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MOVEMENT OF SOLID FILAMENTS IN

AXISYMMETRIC FLUID FLOW

by David Meyer

Abstract. — We consider the movement of slender toroidal filaments immersed in a 3D fluid
described by the incompressible Euler equations. The filaments are described by Newtonian
mechanics and interact with the fluid through the pressure exerted at the boundary. We assume
that the filaments are almost rigid in the sense that the only non-rigid movement they can
undergo is a change of length and that the fluid is irrotational, but can have a nonzero circulation
around the filaments. We show that this kind of system can be described through an ODE in
the positions of the bodies and that in the limit, where the bodies shrink to massless filaments,
the system converges to an ODE system similar to the dynamics of the corresponding vortex
filaments.
Résumé (Mouvement de filaments solides dans un écoulement fluide axisymétrique)

Nous considérons le mouvement de minces filaments toroïdaux immergés dans un fluide à
trois dimensions dont la dynamique est décrite par les équations d’Euler incompressibles. Les
filaments sont régis par la mécanique newtonienne et interagissent avec le fluide par le biais de
la pression exercée à leur bord. Nous supposons que les filaments sont quasiment rigides, dans
le sens où le seul mouvement non rigide qu’ils peuvent subir est un changement de longueur, et
aussi que le fluide est irrotationnel, avec une circulation non nulle autour de chaque filament.
Nous démontrons que ce type d’interaction fluide-structure peut être décrit par un système
d’EDO sur les positions des axes des filaments et qu’à la limite où la masse des filaments se
réduit à zéro, ce système converge vers un système d’EDO similaire à la dynamique des anneaux
tourbillonnaires.
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352 D. Meyer

1. Introduction and main results

We would like to understand the movement of toroidal slender filaments in ax-
isymmetric fluid flow with no vorticity and the limiting dynamics where the filaments
shrink to massless circles.

To get a nontrivial motion of these bodies, one needs to allow them to change their
shape because otherwise, they can only move in one direction without breaking the
axisymmetry, which does not allow for any nontrivial dynamics (for instance a single
body will never change its speed due to momentum conservation).

To still keep the dynamics simple, we shall assume that the only non-rigid move-
ment that the bodies may undergo is a change of length, while still keeping their
volume fixed. Furthermore, for the sake of simplicity, we shall assume that the bodies
have circular cross-sections.

Due to the nonzero circulation around the bodies, one would expect that in the
limit these behave similarly to the corresponding vortex filaments. The main result,
aside from well-posedness of the system, is that this is indeed the case, which is
described in more detail below in Section 1.1.

Mathematically, the setup for this is as follows: We use axisymmetric coordinates
(r, z) and denote the right half-plane by H. We fix the number of filaments k ∈ N>0

and numbers v1, . . . , vk > 0, which we interpret as the volumes of the bodies and
which should remain constant along the evolution. We set

ρi :=

√
vi
πRi

, Bi(Ri, Zi) := Bρi((Ri, Zi)) ⊂ H for i = 1, . . . , k,(1.1)

here ρi denotes the minor radius, Ri the major radius and Zi the Z-coordinate.
With respect to the measure r dr dz, which corresponds to 1/2π times the three-

z

r

Ri

ρi

Bi

qi

dimensional volume, the bodies Bi then have the fixed volume vi = πρ2iRi. See also
the figure above.

Formally, we describe the configuration of the bodies through the manifold M ⊂
(R2)k of all (R1, Z1), . . . , (Rk, Zk) such that the bodies Bi all have positive distance
from each other and from ∂H.

For q ∈ M , we shall write qi for the i-th component and qRi
and qZi

for the two
components of qi. We shall also write Bi(q) for clarity instead of Bi sometimes. Let n
denote the outer normal of

⋃
i ∂Bi.
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Movement of solid filaments in axisymmetric fluid flow 353

Each body can undergo two different kinds of motion, the rigid one in the
Z-direction and the non-rigid change of length. To make this precise, we use the
natural correspondence between tangent vectors and normal velocities on the ∂Bi,
as every C1-curve in M corresponds to a continuous movement of each Bi.

For a tangent vector t∗, let t∗R1
, t∗Z1

, t∗R2
, . . . denote its components. We say that a

tangent vector is associated with Bi if only its Ri- and Zi-component are non-zero,
and write TqiM for the subspace of those tangent vectors.

Then, for a C1-curve q, the normal velocity is given by

u(q̇) := q̇Zi
n · eZ + q̇Ri

n · eR − q̇Ri
ρi

2Ri
on ∂Bi.(1.2)

Here eR and eZ are the unit vectors and the purpose of the last summand is to make
sure that if the major radius changes, the minor radius also changes so that the volume
of Bi is conserved under the motion.

Indeed by using Gauss’s theorem, we see

(1.3)

ˆ
∂Bi

ru(q̇) dx =

ˆ
B

div (r(q̇Zi
eZ + q̇Ri

eR)) dx− q̇Ri
ρi

2Ri

ˆ
∂Bi

r dx

= πρ2i q̇Ri
− πρ2i q̇Ri

= 0,

and hence by the Reynolds transport theorem this normal velocity keeps the volume
(with respect to r dr dz) fixed.

Let

F = F(t) := H∖
⋃
i

Bi

denote the (time-dependent) domain of the fluid. Let L2
R and H1

R denote the L2

resp. H1 spaces with respect to the measure r dr dz. We assume that:

Condition 1.0.1. — In F(t) the fluid fulfills the axisymmetric Euler equations with
zero vorticity and no swirl for t ∈ [0,∞), i.e.,

∂tu+ (u · ∇)u+∇p = 0,(1.4)
div(ru) = 0,(1.5)
curl(u) = 0,(1.6)

ur = 0 on ∂H.(1.7)

Here the div and curl are taken with respect to the variables (r, z) and u is R2-valued.

These equations are equivalent to the usual Euler equations for u with no vorticity
and no swirl (that is, no velocity in the direction perpendicular to the (r, z)-plane)
after going back to three-dimensional coordinates. The boundary condition (1.7)
encodes the fact that there should be no singularity at {r = 0}.

Condition 1.0.2. — We assume that the solution of (1.4)–(1.7) is strong in the sense
that u,∇u, ∂tu ∈ L2

R ∩C1(F) and that q is C2 in time. In particular this should hold
for the initial data.

J.É.P. — M., 2025, tome 12



354 D. Meyer

We define the circulation around each body as

γi :=

ˆ
∂Bi

u · τ dx,

where τ = n⊥. This is a conserved quantity by Kelvin’s circulation law. For technical
reasons, we will assume:

Condition 1.0.3. — None of the γi are 0.

This condition is not necessary for the well-posedness (nothing in the proof
changes), but necessary for the convergence to the limit system, for instance it
follows directly from the ODE reformulation (2.16) that a single body with no
circulation which is initially moving in the ez-direction will keep moving in that
direction with the same speed as every term in (2.16) is 0 in that case.

We assume that the normal velocity of the boundary of eachBi matches the velocity
of u in the corresponding direction:

Condition 1.0.4. — For all i we have

u · n = u(q̇) on ∂Bi,(1.8)

where we use the identification between tangent vectors and normal velocities men-
tioned above.

For simplicity we will assume that all bodies and the fluid have constant density 1,
though all the arguments still work for different densities.

Condition 1.0.5. — We assume that in the z-direction, the momentum is (formally)
preserved, which yields the condition

viq̈Zi
= −

ˆ
∂Bi

rpn · eZ dx(1.9)

for all i.

It remains to derive a condition for the interaction of the fluid and the solids in the
r-component. As the solids can change their shape, we make the Ansatz of prescribing
an interior velocity field and assuming that the kinetic energy of each Bi only changes
through the force exerted by the pressure at the boundary.

We associate to each tangent vector/normal velocity t∗i associated with Bi such an
interior velocity field ui,int(t

∗
i ) ∈ H1(Bi) with

div rui,int = 0 in Bi,(1.10)
curlui,int = 0 in Bi,(1.11)
ui,int · n = u(t∗i ) on ∂Bi.(1.12)

Existence and uniqueness can be obtained by standard elliptic theory [11, Chap. 6],
as ui,int(t∗i ) can be written as ∇ϕ with div(r∇ϕ) = 0 and the boundary condition
∂nϕ = u(t∗i ) by the assumption of curl-freeness. The compatibility condition for the

J.É.P. — M., 2025, tome 12



Movement of solid filaments in axisymmetric fluid flow 355

Neumann boundary condition
´
∂Bi

r∂nϕdx = 0 is fulfilled since
´
∂Bi

ru(t∗i ) dx = 0

by (1.3). Note that this is linear in t∗i , and that

ui,int(t
∗
Zi
) = t∗Zi

eZ .(1.13)

We can use this to associate a quadratic form on TqiM by

(t∗i )
TEqit

+
i :=

ˆ
Bi

r⟨ui,int(t∗i ), ui,int(t+i )⟩dx,(1.14)

for tangent vectors t∗i , t
+
i , associated with Bi, which describes the kinetic energy

associated with ui,int. Clearly, this is symmetric and positive definite. Because of the
explicit form (1.13), we know that

(eZ)
T
i Eqi(eZ)i = vi,

where (eZ)i ∈ (R2)k is the vector with eZ in the i-th component. We set

(eR)
T
i Eqi(eR)i =: fi(qRi

),(1.15)

here the function fi depends on the volume vi and (eR)i is the vector with eR in the
i-th component.

In summary, the quadratic form can be written in components as

(t∗i )
T

(
fi(qRi) 0

0 vi

)
(t+i ),(1.16)

as one can see from the explicit formula (1.13) and the fact that ui,int(t∗Ri
) must be

asymmetric in z in the second component and hence t∗Ri
and t∗Zi

are orthogonal to
each other with respect to Eqi .

