ing him to the problem and both Christian Seis and Franck Sueur for some useful
discussions and advice.

2. WELL-POSEDNESS OF THE SYSTEM

We will follow the approach in [14] to show that our system can be reduced to an
ODE in ¢ only (see Theorem 2.2.2 below), which in particular shows well-posedness.
The main additional difficulty is that we are in an unbounded domain and hence need
decay estimates to justify partial integrations.

2.1. ReprESENTATION OF u. — In this subsection, we show that u can be recovered
from a potential and a streamfunction (defined in 2.1.4), which is shown in Proposi-
tion 2.1.8 below.

Derinrrion 2.1.1. For t* € T, M, let ¢+ = ¢4+ (t) be defined as the unique
solution of the Neumann problem

div(rVe; ) =0 in F(t),
Oni = = u(t*) on dB;,
Ontie- =0 on dB; for j # i and on JH,
bie- € Hp,
@i+ — 0 at oo.

We first need to check that this is well-defined.

JE.P.— M., 2095, tome 12



360 D. MEvER

Lemma 2.1.2. Let b € L*(U;0B;) be such that fuiaBi rbdz = 0, then the equations
div(rVe¢) =0 in F(t),
On¢ =b on |, 0B,
On¢ =0 on JH,
¢ € Hp,
¢ — 0 atoo

have a unique solution ¢. Furthermore

1] g7
1+ [af2Fm

where the implicit constant is bounded locally uniformly in q.

(2.1) V™) < Vm € Nxo,

This implies the well-definedness of ¢; ¢+« and that the estimate (2.1) holds locally
uniformly in g for ¢; -, since [ ;5 ru(t*)dz = 0, as computed in (1.3).

Proof. — We go back to three-dimensional coordinates and set (bRS (r,z,0) = ¢(r, 2),
where ¢R3 is axisymmetric. Then ¢ solves the system above iff d)RS solves the cor-
responding Neumann problem for A in R? \ | ; B]]RS. By standard techniques (see

e.g. [1]), we obtain a unique solution oF e HY (R~ U B]jRS). We furthermore obtain
from this that d,¢ = 0 on OH.
The decay rate then directly follows from the lemma below. O

Lemva 2.1.3
(a) Let ¢ € Hl(ffRS) be azisymmetric such that AC = 0 in F®° and C(xz) = 0 as
|x| = oo. Then it holds that
||anC||Hm(35rR3)
m < e S
The implicit constant is bounded locally uniformly in q.

(b) Let ¢ be as in (a). If additionally

/ OnCdz =0,
UjaBg%ﬁ

< ||6n§||Hm(a:TR3)
SN EN R

where the implicit constant is controlled as in (a).

Vm € N}O.

then

[V™((x)] Vm € Ny,

Proof. — If we extend ¢ to R3 by solving the Dirichlet problem for (| oprs on each B]]Rg7

then the (distributional) Laplacian of this extension is of the form
(0.3 LU OB,

where [-] denotes the jump across the boundary, as a direct calculation shows. By ellip-
tic regularity (cf. [19, Chap. 2]), this is a finite measure.

JEP. — M., 2095, tome 12



MOVEMENT OF SOLID FILAMENTS IN AXISYMMETRIC FLUID FLOW 361

We claim that we can recover this extension by convoluting the distributional
Laplacian with the Newtonian potential. Indeed for any f € C2°(R?), we have

[/ 2 swatue = [ 0w aee) - [ o
r3 JU;0BE 47T|33 -yl U;0B% R3
where in the second step, we used that the Newtonian potential is the inverse Lapla-
cian. Hence the difference [0,,¢]H2L (|, OBE’)x(—1/4r|x|)—( is a harmonic tempered
distribution, i.e., a polynomial.
Now
-1

9L (U, 0BF ) % —— — 0

[ C] (Uz A )* 47T|I’| C — U,
by the assumption on ¢ and because [9,¢]H* L (U, 881»1&3) is a finite measure, so this

difference is zero, which shows the claim.
We hence obtain that [V™((2)| < [|0nCll 12 gge2) /(1 + |z|1+™) for all m > 0 and for

dist(z, BZ]RS) > 1. For x close to the B; the estimate follows from elliptic regularity
theory. This shows the estimate in part (a), part (b) works exactly the same way,
except that the integral of [9,,(] vanishes by the assumption and partial integration,
which gives one order more of decay.

To see that these bounds are locally uniform in ¢, we need uniform estimates on
101l 21 (U;08,)- Note that for this we only need up-to-the-boundary estimates for
a neighborhood of each B;, locally uniform in ¢ and a locally uniform L? estimate.
By going back to axisymmetric coordinates, one obtains the former, as the geometries
of these neighborhoods (in axisymmetric coordinates) only change by rescaling with a
bounded factor. On the other hand, one can obtain from the energy equality (which is
justified by the decay estimates we have already proved) in axisymmetric coordinates
that

(2.2) / V¢ de = —/ ¢ dz 2 1K (s (Bt By )~ Bo)) -
F U;0B;
Here we used the (three-dimensional) Sobolev inequality to control the L?-norm on
the right-hand side. The constant of the Sobolev inequality is locally uniform in ¢,
as one can e.g. see by using a diffeomorphism between the different instances of F.
Now we can use the trace inequality from H*(B; + B1(0)\ B;) to L?*(dB;) in (2.2),
whose constant is also locally uniform in ¢, as the geometry only changes through
rescaling by a bounded factor. This implies the desired locally uniform estimate

10nC Il L2(008:) 2 1€ L2 (Bi+ B (0)~ BA)) - O

The argument for the existence of the stream function is more complicated, as there
is no easy algebraic relation between the three-dimensional stream function and the
axisymmetric stream function.

JE.P. — M., 2095, tome 12



369 D. MEvER

Derintrion 2.1.4. Let v; = v;(t) be the solution of the elliptic equation

1
diV(wai) =0 in J(t),
r
Yilop, is constant Vj,
1
oB; T
Vil r=0y = 0,
1
r—07r
Here §;; is a Kronecker delta. We refer to the constant boundary values on 0B; as C;;.

Lemma 2.1.5. — Such a ; always exists and is unique under the constraint
%Vz/zi e L?. Furthermore %Vz/Ji is continuous at r = 0 and we have the estimate

v (L) S T

The implicit constant in the estimate is locally uniformly bounded in q.

VYm € Ngo.

Proof. We first show that an auxiliary function ug; can be constructed by going
back to three-dimensional coordinates and later show that one can recover v; from it.

Step 1. We define uz; on FR® as the axisymmetric vector field with no azimuthal
component which solves (in three-dimensional variables) the system

(2.4) divus; =0,

(2.5) curlug ; = 0,

(2.6) uz;-n=0 on (9BJ]RS for all j,
(2.7) up; € LAH(F®).

We make the ansatz curl ¥; = uy; for a purely azimuthal field ¥; = \T/ieg, where ey
is the unit vector in the #-direction. This gives the equations

- -1~
(u2,i)r - _az\I]iv (UQ,i)z = 87“\:[/1 + ;87"\:[/1'3

using that the last term can be rewritten as 19, (r¥;), this turns the equations (2.4)~
(2.6) into the equations

(2.8) AU, =0 in F¥,

(2.9) T@ibBRs is constant for all j.
J

For each fixed set of constant boundary values (@j)jzl)m,k for r@i, this system has

a unique solution ¥;(C;;) € H ! by standard techniques. Also, because ¥; is purely
azimuthal, it must vanish at » = 0 and hence it holds that

(210) (U2,i)T =0

at r =0.
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Step 2. To show uniqueness of ug; for given (éij), we note that we can recover
a ¥, fulling the system (2.8),(2.9) from ug ;. Indeed we may extend us; to the full
space by zero as Up;, which preserves the condition that the divergence vanishes,
as the distributional divergence on the boundary equals [@2 ,; - n] = 0.

It is well known that on the full space, every divergence-free field can be written as
a curl, indeed we have — curl A=! curl g = ¢ for every divergence-free g, as a straight-
forward calculation shows. Since we also have curluy; € H ~1 and the fundamental
solution of the Laplacian maps H~! to H', we see that the field obtained this way
lies in H'. Hence two different solutions us ; for the same boundary values would give
rise to two different ¥; in H! with the same boundary values, which is impossible.

Step 3. Now we can view ug; as a function in (r, z) again, it fulfills div(rug ;) =0
(with the two-dimensional divergence). Then we can find a ;(C;;) such that

1
= -V,
T

because ruii is curl-free. This can be done with the usual path integral construction,

it is easy to check that the condition us; - n = 0 ensures that even paths which
are not homotopy equivalent yield the same values. One can then check by direct
calculation that div(%Vwi(@j)) = 0 holds, and by the boundary condition for ws ;,
we see that 1/}1(@]) must be constant on each dB;. Furthermore, we have that us ; is
continuous at r = 0 by elliptic regularity and hence %vd)i(éij) is continuous at r =0
and %821/4 =0 at r = 0 by (2.10). This wi(éij) is unique up to an additive constant
under the condition #VM(CN’U-) € L? (here one gets an additional factor r from the
coordinate change), as one can recover the unique ug ; from it.

Next, we argue that we can pick the boundary values (5'”) uniquely such that the
condition (2.3) holds. It suffices to show that the linear map that sends the boundary
values (CN'”) to the integrals [, B, %anwi(éij) dz is invertible for each fixed i.

First note that the 52-]- are also the boundary values of 1; (up to an additive
constant) because we have that rug; = V4LrW; (in (r, z)-coordinates) and hence
by applying the fundamental theorem of calculus, we see that (r¥)(z) — (r¥)(y) =
¥i(2) — ¥i(y) (in axisymmetric coordinates).

Assume there is a nonzero vector of Cm such that all 1ntegrals vanish. Without loss
of generality, we may assume that Ci is the biggest one of the Ci; j- Then the normal
derivative of ¢; on dB; must be non-positive by the maximum principle and hence
must be zero everywhere on 0Bj. Since the tangential derivative also vanishes, the
constant extension of 4;(Cy;) to By still fulfills div(: (1:(Cij)) = 0. But this extension
is then a locally, but not globally, constant solution of an elliptic equation, which is a
contradiction.

We have 0,1; = 0-ug; = 0 at 7 = 0 because ug ; is continuous by elliptic regularity.
We may choose the additive factor that we have leftover such that ¢; = 0 at r =0
holds.

The uniqueness of 1; follows from the uniqueness of the %(5”)
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Step 4. By elliptic regularity, it is easy to see that the C;; are locally uniformly
bounded in g, and hence [|0,¥;(Cj;)|| ;;m is locally uniformly bounded in ¢. By Lem-
ma 2.1.3 (a), we see that

1

(@) S
V)] S e

for all m € N> which implies the decay estimate. (|
It is known that the equations
div(%Vf) =g in H,
f=0,f=0 on JH,

have a fundamental solution K such that
(2.11) 6) = [ gle)(e.p)ds

is the unique solution under suitable decay assumptions on f for e.g. g € C°(H), see
e.g. [13, §2].

By the following lemma, we can recover solutions to div( %V) from single-layer
potentials with this fundamental solution and hence obtain decay estimates.

Lemwva 2.1.6

(a) Let div(1V¢) = 0 in F with \%VC € L*(9), assume that 1V is continuous
forr — 0 and that {|,—g = 0. Furthermore, assume that {|s is sufficiently smooth,
then there is a constant C, depending on  such that

In particular this holds for ;.
(b) 1y can be represented as

1
b= [ LK pode

Proof. — We claim that if we extend ¢ to H by solving the Dirichlet problem for
div(1V-) with boundary values ¢ in each B;, then it holds that

u;8B; T
This directly shows (b) because for 1; the extension to each B; is constant. It also
shows (a) by the fact that [9,(]H' L OB; is a finite measure by elliptic regularity and
the fact that the fundamental solution K(z,y) decays like 1/(1 + |y|) at oo locally
uniformly in x (see [13, Lem. 2.11ii)]).
The same argument as in the proof of Lemma 2.1.3 shows that

o) = [ K (x,)0nC] d
oF T
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fulfills div(%V(g —()) = 0. Furthermore, by the aforementioned decay estimates for K
we see that [g(z)| < 1/(]1+ |z|), that g = 0 at 7 = 0 and that 1 Vg is continuous at 0.
By elliptic regularity, it holds that g — ¢ is smooth in the interior of H.

Now let h(r, z,60) = (1V({—g)(r, 2))* (in axisymmetric coordinates). This function
is divergence-free (with respect to three-dimensional variables) as a direct calculation
shows for » > 0, at » = 0 it is also divergence-free by continuity. Hence there is
an H with curl H = h, where the gradient is taken with respect to three-dimensional
variables. Then it holds that AH = 0 and H is a tempered distribution and hence is
a polynomial.

Hence we know that ¢ — ¢ is a polynomial as well, however, we have that ( —g =0
at r = 0, hence it is also a polynomial in r only. However, g — 0 for r — oo and
hence if ( — g does not vanish, then ¢ would have to grow at least linearly in r. For
all @ and large enough R we would then have

1 R 1/2

1S 5[C(R,a) = C(R/2,0)| S L 10-((s,a)ds < (/R 1|0rc(s7a)2d8>
~ R ~ R JRrs2 ~ \Jrp2 s

By taking a square root and using Fubini’s theorem, we obtain that %VC ¢ L?
which is a contradiction. |

Levmwa 2.1.7. — The Euler equation (1.4) holds if (1.5) and (1.6) hold and the cir-
culations v; = faBi T-udx are conserved in time.

In the two-dimensional setting this statement is well-known, see e.g. [12].

Proof. — Indeed the vorticity equation always holds and therefore we have
curl(Qpu + (u - V)u) = 0.

However not every curl-free field has to be a gradient in F, as the domain has holes.
Using the usual path integral construction, it is easy to see that it is a gradient if

/(8tu+(U'V)U)'Tpd$:0
r

along every closed, non-self-intersecting path I' C F with normalized tangent 7r,
which has winding number 1 with respect to exactly one B; and 0 with respect to all
others. If @, is the flow induced by wu, then by direct calculation one sees that

Os / U Te,(T) da:|8:0 = /(@u + (u-V)u)) - o da.
@, (T) r

On the other hand we see that for such I' it holds

/u~7'pdac:/ u - Td,
r oB;

which is constant by assumption, and hence we see that there is a p such that
Ou+ (u-Viu=—Vp. O
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Prorosition 2.1.8. The function
i 1
(2.12) u(t) = E(wi,qi V) =+

is a solution to the axisymmetric Euler equations (1.4)—(1.8).

Proof. — A direct calculation reveals that w is curl-free and fulfills div(ru) = 0 and
hence v fulfills (1.5) and (1.6) in F. We further observe that

k
n- ZV(;Si,qi =u(¢) onlJ; 0By,
i=1
lol
n.;V Y; =0 onlJ; 9By,

V(émi -rdx = / 8—,—(%)@1, dz = O7
OB; OB;

1 1
/ fvwi-rdxz/ L o da = 835,
aB; T oB; T

1
. )i = Ordig, =0 on OH,

where 7 = nt.

Hence this u has the prescribed circulations and boundary velocities, which shows
the statement by Lemma 2.1.7. ]

We shall refer to both the ¢; .« and their sum as potentials of u. We shall refer to
both the 1; and their weighted sum as streamfunctions of w.