We define the kinetic energy of Bi as

EBi
:=

1

2
q̇Ti Eqi q̇i.(1.17)

We assume that the kinetic energy of each Bi only changes through the force exerted
at the boundary, that is,

E′
Bi

= −
ˆ
∂Bi

rpu(q̇i) dx.(1.18)

After using the decomposition (1.16) and subtracting the condition (1.9), one obtains
that

fi(qRi
)q̈Ri

q̇Ri
+

1

2
∂qRi

fi(qRi
)(q̇Ri

)3 = −
ˆ
∂Bi

rpq̇Ri

(
n · eR − ρi

2Ri

)
dx.

We make the extra assumption that one can divide out q̇Ri
, which is equivalent to

saying that whenever q̇Ri
= 0 and the force at the boundary is nonzero, then q̈Ri

is not
zero, which rules out bodies with fixed Ri-coordinate. This gives the final equation:

Condition 1.0.6. — For all i we have

fi(qRi)q̈Ri +
1

2
∂qRi

fi(qRi)(q̇Ri)
2 = −

ˆ
∂Bi

rp
(
n · eR − ρi

2Ri

)
dx.(1.19)
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356 D. Meyer

We can also write (1.9) and (1.19) as a single equation

(t∗i )
TEqi q̈i +

1

2
t∗i (∂q̇iEqi · q̇i)q̇i = −

ˆ
∂Bi

rpu(t∗i ) dx,(1.20)

where t∗i is an arbitrary tangent vector associated with Bi.

1.1. Main results. — Our first main result is well-posedness:

Theorem 1.1.1 (Informal). — For every initial datum q(0), q̇(0) the system detailed
in the previous section has a unique solution up to some time T > 0. If T <∞, then q
blows up at T in the sense that some of the bodies either collide with each other, the
boundary or escape to ∞. The solution is completely determined by the circulations γi
and the initial data q(0), q̇(0).

Furthermore, the system preserves energy.

The more precise statements can be found in Corollary 2.2.7, Lemma 2.2.8 and
Theorem 2.2.10. In Theorem 2.2.2 the system is recast as a second-order ODE in q.
We remark that singularities in the form of collisions can indeed occur for Euler-rigid
body systems, see for instance [25].

For the zero-radius limit, we shall first introduce some notation. We will use a
rescaling parameter ε and denote the manifold of configurations associated with the
bodies with the “volumes” v1ε

2, . . . , vkε
2 by M̃ε (recall that the “volumes” were

defined in (1.1)). We still denote the minor radii with ρ1, . . . ρk. We write ρ̃i for
the unrescaled radii ρi/ε.

Generally, what we would expect for the limiting dynamics is that the fluid velocity
and the velocity of the bodies behaves like the solution to the system

div(ru) = 0,

curl(u) =
∑
i

γiδqi .

This u can be recovered for instance by going back to three-dimensional coordi-
nates and using the Biot-Savart law, which after some computations (see for instance
[7, Lem. 4] for a detailed derivation) yields that

(1.21) u(x) =
∑
i

γi
(x− qi)

⊥

2π|qi − x|2
− γi

1

4πRi
log

(1 + |x− qi|
|x− qi|

)
ez + lower order terms

(here “⊥” is defined in axisymmetric coordinates as the linear map with e⊥r = ez and
e⊥z = −er).

Here we would expect that the term of order −1 only leads to interaction of the rings
with each other, but no self-interaction, while the log-term induces a self-interaction,
but is of lower order regarding the interaction between different rings. We would like
to work in a critical regime where both effects are of the same order. For this, we need
the rings to be very close to each other, hence we fix some

(
R0

Z0

)
with R0 > 0.

There are now two different regimes that one can consider.

J.É.P. — M., 2025, tome 12
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1.1.1. The first regime. — For vortex rings, this one is also considered in [9] and [29].
We set all γi to be equal to one and set the centers to be

qi =
(
R0 +

q̃Ri√
|log ε|

, Z0 +
q̃Zi√
|log ε|

)
,(1.22)

where the rescaled initial positions q̃(0) := (q̃R1
(0), q̃Z1

(0), . . . ), should be independent
of ε and of order 1. We will further rescale time by a factor |log ε| and work with the
rescaled positions q̃i := (q̃Ri

, q̃Zi
).

In this regime, the main part of the self-induced velocity (in rescaled time and
space), that is (−1/4πR0)|log ε|1/2eZ , is the same for all rings, hence we may neglect
this part. The next order part is of the form (q̃Ri

/4πR2
0)eZ in rescaled time and space

by Taylor’s theorem. The velocity induced by the i-th ring on the j-th ring is of the
form 1

2π (qj − qi)
⊥/|qi − qj |2.

We hence expect that in the limit ε→ 0, the velocities q̃i should solve the system

q̃′i =
1

2π

∑
j ̸=i

(qi − qj)
⊥

|qi − qj |2
+

q̃Ri

4πR2
0

eZ(1.23)

in the rescaled time, up to the subtracted term −(1/4πR0)|log ε|1/2eZ .

Theorem 1.1.2. — Assume that the solution of (1.23) exist until time T (in the sense
that no components of the solution go to ∞ and the distance between the different
components stays positively bounded from below). Assume that the shifted initial velo-
cities q̃′i +(|log ε|1/2/4πR2

0)eZ (in the rescaled time and space) are bounded uniformly
in ε.

Then q̃ + t(1/4πR0)|log ε|1/2eZ converges to the solution of (1.23) weakly* in
W 1,∞

loc ([0, T )) in rescaled time.

This ODE system has been studied for instance in [29], where the existence of
periodic solutions for two rings has been shown. Such periodic solutions correspond
to a “leapfrogging” motion of the rings, which was predicted already by Helmholtz in
his famous work [22, 23].

1.1.2. The second regime. — We can also consider the regime where the self-induced
motion and the motion induced by other rings is of the same order. For this we set

qi =
(
R0 +

q̃Ri

|log ε|
, Z0 +

q̃Zi

|log ε|

)
.(1.24)

Here the rescaled initial position q̃(0) should again be independent of ε. We will further
rescale time by a factor |log ε|2 and will again work with the rescaled positions q̃.

In this regime, all expected velocities are of order 1 in rescaled time and space.
We hence expect that in the limit ε → 0 and in the rescaled time, the rescaled
velocities q̃ should solve the system

q̃′i =
1

2π

∑
j ̸=i

γj
(q̃i − q̃j)

⊥

|q̃i − q̃j |2
− γi

4πR0
eZ .(1.25)
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358 D. Meyer

This system was studied in [31] and one can show that if all γi have the same sign,
then solutions cannot blow up in finite time [31, Th. 2.1].

Theorem 1.1.3. — Assume that the solution of (1.25) exists until some time T in the
same sense as in the previous theorem. Further assume that the initial velocities q̃′i(0)
(in the rescaled time and space) are bounded uniformly in ε.

Then q̃ converges to the solution of (1.25) weakly* in W 1,∞
loc ([0, T )) in rescaled time.

Comparison with the existing literature. — In a two-dimensional setting, the similar
convergence of fluid-body systems with shrinking bodies to point vortex systems in a
bounded domain has been studied in [15] and [17], while further work on fluid-body
systems has been done for instance in [14, 16, 25, 33], see also the references therein.
The simpler problem of a stationary shrinking obstacle has been studied for example
in [20, 26, 27]. The vanishing body limit for the viscous fluid-solid system was studied
for instance in [21, 30].

Somewhat similar problems for filaments immersed in 3D Stokes flow have been
considered for instance in [24, 32].

Much effort has gone to determining whether the approximation of the Euler equa-
tions by the ODE systems (1.23) and (1.25) is true for initial data whose vorticity is
strongly localized around a few points (so-called vortex rings), see for instance [4, 5, 7].
Recently it was shown in [6] that this system indeed describes the correct asymptotic.
Special solutions which behave like these systems have been constructed in [9] for the
Euler equations and in [29] for the similar Gross-Pitiaevskii equation. In [2] it was
shown that traveling wave solutions of (1.25) (i.e., solutions which are stationary in
a moving frame) can be lifted to a traveling wave solution of the Euler equations.

Similar models for the Euler equations with a helical symmetry have been justified
e.g. in [10].

For general three-dimensional filaments the justification of similar asymptotic mod-
els (such as the local induction approximation [3, §2]) is more or less completely open,
though some conditional results exist, see for instance [28].

Outline of the paper. — In Section 2 we will describe the fluid velocity through poten-
tials and streamfunctions, which are completely determined by the positions and velo-
cities of the bodies. As a result, we can reduce the system to a second order ODE,
with coefficients determined by the potentials and streamfunctions, for the positions
of the bodies. This lets us show that our system is well-posed.

The proof of the convergence of the system for shrinking bodies then requires
analyzing the limit of this system. For this, we study the asymptotics of the potentials
and the streamfunctions in Sections 3 and 4. We will be able to show that these
converge to the corresponding two-dimensional functions in the zero radius limit and
that the interaction of the different parts of the stream functions produces the same
terms as the Biot-Savart law in the limit. A brief outline of the strategies for these
convergences is given at the beginning of the respective sections.
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In Section 5, we will study the convergence in the zero radius limit of the ODE,
which is quite intricate, as the equation degenerates due to the vanishing mass.
In order to still get estimates, we use a modulated version of the kinetic energy
of the system, whose evolution only depends on the degenerating terms, which allows
one to obtain uniform estimates on the velocity and to pass to the limit.

General notation. — We will use the notation q̃ for the rescaled positions in both
regimes, as most estimates work completely similarly for both regimes. We also denote
the manifold of q̃ for which the corresponding q is in M̃ε by Mε.

We write A ≲ B if there is a constant C > 0 such that A ⩽ CB, where the
constant C is allowed to depend on the number k and on q resp. q̃ and on which of
the regimes we are in, but not on any other quantities.

Similarly, we write ℓ for irrelevant (finite) exponents, which are allowed to depend
on which regime we are in, but not on any other quantities and are allowed to change
their value from line to line.

If Ω ⊂ H we write L2
0(Ω) for the space of all functions f ∈ L2(Ω) such that for

every connected component Ωi of Ω we have
´
Ωi
f dx = 0.

If S ⊂ H, we write SR3 for its figure of revolution in R3.

Acknowledgements. — The author would like to thank Christian Seis for introduc-
ing him to the problem and both Christian Seis and Franck Sueur for some useful
discussions and advice.

2. Well-posedness of the system

We will follow the approach in [14] to show that our system can be reduced to an
ODE in q only (see Theorem 2.2.2 below), which in particular shows well-posedness.
The main additional difficulty is that we are in an unbounded domain and hence need
decay estimates to justify partial integrations.

2.1. Representation of u. — In this subsection, we show that u can be recovered
from a potential and a streamfunction (defined in 2.1.4), which is shown in Proposi-
tion 2.1.8 below.

Definition 2.1.1. — For t∗ ∈ TqiM , let ϕi,t∗ = ϕi,t∗(t) be defined as the unique
solution of the Neumann problem

div(r∇ϕi,t∗) = 0 in F(t),

∂nϕi,t∗ = u(t∗) on ∂Bi,

∂nϕi,t∗ = 0 on ∂Bj for j ̸= i and on ∂H,

ϕi,t∗ ∈ Ḣ1
R,

ϕi,t∗ −→ 0 at ∞.

We first need to check that this is well-defined.

J.É.P. — M., 2025, tome 12
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Lemma 2.1.2. — Let b ∈ L2(∪i∂Bi) be such that
´
∪i∂Bi

rbdx = 0, then the equations

div(r∇ϕ) = 0 in F(t),

∂nϕ = b on
⋃

i ∂Bi,

∂nϕ = 0 on ∂H,

ϕ ∈ Ḣ1
R,

ϕ −→ 0 at ∞

have a unique solution ϕ. Furthermore

|∇mϕ(x)| ≲
∥b∥Hm

1 + |x|2+m
∀m ∈ N⩾0,(2.1)

where the implicit constant is bounded locally uniformly in q.

This implies the well-definedness of ϕi,t∗ and that the estimate (2.1) holds locally
uniformly in q for ϕi,t∗ , since

´
∪i∂Bi

ru(t∗) dx = 0, as computed in (1.3).

Proof. — We go back to three-dimensional coordinates and set ϕR3

(r, z, 0) = ϕ(r, z),
where ϕR3 is axisymmetric. Then ϕ solves the system above iff ϕR

3 solves the cor-
responding Neumann problem for ∆ in R3 ∖

⋃
j B

R3

j . By standard techniques (see
e.g. [1]), we obtain a unique solution ϕR

3 ∈ Ḣ1(R3 ∖
⋃
BR3

j ). We furthermore obtain
from this that ∂nϕ = 0 on ∂H.

The decay rate then directly follows from the lemma below. □

Lemma 2.1.3
(a) Let ζ ∈ Ḣ1(FR3

) be axisymmetric such that ∆ζ = 0 in FR3 and ζ(x) → 0 as
|x| → ∞. Then it holds that

|∇mζ(x)| ≲
∥∂nζ∥Hm(∂FR3 )

1 + |x|1+|m| ∀m ∈ N⩾0.

The implicit constant is bounded locally uniformly in q.
(b) Let ζ be as in (a). If additionallyˆ

∪j∂BR3
j

∂nζ dx = 0,

then

|∇mζ(x)| ≲
∥∂nζ∥Hm(∂FR3 )

1 + |x|2+|m| ∀m ∈ N⩾0,

where the implicit constant is controlled as in (a).

Proof. — If we extend ζ to R3 by solving the Dirichlet problem for ζ|
∂BR3

j
on each BR3

j ,
then the (distributional) Laplacian of this extension is of the form

[∂nζ]H
2 ⋃

∂BR3

j ,

where [·] denotes the jump across the boundary, as a direct calculation shows. By ellip-
tic regularity (cf. [19, Chap. 2]), this is a finite measure.
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We claim that we can recover this extension by convoluting the distributional
Laplacian with the Newtonian potential. Indeed for any f ∈ C∞

c (R3), we have
ˆ
R3

ˆ
∪i∂BR3

i

−[∂nζ]

4π|x− y|
∆f(x)dH2(y) dx =

ˆ
∪i∂BR3

i

[∂nζ]f(y)dH2(y) =

ˆ
R3

ζ∆f dx,

where in the second step, we used that the Newtonian potential is the inverse Lapla-
cian. Hence the difference [∂nζ]H2 (

⋃
i ∂B

R3

i )∗(−1/4π|x|)−ζ is a harmonic tempered
distribution, i.e., a polynomial.

Now

[∂nζ]H
2 (

⋃
i ∂B

R3

i ) ∗ −1

4π|x|
− ζ −→ 0,

by the assumption on ζ and because [∂nζ]H
2 (

⋃
i ∂B

R3

i ) is a finite measure, so this
difference is zero, which shows the claim.

We hence obtain that |∇mζ(x)| ≲ ∥∂nζ∥L2(∂FR3 )/(1 + |x|1+m) for all m ⩾ 0 and for
dist(x,

⋃
BR3

i ) ⩾ 1. For x close to the Bj the estimate follows from elliptic regularity
theory. This shows the estimate in part (a), part (b) works exactly the same way,
except that the integral of [∂nζ] vanishes by the assumption and partial integration,
which gives one order more of decay.

To see that these bounds are locally uniform in q, we need uniform estimates on
∥[∂nζ]∥L1(∪i∂Bi)

. Note that for this we only need up-to-the-boundary estimates for
a neighborhood of each Bi, locally uniform in q and a locally uniform L2 estimate.
By going back to axisymmetric coordinates, one obtains the former, as the geometries
of these neighborhoods (in axisymmetric coordinates) only change by rescaling with a
bounded factor. On the other hand, one can obtain from the energy equality (which is
justified by the decay estimates we have already proved) in axisymmetric coordinates
that ˆ

F

r|∇ζ|2 dx = −
ˆ
∪i∂Bi

rζ∂nζ dx ≳ ∥ζ∥2H1(∪i(Bi+B1(0)∖Bi))
.(2.2)

Here we used the (three-dimensional) Sobolev inequality to control the L2-norm on
the right-hand side. The constant of the Sobolev inequality is locally uniform in q,
as one can e.g. see by using a diffeomorphism between the different instances of F.

Now we can use the trace inequality from H1(Bi+B1(0)∖Bi) to L2(∂Bi) in (2.2),
whose constant is also locally uniform in q, as the geometry only changes through
rescaling by a bounded factor. This implies the desired locally uniform estimate

∥∂nζ∥L2(∪i∂Bi)
≳ ∥ζ∥L2(∪i(Bi+B1(0)∖Bi)). □

The argument for the existence of the stream function is more complicated, as there
is no easy algebraic relation between the three-dimensional stream function and the
axisymmetric stream function.
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Definition 2.1.4. — Let ψi = ψi(t) be the solution of the elliptic equation

(2.3)

div
(1
r
∇ψi

)
= 0 in F(t),

ψi|∂Bj
is constant ∀j,ˆ

∂Bj

1

r
∂nψi dx = δij ,

ψi|{r=0} = 0,

lim
r→0

1

r
∂zψi = 0.

Here δij is a Kronecker delta. We refer to the constant boundary values on ∂Bj as Cij .

Lemma 2.1.5. — Such a ψi always exists and is unique under the constraint
1√
r
∇ψi ∈ L2. Furthermore 1

r∇ψi is continuous at r = 0 and we have the estimate∣∣∣∇m
(1
r
∇ψi(x)

)∣∣∣≲ 1

1 + |x|2+m
∀m ∈ N⩾0.

The implicit constant in the estimate is locally uniformly bounded in q.

Proof. — We first show that an auxiliary function u2,i can be constructed by going
back to three-dimensional coordinates and later show that one can recover ψi from it.

Step 1. — We define u2,i on FR3 as the axisymmetric vector field with no azimuthal
component which solves (in three-dimensional variables) the system

div u2,i = 0,(2.4)
curlu2,i = 0,(2.5)
u2,i · n = 0 on ∂BR3

j for all j,(2.6)
u2,i ∈ L2(FR3

).(2.7)

We make the ansatz curlΨi = u2,i for a purely azimuthal field Ψi = Ψ̃ieθ, where eθ
is the unit vector in the θ-direction. This gives the equations

(u2,i)r = −∂zΨ̃i, (u2,i)z = ∂rΨ̃i +
1

r
∂rΨ̃i,

using that the last term can be rewritten as 1
r∂r(rΨi), this turns the equations (2.4)–

(2.6) into the equations

∆Ψi = 0 in FR3

,(2.8)
rΨ̃i|∂BR3

j
is constant for all j.(2.9)

For each fixed set of constant boundary values (C̃ij)j=1,...,k for rΨ̃i, this system has
a unique solution Ψi(C̃ij) ∈ H1 by standard techniques. Also, because Ψi is purely
azimuthal, it must vanish at r = 0 and hence it holds that

(u2,i)r = 0(2.10)

at r = 0.
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Step 2. — To show uniqueness of u2,i for given (C̃ij), we note that we can recover
a Ψi fulling the system (2.8),(2.9) from u2,i. Indeed we may extend u2,i to the full
space by zero as u2,i, which preserves the condition that the divergence vanishes,
as the distributional divergence on the boundary equals [u2,i · n] = 0.