Remark 2.1.9. — This u is uniquely determined (in L%) by ¢, ¢ and the ~;. Indeed,
if there would be two such different u, then their difference would give rise to a
nonzero streamfunction with zero circulation (by the same argument as in the proof
of Lemma 2.1.5, Step 3), which is impossible by the uniqueness of the functions ;.

2.1.1. Representation of yu. — We will need to show that the potential and stream
function are differentiable in ¢ to be able to represent d,u. The differentiability of
solutions to elliptic equations with respect to changes of the underlying domain is a
classical topic and we refer the reader to [35] for further reading.

Levmva 2.1.10

(a) The function ¢; , is smooth as a map from the tangent bundle TM to H} (here
differentiability can be understood in both the L3 -sense and the pointwise sense).

(b) The derivatives Oq; ¢+, 63(;5“* lie in HNC>®(F), furthermore their Hh-norm
1s bounded locally uniformly in q and t*.

(c) div(rVy¢; ) = 0.

(d) [V™0yi e+ (x)| S 1/1+ |z>T™ for all m € Nxq. Here the implicit constant is
bounded locally uniformly in q and t*.
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Proof. We can identify the tangent space at every point with R? and ¢; , is linear
in t*, hence it suffices to show smoothness in ¢ for a fixed ¢*.

Step 1. — We first want to apply the implicit function theorem to obtain that a
derivative of ¢; ;« with respect to g exists. Fix some ¢°. We use the three-dimensional
¢R3 = ¢4~ (1, z) (in axisymmetrical coordinates) again. We set

V= (H' 0 L8)(R3 \ U, BY (¢°)),

and equip this with the standard inner product of H'. By the Sobolev embedding
this is a Hilbert space.

In order to fit different configurations of the bodies into one space, we introduce
C* diffeomorphisms = : R® \ J; Bj(¢°) = R® \ U, Bj(¢") which map each 9B;(¢°)
to Bj(q'). We can assume that the family = is smooth in the parameter ¢' since
the B; are. We may also assume that = is the identity outside a large ball depending
on ¢, but bounded locally uniformly in ¢. Then ¢R3 is harmonic on R? \ |J ; Bj (q4)

with Neumann boundary values u(t*, ¢') iff the function b= ¢ o = fulfills

(2.13) / (V(DE) 1, Vi(DE) ") |det DZ| dz
T p;(q")
= 7/ J u(t*, ¢")nda,
U

o8;(q= Pi(q°)

for all n € V', where we have written the minor radius p; as a function of g. We may
interpret the difference of the left- and right-hand side as a map §G: M x V — V*.

Since = is smooth in g and compactly supported, we obtain that this map is
Fréchet-smooth. Furthermore we have that

DvS(®,8) - 56 — / (V56,V) da.
T (g%

This is an isomorphism by the Riesz representation theorem. Hence we see that $ is
Fréchet-smooth by the implicit function theorem. This implies that a function 8Q¢R3
exists in V' by the smoothness of = in ¢. Similarly, higher derivatives must exist. This
shows (a).

Step 2. — Clearly, (“)quRS must be harmonic and hence smooth away from the bound-
ary. To see smoothness up to the boundary we differentiate (2.13) with respect to ¢
at ¢° and obtain that

(2.14) / (VO,6(DE)~, Vn(DZ) 1) |det DE|
F(q0)*®
+(V$3,((DE)~1), Vn(DE) 1) |det DE| + (V(DE) 1, 8, (V(DZ) ! |det DE|) ) da

= Lo g G e

for all n € V, the differentiation of this equation is justified by the differentiability

of $ and by = being compactly supported and smooth in gq.
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This is an elliptic equation for 8(1(?5 with Neumann boundary conditions and a
smooth and compactly supported term given by the second and third summand on
the left hand side. Hence 8qqA5 is smooth up the boundary. The same argument can be
used to show regularity of higher derivatives in ¢q. Again this also shows that 6q¢R3
(and hence also ¢; ) is smooth up to the boundary and the same is true for higher
derivatives in q.

By the pointwise smoothness that follows from this, it is obvious that (c) holds.

Step 5. To obtain the decay estimate for the derivative, we note that it is enough to
show these estimates for 9,¢% . Clearly, it holds that Ad,¢® = 0. We again employ
Lemma 2.1.3, by e.g. going back to ¢ and using Equation (2.14), it is easy to see
that the boundary values are locally uniformly controlled by ¢ and ¢*. To see that
the integral over the Neumann boundary values of 8q¢R3 is 0, we introduce some
compact B;. with smooth boundary, in which B]]st is compactly contained and which

. 3 .
intersects no other BJR, . Then we rewrite them as

/ 0n0,0% do=— | 0,0,6% du= -0, / O™ dz = 0.
oB% OB,

BB;
Here pulling out the derivative is justified by the regularity of aq¢R3. In particular,
the decay estimate also implies that the derivative is in H*. O

Lemma 2.1.11. The functions f; are smooth in R;, in particular, Ey, is smooth
with respect to q.

Proof. — This can be shown as in the previous lemma by using a similar smooth
family of diffeomorphisms. U

Levmva 2.1.12

(a) The derivative of 1p; with respect to q exists and is smooth up to the boundary

2

(here the derivative can e.g. be taken as a classical pointwise derivative or in the L, .

sense).

(b) We have that 1V 0,15, %vagwi € L4 NC>. Furthermore the L?>-norm of these
derivatives is bounded locally uniformly in q.

(¢c) It holds that

1
. <

In the second estimate the implicit constant is locally uniformly bounded in q.

1 1

(d) The values C;; are differentiable with respect to q.

Proof
(a) and (d) The argument uses a similar technique as the existence proof for Lem-
ma 2.1.5. First, we again consider the three-dimensional vector potentials ¥; as in

said proof, for fixed boundary values (C;;), they have arbitrarily many derivatives
in g, which are smooth up to the boundary by the same argument as in the previous
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proof and the derivatives are in H' N LS. This also shows that for fixed (Cy;) there is
a (smooth) derivative of us ; and wi(@j).

It remains to argue that the values C;; are differentiable. To see this note that
the linear map from the (CN'”) to the integrals [ B, %anwi(@-j) dz, which was used to
show existence of the values Cj;, is differentiable in ¢ as well. Indeed we may again
introduce some compact Bj, which compactly contains B; and intersects no other B;.
Then we have

1 ~ 1 ~ 1 ~
/ fanﬁquzz(C”) d$ = &1 fanwz(C”) dI = 8q *8711/)1(01]) dx,
aB; T aB; T’ aB, T
which shows differentiability. As the H'-norm of ¥; corresponds to the L2-norm of
%VLW(@J»), we see the boundedness statement (b).
The decay of 041; again follows from the fact that the derivative fulfills

div(%Vé‘qwi) =0

and is smooth up to the boundary by using Lemma 2.1.6.

The decay of 9y=V+; follows from the fact that the derivative of the three-
dimensional stream function is harmonic and smooth up to the boundary as in the
previous proof by Lemma 2.1.3, and can be controlled locally uniformly in q. ]

Remark 2.1.13. — Note that if ¢ is C? in time and u is a solution of the Euler
equations (1.4)—(1.8), then we must have

k
. 1 .
(2.15) Oru=Y Ogbig-q+big + %;vLaq@bi -
i=1
Indeed this follows from the fact that v is uniquely determined through ¢, ¢ and the
circulations ; (Remark 2.1.9). In particular, u has the regularity required in Condition
1.0.2.

Levma 2.1.14. — Assume that u solves the Euler equations (1.4)—(1.8) with pres-
sure p. Then we have that
Vo) S 1
x -
and there is a constant C which may be chosen as 0 such that
1

1+ |=|

p(z) = Cl S

The implicit constants in these estimates are bounded locally uniformly in q,q, .

Proof. — By the construction of « in (2.12) and the decay estimates in Lemmas 2.1.2
and 2.1.5 we have that

1
[(u-V)u(z)] S W
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By Equation (2.15) and Lemmas 2.1.2, 2.1.10 and 2.1.12, we see that
1
0 < —-.

Hence |Vp(z)| < 1/(1 + |z|?) and the estimate is locally uniform in g, ¢, , because
the estimates for u and its derivatives are.

Since faBR(o)mH |Vp|dx — 0 for R — oo we have

max r)— min z) — 0.
mGBBR(O)p< ) mG@BR(O)p( )

Furthermore [, |Vp(z,a)| dz < oo for all a for which no B; intersects this line, hence
we obtain that p converges to some finite value at infinity, which then gives the decay
statement for p by the fundamental theorem of calculus. O

2.2. Derivarion or AN ODE ror tae system. — We reduce the motion of the bod-
ies B; to an ODE whose coefficients depend on the functions ; and ¢;. This will
also yield existence and uniqueness of solutions to the system. In two-dimensional
bounded domains, a similar calculation can be found e.g. in [14].

We first introduce some additional terminology. We set ¢(t*) = > ¢; s if t* =
t} + - - - +t;. Furthermore we set v = Y. v;1;.

Derinirion 22,10 — Let t* =t 4+, " =s7+--+sf and w* =wj + -+ wj
for t7, s} and w} associated with B;. We define

1
Gi((b ’Y) 't}k = /6 % ((87L¢)28"¢i7t;) du,

(Mij (Q)t:) : 5; = / Tvd)z t*V(bj 8% €T,
- Z( (0 M - 5V ) - w™ + (DM - £7) 5%) - w*,
— ((0,M - w™) s¥) t)

(A5 =3 |, (F0:0(6"10000°) + 010187 )0,006) ) o,

(C(g), 7, s") - w*

where in the definition of I', the inner dot product refers to the derivative in that
direction.

Furthermore, M shall be the matrix made up of the blocks M;; and E shall be the
diagonal matrix made up of the blocks E,,. Let G € (R?)* ~ R?* be the vector with
the entries G, ... Gg.

Turorem 2.2.2. — The system detailed in the Introduction is equivalent to the system
of ODEs given by

(2.16) E(q)g + %Q(aqE(Q) q) +M(q)G + (T(q), ¢, 4) = G(q,7) + (A(g,7)q)-

Remark 2.2.3. — The equation can be interpreted as the geodesic equation for the
metric given by M+ E, with extra terms due to the circulation on the right hand side.
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The matrix M describes the “added inertia”, which encodes the fact that to accelerate
one of the bodies, one also has to accelerate the surrounding fluid.

Proof. We argued in Remark 2.1.9 that u is uniquely determined by g, ¢, hence it

suffices to show that the family of equations in (1.20) is equivalent to this system.

Let ¢; be an arbitrary tangent vector associated with B;. We set u; = V(¢ sx).
Then by Equation 1.20 it holds that

.o L, .
() B+ 500 OBy i)t == [ oz md,
B;

By the equation for p, partial integration and the identity uVu = %V|u|2 +u - curlu
it follows that

1
() B+ 50 OBy )t = [ rVp-ui s

1
—/ r(@t(ul +u2) + =V]us + u2|2) -uf dz.
F 2

It follows from the decay estimates in Lemmas 2.1.2, 2.1.5 and 2.1.14 that there are
no boundary terms from oo in this partial integration.

We now split this into the different contributions and use the proposition below
to obtain the equation in the theorem, tested against ¢;. Since t; was arbitrary this
implies the statement. (|

Prorosrtion 2.2.4
(a) We have

1
—7/ rV|ual? - uf dz = Gilq,7) - t;.

2 )y

(b) It holds that
—/ r(Bpug + V(uy - up)) - uj dz = (A(g,7)q) - t;.
F

(¢c) We have that

1 .. * N

/ r(atm + §VIU1I2) cuf o= ¢ M@t + (D), 4,4) - ;-
F
Proof

(a) Using that both ug and u} decay like 1/|x|? by Lemma 2.1.2 and Lemma 2.1.5
we may partially integrate the left-hand side to obtain equality with

1
(2.17) / 77'|u2|28n¢>i¢* dz.
o7 2
To see that this equals the definition of G we note that 0,¢; .+ vanishes on every

boundary except 0B; and that |ug| = 1|V+ >Vl = 110, 27| since the
tangential derivative of the functions 1; vanishes.
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(b) We have that
—/ rV(uy - ug)u; do = / r(ug - ug)(u) - n)de,
F oF
(this partial integration is justified by the decay estimates from Lemmas 2.1.2
and 2.1.5) which by the construction of w in (2.12) equals

zl: /6B. " (%a" Z qu/}j) (07 01.4,)(Oni ez ) dz,
‘ J

because us has no normal component on the boundary.
It holds that O;us = %Viatw. We have that div(%vaﬂp) = 0 and 0y has the
boundary values

atw - Z'Y]achl ! q - (ul : n)anw on aBl
J

as one can see by differentiating the identity Cj;(q) = v,(z4)(g) where x4 is some fixed
point on 0B; whose derivative in ¢ equals u; -n. Then a partial integration, which can
again be justified by the decay estimates in Lemmas 2.1.2 and 2.1.12, reveals that

—/ ru; - Opug do = Z Z/ 07 @it (750,C5 - ¢ — (uy - n)Optp) duv.
F 1 j oB;

The first summand vanishes because 0,C;; is a constant on each 0B; and this
proves (b).
(c) We introduce an energy functional for the potential part of the fluid velocity:

1
Euy = f/ rlug|? de.
2 )y

Following the approach in [33], we will show that

(2.18) (0105~ 0)E., - = [

F
To prove this claim we shall use the following lemma which can be proved exactly as
in [33, Lem. 5.1]:

1
uy - (Opug + §V|u1|2) dz.

Lemma 2.2.5. — Forn e H}z let

A = [ (Vo). Vo) d.
F

Then it holds that

(0104 — 9g)(A) = 0.

We now note that &,, = $A(¢(q)) and that
1
D€ - 17 = 5 ((050)(8(9)) - 17 + A(&(E7))).

Because ¢(t}) also equals 9;¢(4) - tf, we see that
(2.19) 0€u, - 17 = (03A)(0(q)) - 7.
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Hence we obtain that

(0104 = 0g)€uy - 17
= (@01 — 0y £1) A(6) + (M) @e0(d)) 15 + (@A 0(d)) 15 — SA(6),
where ¢ = 9,¢(q) - t; and we made use of (2.19).
By Lemma 2.2.5, the first term is 0. By definition, the second term equals
OAO(0) 17 = [ rona V() do

By the Reynolds transport theorem (whose usage is justified by Lemma 2.1.10 (b)),
we have that twice the third term equals

@)@ == [ vl nde -+ A,

This yields the claim (2.18) after another partial integration.
Now we use that &,, = £M(g)q - ¢, which follows directly from the definition of M.
Then we may compute the Euler-Lagrange equation of this as

(000~ 0,)8u - 17 = M(@)i 17 + (OM() - )d) - — (O () 1)) .

The last two summands equal the Christoffel symbol I as one can directly see by
writing them out in components. |

22.1. Uniqueness and existence. In this subsection, we show that the system is
actually well-posed and that energy conservation will imply that solutions exist for
all times if ¢ does not blow up.

Lemva 2.2.6. The coefficients M, G, A, T are all continuously differentiable in q.

Proof. — One can use the definition of all these terms and Lemmas 2.1.10 and 2.1.12
to obtain that they are smooth in q. We leave the details to the reader. |

CoroLrAry 2.2.7. For every initial datum q,q, there is some T > 0 such that the
system (2.16) and hence also the system introduced in the introduction has a unique
solution up to time T, which is C? in q.