It is well known that on the full space, every divergence-free field can be written as
a curl, indeed we have − curl∆−1 curl g = g for every divergence-free g, as a straight-
forward calculation shows. Since we also have curlu2,i ∈ H−1 and the fundamental
solution of the Laplacian maps H−1 to H1, we see that the field obtained this way
lies in H1. Hence two different solutions u2,i for the same boundary values would give
rise to two different Ψi in H1 with the same boundary values, which is impossible.

Step 3. — Now we can view u2,i as a function in (r, z) again, it fulfills div(ru2,i) = 0

(with the two-dimensional divergence). Then we can find a ψi(C̃ij) such that

u2,i =
1

r
∇⊥ψi,

because ru⊥2,i is curl-free. This can be done with the usual path integral construction,
it is easy to check that the condition u2,i · n = 0 ensures that even paths which
are not homotopy equivalent yield the same values. One can then check by direct
calculation that div( 1r∇ψi(C̃ij)) = 0 holds, and by the boundary condition for u2,i,
we see that ψi(C̃ij) must be constant on each ∂Bj . Furthermore, we have that u2,i is
continuous at r = 0 by elliptic regularity and hence 1

r∇ψi(C̃ij) is continuous at r = 0

and 1
r∂zψi = 0 at r = 0 by (2.10). This ψi(C̃ij) is unique up to an additive constant

under the condition 1√
r
∇ψi(C̃ij) ∈ L2 (here one gets an additional factor r from the

coordinate change), as one can recover the unique u2,i from it.
Next, we argue that we can pick the boundary values (C̃ij) uniquely such that the

condition (2.3) holds. It suffices to show that the linear map that sends the boundary
values (C̃ij) to the integrals

´
∂Bj

1
r∂nψi(C̃ij) dx is invertible for each fixed i.

First note that the C̃ij are also the boundary values of ψi (up to an additive
constant) because we have that ru2,i = ∇⊥rΨ̃i (in (r, z)-coordinates) and hence
by applying the fundamental theorem of calculus, we see that (rΨ̃)(x) − (rΨ̃)(y) =

ψi(x)− ψi(y) (in axisymmetric coordinates).
Assume there is a nonzero vector of C̃ij such that all integrals vanish. Without loss

of generality, we may assume that C̃i1 is the biggest one of the C̃ij . Then the normal
derivative of ψi on ∂B1 must be non-positive by the maximum principle and hence
must be zero everywhere on ∂B1. Since the tangential derivative also vanishes, the
constant extension of ψi(C̃ij) to B1 still fulfills div( 1r (ψi(C̃ij)) = 0. But this extension
is then a locally, but not globally, constant solution of an elliptic equation, which is a
contradiction.

We have ∂zψi = 0 ·u2,i = 0 at r = 0 because u2,i is continuous by elliptic regularity.
We may choose the additive factor that we have leftover such that ψi = 0 at r = 0

holds.
The uniqueness of ψi follows from the uniqueness of the ψi(C̃ij).
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Step 4. — By elliptic regularity, it is easy to see that the Cij are locally uniformly
bounded in q, and hence ∥∂nΨi(Cij)∥Hm is locally uniformly bounded in q. By Lem-
ma 2.1.3 (a), we see that

|∇mΨi(x)| ≲
1

1 + |x|1+m
,

for all m ∈ N⩾0 which implies the decay estimate. □

It is known that the equations

div
(1
r
∇f

)
= g in H,

f = ∂nf = 0 on ∂H,

have a fundamental solution K such that

f(y) =

ˆ
H
g(x)K(x, y) dx(2.11)

is the unique solution under suitable decay assumptions on f for e.g. g ∈ C∞
c (H), see

e.g. [13, §2].
By the following lemma, we can recover solutions to div( 1r∇·) from single-layer

potentials with this fundamental solution and hence obtain decay estimates.

Lemma 2.1.6
(a) Let div( 1r∇ζ) = 0 in F with 1√

r
∇ζ ∈ L2(F), assume that 1

r∇ζ is continuous
for r → 0 and that ζ|r=0 = 0. Furthermore, assume that ζ|∂F is sufficiently smooth,
then there is a constant C, depending on ζ such that

|ζ(x)| ⩽ C

1 + |x|
.

In particular this holds for ψi.
(b) ψi can be represented as

ψi(y) =

ˆ
∪i∂Bi

1

r
K(x, y)∂nψi dx.

Proof. — We claim that if we extend ζ to H by solving the Dirichlet problem for
div( 1r∇·) with boundary values ζ in each Bi, then it holds that

ζ =

ˆ
∪i∂Bi

1

r
K(x, y)[∂nζ] dx.

This directly shows (b) because for ψi the extension to each Bi is constant. It also
shows (a) by the fact that [∂nζ]H

1 ∂Bi is a finite measure by elliptic regularity and
the fact that the fundamental solution K(x, y) decays like 1/(1 + |y|) at ∞ locally
uniformly in x (see [13, Lem. 2.1 ii)]).

The same argument as in the proof of Lemma 2.1.3 shows that

g(y) :=

ˆ
∂F

1

r
K(x, y)[∂nζ] dx
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fulfills div( 1r∇(g−ζ)) = 0. Furthermore, by the aforementioned decay estimates for K
we see that |g(x)| ≲ 1/(|1 + |x|), that g = 0 at r = 0 and that 1

r∇g is continuous at 0.
By elliptic regularity, it holds that g − ζ is smooth in the interior of H.

Now let h(r, z, θ) = (1r∇(ζ−g)(r, z))⊥ (in axisymmetric coordinates). This function
is divergence-free (with respect to three-dimensional variables) as a direct calculation
shows for r > 0, at r = 0 it is also divergence-free by continuity. Hence there is
an H with curlH = h, where the gradient is taken with respect to three-dimensional
variables. Then it holds that ∆H = 0 and H is a tempered distribution and hence is
a polynomial.

Hence we know that ζ− g is a polynomial as well, however, we have that ζ− g = 0

at r = 0, hence it is also a polynomial in r only. However, g → 0 for r → ∞ and
hence if ζ − g does not vanish, then ζ would have to grow at least linearly in r. For
all a and large enough R we would then have

1 ≲
1

R

∣∣ζ(R, a)− ζ(R/2, a)
∣∣ ≲ 1

R

ˆ R

R/2

|∂rζ(s, a)|ds ≲
(ˆ R

R/2

1

s
|∂rζ(s, a)|2 ds

)1/2

.

By taking a square root and using Fubini’s theorem, we obtain that 1√
r
∇ζ /∈ L2,

which is a contradiction. □

Lemma 2.1.7. — The Euler equation (1.4) holds if (1.5) and (1.6) hold and the cir-
culations γi =

´
∂Bi

τ · udx are conserved in time.

In the two-dimensional setting this statement is well-known, see e.g. [12].

Proof. — Indeed the vorticity equation always holds and therefore we have

curl(∂tu+ (u · ∇)u) = 0.

However not every curl-free field has to be a gradient in F, as the domain has holes.
Using the usual path integral construction, it is easy to see that it is a gradient ifˆ

Γ

(∂tu+ (u · ∇)u) · τΓ dx = 0

along every closed, non-self-intersecting path Γ ⊂ F with normalized tangent τΓ,
which has winding number 1 with respect to exactly one Bi and 0 with respect to all
others. If Φt is the flow induced by u, then by direct calculation one sees that

∂s

ˆ
Φs(Γ)

u · τΦs(Γ) dx
∣∣
s=0

=

ˆ
Γ

(∂tu+ (u · ∇)u)) · τΓ dx.

On the other hand we see that for such Γ it holdsˆ
Γ

u · τΓ dx =

ˆ
∂Bi

u · τ dx,

which is constant by assumption, and hence we see that there is a p such that
∂tu+ (u · ∇)u = −∇p. □
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Proposition 2.1.8. — The function

u(t) =

k∑
i=1

(
∇ϕi,q̇i + γi

1

r
∇⊥ψi

)
=: u1 + u2(2.12)

is a solution to the axisymmetric Euler equations (1.4)–(1.8).

Proof. — A direct calculation reveals that u is curl-free and fulfills div(ru) = 0 and
hence u fulfills (1.5) and (1.6) in F. We further observe that

n ·
k∑

i=1

∇ϕi,q̇i = u(q̇) on
⋃

j ∂Bj ,

n · 1
r
∇⊥ψi = 0 on

⋃
j ∂Bj ,ˆ

∂Bj

∇ϕi,q̇i · τ dx =

ˆ
∂Bj

∂τϕi,q̇i dx = 0,

ˆ
∂Bj

1

r
∇⊥ψi · τ dx =

ˆ
∂Bj

1

r
∂nψi dx = δij ,

1

r
∂zψi = ∂rϕi,q̇i = 0 on ∂H,

where τ = n⊥.
Hence this u has the prescribed circulations and boundary velocities, which shows

the statement by Lemma 2.1.7. □

We shall refer to both the ϕi,t∗ and their sum as potentials of u. We shall refer to
both the ψi and their weighted sum as streamfunctions of u.

Remark 2.1.9. — This u is uniquely determined (in L2
R) by q, q̇ and the γi. Indeed,

if there would be two such different u, then their difference would give rise to a
nonzero streamfunction with zero circulation (by the same argument as in the proof
of Lemma 2.1.5, Step 3), which is impossible by the uniqueness of the functions ψi.

2.1.1. Representation of ∂tu. — We will need to show that the potential and stream
function are differentiable in q to be able to represent ∂tu. The differentiability of
solutions to elliptic equations with respect to changes of the underlying domain is a
classical topic and we refer the reader to [35] for further reading.

Lemma 2.1.10
(a) The function ϕi,• is smooth as a map from the tangent bundle TM to H1

R (here
differentiability can be understood in both the L2

loc-sense and the pointwise sense).
(b) The derivatives ∂qϕi,t∗ , ∂2qϕi,t∗ lie in H1

R∩C∞(F), furthermore their H1
R-norm

is bounded locally uniformly in q and t∗.
(c) div(r∇∂qϕi,t∗) = 0.
(d) |∇m∂qϕi,t∗(x)| ≲ 1/1 + |x|2+m for all m ∈ N⩾0. Here the implicit constant is

bounded locally uniformly in q and t∗.
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Proof. — We can identify the tangent space at every point with R2 and ϕi,• is linear
in t∗, hence it suffices to show smoothness in q for a fixed t∗.

Step 1. — We first want to apply the implicit function theorem to obtain that a
derivative of ϕi,t∗ with respect to q exists. Fix some q0. We use the three-dimensional
ϕR

3

= ϕi,t∗(r, z) (in axisymmetrical coordinates) again. We set

V := (Ḣ1 ∩ L6)(R3 ∖
⋃

j B
R3

j (q0)),

and equip this with the standard inner product of Ḣ1. By the Sobolev embedding
this is a Hilbert space.

In order to fit different configurations of the bodies into one space, we introduce
C∞ diffeomorphisms Ξ : R3 ∖

⋃
j Bj(q

0) → R3 ∖
⋃

j Bj(q
1) which map each ∂Bj(q

0)

to ∂Bj(q
1). We can assume that the family Ξ is smooth in the parameter q1 since

the Bi are. We may also assume that Ξ is the identity outside a large ball depending
on q, but bounded locally uniformly in q. Then ϕR

3 is harmonic on R3 ∖
⋃

j Bj(q
1)

with Neumann boundary values u(t∗, q1) iff the function ϕ̂ := ϕ ◦ Ξ fulfills

(2.13)
ˆ
F(q0)R3

〈
∇ϕ̂(DΞ)−1,∇η(DΞ)−1

〉
|detDΞ|dx

= −
ˆ
∪∂Bj(q0)R

3

ρj(q
1)

ρj(q0)
u(t∗, q1)η dx,

for all η ∈ V , where we have written the minor radius ρj as a function of q. We may
interpret the difference of the left- and right-hand side as a map G :M × V → V ∗.

Since Ξ is smooth in q and compactly supported, we obtain that this map is
Fréchet-smooth. Furthermore we have that

DV G(q
0, ϕ̂) · δϕ =

ˆ
F(q0)R3

⟨∇δϕ,∇·⟩dx.

This is an isomorphism by the Riesz representation theorem. Hence we see that ϕ̂ is
Fréchet-smooth by the implicit function theorem. This implies that a function ∂qϕR

3

exists in V by the smoothness of Ξ in q. Similarly, higher derivatives must exist. This
shows (a).

Step 2. — Clearly, ∂qϕR
3 must be harmonic and hence smooth away from the bound-

ary. To see smoothness up to the boundary we differentiate (2.13) with respect to q
at q0 and obtain that

(2.14)
ˆ
F(q0)R3

〈
∇∂qϕ̂(DΞ)−1,∇η(DΞ)−1

〉
|detDΞ|

+
〈
∇ϕ̂∂q((DΞ)−1),∇η(DΞ)−1

〉
|detDΞ|+

〈
∇ϕ̂(DΞ)−1, ∂q

(
∇η(DΞ)−1 |detDΞ|

)〉
dx

= −
ˆ
∪∂Bj(q0)R

3

〈
∂q

( ρj(q)

ρj(q0)
u(t∗, q0)

)
, η
〉
dx,

for all η ∈ V , the differentiation of this equation is justified by the differentiability
of ϕ̂ and by Ξ being compactly supported and smooth in q.
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This is an elliptic equation for ∂qϕ̂ with Neumann boundary conditions and a
smooth and compactly supported term given by the second and third summand on
the left hand side. Hence ∂qϕ̂ is smooth up the boundary. The same argument can be
used to show regularity of higher derivatives in q. Again this also shows that ∂qϕR

3

(and hence also ϕi,t∗) is smooth up to the boundary and the same is true for higher
derivatives in q.

By the pointwise smoothness that follows from this, it is obvious that (c) holds.

Step 3. — To obtain the decay estimate for the derivative, we note that it is enough to
show these estimates for ∂qϕR

3 . Clearly, it holds that ∆∂qϕ
R3

= 0. We again employ
Lemma 2.1.3, by e.g. going back to ϕ̂ and using Equation (2.14), it is easy to see
that the boundary values are locally uniformly controlled by q and t∗. To see that
the integral over the Neumann boundary values of ∂qϕR

3 is 0, we introduce some
compact B′

j with smooth boundary, in which BR3

j is compactly contained and which
intersects no other BR3

j′ . Then we rewrite them asˆ
∂BR3

j

∂n∂qϕ
R3

dx = −
ˆ
∂B′

j

∂n∂qϕ
R3

dx = −∂q
ˆ
∂B′

j

∂nϕ
R3

dx = 0.

Here pulling out the derivative is justified by the regularity of ∂qϕR
3 . In particular,

the decay estimate also implies that the derivative is in H1. □

Lemma 2.1.11. — The functions fi are smooth in Ri, in particular, Eqi is smooth
with respect to q.

Proof. — This can be shown as in the previous lemma by using a similar smooth
family of diffeomorphisms. □

Lemma 2.1.12
(a) The derivative of ψi with respect to q exists and is smooth up to the boundary

(here the derivative can e.g. be taken as a classical pointwise derivative or in the L2
loc

sense).
(b) We have that 1

r∇∂qψi,
1
r∇∂

2
qψi ∈ L2

R∩C∞. Furthermore the L2-norm of these
derivatives is bounded locally uniformly in q.

(c) It holds that

|∂qψi(x)| ≲
1

1 + |x|
and

∣∣∣∇m∂q
1

r
∇⊥ψi(x)

∣∣∣ ≲ 1

1 + |x|2+m
∀m ∈ N⩾0.

In the second estimate the implicit constant is locally uniformly bounded in q.
(d) The values Cij are differentiable with respect to q.

Proof
(a) and (d) The argument uses a similar technique as the existence proof for Lem-

ma 2.1.5. First, we again consider the three-dimensional vector potentials Ψi as in
said proof, for fixed boundary values (C̃ij), they have arbitrarily many derivatives
in q, which are smooth up to the boundary by the same argument as in the previous
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proof and the derivatives are in Ḣ1 ∩L6. This also shows that for fixed (C̃ij) there is
a (smooth) derivative of u2,i and ψi(C̃ij).

It remains to argue that the values Cij are differentiable. To see this note that
the linear map from the (C̃ij) to the integrals

´
∂Bl

1
r∂nψi(C̃ij) dx, which was used to

show existence of the values Cij , is differentiable in q as well. Indeed we may again
introduce some compact B′

l, which compactly contains Bl and intersects no other Bj .
Then we haveˆ

∂B′
l

1

r
∂n∂qψi(C̃ij) dx = ∂q

ˆ
∂B′

l

1

r
∂nψi(C̃ij) dx = ∂q

ˆ
∂Bl

1

r
∂nψi(C̃ij) dx,

which shows differentiability. As the Ḣ1-norm of Ψi corresponds to the L2-norm of
1
r∇

⊥ψi(C̃ij), we see the boundedness statement (b).
The decay of ∂qψi again follows from the fact that the derivative fulfills

div(
1

r
∇∂qψi) = 0

and is smooth up to the boundary by using Lemma 2.1.6.
The decay of ∂q 1

r∇
⊥ψi follows from the fact that the derivative of the three-

dimensional stream function is harmonic and smooth up to the boundary as in the
previous proof by Lemma 2.1.3, and can be controlled locally uniformly in q. □

Remark 2.1.13. — Note that if q is C2 in time and u is a solution of the Euler
equations (1.4)–(1.8), then we must have

∂tu =

k∑
i=1

∂qϕi,q̇ · q̇ + ϕi,q̈i + γi
1

r
∇⊥∂qψi · q̇.(2.15)

Indeed this follows from the fact that u is uniquely determined through q, q̇ and the
circulations γi (Remark 2.1.9). In particular, u has the regularity required in Condition
1.0.2.

Lemma 2.1.14. — Assume that u solves the Euler equations (1.4)–(1.8) with pres-
sure p. Then we have that

|∇p(x)| ≲ 1

1 + |x|2
,

and there is a constant C which may be chosen as 0 such that

|p(x)− C| ≲ 1

1 + |x|
.

The implicit constants in these estimates are bounded locally uniformly in q, q̇, q̈.

Proof. — By the construction of u in (2.12) and the decay estimates in Lemmas 2.1.2
and 2.1.5 we have that

|(u · ∇)u(x)| ≲ 1

1 + |x|5
.
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By Equation (2.15) and Lemmas 2.1.2, 2.1.10 and 2.1.12, we see that

|∂tu(x)| ≲
1

1 + |x|2
.

Hence |∇p(x)| ≲ 1/(1 + |x|2) and the estimate is locally uniform in q, q̇, q̈, because
the estimates for u and its derivatives are.

Since
´
∂BR(0)∩H |∇p|dx→ 0 for R→ ∞ we have

max
x∈∂BR(0)

p(x)− min
x∈∂BR(0)

p(x) −→ 0.