Proof. By the lemma above and the Picard-Lindel6f theorem, we have local exis-
tence and uniqueness if the matrix M + E is invertible, which follows from the fact
that both M and E are positive definite by definition. O

The total energy of the system is conserved:

Levma 2.2.8. The kinetic energy

19
- dz + E En
/52r|u| T i B,

(€ was defined in (1.17)) is constant in time.
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Proof. By Reynolds we have that

d 1 1

— fr\u|2dx:/ ru-atudx—/ —r|u®u - ndx.

dt J5 2 F oF 2
Here differentiating under the integral sign is justified by the L%-differentiability from
Lemmas 2.1.10 and 2.1.12. The first integral also equals

1
/ ru - Qudr = / ru- (—u-Vu—Vp)de = / —— div(ru|ul?) — div(rpu) dz.
F F g 2

Applying Gauss’s theorem to this and adding the second integral from the first equa-
tion we obtain the statement, as we have by Equation (1.18)

d
rpu(g;) de = ——Ep,. O
/aBi (¢:) at "

Lemva 2.2.9. — The kinetic energy fg %r|u|2 dx of the fluid decomposes into the
energies [; 5r(|u1|* + |uz|?) da.

Proof. — We have that
1
ruy - ugdr = %/ V-V de = ’yi/ 0-¢C;;dx =0,
/:r 21: F r ; 9B, !

where we abbreviated the potential of u; with ¢. (|

Tarorem 2.2.10. — Solutions of the system exist until q leaves any compact set, i.e.,
until either some of the bodies collide with each other or the boundary or escape to
infinity.

Proof. — By the energy conservation, we see that [ rul? do is bounded uniformly in
time and hence by Lemma 2.2.9 we also have that [ r|u;|? dz is bounded uniformly in
time. Now note that there is no ¢ such that for some t* # 0 it holds that Vo (¢*) = 0.
Hence by the continuity of the coeflicients we have on compact sets

[t ds 2 g

This implies that the only way the solution can blow up is if ¢ leaves any compact
set. ]

3. CONVERGENCE OF THE POTENTIAL PART OF THE VELOCITY

3.1. OVERVIEW AND STRATEGY. — In this section, we will consider the limit of the
potential velocity and of the interior field in order to compute the limit of the coeffi-
cients of the equation.

We will show that all relevant main quantities converge to the corresponding two-
dimensional quantities for a single body, which can be explicitly written down, and
that the error is an order e|loge|’ smaller (see Corollary 3.3.4). Furthermore, we will
show that quantities that only exist for multiple bodies are even smaller (see Corol-
lary 3.3.9). We will also show that derivatives with respect to q are an order ¢|log |’
smaller as well (see 3.3.10). In Sections 3.4 and 4.6 we will see that M and A converge
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to the corresponding two-dimensional quantities for a single body and that I' and 0,4
are negligible.

3.1.1. Proofstrategy. — The basic idea is to compare the coefficients of the elliptic
equations defining the potentials with the corresponding equations for the 2D limiting
quantities (see e.g. Definition 3.3.1 below). These coefficients converge close to the
bodies, which is enough to prove convergence via standard L? for the interior field (see
Lemma 3.2.1 below). The potentials ¢+, on the other hand, are defined on an exterior
domain, and far away from the bodies, the coefficients do not converge. This is dealt
with using uniform decay estimates, which are proved using single-layer potentials
(see Lemma 3.3.7). The proof is split in the case of a single body and multiple bodies.
For a single body, L?-estimates are sufficient to conclude convergences of the relevant
traces via elliptic regularity. For multiple bodies, the method of reflections and decay
estimates are sufficient to show that the contribution of a single body is already the
leading order contribution (see Section 3.3.2 below). For the derivatives with respect
to g, we consider the PDE fulfilled by the derivative of the potential, which can be
estimated by the previous a priori estimates.

As we believe it makes the proof more transparent, we rescale space by a factor
1/e (see the beginning of Section 3.3.1 for details).

We omit the indices of B, C, q, R, Z, ujnt, etc. when dealing with only a single body.
We identify the tangent space of M with (R?)* via the map t* — ( Ryl )

3.2. Tue inTErIOR FIELD. — For the kinetic energy of each body, we only need to con-
sider a single body as the definition of E,, (see (1.14)) only depends on B;. Therefore
we drop the indices in this subsection.

We write f. for the function f;, defined with the rescaling parameter €.

Lemma 3.2.1. — Consider the energy function f. defined in (1.15).
(a) We have
|f€(R) - ,/TR5262’ 5 633

where the implicit constant depends locally uniformly on R.
(b) f-(R) is Lipschitz in R with constant < €2, locally uniformly in R.

In particular this implies that we have |E,,| ~ €% and |V, E,,| < 3.

Proof
(a) We compare the potential of u;,s with the one of the constant speed movement.
Set ¢1(x) = r, which solves the Neumann problem A¢; =0, 0,¢1 = eg - n.
Similarly, uint(eg) can by definition (see (1.10)—(1.12)) be written as V¢o, where
div(rV¢s) = 0 and 9,02 = u(er). Testing these equations with ¢; — ¢2 we obtain
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that

[ VoV oo = [ en-n(or o) da,

0B

[ r(¥6r, V(o1 = oo = |

BBT <€R'n— %) (1 — ¢2) du.

We multiply the first equation with R and subtract the second from it, this yields
that

/B V(61— 62), V(01 — 62)) + (R — 1)V, V(1 — b)) da

:/33 (ReRm—r(eR-n—%))(¢1—¢2)d$-

Note that we may add a constant to ¢; — ¢ in the last integral because the other
factor is mean-free.
Applying the Cauchy-Schwarz inequality we obtain that

(3.1) /B FIV (61— 62)? i < p V1l o) V(61 — 62)ll 1o

JrHResz—r(eR‘nfi)‘

2R ||¢1 - ¢2||L2(BB)/constants-

L2(8B)

The last factor can be estimated by cirace ||V (01 — ¢2)]] L2(B)> where cgrace is the oper-
ator norm of the trace from H' to L2(0B)/constants. By scaling one can see that this
constant is < /2,

This gives us an upper bound on the right-hand side of (3.1) of

p
(32) V(01 =02l 12 V6112 + Curace 1961 = 02l 2y [0+ 57| o
S IV(or — ¢2)l g -
Together with the observation that
[ #1960 = 62 do 196~ o)1
B
we obtain from (3.1) and (3.2) that
IV (61 = d2)ll 2 S €

Now by definition

|fo — mRp*e’| = ’/ r(IVe2l* = [Vou|?) da
B

SIV(OL = d2)ll 2 (Vo] 2 + V2l 2) S €

(b) We first estimate the derivative of the potential of w;,; with respect to R and
then use this to estimate the Lipschitz constant. We fix some ¢° = (Z° R") with
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minor radius p° and use the family of maps

w4 (- () (5)

which map B(q) to B(q").

Let ¢? be defined by V¢? = ul  (er), where the ¢ in the superscript denotes the ¢-
dependence and we use the identification between the tangent space and R? mentioned
above. Let

~

$:= quq chil
Then a direct calculation shows that this fulfills the system
dlv(?{ (R—I— 0 5(r— RO))V(E) =0 in B(¢"),
Ond=eR-n— ﬁ on 0B(q°).
Using for instance the implicit function as in the proof of Lemma 2.1.10, one can

easily see that one can differentiate the solution of this equation in R (with respect
to the H'-norm) and that the derivative fulfills the system

(3.3) d1v<RO (R + L - RO))vaquAs)

+dw@m(§(R+;&_Rw»v@:m in B(¢")
(3.4) OnOr, & = O, (eR n— ﬁ) on dB(q").

Here we write 831;5 for the derivative with respect to the parameter R = Ry in order
to prevent confusion with the spatial derivative in the R-direction. Now one can easily
check that

(35) on, (15 (R+ S —R))| <=
(3.6) IVoll,. S e
(3.7) ’831 (eR n— %) <e.

We can now test the equations (3.3), (3.4) with 5R1¢ and obtain after using the
Cauchy-Schwarz inequality similarly as in part (a) and the bounds (3.5)—(3.7) that

R® s
(3.8) /B(qo) 7 (R+ (T_RO))Waqusy dx

S @IVHL. +2 o

L2(0B(q°))/constants ’

where we again used the mean-freeness of the boundary values to take the L?-norm
modulo constants.
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Clearly, the prefactor in the integral on the left-hand side is ~ 1. Again the operator
norm of the trace operator from H' to L?(9B(q"))/constants is ~ £'/2 by scaling,
hence we obtain from (3.8) that

||vaR1$HL2 /S 525

and this bound is locally uniform in R.
By definition it holds that

fo(R) = / r|VeI|* de = / (%)2(R+ L (v~ R))| Vo[ du.
B(q) B(q%) *P Po
The prefactor in the second integral is differentiable in R with a derivative < e. Now
we can differentiate the right-hand side under the integral by the H'-differentiability
of $ and obtain from the product rule that
O fe(R)| S €[V . + €| VO S °.

This is locally uniform in R as all the used estimates are. O

3.3. Tue poTENTIAL PART OF THE VELOCITY. — We show that the boundary values of
the potential converge to the boundary values of the corresponding “two-dimensional”
potential.

3.3.1. The case of a single body
Derinition 3.3.1. Let t*,q € R%. Let p > 0. Let n denote the outer normal vector
of 0B,(q). We define a “two-dimensional” potential
_ottre(z—q) + 1" ey —q)
(@ —q)* + (y — q)?

5t* = égt*(q,ﬁ’) =

One can check that this is the solution of

(3.9) Adp- =0 in R? B,(q),
(3.10) Opp= =1*-n on 0B,(q),
(3.11) $i — 0 at co.

Uniqueness of this can be found e.g. in [1, Th. 3.1].

In order to estimate the potentials for € — 0, we first use only a single body and
again drop the indices. Fix some ¢ and t*, where we again make use of the identification
of the tangent space with R? as in the previous subsection. Furthermore, fix some
p > 0 such that ep = p. We will prove a more general statement for arbitrary normal
velocities, which will be useful later to estimate derivatives with respect to q.

It will simplify the argument to rescale everything by a factor of €. Therefore we
let B := Bg(%q) and first prove our estimates around this rescaled body.

Prorosition 3.3.2. — Let by, by be smooth functions on OB. Further, assume that
/ rbydx = b dz = 0.
B oB
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Let Qvﬁ e H' and ng € H}% be the solutions of

(3.12) Ad=0 inR>< B,
(3.13) Ond =by on OB,

(3.14) dlx) — 0 as |z| — oo,
and

div(rVe) =0, inH~ B
3,1&5 =b1, on OB
871(;\5 =0, onOH
d(x) — 0 as|z| — oo.
Then for all m € Nsq it holds that
va(q\S - 5)||Lz(ag) Sm V/ [logel (g(Hb?”Hm*l(BB) + ”blHH"L*l({)B))

+ ||b1 - bQHHm—l(aB)>~

The implicit constant in these estimates is bounded locally uniform in q.

Remark 3.3.3

(a) Existence and uniqueness of QS follows by Lemma 2.1.2 and existence and
uniqueness of (\5 are shown in [1, Th. 3.1].

(b) The author strongly believes that the factor y/|log | is an artifact of the proof
and can be removed by estimating HA(QVS — (;5)HL2 instead of ||\/fV(qv5 — ¢)HL2 in the
proof, which would require more effort.

Corovrrary 3.3.4. — For all m € N it holds that
va((bt* - ¢t*) |L2(8B) Sm 55/2_m \V4 |10g€‘ |t*|

The implicit constant here is bounded locally uniformly in q.

Proof of the corollary. Observe that if we set by = eu(t*)(e-) and by = et* - n, then
it holds that . o o
br=(e) =0 and ¢p(e)) =9,
because these fulfill the same elliptic equation. One easily sees that
1011l s o) S €Il b2l armomy S elt™]s b1 = b2l (o) S €%1E°]-

The statement then follows from applying the proposition and rescaling. O

Our strategy to prove the proposition is to again apply L? estimates as in the pre-
vious section, as the coefficients are similar, close to B, together with decay estimates
for the far away behavior.

Levma 3.3.5. — Let by andcz be as in the proposition, then for all m € Ny it holds
that

(a) ||vm¢||L2(8f3) f,m HbQHHmax(o,m—l),

(b) [V™0l(2) Sim [[b2llz2/dist(z, B)'*™,

(©) 100l zrm (54 By 0y~ i3y Sm b2l Frmax.m—1) -

Here all the implicit constants are bounded locally uniformly in q.
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Proof. All three statements are well-known, we sketch the proof here for the con-
venience of the reader.

One can first repeat the argument in the proof of Lemma 2.1.3 to show that ¢
and V¢ must decay like |z|~! resp. |z|72. Then by testing the PDE (3.12)—(3.14)
with dVJ and partially integrating, we see that

bt _ 2
[ e =<3 oy

where the partial integration is justified by the decay of ¢. Now by is mean-free, so by
using the trace in B + By (0) ~ B, we see that

H¢||H1(B+B1(O)\B) < ||b2||L2(aB)~
By using elliptic regularity estimates in B +B1(0) B, we see that for m > 0 we have
||Vm¢||L2(aB) S Hb2”H’"*1(6f9)'

This lets us control HV@ZVJH L2(0B) and we can repeat the argument in the proof of
Lemma 2.1.3 to show (b), where we get one order of decay less from using the two-
dimensional Newtonian potential.

(c) follows for m > 0 similarly by using elliptic regularity. The estimates for m =0

in (a) and (c) follow by using the estimate (b) for dist(z, dB) > 1 and combining the

estimate on the gradient in (c¢) with e.g. the Poincaré inequality. O
Remark 3.3.6. In particular, by rescaling, we see that we have
7 *) 1/2
H87'¢t* L2(8B) = ‘t |E /

and the same estimate holds for ¢; ¢+« by the proposition.

5

Levma 3.3.7. We have the following estimates:

(a) HV"quj)HLz(gg) Sm Hbl‘le“(mefl) for all m > 0.
(b) It holds that

N b m b N
V73(@) S min(—— e Wil
1+ dist(z, B)1+m " g(1 + dist(z, B)2+m)

for all m € Nso and all € H~ B.
(¢) For dist(x, B) > 1 and m € N it holds that

bl Iy _y

V™|(z) <m min ; ’ ;
| ¢|( ) S (dist($,3)1+m gdist(x,B)Z-Hn

The implicit constant in these estimates is bounded locally uniformly in R.

Proof. — (a) follows from the same argument as the previous lemma, where we again
use the decay estimate from (b) or (¢) for the case m = 0.
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(b) and (c) Our strategy is to quantify the argument of Lemma 2.1.3. If we extend
g\b to B by solving the Dirichlet problem with boundary data q{), then by (a) and elliptic
regularity

100015 o5) S 101122

where [] denotes the jump across the boundary. We can then proceed as in the proof
of Lemma 2.1.3 and set qi)Rd (R,0,2) = (;\S(R, Z), where (R,0,Z) are axisymmetric
coordinates in R?, then as argued there it holds that

—1 N N
(3.15) P& = % [0,0)H> L OB®’.
4] - |
We first focus on (c), where dist(z, B) > 1. We use three-dimensional axisymmetric
coordinates (R, 0, Z) again and fix some x. Then we split B®’ into parts T_,,... Th_1
where we take T_,,...T,,_1 as the sets

T, .= B® n {(R',exz/) 10" — 0, € [ri/n,m(i + 1)/n)}7

where 6, denotes the azimuthal angle of x and the difference is taken modulo 27
(if = 0 then we can take any angle). If we set n = |[1/¢], then each such piece has
diameter < 1.