Furthermore
´∞
1

|∇p(x, a)|dx <∞ for all a for which no Bi intersects this line, hence
we obtain that p converges to some finite value at infinity, which then gives the decay
statement for p by the fundamental theorem of calculus. □

2.2. Derivation of an ODE for the system. — We reduce the motion of the bod-
ies Bi to an ODE whose coefficients depend on the functions ψi and ϕi. This will
also yield existence and uniqueness of solutions to the system. In two-dimensional
bounded domains, a similar calculation can be found e.g. in [14].

We first introduce some additional terminology. We set ϕ(t∗) =
∑
ϕi,t∗i if t∗ =

t∗1 + · · ·+ t∗k. Furthermore we set ψ =
∑

i γiψi.

Definition 2.2.1. — Let t∗ = t∗1 + · · ·+ t∗k; s∗ = s∗1 + · · ·+ s∗k and w∗ = w∗
1 + · · ·+w∗

k

for t∗i , s∗i and w∗
i associated with Bi. We define

Gi(q, γ) · t∗i =

ˆ
∂Bi

1

2r

(
(∂nψ)

2∂nϕi,t∗i
)
dx,

(Mij(q)t
∗
i ) · s∗j =

ˆ
F

r∇ϕi,t∗i ∇ϕj,s∗j dx,

⟨Γ(q), t∗, s∗⟩ · w∗ =
1

2

∑
ij

((
(∂qMij · s∗) t∗

)
· w∗ +

(
(∂qMij · t∗) s∗

)
· w∗,

−
(
(∂qMij · w∗) s∗

)
· t∗

)
,

(A(q, γ)t∗) · s∗ =
∑
i

ˆ
∂Bi

(
−∂τϕ(s∗)∂nϕ(t∗) + ∂τϕ(t

∗)∂nϕ(s
∗)
)
∂nψ dx,

where in the definition of Γ, the inner dot product refers to the derivative in that
direction.

Furthermore, M shall be the matrix made up of the blocks Mij and E shall be the
diagonal matrix made up of the blocks Eqi . Let G ∈ (R2)k ≃ R2k be the vector with
the entries G1, . . . Gk.

Theorem 2.2.2. — The system detailed in the Introduction is equivalent to the system
of ODEs given by

(2.16) E(q)q̈ +
1

2
q̇(∂qE(q) · q̇) +M(q)q̈ + ⟨Γ(q), q̇, q̇⟩ = G(q, γ) + (A(q, γ)q̇).

Remark 2.2.3. — The equation can be interpreted as the geodesic equation for the
metric given by M+E, with extra terms due to the circulation on the right hand side.
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The matrix M describes the “added inertia”, which encodes the fact that to accelerate
one of the bodies, one also has to accelerate the surrounding fluid.

Proof. — We argued in Remark 2.1.9 that u is uniquely determined by q, q̇, hence it
suffices to show that the family of equations in (1.20) is equivalent to this system.
Let t∗i be an arbitrary tangent vector associated with Bi. We set u∗i = ∇(ϕi,t∗i ).

Then by Equation 1.20 it holds that

(t∗i )
TEqi q̈i +

1

2
q̇Ti (∂qiEqi · q̇i)t∗i = −

ˆ
∂Bi

rpu∗i · ndx.

By the equation for p, partial integration and the identity u∇u = 1
2∇|u|2 + u · curlu

it follows that

(t∗i )
TEqi q̈i +

1

2
q̇Ti (∂qiEqi · q̇i)t∗i =

ˆ
F

r∇p · u∗i dx

= −
ˆ
F

r
(
∂t(u1 + u2) +

1

2
∇|u1 + u2|2

)
· u∗i dx.

It follows from the decay estimates in Lemmas 2.1.2, 2.1.5 and 2.1.14 that there are
no boundary terms from ∞ in this partial integration.

We now split this into the different contributions and use the proposition below
to obtain the equation in the theorem, tested against t∗i . Since t∗i was arbitrary this
implies the statement. □

Proposition 2.2.4
(a) We have

−1

2

ˆ
F

r∇|u2|2 · u∗i dx = Gi(q, γ) · t∗i .

(b) It holds that

−
ˆ
F

r
(
∂tu2 +∇(u1 · u2)

)
· u∗i dx = (A(q, γ)q̇) · t∗i .

(c) We have thatˆ
F

r
(
∂tu1 +

1

2
∇|u1|2

)
· u∗i dx = q̈TM(q)t∗i + ⟨Γ(q), q̇, q̇⟩ · t∗i .

Proof
(a) Using that both u2 and u∗i decay like 1/|x|2 by Lemma 2.1.2 and Lemma 2.1.5

we may partially integrate the left-hand side to obtain equality withˆ
∂F

1

2
r|u2|2∂nϕi,t∗ dx.(2.17)

To see that this equals the definition of G we note that ∂nϕi,t∗i vanishes on every
boundary except ∂Bi and that |u2| = 1

r |∇
⊥ ∑

j γjψj | = 1
r |∂n

∑
j γjψj | since the

tangential derivative of the functions ψj vanishes.
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(b) We have that

−
ˆ
F

r∇(u1 · u2)u∗i dx =

ˆ
∂F

r(u1 · u2)(u∗i · n) dx,

(this partial integration is justified by the decay estimates from Lemmas 2.1.2
and 2.1.5) which by the construction of u in (2.12) equals∑

l

ˆ
∂Bi

r
(1
r
∂n

∑
j

γjψj

)
(∂τϕl,q̇l)(∂nϕi,t∗i ) dx,

because u2 has no normal component on the boundary.
It holds that ∂tu2 = 1

r∇
⊥∂tψ. We have that div( 1r∇∂tψ) = 0 and ∂tψ has the

boundary values

∂tψ =
∑
j

γj∂qCjl · q̇ − (u1 · n)∂nψ on ∂Bl

as one can see by differentiating the identity Cjl(q) = ψj(xq)(q) where xq is some fixed
point on ∂Bl whose derivative in t equals u1 ·n. Then a partial integration, which can
again be justified by the decay estimates in Lemmas 2.1.2 and 2.1.12, reveals that

−
ˆ
F

ru∗i · ∂tu2 dx =
∑
l

∑
j

ˆ
∂Bl

∂τϕi,t∗i (γj∂qCjl · q̇ − (u1 · n)∂nψ) dx.

The first summand vanishes because ∂qCjl is a constant on each ∂Bl and this
proves (b).

(c) We introduce an energy functional for the potential part of the fluid velocity:

Eu1
:=

1

2

ˆ
F

r|u1|2 dx.

Following the approach in [33], we will show that

(∂t∂q̇ − ∂q)Eu1
· t∗i =

ˆ
F

u∗i · (∂tu1 +
1

2
∇|u1|2) dx.(2.18)

To prove this claim we shall use the following lemma which can be proved exactly as
in [33, Lem. 5.1]:

Lemma 2.2.5. — For η ∈ Ḣ1
R let

Λ(η) =

ˆ
F

r⟨∇ϕ(q̇),∇η⟩dx.

Then it holds that

(∂t∂q̇ − ∂q)(Λ) = 0.

We now note that Eu1 = 1
2Λ(ϕ(q̇)) and that

∂q̇Eu1
· t∗i =

1

2

(
(∂q̇Λ)(ϕ(q̇)) · t∗i + Λ(ϕ(t∗i ))

)
.

Because ϕ(t∗i ) also equals ∂q̇ϕ(q̇) · t∗i , we see that

∂q̇Eu1 · t∗i = (∂q̇Λ)(ϕ(q̇)) · t∗i .(2.19)
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Hence we obtain that

(∂t∂q̇ − ∂q)Eu1
· t∗i

= (∂t∂q̇ · t∗i − ∂q · t∗i ) Λ(ϕ) + (∂q̇Λ)(∂tϕ(q̇)) · t∗i +
1

2
(∂qΛ)(ϕ(q̇)) · t∗i −

1

2
Λ(ϕ†),

where ϕ† = ∂qϕ(q̇) · t∗i and we made use of (2.19).
By Lemma 2.2.5, the first term is 0. By definition, the second term equals

∂q̇Λ(∂tϕ(q̇)) · t∗i =

ˆ
F

r∂tu1∇ϕ(t∗i ) dx.

By the Reynolds transport theorem (whose usage is justified by Lemma 2.1.10 (b)),
we have that twice the third term equals

(∂qΛ · t∗i )(ϕ) = −
ˆ
∂Bi

r|u1|2u∗i · ndx+ Λ(ϕ†).

This yields the claim (2.18) after another partial integration.
Now we use that Eu1

= 1
2M(q)q̇ · q̇, which follows directly from the definition of M.

Then we may compute the Euler-Lagrange equation of this as

(∂t∂q̇ − ∂q)Eu1
· t∗i = M(q)q̈ · t∗i + ((∂qM(q) · q̇)q̇) · t∗i −

1

2
((∂qM(q) · t∗i )q̇) · q̇.

The last two summands equal the Christoffel symbol Γ as one can directly see by
writing them out in components. □

2.2.1. Uniqueness and existence. — In this subsection, we show that the system is
actually well-posed and that energy conservation will imply that solutions exist for
all times if q does not blow up.

Lemma 2.2.6. — The coefficients M, G,A,Γ are all continuously differentiable in q.

Proof. — One can use the definition of all these terms and Lemmas 2.1.10 and 2.1.12
to obtain that they are smooth in q. We leave the details to the reader. □

Corollary 2.2.7. — For every initial datum q, q̇, there is some T > 0 such that the
system (2.16) and hence also the system introduced in the introduction has a unique
solution up to time T , which is C2 in q.

Proof. — By the lemma above and the Picard-Lindelöf theorem, we have local exis-
tence and uniqueness if the matrix M + E is invertible, which follows from the fact
that both M and E are positive definite by definition. □

The total energy of the system is conserved:

Lemma 2.2.8. — The kinetic energyˆ
F

1

2
r|u|2 dx+

∑
i

EBi

(E was defined in (1.17)) is constant in time.
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Proof. — By Reynolds we have that
d
dt

ˆ
F

1

2
r|u|2 dx =

ˆ
F

ru · ∂tudx−
ˆ
∂F

1

2
r|u|2u · ndx.

Here differentiating under the integral sign is justified by the L2
R-differentiability from

Lemmas 2.1.10 and 2.1.12. The first integral also equalsˆ
F

ru · ∂tudx =

ˆ
F

ru · (−u · ∇u−∇p) dx =

ˆ
F

−1

2
div(ru|u|2)− div(rpu) dx.

Applying Gauss’s theorem to this and adding the second integral from the first equa-
tion we obtain the statement, as we have by Equation (1.18)ˆ

∂Bi

rpu(q̇i) dx = − d
dtEBi

. □

Lemma 2.2.9. — The kinetic energy
´
F

1
2r|u|

2 dx of the fluid decomposes into the
energies

´
F

1
2r(|u1|

2 + |u2|2) dx.

Proof. — We have thatˆ
F

ru1 · u2 dx =
∑
i

γi

ˆ
F

r∇ϕ1
r
∇⊥ψi dx =

∑
i,j

γi

ˆ
∂Bj

∂τϕCij dx = 0,

where we abbreviated the potential of u1 with ϕ. □

Theorem 2.2.10. — Solutions of the system exist until q leaves any compact set, i.e.,
until either some of the bodies collide with each other or the boundary or escape to
infinity.

Proof. — By the energy conservation, we see that
´
r|u|2 dx is bounded uniformly in

time and hence by Lemma 2.2.9 we also have that
´
r|u1|2 dx is bounded uniformly in

time. Now note that there is no q such that for some t∗ ̸= 0 it holds that ∇ϕ(t∗) = 0.
Hence by the continuity of the coefficients we have on compact setsˆ

r|u1|2 dx ≳ |q̇|2.

This implies that the only way the solution can blow up is if q leaves any compact
set. □

3. Convergence of the potential part of the velocity

3.1. Overview and strategy. — In this section, we will consider the limit of the
potential velocity and of the interior field in order to compute the limit of the coeffi-
cients of the equation.

We will show that all relevant main quantities converge to the corresponding two-
dimensional quantities for a single body, which can be explicitly written down, and
that the error is an order ε|log ε|ℓ smaller (see Corollary 3.3.4). Furthermore, we will
show that quantities that only exist for multiple bodies are even smaller (see Corol-
lary 3.3.9). We will also show that derivatives with respect to q are an order ε|log ε|ℓ
smaller as well (see 3.3.10). In Sections 3.4 and 4.6 we will see that M and A converge
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to the corresponding two-dimensional quantities for a single body and that Γ and ∂qA
are negligible.

3.1.1. Proof strategy. — The basic idea is to compare the coefficients of the elliptic
equations defining the potentials with the corresponding equations for the 2D limiting
quantities (see e.g. Definition 3.3.1 below). These coefficients converge close to the
bodies, which is enough to prove convergence via standard L2 for the interior field (see
Lemma 3.2.1 below). The potentials ϕt∗ , on the other hand, are defined on an exterior
domain, and far away from the bodies, the coefficients do not converge. This is dealt
with using uniform decay estimates, which are proved using single-layer potentials
(see Lemma 3.3.7). The proof is split in the case of a single body and multiple bodies.
For a single body, L2-estimates are sufficient to conclude convergences of the relevant
traces via elliptic regularity. For multiple bodies, the method of reflections and decay
estimates are sufficient to show that the contribution of a single body is already the
leading order contribution (see Section 3.3.2 below). For the derivatives with respect
to q, we consider the PDE fulfilled by the derivative of the potential, which can be
estimated by the previous a priori estimates.

As we believe it makes the proof more transparent, we rescale space by a factor
1/ε (see the beginning of Section 3.3.1 for details).

We omit the indices of B,C, q,R, Z, uint, etc. when dealing with only a single body.
We identify the tangent space of M with (R2)k via the map t∗ → (t∗R1

, t∗Z1
, . . . ).

3.2. The interior field. — For the kinetic energy of each body, we only need to con-
sider a single body as the definition of Eqi (see (1.14)) only depends on Bi. Therefore
we drop the indices in this subsection.

We write fε for the function fi, defined with the rescaling parameter ε.

Lemma 3.2.1. — Consider the energy function fε defined in (1.15).

(a) We have ∣∣fε(R)− πRρ̃2ε2
∣∣ ≲ ε3,

where the implicit constant depends locally uniformly on R.
(b) fε(R) is Lipschitz in R with constant ≲ ε3, locally uniformly in R.

In particular this implies that we have |Eqi | ≈ ε2 and |∇qEqi | ≲ ε3.

Proof
(a) We compare the potential of uint with the one of the constant speed movement.

Set ϕ1(x) = r, which solves the Neumann problem ∆ϕ1 = 0, ∂nϕ1 = eR · n.
Similarly, uint(eR) can by definition (see (1.10)–(1.12)) be written as ∇ϕ2, where

div(r∇ϕ2) = 0 and ∂nϕ2 = u(eR). Testing these equations with ϕ1 − ϕ2 we obtain
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that ˆ
B

⟨∇ϕ1,∇(ϕ1 − ϕ2)⟩dx =

ˆ
∂B

eR · n(ϕ1 − ϕ2) dx,

ˆ
B

r⟨∇ϕ2,∇(ϕ1 − ϕ2)⟩dx =

ˆ
∂B

r
(
eR · n− ρ

2R

)
(ϕ1 − ϕ2) dx.

We multiply the first equation with R and subtract the second from it, this yields
thatˆ

B

r⟨∇(ϕ1 − ϕ2),∇(ϕ1 − ϕ2)⟩+ (R− r)⟨∇ϕ1,∇(ϕ1 − ϕ2)⟩dx

=

ˆ
∂B

(
ReR · n− r

(
eR · n− ρ

2R

))
(ϕ1 − ϕ2) dx.

Note that we may add a constant to ϕ1 − ϕ2 in the last integral because the other
factor is mean-free.

Applying the Cauchy-Schwarz inequality we obtain that

(3.1)
ˆ
B

r |∇(ϕ1 − ϕ2)|2 dx ⩽ ρ ∥∇ϕ1∥L2(B) ∥∇(ϕ1 − ϕ2)∥L2(B)

+
∥∥∥ReR · n− r

(
eR · n− ρ

2R

)∥∥∥
L2(∂B)

∥ϕ1 − ϕ2∥L2(∂B)/constants.

The last factor can be estimated by ctrace ∥∇(ϕ1 − ϕ2)∥L2(B), where ctrace is the oper-
ator norm of the trace from Ḣ1 to L2(∂B)/constants. By scaling one can see that this
constant is ≲ ε1/2.

This gives us an upper bound on the right-hand side of (3.1) of

(3.2) ρ ∥∇(ϕ1 − ϕ2)∥L2 ∥∇ϕ1∥L2 + ctrace ∥∇(ϕ1 − ϕ2)∥L2(B)

∥∥∥ρ+ ρ

2R

∥∥∥
L2(∂B)

≲ ε2 ∥∇(ϕ1 − ϕ2)∥L2 .

Together with the observation thatˆ
B

r|∇(ϕ1 − ϕ2)|2 dx ≲ ∥∇(ϕ1 − ϕ2)∥2L2 ,

we obtain from (3.1) and (3.2) that

∥∇(ϕ1 − ϕ2)∥L2 ≲ ε2.

Now by definition

|fε − πRρ̃2ε2| =
∣∣∣∣ˆ

B

r
(
|∇ϕ2|2 − |∇ϕ1|2

)
dx

∣∣∣∣
≲ ∥∇(ϕ1 − ϕ2)∥L2 (∥∇ϕ1∥L2 + ∥∇ϕ2∥L2) ≲ ε3.

(b) We first estimate the derivative of the potential of uint with respect to R and
then use this to estimate the Lipschitz constant. We fix some q0 = (Z0, R0) with
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minor radius ρ0 and use the family of maps

Ξq(x) :=
ρ0

ρ

(
x−

(
R

Z

))
+

(
R0

Z0

)
,

which map B(q) to B(q0).
Let ϕq be defined by ∇ϕq = uqint(eR), where the q in the superscript denotes the q-

dependence and we use the identification between the tangent space and R2 mentioned
above. Let

ϕ̂ :=
ρ0

ρ
ϕq ◦ Ξ−1

q .

Then a direct calculation shows that this fulfills the system

div
(R0

R

(
R+

ρ

ρ0
(r −R0)

)
∇ϕ̂

)
= 0 in B(q0),

∂nϕ̂ = eR · n− ρ

2R
on ∂B(q0).