For every ¢ we have

1 s b1l 2
(2 # a0 Lom) )| £ — 0l
4] - | 1+ |i]2 + dist(z, B)?
where we exploited the facts that due to the rotational symmetry, that the integral
of the boundary values over each T; is 0 and that dist(z,T;) 2 1 + |i| + dist(x, B).
Summing up and using (3.15) gives

) 1611l 2
lo(z)| < : , :
iKZI/E 1+ |i|? 4 dist(z, B)?

. 1 1
S | 2 min (——————, ———),
1+ dist(z, B) " e(1 4 dist(zx, B))?

where we estimated the sum with the integral. This shows (c) if m = 0.
For m > 0 the estimates in (c) follow from making the same argument with the
derivatives of the fundamental solution. We set

(3.16) D := (B+ Bi(0)) \ B.

In D the estimates in (b) for m > 0 follow from using elliptic regularity and (a) to
obtain that

197y S 1978l s S Wl -

The case dist(x,B) < 1 and m = 0 follows from this by using the estimate for
dist(z, B) = 1 and the fundamental theorem of calculus. O
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Proof'of Proposition 3.3.2. By subtracting both PDEs and rearranging we obtain
that

(3.17) /H\B r{Vo — V, VE) + (r - —)(W Ve) dz /835(7“1)1 - §b2) de

for £ € H' compactly supported in H B.

In order to be able to use both QVS and ng as test functions for each equation even
though one is defined on the half-space and one on the full space, we introduce
smooth cutoff functions #;, supported in (H + %eR) N B;11(0), which equal 1 in
(H+ (£ + 1)er) N B;(0) and whose derivatives have absolute value < 2 everywhere.

By testing with 77;(&5 — gg) we obtain that for large enough [ it holds that

[ V= Vo (£ =) V5- V(6= 8) + V- (V- ZVG) (- ds

- /QB(& P (ml — §b2) da.

By rearranging and using the Cauchy-Schwarz inequality, we obtain the inequality

vV =l < i 2 9 v - 9l

vz f 91160 (wél+| T3] ae
([R/2s R/28+1]XR)UBZ+1(O)\BZ

R
+ 2R_1/2€1/20traweH\/TTWv(€ZS - ¢)HL2 Hrb1 o 7b2HL2 (0B)
(LTI - || /7 V(6 — )| 2 +11,

where cirace denotes the operator norm of the trace from H 1(3 + B1(0) ~ B) to
L2(8B)/constants, which is < 1 and we have estimated r—1/2 with 2R~1/2¢1/2 in the
last summand. Here I,II and III stand for the factors in the first, second, and third
lines of the right-hand side.

Using Lemma 3.3.5, we estimate the first term as

- 2 1/2
(3.18) 15(/ m—t =R/ da:) Bl .
BB 1+ dist(z, B)* r

We split into the regions r € [£, £ —1JU[£+1,38] r € [£—1,E+1] and r > 3R/2e,

)€

for other r the integrand is 0. This gives that (3.18) is

1 |21 /°° 1 e / 1 )1/2
< — dx + dz + z1dz 102 2
(/[1,3/%}@ lz[* R/e , J2*R (R/e.00)xR |T|* |4 t

S &2V loge] |1ba]| -

JEP. — M., 2095, tome 12



MOVEMENT OF SOLID FILAMENTS IN AXISYMMETRIC FLUID FLOW 383

We use Lemma 3.3.7 and Lemma 3.3.5 to obtain that for [ > 1/&2, we have

< 1/ 1 1
([R/22,R/2e4+1] xR)UB, 11 (0)~ B (0) dist(z, B) dist(z, B)2

{(/ st )
< —=de+ [ —————=da ] [|b1] 2 [|ba]l L2
€\ B2 (0)~Bu(0) 2 ® (2| +1/e)’ -

1
S () el s Nezllzs S Dbl o Nealloe

The third term can be estimated as

dz [[b1]] 2 [1b2| L2

I < 51/2Hrb1 - ?brz’

1/2 .
ooy S 2 (1Bl om + 5 o1 = Ball o).

Hence we obtain that

IV V($ = )||5a S V2V logel || vim V(- )

x (2llo) + 01l + = 0 = b2llagon))
+e ||b1||L2(aB) ||bZ||L2(aB)'

This implies that

(319) V7w V(6 - ) HLz
Setl \/ |log €| (||bz||Lz o) T Hbl||L2(aB) + - ||bl b2||L2(aB)>'

Now we can apply elliptic regularity estimates around OB to the elliptic equation
(3.17) to obtain that for m > 0 it holds that

— R/e)

7@ = D)oy < |72

wsH +5Hrb1 _ beH
Hm—1(88)

+ V(6 -9) 220y
1
ev/Mog el ([1ball sz + b1l g1 + = lIb1 = ball g1 ).
where the neighborhood D was defined in (3.16), for the first term we used that

1@l Dy S b2l -1,

which follows from Lemma 3.3.5 (¢) and in the last step we used the estimate (3.19)
and the fact that r ~ e~ 1. O

3.3.2. Muluple bodies. We remind the reader of the convention of writing ¢ for
irrelevant exponents. We will work in the rescaled setting and keep g (defined in (1.22)
and (1.24)) fixed independently of . We set B; = (1/¢)B;. We will use the method
of reflections to construct the potentials for multiple bodies from the potential of a
single body.
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Fix some sufficiently smooth normal velocity b; on 8Bi with f o8, rb;dxr = 0 and
let ¢! € Hp(H B;) solve
div(rVe}) =0 in H~ B;,
8,@521 =b; on 81\31,
Opdl =0 on OH,
and let ¢; € Hp(H U; Bj) solve
div(rVe;) =0 inH~ U, B,
Bnéi =b;, on 331-,
anéi =0 on 8Bj for j # i,
anéi =0 on JOH.
We then add corrector functions ¢2, 3 ... to ¢!, which for j # i fulfill the equations
div(rng)?) =0 inH~\ Bj,
8n¢3 =— ngbll on E)Bj,
871(;5? =0 on JH,
¢? € Hp,.
Existence and uniqueness of these follows from Lemma 2.1.2. We set ¢12 =0.
These correction terms then change the normal trace at all other 9B;. For this new

error we can again construct corrector functions ¢3F,¢3... with normal boundary
values — >, On¢? and so on. If the sums of the errors and the corrector functions

converge, the limit will be q\SZ-, since it is unique.

Prorosition 3.3.8. This iteration scheme converges for small enough € to the solu-
tion ¢; in both the regimes (1.22) and (1.24), the convergence is in Hp(R®). Further-
more, for all m € Nsg we have the following estimates, if € is small enough:

(a) Fori # j it holds that
’|vm‘25iHL2(aBj) Sm E2|10g5|€(1+m)||bz‘\|L2-
(b) For all i it holds that
197 (6} = 30l o o,y Som < Hog el @+ ] 2

In particular the estimates for the single body case in Proposition 3.3.2 and Lem-
ma 3.3.7 (a) are still true.

Proof. — Therescaled bodies have pairwise distances 2> 1/¢[log |, resp. 2 1/e+/|loge|,

hence by Lemma 3.3.7 (¢), for i # j we have
va‘/}g”Lw(aBj) Sm 51+m|10g5|€(1+m)||bz‘HL2a

~

for every m > 0.
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This lets us estimate the decay of the correctors qﬁ? by the same lemma, which can
again be used to estimate the second-order correctors and so on. Iteratively, we obtain
from Lemma 3.3.7 that

(3.20) HVmQ% 01521’2|10g€|z(l+m+1)|\bi||L27

||L2(aB,-) Sm

here C' is a numerical factor, depending on k, but not on [ or m, coming from the
implicit constant in Lemma 3.3.7 and the fact that we have to sum over k correctors
in each step. By integrating over the decay estimate in Lemma 3.3.7 we obtain that

< |log ] H

(3.21) H&)é'HH}%(H\Uij) ~ e

&Ld’é HHl (0B;)’

Therefore the scheme converges in H}, if € is small enough.
By Lemma 3.3.7, we obtain from (3.20) that

V73] S Cle2mlog e 4D |2 on B, with n # j,
and for [ > 2 we have
m 1 31 1 21—2 (m+1+1
v ¢j||L2(aBj) Sm ||a"¢j||Hm—1(af3j) Sm C'e® 2 logel" 1B 2.

where we made use of Lemma 3.3.7 (a).
Hence by summing up, we see that for j # ¢ and small enough ¢ we have

1970l 2 o5, S Mol ™ i 12,

V™ = 61| 2o,y Som <" log el “CH™ |1 2.

After rescaling back to the original balls, we obtain the statement. |

CororrAry 3.3.9. Fiz some t* € Ty, M and let gb}’t* be the potential for t* if there
is only a single body, let ¢; 1+ be the potential for k bodies, in one of the two regimes
(1.22) or (1.24). Then we have the following bounds for all m € Nsq, with implicit
constant bounded locally uniformly in q in both regimes:

(a) Fori # j it holds that

||vm¢i,t* < 87/2—m|10g€‘6(1+m)‘t*|.

L2(8B;) ~

(b) For all i it holds that
||Vm(¢11,t* - ¢i,t*)||L2(aBi) S 811/2*m|log5\z(1+m)\t*|.

All these estimates hold locally uniformly in q. In particular, this implies that the
estimates from the single body case in Corollary 3.3.9 still hold for multiple bodies.

Proof. — This follows directly by rescaling the potentials as in the proof of Corol-
lary 3.3.4 and using Proposition 3.3.8. |
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3.3.3. The derivative with respect 1o q. In the following, we want to obtain bounds
on the derivative of the potential with respect to gq.

As we have already shown that these are smooth in ¢ in Lemma 2.1.10, it is
enough to estimate partial derivatives with respect to the values R; and Z;. In order
to compare boundary data at different instances of one B;, we fix some ¢ and use the
affine maps

pi(R; + s)
322 o) = B (e
’ p;(R;) v
and
(3.23) do(z,s) =z + sez,

where p;(-) denotes p; as a function R;. As we do not want to move the other bodies,
we define ¢ and d as smooth maps which equal ¢y and dy in a neighborhood of B;
and which equal the identity in a neighborhood of the other bodies. For technical
reasons, will assume that the neighborhood in which ¢ and d equal the terms in (3.22)
resp. (3.23) has a size > [loge|~2, which is not restrictive.

We also use the convention of writing @it R; TESP- @i t* R;+s for ¢; ¢+, defined for
the position (R;, Z;) resp. (R; + s, Z;) and also use the same notation with Z; for
the Z;-derivative.

Prorosition 3.3.10. Fiz some t* € Ty, M, then for all j,1 we have

105 ((@-i=,ry5) © )| 120, (g) S e*/?|logel*
and 105 (874,45, 2,+5) © d('75))”L2(aBl(q)) < 32)logel’.
Here 7 = n* refers to the tangent both on Bi(q) and on the translated body. The

implicit constant is bounded locally uniformly in q in both the regimes (1.22) and
(1.24) in a neighborhood of s = 0.

Proof. — We assume [t*| = 1 and omit the indices ¢ and t*. We first show the state-
ment for the derivative in the R-direction and explain in the end why the Z-derivative
works with the same argument. Without loss of generality, we may also assume that
Z; =0, as the system is invariant under translation.

We rescale by a factor 1/ again and use the same notation as in the previous
proofs. Clearly, we have dg,¢ = Or;$(c-), in particular, the derivative exists and it
holds that
(3.24) div(rVag,¢) = 0,

(3.25) 8,0r,¢ =0 on dB for | # j and on OH.

We first want to compute the remaining normal derivative. For this we introduce

1
e(x,s) = z clex, s).
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For z € aBj we have

0 (Ondr, +5(2(, )| £6;;0 (t* P— Pl )
s\UnPR;+s ) s=0  ©YijUs : - - ER
(3.26) 2(R; +s) | By +5 —
30j
= —Ez(ser'%t *ER.

Here the expressions for the normal boundary values follow from Definition (1.2) and
Assumption (1.1) after rearranging. This is < €2 in any H™-norm.
On the other hand, by the product rule, on 5Bj we also have

(327) 65 (a’ﬂéRj +s (é(l’, S))) |s:0
= 0n((,5))| _y - VOR, (@) + 1 0V, 1s(x)| o+ 1 V2on, (2)0u(x, )| _,-

Here n(¢(x,s)) stands for the normal at ¢(z,s) of the rescaled body centered at
(1/e)(R; + s), which is in fact constant, and hence the first summand drops out.
We have by definition

. 1 1
Os¢(x, S)|s:() =_cer— ﬁ(as —qj).
Combining (3.26) and (3.27), we see that on GBj we have
3p;

ij TR?t* "€R

N 1 N D N
(3.28) Ondudn; sl g =~ Ondrdm, + 2%_331% — %
J

We now estimate the derivatives of the boundary values on 8Bj and on 8B, for [ £
differently.

First case: 1 # j. — Here ¢ is the identity on OB, and hence we only need to estimate
V85$Rj+5. By rescaling we know from Corollary 3.3.9 and Lemma 3.3.7 (a) that

|‘Vm<\h|‘L2(aBj) Sm €
By (3.28) it follows that
(3:29) HanaS‘ijJrS‘szo||L2(aBj) SRS

Hence we conclude from (3.24), (3.25), (3.29) and by Proposition 3.3.8 that for m €
N it holds

vaas(ijJrS ‘s:O ||L2(BBL) Sm E2|10g Ele(mﬂ)'

By rescaling back to the original bodies B, one obtains the statement.

Second case: 1 = j. — We build an auxiliary function that equals the desired deriva-
tive. Consider 87«(5. It fulfills the PDE
(3.30) div(rV,¢) = div(—v{ﬁ + %v&)

J

and has the Neumann boundary values 9n0r¢p on 8Bj.
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Consider the function x - Vq\ﬁ, a direct calculation shows that

div(rV(z - Vo)) = 0,
(3.31) . . R . . .
Here we used the assumption that Z; = 0.
Now consider the function

~ . 1 N 1 . 3.y
(332) ¢ = 8S¢R_7‘+S|S:0 - Em ! V¢ + ﬁﬁb + 27587“(;57
and set
~ R, +s .
bs(x) = | =I5 PR, +s(e(s,2)).

R;
Then in a neighborhood of Bj it holds that 8S$S|S:0 = (E and hence
(3.33) 05 ((Vor,+5)(e(w,9))| _y = 0:Vs(2)| _y = Vo(a).

Hence to prove the proposition it suffices to estimate Vg.

Let us further reduce this to the case in which k& = 1. First consider the case where
i # j = I. Then by (3.28) and by rescaling the estimates on ¢ in Corollary 3.3.9
we have

N 1 N
Haﬂaﬁ(bRﬁs}S:OHHm(aBj) N e ||v2¢HHm(8i3j) Sm 52|10g5‘f'
Hence we conclude from Proposition 3.3.8 and (3.24) and (3.25) that
||8S¢Rj+5|s=o||ﬂm(33j) Sm €?[logel".

Hence by the definition of ¢ (see (3.32)) and Corollary 3.3.9 we have

~ N 1 N N
HVQSHHm(aBj) Sm ||65¢Rj+8|s:oHHm(aBj) + c HV%HHm(aBj) + HV(bHHm(aBj)
< e2[logel’.

~

After rescaling back to the original bodies B, this shows the statement in the case
i1#£7=1

Next, consider the case i = 7 = and k > 1, and let q\bl be the rescaled potential
for a single body and let (Zl be the version of (Z from the single body case. As the
formulas (3.25) and (3.28) hold for both ¢ and @', we note that we have

N R 1 N N
1 2 1 4 ¢
10005 (SR, +5 — ¢Rj+s)|s:oHHm(aBj) S - IV2(6 ¢ )|‘H7vt(aBj) Sm € |logel’,
here we used Proposition 3.3.8 (b). Hence we conclude that

V705 (@R, +5 — é}%j*Fs)’s:OHLz(aBj) S £*[logel”.
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By rescaling Corollary 3.3.9 (b) and the definition of % we conclude that
Pepe! m i 31
HV(gZ) - )HHm(aBj) Sm HV BS(QSRJ'“ o ¢Rj+s)}5=0”L2(aBj)

1 NN NI
+ c HV2(¢ - ¢1)HHm(aBj) + HV(¢ - ¢1)||Hm(aBj)

S etllogel’.

~

This shows the desired estimate once we have proved the case k = 1 after rescaling
back to the original bodies.

It remains to deal with the case k = 1. We drop the indices on the sets BJ By
(3.28), (3.30)—(3.32) we have

~ 3 1 r . N
(3.34) div(r¢) = —=div( (- — = )V¢) in a neighborhood of B,
2 ((5 RJ) )
(3.35) O = —525’—2@ t* - eg.
j

Set B := By /efiog e)? (O)+B\B. By assumption the cutoff in the definition of ¢ happens
outside of B and hence (3.34) holds in all of B. The crucial observation is that 8Rj(\b
will decay an order faster than expected.

Lemwvia 3.3.11. — For 2 with dist(z, B) > 1 it holds that

€+ ||V¢||L2 B) i 1

Dubm, ()| < . —
19sr,+() edist(z, B)?2  edist(x, B)3
e+ ||V¢||L2(§) 1

and |V635Rj +s (1‘)| 5

<

e dist(x, B)3 edist(z, B)4
The implicit constant is bounded locally uniformly in q.
Proof. — We only show the first estimate, the second works completely similarly,
using the derivative of the fundamental solution.

The proof builds on the idea of the proof of Lemma 2.1.3. Recall that in the proof
there, we extended the solution to the full space R? and used the fundamental solution.
We first need to show an estimate on the Neumann boundary values of the solution

to the interior problem. As in the proof of Lemma 2.1.3, we extend qb to H by solving
the Dirichlet problem for div(rV-) in B. We also set

0s(2) =/ (R; + 8)/Rj dr,+s(2(x,5))

inside of B. We claim that

(3.36) ||8s((8mnc927Rj+s) © C)||L2(E)B) < HaHm(é) +e?,

here 0,,,, denotes the normal derivative from the inside.
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By applying elliptic regularity estimates to the equations (3.34)—(3.35) and using
the identity 0s¢s = ¢, we see that

190:65] ol 2oy = V6] 203
T

1
(337) S Hv¢||L2(§) + ||a”¢||L2(6B) te H (g B E)v HHl(B—i-Bl(O)\B’)

Set+ HV$HL2(§)'

In B we have

. é(l’ S)R -~
div (521 V6,) =0
Rr Vo
as one can see from a direct computation, where ¢(z, s)g denotes the R-component
of ¢. Using for instance the implicit function theorem as in the proof of Lemma 2.1.10,

one can justify that this equation can be differentiated in s. Hence we obtain that
0s¢s(x) fulfills the equation

div(rVo,0,) = — div(2, é](; +) Vo).

Hence by elliptic regularity for this equation and (3.37) we obtain that

C}(E +s ¢H

Set+ ||V5||Lz<§) te Han¢||H1(aB) Set+ ||V5||L2(§)’

||8n1nf S¢SHL2(BB) S ||Vas¢5||L2(af3) +e

H'(B)

The claim (3.36) now follows from the fact that Vo, = (V(;BR]._‘_S) o ¢+, 8).
Now fix some y € B. Then as argued in the proof of Lemma 2.1.3 we have

\ \ \ s -1
(3.38) 0udm,+(0) = D ([0ndm, 4.0 L OB(R, + )% = 4w\-\)(y)’

where the convolution is taken with respect to three-dimensional coordinates and
B (R; + S)R3 is the axisymmetric torus corresponding to B defined with respect to
R; + s and the factor 7 in the jump disappears due to the coordinate change. We shall
also view the curves ¢(z, s) as curves in R3, by setting (in axisymmetric coordinates)

¢(x,s) = (¢(x, s)Rr, xg, &(x, ) 2),

where xg is the azimuthal angle of z.
Using these curves, the convolution in (3.38) can be written as
¢(x, $)r 1
—0s ——=/R;/(R; +5) ———————— du,
| udn et ) SR (R ) e da

here the factor in the middle is the determinant due to the coordinate change. Now
we can differentiate under the integral, as all derivatives are smooth by Lemma 2.1.10
and use the product rule. We estimate the derivative of the first three factors and of
the last factor separately.
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First, we deal with

N

e(x, $)r 1

——d=.
s=047|x — Y

B /BBK3 0 (WMR].H]@(% s))

Observe that

R;/(R; +5))

e(x, $)r

Ry/(R;+5))| _ do

[ os(0udr et )
OBR

=0, [0ndR,+s) dz = 0.
OB(R;+s)k?

Furthermore, we have by (3.36) and (3.26)
||88([an€2’Rj+sKé(x’ s))) ‘s=o||L2(aB) S+ ||V$HL2(§)

65@\/33./(&4”)‘ <1

Since the boundary values of gi) are < ¢ in any H™-norm we have

(3.39) ’|[6n(i5]”L2(aB) N Han?z7||L2(6i3) + ||(2)HH1(BB) Se

Hence we have

[ (10, 1o ) “E20 TRy 5 ) ||

Now we combine this with the mean-freeness to estimate

and

L2(0B) ’S e+ ||V5HL2(3B)

e(z, s)r 1
s=04r|z — y|
<ET ||V¢||L2(af5).

e dist(y, B)?

R;/(R; + s)) de

/ AT (CER)
OBFk

It remains to estimate the second summand, which is

. 1 .
/(93]]@3 [&ﬂﬁ]Vz m . 3sc(x, O) dx.

Note that [0,¢] is mean-free and one easily sees that |d,(z,0)] < 1/e and

|V8.e(z,0)] < 1. Hence by exploiting the mean-freeness of [3,¢] and using (3.39),
we see that

1195¢(0) \!sup ||Vm3sé(0?||sup

~ dist(y, B)3 dist(y, B)?

S S S—
edist(y, B)3  dist(y, B)?

. 1
OV ——— - 05¢(x,0) da
~/631R3[ d 4y — x| (=0)

The statement follows because dist(y, B) <e L ]
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We continue with the proof of Proposition 3.3.10. By testing the elliptic equation
(3.34), (3.35) with qu in B and using partial integration and the Cauchy-Schwarz
inequality, we obtain that

(1/e —r/R;)

N N e R L

- / (% (1/e = T/Rj)3n¢+r8n¢~5>5dw+/
B

8B~0B

5 V7Vl s

(% (1/e —r/R)) Bn(\é + r@na)qux
= T+ 11+ 111,

where the normal n on 9B ~. B is taken as the outer normal and I, IT and III are
defined in the obvious way.
Using the decay estimate from Lemma 3.3.7, we can estimate

2 1/2 "
I§a</ lec1x> NI
By ) tog <2 ~B1(0) (|z1| + 1/e)|z|* H HL2(B)

1/e|log €| 1 1/2 _ B
Se (/1 T 1/9) dx) VYol a5 S €2 ogel ||V Vol . 5

To estimate the second term, we note that by partial integration we have
/ R (% (1/5 - T/Rj) 671(\? + Tan(g) dz
oB N
— lim (g (1/E—T/Rj)an¢+ran¢) da = 0.
R—=o0 JaHNBR(0))

Here the last equality follows from the fact that the integrand is 0 on OH and by using
the decay estimates from Lemma 3.3.7 and Lemma 3.3.11 together with the definition
of qNS We can then use that this boundary integral vanishes and the explicit form of
the normal derivatives to estimate

IS |3/e—r/R;) O + ran%“w(ag) HV‘ZHB(B) ~ 3/2H\[V¢HL2(B
To estimate the third term, we use Lemma 3.3.7 and Lemma 3.3.11 and obtain that

swp 15 (2 18] + 1 V()

z€OB~0B

~

o
¢llog e)?
1 ~
S Z(E + e Voll o) (€ + € [ VOl 2 ) Nlogel
< flogel’ + efloge|’|| Vel .z )
Putting these back into the estimate (3.40), we obtain
IVr V0]l 2 ) S €%/ llogel”.

Now we can apply elliptic regularity estimates to (3.34),(3.35) and obtain together
with the previous estimates on ¢ that

HvinHmwB)gmsﬂk%5V7

~ N 1 N ~ N N
¢ = 68¢Zj+8 + gaZ¢§ ¢s = ¢)Zj+3(d(87x))' O
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3.4. Tue CHRISTOFFEL SYMBOL AND THE ADDED INERTIA

Levya 3.4.1. — If we identify the tangent space TyM with R2* | then it holds that

R1€2/A)21 0
0 ngzﬁ% . 3 ¢
M- |l < pogelt,
[ o 0 Ry 0 || ¢ Mosel

where M was defined in 2.2.1. Here the implicit constant is bounded locally uniformly
nq.

Proof. — By partial integration we have for t* € T,, M and s* € T, M that
(Mt*) .5F = 7/ Tan¢i,t* ¢j,s* dz.
dB;

If i # j this is < €3[loge|?|s*|[t*| by Corollary 3.3.9 (a). If i = j, then it holds that

/ T0n i1+ 0j,5- dr — Ry t* - ngy dx
0B; 0B;

S lru ) e [|dise — s
where we used the fact that ru(t*) is mean-free and ¢ was defined in 3.3.1. Now by

the Corollaries 3.3.4 and 3.3.9 and the definition of u(¢*) this is < &3|loge|*|s*|[t*|.
Now observe that if t* = e; and s* = es then t* - n is orthogonal to ¢4« as the

+ [ru(t?) = Rit* - nl| 2 || 6o

L?(9B;)/constants L2%2(8B;)’

former is symmetric with respect to the es-direction while the latter is antisymmetric
in that direction.
If t* = s* then it follows from the explicit form of ¢4+ that

/ t*  ngs- do = —x|t*|?p2. O
oB;
LeEmma 3.4.2. It holds that

U] < e*flogel”,

where the Christoffel symbol I was defined in 2.2.1 and the implicit constant is bounded
locally uniformly in q.

Proof. — By the definition of T', it suffices to estimate the derivative of M. If we are
differentiating M with respect to ¢; for [ # i, then it holds that

12 S Sllogel’lels*],

0, /8 FOni e byae dz| S & [ru(t)]| o |00 0ry o
B.

where we used that u(¢*) does not depend on ¢;, and used the mean-freeness of ru(t*)
to estimate Oy, ¢; o+ with its derivative, and in the last step we used Proposition 3.3.10.
If i = [ we can switch the roles of ¢ and j unless ¢ = j = [. For simplicity we only
consider the derivative with respect to R; in this case, the other derivative is easier.
We again use the diffeomorphism ¢, defined at the beginning of Section 3.3.3.
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Setting Mg, +s for M defined with respect to R; + s we have

B4) Ot s == [ el TS

where p;(R;) refers to p; as a function of R; and ¢(z,s)g is the R-component of c.

u(t™) o coi s R, +s 0 cdx,

Using the fundamental theorem of calculus and Proposition 3.3.10, we see that
( pi(Ri)
s Pi (Rl + 8)

Furthermore, we have

(3.43) 0su(t™) o cll - S %2,

(3.42)

S ¥logel]s*.

L2 /constants

¢i7s*,Ri+s o C) ‘

as one sees by rescaling (3.26). It is easy to see that

0. (et D) < o

uniformly in 2. We can now use this to estimate the derivative of (3.41) by the product

(3.44)

rule:

0s / c(z,s)r M u(t*) o cdi s« ri+s 0 cdx
OB;

pi(R;) 5=0
pi(Ri)
reota
HTU( )||L2 8 (R + )¢1,s Hits 0 € s=011L2/constants
pi( R +s
o GO | I LGOIy L Py
+ ||7"¢’i,s* (t*) 0 )|, ol - S &%llogel".
Here we used (3.43),(3.42),(3.44) and used Lemma 3.3.7 (a) (after rescaling) to esti-
mate ||¢; o+ 12(08;) < &3/2, O
4. THE STREAM FUNCTION
4.1. OVERVIEW AND STRATEGY. — In this section, we want to compute the asymptotics

of G and A and their derivatives with respect to ¢, which requires us to compute the
asymptotics of the streamfunction . The streamfunction will, up to lower order terms,
resemble the asymptotics of the Biot-Savart law (1.21). Plugged in the definition of G,
the leading order term of the stream function gives 0, so for a direct computation,
one would need a higher order expansion of the stream function.

As we need to compute a derivative of the streamfunction anyway we take the alter-
native approach of expressing G as the derivative of the energy of the streamfunction,
which gives the asymptotics of G just from the highest order term of the stream func-
tion at the expense of requiring an estimate on the second derivative with respect
to ¢, which is not much more complicated than just computing the first derivative.

Unlike for the potential function, the interaction between the different bodies will
matter and we will obtain an interaction term in GG, which can be computed from the
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highest order parts alone. This will yield the asymptotic of G in Propositions 4.5.2
and 4.5.3

The computation of A on the other hand will be more straightforward and the
highest order term suffices (see Proposition 4.6.1 below).

The main difficult here is that the limiting object In|z| does not lie in H!, so we
can not expect L2-based estimates to work for the streamfunction. As we are only
interested in the boundary data anyway, we will directly characterize it in terms of
the single-layer potential on the boundary.

In this section, we will make massive use of the fundamental solution K of the
operator div(1V-), as introduced in (2.11). By an abuse of notation, we will also
denote the linear operator

fro / K(z,9)f(z) dz
U;0B;

by K. Similarly, we will write

Kg(z,y) = % (log(lz — y|) —log(8) + 2 — log(R)),

and also write K g for the associated integral operator. Recall that in Lemma 2.1.6,
we showed that the function %&Lwi is a solution of the system

(4.1) / K(z,y)u(z)dz is constant on each B,
U, 0B

(4.2) /an p(z) dz = d;;.

Our goal is to show that for a single body %(’“)nw converges to a constant by showing
that the kernel K converges to K (for which the solution of the analogous system
is constant).

For multiple bodies we will show that the “cross-terms” in K are an order lower
and that the corresponding lower order terms in %&,,wi are essentially given through
the derivatives of K itself.

The derivatives with respect to ¢ are estimated by differentiating the equation
(4.1)—(4.2) with respect to ¢ and estimating the derivative of K in Propositions 4.4.1
and 4.4.2.

Recall that the kernel K can be written as

(1.3 K(a.y) = 5o vEmm F(E=0),

TRYR

where xr and yg stand for the R-component and

/ cos ) dt
\/2 1—cos(t)) + s

(see [13, §2]). This integral cannot be elementarily evaluated, however it has a series

expansion at 0, which we will make use of:
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Lemma 4.1.1. For small enough s > 0 there is an expansion
1 ) )
(4.4) F(s) = —3 log(s) + log(8) — 2 + Z a;s’ +bjs? log(s).
j>1

This series has a positive radius of convergence, in particular, we also have the cor-
responding asymptotics for the derivatives of F'.

Proof. — The statement is known, see e.g. [36, Footnote 101] and the computation
of the explicit terms can be found there. We provide the proof of the convergence of
the expansion here as we were not able to find it in the literature.

By elementary manipulations, one sees that

F(s)=(1+s/2)/7r/2 \/1+ /41 0 dt—2/0ﬂ/2 \/1+s/4—sin2(t)dt.

0

These integrals can be rewritten by using complete elliptic integrals of the first and
second kind [8]. These are defined as

/2
Keniptic(m) =/ (1 —m?sin?(t)) /2 dt,
0

w/2
Eetiptic(m) = / (1—m?sin’(t))"/? dt.
0

With this it holds that

S

F(s) = (1 +3 Keniptic ( 1—s/(4+ 5))

— 21+ /4 Eemptic(\ﬂ s/t s)).

It suffices to show that the functions Keniptic(V1 — t?) and Eepiptic(V'1 — ¢2) have an
expansion of the type

(4.5) > et + d;t* log(t)

Jj=20

1
) 1+s/4

for small enough ¢, because close to s = 0 the functions 1/4/1 + s/4; /1 + s/4 and
\/8/(4 + s) are analytic and one easily sees that the class of functions with an expan-
sion of the type (4.5) with a positive radius of convergence are stable under compo-
sition and multiplication with analytic functions.

It is known [34, p. 53] that there is an expansion

(4.6) Keuiptic(\/l—tQ):10g(4/t)—2(z ! )Z (zl)!ztﬂ).

(27 — 20(]1
= 25(25 —1 l:j2 an

By the facts that >, 1/2j(2j —1) < oo and (20)!/221(1)? < 1, we see that this
converges for |t| < 1. By using the definition and elementary calculations, one can see
that

Eetiiptic(m) = m(1 — m?) K150 (m) + mEepiptic (m).
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This implies

(A7) Baipnel V1= 8) = /T8 (Ko T ) Y10

t
+ V1 — 2 Keniiptic (V1 — 12).
One then obtains the desired expansion by combining (4.6), (4.7) and using a binomial
series for the prefactor v/1 — t2. O

We set
1
h(s) := F(s) + 3 log(s) —log 8 + 2,

o) = —h (0

LTRYR
for the remainder. For all n and small enough |z — y| it holds that
(4.8) V"g(z,y)| Sn |z —yl* " [log |z |,

locally uniformly in g and yr by Lemma 4.1.1 above.

4.2. THE CASE OF A SINGLE BoDY. — In this subsection we drop the index 1.

Lemma 4.2.1

(a) The linear map K is invertible from L2(dB) to H'(dB) with operator norm
<1 for small enough .
(b) We have

1K 1208y 12(0m) S €logel.
(¢c) We have that

| K _FRHLz(aBHHl(aB) S ellogel
and 2 _FRHLz(BB)HLz(BB) < £”[loge].

All these estimates are locally uniform in q.

Proof’

(a) and (b) Observe that for (a) it is enough to show (c) and to show that Kp
is invertible with operator norm < 1, as one sees e.g. by using a geometric series.
Similarly, for (b) it is enough to show that

(4.9) ) < ellogel.

HFRHL?(BB)—)L?(aB

Let € T := [0,1) parametrize OB, then we claim that the kernel K r acts as

, R ..
e2miin 5?0 for n £ 0,
(4.10) 2|nl
1 — —Rep(—log(ep) + log(8) — 2 + log(R)),
which clearly has the desired operator norm and is invertible with norm < 1 from
L?(0B) to H'(9B), as one loses the factor ¢ again due to the derivative.
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To show the claim (4.10), we first observe that the constant 5= (log(8) —2+log(R))
acts as multiplication with ep(log(8) — 2 + log(R)) on constants and maps other
frequencies to 0. The claim (4.10) then follows from the lemma below.

Lemma 4.2.2. — The kernel log |z — y| acts as the Fourier multiplier
1 — 2meplog(ep),

ngr 27Tzn9

eQTrin@ —
In|

Here § € T =10,1) is a constant speed parametrization of the boundary 0B.

Proof. Note that when parametrizing the boundary with # € T, the action of the
kernel corresponds to convolution with

2mep(log(ep) + log |1 — e*™7)).
We have that
log |1 — €*™| = Relog 1 — €*™%

and this can be approximated in L? by Relog(l — (1 — 6)e*™) for 6 \, 0 by
e.g. dominated convergence. Now it holds that

(1-6 = (1 —6)
Relog(l — (1 — 6)e*™) = —Re Z il — —Z ( _ ) cos(2mj0),
: J
Jj=1
where we used the Taylor series of the logarithm around 1.
By the Plancherel theorem, we can take the limit § \ 0 in this Fourier series and
obtain the statement by the well-known formula f1 x fo = f2 f2 O

Proof'of part (c) of Lemma 4.2.1. It suffices to show that the kernels K — K g and
0y(K — KR) are bounded on L*(0B). We can write

2m(K — Kg)(z,y) = —(Veryr — R)(~log(jz — y|) +log(8) — 2 + log(R))
1

—5VTryr10g (vryr/R?) + VEryr 9(,y),

where we used the expansion (4.4) and the definition of K. It is easy to see that

lVZryr — R| Se and ‘log(nyR/RQ)’ Se

hence one obtains L2-boundedness from Schur’s lemma (cf. [18, App. A.1]). Taking a
y-derivative in (4.11), we get

210y (K — Kg)(z,y) = —0y(v/Tryr — R)(—log(|z — y|) + log(8) — 2 + log(R))

+ (Fmgm — R)O, log(|x — ul) ~ 50, (vERyR log(wayn/R%)) + Oz —yi|log |z — y)).

Clearly, the O-term is bounded from L2 to L? and of the desired order. It is easy to
check that

(4.11)

10,(vZryR — R)| S 1 and  |d,y/Tryrlogzryr/R?)| S 1

JEP. — M., 2095, tome 12



MOVEMENT OF SOLID FILAMENTS IN AXISYMMETRIC FLUID FLOW %()()

This shows boundedness of all terms by Schur’s lemma except for

(\/OUR?/R - R)ay log |z — y|

by direct estimates. For this we use the lemma below to conclude. 0

Leviva 4.2.3. — Let j € CY (OB x OB), then for all f € L*(0B) it holds that

| @@y logla -yl do S (Ul + 2 Nilln ) 111z
oB

L2(dB)

This estimate holds locally uniformly in q.

Proof. We can write j(z,y) = p1(z) + p2(2,y)|lz — y| with [|p1]l,,, < [l7]ls,, and
[P2llsup < ll7llo1- Then the kernel pi(z)d, log |z — y| has operator norm < ||p1[s,,
by applying Lemma 4.2.2 to the function p;f. The other part has operator norm
S € [[p2lsup: @s one can easily check that

|(z —y)9y log |z —y|| S 1. O
Prorosrition 4.2.4. — It holds that
1 1
|0 - 53]

r a 2mep

< 1/21

where the implicit constant is bounded locally uniformly in q.

Proof. — We have that

1 _
K*@niﬁ and Kpg =
r 2mep

are constant on 0B and %8,11/1 — 1/27mep is mean-free by the definition of ¢, hence we
may subtract these two identities from each other and obtain that

1 1 —
RS e I
Hr n 2mepllLzoB) ~ ( R)27T€p H1(8B) S & [loge]
here we made use of Lemma 4.2.1 (a) in the first estimate and of (c) in the second. O
4.3. MurrieLe Bopies. — Next we consider multiple bodies again. Recall that we
defined

L3(U,; 0B;) = {feLQ(UiaBi)\ /BB_fdxzo Vi}.

We denote the space H'(|J; ?B;) modulo locally constant functions with H'(|J, dB;)
with the norm [[0r-[| 2, 95,) Where 7 = n'. We set

K(x,y) = K(2,9) I3 with z,yeoB,}-
and also denote the associated linear operator with K.
Levmva 4.5.1. We have
1K — k‘|L2(aB,;)—>H1(aB,~) Selg — g™
locally uniformly in q (in both regimes (1.22) and (1.24)).

JE.P. — M., 2095, tome 12



400 D. Mever

Proof. — The statement is nontrivial only for ¢ # j. By the expansions (4.3) and (4.4),

we have

0y w00 = oy P () o g (2o, 0 L
TRYR TRYR |z =y

The statement immediately follows since the bodies have pairwise distance ~ |¢; — g¢;|.

O

Corovtary 4.3.2. — The operator K is invertible from L3(J, dB;) to H'({J, dB;) for
small enough € with operator norm < 1, where the implicit constant and the smallness
requirement for e are locally uniform in q. Furthermore, for i # j, it holds that

(4.12) | K~ |~

1
HHl(aBj)ﬁLg((‘?Bi) S elai — g5
Proof. — By Lemma 4.2.1 (a), invertibility holds for the operator K. By using e.g. a

geometric series, this implies invertibility and by Lemma 4.3.1, we have that

|kt - K- L.

1
HHl(uiaBi)ﬁLg(uic’)Bi) Selgi — g5

This shows the statement, since ||K ! ||H1(aBj)—>Lg(aBi) = 0 by definition. O

Let ¢} denote v; in case B; is the only body present.

Proposition 4.3.3. — For all ¢ we have

|Fontw! — 0

where the implicit constant is bounded locally uniformly in q. In particular the estimate
from the single body case in Proposition 4.2.4 still holds.

< e logel’,
L?(9B;)

Proof. We have that
1
K —0,1; = const on all 0B;
r
~r1
d K (5020}, 5,) = const 11 9B;.
an " V; ’831 const on a i
By subtracting the two equations, we see that

K(%(ﬁnwi - 8”%'1‘031-))"’([( - K) (%&zlﬂﬂaBi) = const.

Now we can use Corollary 4.3.2 and that +(0nt) — 9,0} ’63) is mean-free and (4.12)
and that

on 0B; by definition to obtain that

|5 @t = 22,5

< ellogel H K — K)( Oty |8B)

‘Hl(ulé)Bl)
< ¥ logelt. O

L2(8B;)
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Prorosition 4.3.4. Fori #] we have that
H nwz - *n \Y K(QZ?Q])

where “Vy” refers to the gradient in the second variable and the implicit constant is

< 32)log e,
L2(9B;)

bounded locally uniformly in q.

In particular, it follows from the asymptotics (4.3) and (4.4) that [|Ontill 1295, S
e'?)q; — q;| 7! for i # j, locally uniformly in q.
Proof. — Let 9! be the potential in case there is only a single body B;. Let pu €
L%(dB;j) be such that

1
Kup+ K<78nz/1i1\33i> = const on 0B;.
r

This is well-defined by Lemmas 4.2.1 and 4.3.1 and it holds that ||u||L2(aBj) <
€1/2|g; — ¢;|7'. Then for m # j by Lemma 4.3.1, it holds that
||KN||H1(aBm) S 63/2|10g el

and hence

c1/2 ‘|—1.

1
HKM‘*‘K(;@WH&BL) |Qi —q;

Subsequently we conclude by (4.12) that
1
(4.13) Hﬂ — —Ont

and therefore it suffices to compute pu.
We first estimate V). We know from the definition of ¢} and the maximum
principle that %&Lw} > 0 on 0B;. Hence we can use the mean value theorem to

HHl(aBm)

< 32)logel’,

‘ L2(8B;)

estimate
2 ¢
(4.14) HVK( Onitlos, ) = VK (. )| coiony) S SUp V2, K(y) S ellogel’
yeIB;

where we used the asymptotics (4.3) and (4.4). Similarly we have
IVE(gi: 45) = VoK (4i: )l ogon,) S & sup VoK (g:,9)| < ellogel”.
yeb;

Hence we have that

(4.15) H¢ — T V K qu; HHl(aB )~ 3/2|10g<€|€
We have

2
(4.16) K%{ Ve = —R—n—l— const

j
by (4.10) (where n denotes the normal as usual). By Lemma 4.2.1 and the definition
of 1 we have

1) et K @) gom,) = |(Kr,” = K7 (@1)]] £ =/ logel”
Together (4.15), (4.16) and (4.17) imply that

L2(8B;) < ¥ logel"
0

2
HM m Vy K (g, qa‘)‘
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Finally we can replace the R; in the denominator by r as ||n - V,K(g;, qJ)HL?(aBj) <
e'/2|g; — ¢;| 7" by (4.3) and (4.4). 0

4.4. THE DERIVATIVE WITH RESPECT TO (. To compute derivatives with respect to g,
we only need to consider partial derivatives with respect to a single R; or Z;, as every-
thing is smooth by Lemma 2.1.12. In the following we write 1; g, 1 instead of 1; to
emphasize with respect to which R; the function v; is defined and analogously write
i z,+s- For mixed derivatives we write ©; g, +s, R,,+s, if We want to indicate multiple
positions. We set

1 else,

85(x) = {PJ'(RJ' +5)/p;i(R;) if x € 0B,

where we again write p;(-) for p; as a function of R;.

Prorosition 4.4.1. For all i, 37,1 it holds that

o 5 (L) o)

where the diffeomorphism ¢ was introduced in the beginning of Section 3.3.3 and cor-
responds to the change of R;.
Similarly it holds that

Jo-((Fowtiz ) o)

where the diffeomorphism d was introduced in the beginning of Section 3.3.3 and cor-
responds to the change of Z;.
The implicit constant in both estimates is locally uniform in q.

< g1/2 (min — )
L2808 ~ a#b 7 —al)

< gl/2 (min — )
L2(8B;) ™ a#b 7 —al)

Prorosrtion 4.4.2
(a) For alli,j,l we have

25 () )|

and the same holds for the second derivative with respect to Z; and the mized second
derivative. The implicit constant is bounded locally uniformly in q.
(b) For alli,j,l,m with j # m we have

’ 05, 0s, (5]5-1523 (%%%,Rﬁslﬁmﬂ?) o cjm(s1, 82))’

where cjp, is the composition of the map c defined for j and m with arguments s;
and so respectively. The same estimate holds for the derivatives with respect to the
values Z; or mized derivatives. The implicit constant is bounded locally uniformly
n q.

< &' flogel’,
L2(0By)

, < el?|logel’,
L2(0B1)

We shall only prove the statements for the R;-derivative and focus on the first deri-
vative and occasionally comment on the slight changes needed for the Z;-derivative,
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which is generally easier. The second derivatives can be handled with the same tech-
nique, but the involved calculations become a lot more tedious, so we omit most of
them. We set

R;
R;+s

KEi(z,y) = (1 + I, (x)( — 1))K(c(m,s),c(y,s)),

and similarly
K% = K(d(z,5), d(y, ).

S

We also write Kf ? for the associated linear map. Note that for f supported on 0B,
it holds that

KE ) = a5y KU o) e(0.9),

where we again write p;(-) to denote p; as a function of R; and where the additional
prefactor comes from the change of the minor radius. For f supported on any other 0B;
it holds

K fy) = K(f)(c(y, ).

Similarly, for mixed second derivatives with respect to different indices, one would
use the kernel

K30 (x,y) = (1 + I, (x)( B _ 1) + Iyp,, (x)( L 1))

Rj +s R, +s
x K(cjm(z,51,52), Cjm(Y, 51,52)).
Lemma 4.4.3. — The linear operator Kf’j is Fréchet differentiable in s as a map from

L2(dB;) to HY(dB;) for all i, and we have

0. N o, clloge],

L2(8B;)—H1(8B;) —H1(8B;) ~

furthermore, the Fréchet derivative is given by integration against the pointwise deri-
vative in S.

Note that the corresponding derivatives of K 7 are trivially 0 by the explicit form
of K in (4.3). The statement for mixed second derivatives also trivially reduces to the
derivative with respect to a single index, as only the change of R; matters.

Proof. It is easy to see that the kernel is pointwise smooth in s for z # y by
using the Expansions (4.3) and (4.4) and the differentiability of ¢. We shall estimate
the operator norm of the first pointwise derivative. A similar, but tedious calcula-
tion, which we omit here can be made to show that the second and third pointwise
derivatives are bounded, which by the mean value theorem justifies that the first two
pointwise derivatives agree with the Fréchet derivatives.
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Let us estimate the first derivative with respect to s of the different parts of the
kernel:

(4.18) 0 1og|c(z, 5) — c(y, 5)| = B, log (p;(R; + 5)/p5) = —2(Rl+)
(1.19) s c(x,s>Rc<y7s>R( se
(4.20) ’ o(z, 8)rely, s o eomy ST
(4.21) 0s log(Rj +s) = R; 1+ .
R; +s5)?
(4.22) 2 C(x(s)’RC(y)S)R <e,

C} ,(0B;x8Bj)

Furthermore we have

(c(z,5) = cly, s))? _
(4.24) |9, c(z, s)re(y, $)r ’_

. . 2
ISR | ‘< = yl?,
p?C(iE,S)RC(y,S)R s=0] ~

and similarly it holds

,0,c2:9) ~ ely,5))

(4.25) c(x, 8)re(y, $)r ’9 0

~ ‘x y|'

Now we may use the expansions (4.3) and (4.4) to write

R;

27r8y85K5j(x,y)|s = 050y ( c(z,s)re(y, $)r )

R;

_|_
( (|z —yl) —log(8) +2 — %log(wRyR) +g(x, y))

+ O (Rj j_ . c(z, s)re(y, s)R)ay (10g(|x —y]) — %log (nyR/R]z) + g(x,y))
0, () 0, (Lol 5) = cly. ) = 5 o VL) g, +3))

c(, $)RE(y, $)r

ez 0,0 (on(c(o,5) — .9 — 3 og L) )

A Gy

(c(x, )—0(978))2)
c(z,s)re(y, s)r
=I+ I+ I +1IV+V+ VL

maah(

Here I-VI stand for the obvious terms and we dropped some constants whose deriva-
tive vanishes.
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— The boundedness of the terms I and II follows from the estimates (4.19) and
(4.20) above and Schur’s lemma and further from using Lemma 4.2.3 for the derivative
of the logarithm.

— The boundedness of IIT follows directly from (4.18) and (4.22) by using Schur’s
lemma.

— The boundedness of IV follows from (4.18) and (4.23).

— The boundedness of V and VI follows from (4.24) resp. (4.25) and the estimate
(4.8) on g. O

Levva 4.4.4. — The kernel K29 is Fréchet-differentiable in s as a map from L?*(0B;)
to Hl(aBl) for i # 1 and, locally uniformly in q, we have that

1055 ] 2
and 2]

(0B;) A)Hl(aB)Ng‘qz_QH 2
3
(8B;)—»H1(8B;) ~ Selai —al”

Furthermore, the Fréchet derivative is given by integration against the pointwise deri-

vative in s. The same estimates also hold for the Kernel K7 and the second deriva-

tives of Kﬁ!;f’".

Proof. — We only consider the case | = j and the first derivative, the other cases and

the second derivative are very similar. In this case, the kernel is smooth in (z,y, s) and

hence the Fréchet- and pointwise derivative agree by e.g. the mean value theorem.
By (4.3) and (4.4), we have that

—2r0,0, K = 8,0 \/QTF( _y|2)
RC\Y, S

TRYR

+0sv/wre(y, 5)n F(
+ Oy /TRUR F/(|$ - C(y’§)|2)85 |z — ey, s)|

zre(y, )R zre(y, s)r

(= c(y,s)|? lz —c(y, s)|?

*‘VnyR{Fw( e ) e e

_ 2 _ 2 2
+F~(\m C(y,j) )6 |z —c(y, s)| P |z —y }

iCRC(ZhS R ° HURC(ZLS)R Y TRYR

TR PR
TRYR Y TRYR

It is easy to see that all relevant derivatives of the prefactor are < 1 and that |9s¢| < 1.
Hence the absolute value of this is

2
T — T—y

P (Y 1o — g+ (B0 |
TRYR

TRYR

Rt
< ’ F( |~y )

TRYR
From the asymptotics of F' (see (4.4)), we see that for |z —y| small this is < 1/|z — y|>.
Hence we see that

10, -2, 0

|L2(8Bi)—>H1(aBj) Selg—a
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Proof'of Propsition 4.4.1. We know from Lemma 2.1.12 that %¢j7 R, +s 1s differen-
tiable, hence we may differentiate the equation

1
Kfi 5;;8,1%7}:5#5 oc=const on each 0B,,
with respect to s, as K, f 7 is differentiable by Lemma 4.4.3. This yields that
1 1
5'3Kfj <78n1/)¢) + K(@s (6]5 (*5’n1/1i,Rj+s> o c)) = const on each 0B,,.
r r

Note that asaj.ganwi, R,+s © ¢ is mean-free on each JB,,, because the integral of
5;%8n77/1i’ R,;+s © ¢ over OB, is either 1 or 0 for all s by definition. Furthermore by
Lemma 4.4.3 and Lemma 4.4.4, we have

We can absorb the logarithm into the second summand by definition of the regimes.
By Corollary 4.3.2, we conclude. O

0K (S0.0:)

<€1/2(105+ i — *2).
’Hl(umaBm)N |log €| gl;rbl\qa @]

Proof of Proposition 4.4.2. — We only consider the second derivative with respect
to R;, all others work the same because one has the same or better estimates. We have

92K R (%anwi) +20,K1% (9,0 (%anzpi,Rﬁs) oc) + K (925 (%anwmﬁs) oc)
= const

on all B,,. Note that by Lemmas 4.4.3, 4.4.4 and Proposition 4.4.1 it holds that

1 1
02K =0, 0,515 (0,65 (=0tim,44) o ) |
‘ R PR Ll I\ OnVinies ) €)1 om0y
< eM2|logel’.
Hence from Corollary 4.3.2 we conclude the statement. O
4.4.1. Further estimates on the derivative of K. — To compute the force G, we will also

need estimates in the L? — L2-topology.
Lemva 4.4.5. — For all j it holds that

HaSKfme(aBj)—m?(aBj) Se
and [ HLQ(BBJ‘)A)LQ((?B]‘) Se

locally uniformly in q¢ and furthermore, the pointwise and Fréchet derivatives agree.

Here we only need the estimate in the Rj;-direction, because the derivative in the
Zj-direction is 0. Also note that changes of the other values R,, trivially give a
derivative of zero here.
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Proof. We only show this for the first derivative with respect to R;, the second
derivative is very similar. We may expand the kernel as

21 (0, K 1 (2, y)| _,)

= 0. (s Ve el )) (lo(le — )~ 1oB(8) +2 = 5 log (wrye) +o(.1))

+VTRTR 0 [log (e(z,5) — ey, 9)]) — 5 log(el, $)mely 5))

lc(z,s) — c(y, 5]
_h( c(x,s)Rc(y%s)R )}

2

It is easy to see that

8S(RjRj— . c(z, s)re(y, S)R>‘ <e

and by reusing (4.18) and (4.22) and (4.21) one sees that

(126) |0 (10g(le(r, ) — ely ) — 5 log(el, $)me(y: 9))

‘ 2

|e(@, s) — c(y, 5)
_h( c(x7s)Rc(yg7/s)R ))‘ S

The boundedness follows by Schur’s Lemma. The Fréchet differentiability follows from

the boundedness of the second derivative and the mean value theorem. O

4.5. Tue vorce G. — We compute the asymptotics of GG, defined in 2.2.1. The crucial
lemma for the “self-interaction” terms is the following:

Lemma 4.5.1. — We have
1 1, 1_, > 1
57> iy~ j)de = —5Cij,
/5,r2r<rv v rv ¥ ) dz 27Y
and for any t] associated with By it holds that
1

1
7/03 ; ngbl,t;k <vlwiavaj>dxa

1 *
0q5Cij -t = 5

where the values C;; were defined in 2.1.4.

Proof. — We have that

1 1 1 1 . 1 1, A __} )
§/$r72<v Vi, Vo) da = ;2/83lr0”8nwjdx— 20”'

Here the partial integration is justified by Lemmas 2.1.5 and 2.1.6. Note that it holds
(427) 8,11/}3‘ . t? = anjm . tzk - &ﬂpju(tf)

on 0B, as one can see by differentiating Cj,, = ¢;(z;) by ¢ for some point z; on
0B,, moving with normal velocity w(t}).
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Now by the Reynolds transport theorem (which can be used by the integrability
statement in Lemma 2.1.12) the derivative of this with respect to ¢ in direction ¢} €
T, M equals

1 . 1 . 1 1 «
50aCij -t = 7/ (V4 V0,15 ~tl>dx+f/ —(V*epy, VY hu(ty) da
g T 2 0B, T

1 1 1
=Z/ =05 - ] Oty dH,/ (Vs Ve Yu(ty) de
— JoB,, T 2 Jop, T
1 1 1
= / ~(04Cm - 1 — utbyu(t])) O dr + - / (Ve Vs )ult)) da
— JoB,, 2 Jop, T

r

1 1 1
:achi.t;*—/ ;<vl¢i,vi¢j>u(t7)dx+§/ ;<vwi,ij>u(t7)dx,
(9Bl aBl

where we have made use of equation (4.27) in the third line and of the facts that 9,C},
is a constant function and that the matrix C' is symmetric by the first statement. O

Prorosirion 4.5.2. For every tangent vector t*, we have that

1
Glg,e5) 1" — —log(ep)(ti) -er| S1, and |0,Glg, )| S 1.

These estimate are locally uniform in q.

Proof. By Lemma 4.5.1 and the definition of G(q,e;) in 2.2.1, it equals % times
the derivative of the energy

1
[ R 50u @) dedy
(U18B;)? r

with respect to q. We first consider the partial derivative in the direction R;.
Note that K %8,11/12- is constant and that %&ﬂbi is mean-free on all boundaries except
OB, hence the integral over all boundaries except (0B;)? is zero.
Using the diffeomorphism ¢, we can rewrite the energy with respect to R; + s as
Ri+s g 1 1
/ lR Kl(67)? (*3n1/%,R7;+s) o C(*an#%,Rﬁs) ocdxdy.
(8B;)? i r r

Here the factor §; is the determinant due to the change of coordinates.

We can differentiate under the integral as everything is smooth by Lemma 2.1.12.
We first show that the parts where a derivative falls on %an%' are small. Indeed by
Lemma 4.2.1 and Proposition 4.4.1 we have

1 1
s(Z , < ¢ s(Z ,
HKaS (51 (ra"d)“R”“S) ° C)’ L2(8B;) ™~ elloge| ‘ Os (5' (ra"wZ’RﬁS) ° C)‘ L2(8B;)
< 32)logel’.
Hence
1 1
K(I, y)as (61 (787177[}2',1%1;4-3) o C) 76n¢z(y) dz dy

(8B;)? r r 1
< 321 foa - < ellogel’.
S ¥2fogel’ Lo, S elloge]
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The same argument can also be made for all terms involving one or two derivatives
of %8,11/%— or Kf’j by the estimates in Lemmas 4.2.1, 4.4.5 and Propositions 4.4.1
and 4.4.2 and also for derivatives with respect to R; or Z; for j # i. As the second
derivative of (R; + s)/R; vanishes, this shows the estimate for the derivative, in the
direction R;.

Hence we are left with the main contribution where the derivative falls on
(R; + s)/R;, which is

| K )5 0u@)0,01(0) do
(0B;)? 1t

It can be rewritten as

1
]{an T K@, y) dz dy
+ O(E_l |K — Kk, lanwi

r

1 1
78711#1 - ~
r 2mep;

)

The O-term is < e|loge|® by Lemma 4.2.1 and Proposition 4.3.3. We computed in the
claim (4.10) that the main integral equals

1

27

Next, we consider the “cross-terms” in G, given by the interaction between ;
and ;.

L2512 + ||I<||L2—>L2 L2

(log (epi) — log(8) — 2 — log R;). O

*

Prorosition 4.5.3. — Let t* = (t],...t}) be a tangent vector, identified with a vector
in R?* as usual, then for i # j we have that

]' * * *
/ ) ~u(t)OniOnt; dz — 15 - Vy K(qi, 45) — 7 - Vy K (g5, 0)| S ellogel,
UmOBm

where the normal velocity w(t*) was defined in (1.2). Furthermore it holds that
10,G(a,7)| S maxla — g5
Both of these estimates are locally uniform in q.

Proof. — We first prove the first statement for the contribution of 9B;, which also
covers the contribution of dB; by symmetry. We have

L. Pi P
(4.28) /8 Bj;(tj n= gt eR)anwjanqudx

1,
= /6 *tj : nanwian@/’j dz + 0(5 ”anwi”L?(aBj) ”anwjnw(aBj))'

B; T

By Propositions 4.3.3 and 4.3.4, the error term here is < ¢|loge|’.
We can now use Proposition 4.3.4 and (4.28) to obtain that

/ %u(t*)awianwj dz = 2 / (- m)n -V, K (g5, 45) -0ty da + O (ellog el .
0B,

dB; r
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We further have

* 1 *
2/ (t*-n)n-VyK(qi,q;)—0ntpjde = 2][ (t*-n)n-VyK(qi,q;)dz
dB; r dB;

|

1
+ 0(51/2|VyK(qia‘Jj)| H;&ﬂ/’j  2mep,
j

L2(8B_7~)>'
By Proposition 4.3.3, the error term is < e|loge|. The main integral equals

t* . Vyf((qi7 qj)
For m with m # 4,7, one can directly see by Proposition 4.3.4 that the integral is
< elloge|’. Tt remains to estimate the derivative. Note that G is a quadratic form in y
and that we have already shown the statement for v = ¢; in Proposition 4.5.2, and
that the “off-diagonal” coeflicients in G are exactly the integrals we estimated in the
first step, so we need to estimate their derivatives.

For notational simplicity we only consider the derivative of the integral on 0B,
with respect to Ry, as the derivative with respect to Z; enjoys the same estimates,
this is not restrictive. We begin with the derivative with respect to R; for | # j.

By Propositions 4.4.1 it holds that

1 1
53;3n¢i,3,+s as;anwj,mﬂ

which by the Cauchy-Schwarz inequality and Propositions 4.3.3 and 4.3.4 implies the
statement.

< 51/2|log€|é,
L2(0B;)

<eY?g —q|7? and ‘
L2(6Bj)N |q2 q.]‘

Finally, consider the derivative with respect to R;. We can rewrite the integral as

o PiBRF8) slg ,
/BBj(R_f) (t " 2(R; + s) ! eR) (5j ranw]’Rﬁs) o ¢ (Ontin,+s) 0 cda.

Here the factor 47 is the Jacobian due to the coordinate change. Using Proposi-
tion 4.4.1, we see that
1

o5 o) )

Furthermore by Proposition 4.4.1 we have

< e2|logel’.
L*(0B;)

1
ae(<78n 1, R; 9) )’ < 1/2 1 4y 72~
’ g , w,RJ-H oc LZ(BBj)Ne |q QJ‘
Hence, by the Cauchy-Schwarz inequality we conclude. (|
4.6. TuE MIXED TERM A. We estimate the force A (defined in 2.2.1), which contains

both the stream function and the potentials.

Prorosirion 4.6.1. — For all s*,t* € T,M we have that
0 Rim O
—Rim 0
(A(g,t*) -s* — ()T | ... 8",
0 Reve

—Riyie 0
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with a rate of O(e[logel®) locally uniformly in q. Furthermore, it holds that
|0,4] < ellogel”,
locally uniformly in q.

In particular, A is invertible for small enough ¢ with an inverse of order < 1 by the
assumption that all ; are # 0.

Proof. — Recall that A was defined as
(A5 =3 [ (=0:0(57)0,0() + 0:0(17)0,0(57)) 0 3 150
1 ! j

where ¢(s*) and ¢(t*) are the summed up potentials. Without loss of generality,
we may assume [t*| = [s*| = 1, t* € T,,M, s* € T, M, and that only ; is nonzero.
We first show the convergence for i # j. By definition we have

||an¢i,t*

and on all other boundaries the normal derivatives vanish. By Corollary 3.3.9, we have
107 i - < ¥ |loge|

L2(8Bj) ~
and vice versa. Furthermore we have

L= (0Bj) St

Lw(aBi)Sl and  ||On@; s

100l 208,y » 1901l 20,y S e1/?

for all [ by Propositions 4.3.3 and 4.3.4. By the Cauchy-Schwarz inequality we conclude
convergence to 0. Similarly, we can directly estimate the derivative. By Propositions
3.3.10 and 4.4.1, we know that all derivatives of the boundary values enjoy estimates
which are at worst an order |loge|® worse, hence these derivatives are small by the
Cauchy-Schwarz inequality and the product rule.

Next, consider the case i = j # [. Here we again have

(|07 &s,e+ ||L2(BBi) S et/

by Corollary 3.3.9 and the same holds for the potential with respect to s*. On the
other hand we also have

[0nt1ll 20,y S e'/?|logel*

by Proposition 4.3.4. By the Cauchy-Schwarz inequality, this implies that

/ Bt (—0rGs.0- Onriie + s s Onbis-) de| < elloge’.
OB;

The smallness of the derivative of this term again follows from the fact that all deriva-
tives have estimates which are at worst an order |loge|* worse by Propositions 3.3.10
and 4.4.1.

It remains to consider the case ¢ = j = [. In this case we have the same estimates
as above for the tangential derivatives and furthermore by Corollary 3.3.9 we have

"67(¢i7t* - ‘Zt*) |L2(8Bi) N 63/2|10g5|1Z and ’|8"(¢i,t* - ét*) N 63/27

’ L2(9B;)
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where the “two-dimensional” potential QVS was defined in 3.3.1 and the same holds for
the potentials with respect to s*.

Also by Proposition 4.3.3, we have

1
27Tﬁi€

< e2|logel’.
L2(9B;)

-

Finally, we clearly have |[r — Ril[;25p,) < €3/2. Hence by the Cauchy-Schwarz
inequality we see that

/ Oths (=0 e Onbise + Or i Onbier) da
OB;

=Rif (~0:050nbt- + 0:d1-0n05-) da + O(ellogel”).

By the antisymmetry of these integrals with respect to t* and s* it suffices to consider
the case t* = e; and s* = es. In this case, we can use the explicit form of ¢z« in 3.3.1
to see that

][ (—37(\53*5n5t* + 87%*&153*) dz = ][T ceon-ep —T-en-eydr = 1.
OB;

The smallness of the derivative follows again from the fact that all the derivatives of
the boundary values have estimates which are an order ¢|log €| better by Propositions
3.3.10 and 4.4.1.

Finally, all these estimates are locally uniform in g because all the used estimates
for the boundary values are. O

Derinirion 4.6.2. — We let J] and J2 be the velocities in (1.25) and (1.23), i.e
Z QZ - QJ _ Vi e
J|ﬁqj|2 AtRo ~

Z —q;) qr, ’Yz
J2 = J
( 'Y((D)l 27T — Vi |q2 _q |2 + 47TR2

(J5(@)): -

CoroLrary 4.6.3. — In the regime (1.24) (= distances = |loge|), we have that

[log e| — 5@

locally uniformly in q.
Proof. — By Propositions 4.5.2 and 4.6.1 have that

A(QaV)_lG(qvei) 1
[log ¢| 4T Roi

€Z,i5

where ez ; € (Rz)k ~ R?*¥ denotes the vector which has an ey in the i-th component
and no other entries.
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As G is a quadratic form in v by definition, it remains to show the statement for
the “off-diagonal” terms in G. By Propositions 4.5.3 and 4.6.1 we have that

lim A(q7 7)71 (G(q7 e; + 6_]) - G(Q7 61) - G(q7 6]))
e—0 [log ¢|

1 P; P;
- 7(4 LK (4,q) + —VEEK (g )
£230 Rollog ] wvy (@ 5) + 2V Klg 00

L L(R@oi) | BE-D)
2r \ vilai — > vla — @l

Here P, : R? — (R?)* is the map to the I-th coordinate and in the last step we used
the asymptotics (4.3) and (4.4). O

CoroLLary 4.6.4. — In the regime (1.22) (= distances =~ |loge|'/?), we have that

Al@ llog e|'/2
llog e|1/2 47 Ry

Vg — —Jz(a))
locally uniformly in q, where vy € (R%)* is the vector (ez,ez,...).
Proof. — The calculation of the “off-diagonal” terms is the same as in the previous

proof. For the diagonal terms, we have by Propositions 4.5.2 and 4.6.1 that

A(g,7)"'Glg,e:)  [loge|'/?

[log e]1/2 4y, R;

The statement then follows from the definition of ¢ and the fact that e.g. by the mean
value theorem we have

— 0.

1/2

loge[2  [loge['2 | (R = Ro)llogel'”

0. O
AnR; An R, AR -

~
5. PASSAGE TO THE LIMIT

In this section, we write g. instead of ¢ to emphasize the e-dependence.

Proof of Theorem 1.1.2. — We write the system (2.16) in the rescaled time s =
tlloge|? and the rescaled position g., defined as in (1.24), it then reads as

, o1 B _
(5.1) Iloge\"(E(Q)Qé +56:(Va. B(9) - ) + M(9)Z + [loge] 1<F(Q),§Z,f§l>)
= G(q,7) + [logel(A(g, 7)),

where the time derivatives are denoted with a ’ and all derivatives taken with respect
to the rescaled time and space.

We first show that the velocity in rescaled time and space is bounded, until either
we approach the boundary or some component of ¢ goes to infinity.

We take C' as some large compact subset of M, containing ¢.(0). If g. € C, then
this implies that each ¢; lies in a compact subset of H. It follows from the definition
of M. that if we view the manifolds M. as subsets of R?* that for small enough &
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such a set C' is also a subset of M,/ for ¢/ < e. Hence C can be chosen as the same
set for all small enough e.

Recall further that the matrix A is invertible by Proposition 4.6.1 and that its
inverse has operator norm < 1 as long as g. € C. We may hence rewrite the equation as

fog<l? [(B(@) + M(@) (= (7 + 2 )) + 2 (ve - 2) (2 + ol

ds [log ¢| 2 [log e|
1, [y ATG
+ i(vqu ’ qs) (qs + |10g5| )]
d A-lg 1 A lG A~LG
_ 3 i ~(V-E-¢ -1 q.
g el [(E(‘JHM(QDdS foge] (Ve &) figg * Iloee] (.. Ilogsl>

_ 1 A~G
— (loge[7'T(g) = 5 V. M(), T+ T )|

= |10g5\A<?]§ +

where we used the notation (N, a,b) = Na - b in the penultimate line.
By testing against ¢. + A71G/|loge| and dividing out the [loge|® we obtain that
from the antisymmetry of A that

62 L1((@+ ) B+ M) (@ + 2))

a5 2 \\% T Tloge| [log ¢|
= (@+ ﬁ)T (E(g) +M(q)) (fsﬁlo_glj
+;(a;+m)T( @E@Dﬁlgglf
+ |log5|71<F(Q)»‘1a Tlloglgw((l + ﬁoglj)
_ <\10g5|—1r(q) - %V%M(q)ifyfﬂ + ﬁo_gljxas + ﬁ;glg)
— I+ T+ 1V,

where -1V stand for the terms in each line. Our goal is to show that each of these
terms is < £2(1 + |g2|? + ¢|loge|*|¢.|?) as long as . € C.

For g. € C we have the following estimates. By Lemmas 3.2.1 and 3.4.1, we have
(5.3) 2 <E4+MZSE

(in the sense that the smallest and highest eigenvalues have these bounds). Further-
more by Proposition 4.6.1 we have

(5.4) Al VA, [ATY, [VzATH S 1.

By Propositions 4.5.2 and 4.5.3, we have

(5.5) G, [VaG| < llogel,

finally by Propositions 3.2.1 (b) and 3.4.2, we have

(5.6) IVa. El, |T| S &°[logel”.
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Hence we conclude for g € C that
1 Se*(1+1g*) and (10, 1| S &*flogel*(1 +[[°).

We have that IV = 0. Indeed if we set p := ¢. + A~'G/|loge| then, by the definition
of T (2.2.1), it holds

(@), 000 = 3 5OM@uk+ OMa) i~ D)y )iwos
i,k

1 .
= Z iaiM(Q)ijipjpk =

| (Va. M- q)p-p.
1,7,k

1
2|loge

Hence, plugging these estimates into (5.2), we obtain by (5.3) that as long as g. € C,

we have
61 (@ e) B+ 2a) (7 + 1))
sets (4 ﬁ;glj)T (B() +M() (7 + ﬁ;glf))
A~lG

A‘1G>)3/2

(4 ) e 3 14

=" Toge]
As long as we have

(@ +52)" B+ 2ta) (+5-0)) <=7

the last term in (5.7) can be absorbed in the first two and by Gronwall’s lemma we
obtain that

(@ + 5 B0 + (@) (7 + )0

=¥ Toge] llog
ATIGN\T ATlG
£ (1 (@ o) (B0 +M@)(T + o))
Se(F (@ + p) B@+M@) (@ + 1) 0
By (5.3) and the assumption about the initial velocities, this implies that
Afl
i+ C|se,
[log e

and hence
17| S e

until either g. leaves the set C' or up to a time of order |loge|. By (5.4), (5.5) and
(5.1), this implies that

1 _
ogel* (B(a! + 5@ (Va. Bla) -T) + M(@)a! +[logel ™ (D(a). @) — 0
in W= up to a time of order [loge| or until . leaves C. Hence we obtain that

G
A+ —— N0 i L™
fogel
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Because A~! and G/|loge| converge strongly, we see by Corollary 4.6.3 that

g —J3(G)0 in L™
until g. leaves C, which takes at least 2 1 time, as g. is bounded (J] (¢z) was defined
in 4.6.2). Hence we have that

aew)—aa(m—/ov @) ds — 0

for all times v < 1 and g. converges locally uniformly to some ¢y by compactness,
as long as long as q. lies in C. Therefore we see that gy must be a solution of g, =
J3 (o) because J. is locally uniformly continuous.

Finally, we may remove the condition that ¢ lies in a compact set C, by taking C
so large that the solution of ¢/ = J;(q) lies in the interior of C' until some time T,
which is possible for small enough € whenever ¢ does not blow until time 7. Then we
have uniform convergence of ¢. as long as it lies in C. As the limit lies in the interior
of C, the solution ¢. also lies in C for small enough ¢ up to time 7.

Hence we have convergence, as long as the limiting solution does not blow up. O

Proofof Theorem 1.1.3. — The proof is quite similar to the previous one. In the
rescaled time s = |loge|t, and the rescaled spatial variable ¢, defined as in (1.22)
the system (2.16) reads as

(5:8) [loge*/*(E(@)d! + 38 (Ve Ela) - @) + M(@)a! + loge|~/*(D(q), &L, )

= G(q,7) + [loge|"/*(A(q, 7))

Similarly as in the previous proof we can rewrite the equation, tested against g. +
A71G/loge|V/? as

—1 T 1
%%((@;4‘ |1:)4g5§;/2) (E(q) + Mg ))< |1og€|?;2>)
-1
- (1+ o) B+ ) (o

+5(@+g f/z)T(V

1
2

@) ( |log 5|?;2>

)
Togal)
)

] *1/2<F (M )
+ ‘ Og€| q57 ‘1 g€|1/2 de + |10g5|1/2
1
— {loge| V2T (q) — =V M (@ )
<\ ogel (9) 5 Vi (9),4: \loge|1/2 q: + |1og5|1/2

= I+II41II+1V.

Let vz denote the vector (ez,ez,...) € R2%. We would like to estimate the shifted
velocity @. + (Jloge|*/?/4nRy)vy. We again use a compact set C' C M. containing
G-(0). Then we let C' := C +vzR. On this set we still have uniform estimates because
the system is invariant in the vz direction. If g, € C , then we clearly we still have the
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estimates (5.3) and (5.6). Furthermore by Propositions 4.5.2 and 4.5.3 we then also
have
|G| < [loge| and  |Vg.G| < loge| 2.
Furthermore by Proposition 4.6.1 we have
Al S 1, Vg Al S loge| 71/
and from Corollary 4.6.4 one sees that
A~G B llog e|1/? ‘

< 1.
[log e|1/2 47 Ry

~

Hence, we directly see that
1/2 3
g losel 2 gy

+ ——v .
1 47TRO z
The term IV again drops out by the same calculation as in the previous proof. Note
that we have
d ( ATlG ) 1 llog e )
= — 2ol o),
ds \|loge|!/? llog e|'/2 irR,
because the derivative of A~'G in the vz direction is 0, as the system is invariant in

that direction. Hence we see that
2

1), 1) < eﬂloge\f(l +

|1/2

(VaA™) G+A7'V5.6) (T +

| loge|*/?

AT'G |loge|'/?
)

15 g ( |+
_c v _
~ |loge|1/2 % ArRy [log e]1/2 47 Ry
_ _ loge|'/?
A2V AllG A1~G“’|7‘
loge|t/? |2
< 2(1 ~ ’ )
Se +1q. + 1nRg vz
From the assumption that
loge|1/?
70y 4 | ‘ <1
qE( )+ 4'/TRO UZ ~ ’

we see by the same Gronwall argument as in the previous proof that
. 12
q:(s) +

|loge
47'I'Ro

until g. leaves C or until a time of order [loge|. From this, we conclude that g is

bounded in W1 and by (5.3) and (5.6) we see that

1 _
|log |/ (E(q)fz’s’ + 20 (Vg E(q) - @) + M(q)@! + |loge|~*/*(T(q), T, 62)) — 0

vz‘ < e’

~

2
in W12 until g. leaves C. Hence we see again that
-, |loge|'/? |1/2

AG llog e

=T 4R, <|1ogg\1/2 T iR,
This implies the statement by the same argument as in the previous proof and Corol-
lary 4.6.4. |

*
Uz> L0 in L.
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