Using for instance the implicit function as in the proof of Lemma 2.1.10, one can
easily see that one can differentiate the solution of this equation in R (with respect
to the H1-norm) and that the derivative fulfills the system

div
(R0

R

(
R+

ρ

ρ0
(r −R0)

)
∇∂R1

ϕ̂
)

+ div
(
∂R1

(R0

R

(
R+

ρ

ρ0
(r −R0)

))
∇ϕ̂

)
= 0 in B(q0),

(3.3)

∂n∂R1 ϕ̂ = ∂R1

(
eR · n− ρ

2R

)
on ∂B(q0).(3.4)

Here we write ∂R1 ϕ̂ for the derivative with respect to the parameter R = R1 in order
to prevent confusion with the spatial derivative in the R-direction. Now one can easily
check that ∣∣∣∂R1

(R0

R

(
R+

ρ

ρ0
(r −R0)

))∣∣∣ ≲ ε,(3.5) ∥∥∇ϕ̂∥∥
L2 ≲ ε,(3.6) ∣∣∣∂R1

(
eR · n− ρ

2R

)∣∣∣ ≲ ε.(3.7)

We can now test the equations (3.3), (3.4) with ∂R1
ϕ̂ and obtain after using the

Cauchy-Schwarz inequality similarly as in part (a) and the bounds (3.5)–(3.7) that

(3.8)
ˆ
B(q0)

R0

R

(
R+

ρ

ρ0
(r −R0)

)∣∣∇∂R1 ϕ̂
∣∣2 dx

≲ ε2
∥∥∇ϕ̂∥∥2

L2 + ε3/2
∥∥∥∂R1

ϕ̂
∥∥∥
L2(∂B(q0))/constants

,

where we again used the mean-freeness of the boundary values to take the L2-norm
modulo constants.
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Clearly, the prefactor in the integral on the left-hand side is ≃ 1. Again the operator
norm of the trace operator from Ḣ1 to L2(∂B(q0))/constants is ≃ ε1/2 by scaling,
hence we obtain from (3.8) that ∥∥∇∂R1

ϕ̂
∥∥
L2 ≲ ε2,

and this bound is locally uniform in R.
By definition it holds that

fε(R) =

ˆ
B(q)

r|∇ϕq|2 dx =

ˆ
B(q0)

( ρ

ρ0

)2(
R+

ρ

ρ0
(r −R0)

)∣∣∇ϕ̂∣∣2 dx.
The prefactor in the second integral is differentiable in R with a derivative ≲ ε. Now
we can differentiate the right-hand side under the integral by the H1-differentiability
of ϕ̂ and obtain from the product rule that

|∂Rfε(R)| ≲ ε2
∥∥∇ϕ̂∥∥

L2 + ε
∥∥∇ϕ̂∥∥2

L2 ≲ ε3.

This is locally uniform in R as all the used estimates are. □

3.3. The potential part of the velocity. — We show that the boundary values of
the potential converge to the boundary values of the corresponding “two-dimensional”
potential.

3.3.1. The case of a single body

Definition 3.3.1. — Let t∗, q ∈ R2. Let ρ > 0. Let n denote the outer normal vector
of ∂Bρ(q). We define a “two-dimensional” potential

qϕt∗ = qϕt∗(q, ρ) := −ρ2 t
∗ · e1(x− q) + t∗ · e2(y − q)

(x− q)2 + (y − q)2
.

One can check that this is the solution of

∆qϕt∗ = 0 in R2 ∖Bρ(q),(3.9)

∂n qϕt∗ = t∗ · n on ∂Bρ(q),(3.10)
qϕt∗ −→ 0 at ∞.(3.11)

Uniqueness of this can be found e.g. in [1, Th. 3.1].

In order to estimate the potentials for ε → 0, we first use only a single body and
again drop the indices. Fix some q and t∗, where we again make use of the identification
of the tangent space with R2 as in the previous subsection. Furthermore, fix some
ρ̃ > 0 such that ερ̃ = ρ. We will prove a more general statement for arbitrary normal
velocities, which will be useful later to estimate derivatives with respect to q.

It will simplify the argument to rescale everything by a factor of ε. Therefore we
let B̀ := Bρ̃(

1
εq) and first prove our estimates around this rescaled body.

Proposition 3.3.2. — Let b1, b2 be smooth functions on ∂B̀. Further, assume thatˆ
∂B̀

rb1 dx =

ˆ
∂B̀

b2 dx = 0.
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Let qϕ ∈ Ḣ1 and ϕ̀ ∈ Ḣ1
R be the solutions of

∆qϕ = 0 in R2 ∖ B̀,(3.12)
∂n qϕ = b2 on ∂B̀,(3.13)
qϕ(x) −→ 0 as |x| −→ ∞,(3.14)

and
div(r∇ϕ̀) = 0, in H∖ B̀

∂nϕ̀ = b1, on ∂B̀

∂nϕ̀ = 0, on ∂H
ϕ̀(x) −→ 0 as |x| −→ ∞.

Then for all m ∈ N>0 it holds that∥∥∇m(ϕ̀− qϕ)
∥∥
L2(∂B̀)

≲m

√
|log ε|

(
ε
(
∥b2∥Hm−1(∂B̀) + ∥b1∥Hm−1(∂B̀)

)
+ ∥b1 − b2∥Hm−1(∂B̀)

)
.

The implicit constant in these estimates is bounded locally uniform in q.

Remark 3.3.3
(a) Existence and uniqueness of ϕ̀ follows by Lemma 2.1.2 and existence and

uniqueness of qϕ are shown in [1, Th. 3.1].
(b) The author strongly believes that the factor

√
|log ε| is an artifact of the proof

and can be removed by estimating
∥∥∆(qϕ− ϕ̀)

∥∥
L2 instead of

∥∥√r∇(qϕ− ϕ̀)
∥∥
L2 in the

proof, which would require more effort.

Corollary 3.3.4. — For all m ∈ N>0 it holds that∥∥∇m(ϕt∗ − qϕt∗)
∥∥
L2(∂B)

≲m ε5/2−m
√
|log ε| |t∗|.

The implicit constant here is bounded locally uniformly in q.

Proof of the corollary. — Observe that if we set b1 = εu(t∗)(ε·) and b2 = εt∗ · n, then
it holds that

ϕt∗(ε·) = ϕ̀ and qϕt∗(ε·) = qϕ,

because these fulfill the same elliptic equation. One easily sees that
∥b1∥Hm(∂B) ≲ ε|t∗|, ∥b2∥Hm(∂B) ≲ ε|t∗|, ∥b1 − b2∥Hm(∂B) ≲ ε2|t∗|.

The statement then follows from applying the proposition and rescaling. □

Our strategy to prove the proposition is to again apply L2 estimates as in the pre-
vious section, as the coefficients are similar, close to B̀, together with decay estimates
for the far away behavior.

Lemma 3.3.5. — Let b2 and qϕ be as in the proposition, then for all m ∈ N⩾0 it holds
that

(a)
∥∥∇m

qϕ
∥∥
L2(∂B̀)

≲m ∥b2∥Hmax(0,m−1) ,
(b) |∇m

qϕ|(x) ≲m ∥b2∥L2/dist(x, B̀)1+m,
(c) ∥qϕ∥Ḣm(B̀+B1(0)∖B̀) ≲m ∥b2∥Hmax(0,m−1) .

Here all the implicit constants are bounded locally uniformly in q.
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Proof. — All three statements are well-known, we sketch the proof here for the con-
venience of the reader.

One can first repeat the argument in the proof of Lemma 2.1.3 to show that ϕ
and ∇ϕ must decay like |x|−1 resp. |x|−2. Then by testing the PDE (3.12)–(3.14)
with qϕ and partially integrating, we see thatˆ

∂B̀

b2 qϕ dx = −∥qϕ∥2
Ḣ1(R2∖B̀)

,

where the partial integration is justified by the decay of ϕ. Now b2 is mean-free, so by
using the trace in B̀ +B1(0)∖ B̀, we see that

∥qϕ∥Ḣ1(B̀+B1(0)∖B̀) ≲ ∥b2∥L2(∂B̀).

By using elliptic regularity estimates in B̀+B1(0)∖ B̀, we see that for m > 0 we have∥∥∇m
qϕ
∥∥
L2(∂B̀)

≲ ∥b2∥Hm−1(∂B̀).

This lets us control
∥∥∇qϕ

∥∥
L2(∂B̀)

and we can repeat the argument in the proof of
Lemma 2.1.3 to show (b), where we get one order of decay less from using the two-
dimensional Newtonian potential.

(c) follows for m > 0 similarly by using elliptic regularity. The estimates for m = 0

in (a) and (c) follow by using the estimate (b) for dist(x, ∂B̀) ⩾ 1 and combining the
estimate on the gradient in (c) with e.g. the Poincaré inequality. □

Remark 3.3.6. — In particular, by rescaling, we see that we have∥∥∂τ qϕt∗
∥∥
L2(∂B)

≃ |t∗|ε1/2

and the same estimate holds for ϕi,t∗ by the proposition.

Lemma 3.3.7. — We have the following estimates:
(a)

∥∥∇mϕ̀
∥∥
L2(∂B̀)

≲m ∥b1∥Hmax(0,m−1) for all m ⩾ 0.
(b) It holds that

|∇mϕ̀|(x) ≲m min
( ∥b1∥Hm

1 + dist(x, B̀)1+m
,

∥b1∥Hm

ε(1 + dist(x, B̀)2+m)

)
,

for all m ∈ N⩾0 and all x ∈ H∖ B̀.
(c) For dist(x, B̀) ⩾ 1 and m ∈ N⩾0 it holds that

|∇mϕ̀|(x) ≲m min
( ∥b1∥L2

dist(x, B̀)1+m
,

∥b1∥L2

εdist(x, B̀)2+m

)
.

The implicit constant in these estimates is bounded locally uniformly in R.

Proof. — (a) follows from the same argument as the previous lemma, where we again
use the decay estimate from (b) or (c) for the case m = 0.

J.É.P. — M., 2025, tome 12



Movement of solid filaments in axisymmetric fluid flow 381

(b) and (c) Our strategy is to quantify the argument of Lemma 2.1.3. If we extend
ϕ̀ to B̀ by solving the Dirichlet problem with boundary data ϕ̀, then by (a) and elliptic
regularity ∥∥[∂nϕ̀]∥∥M(∂B̀)

≲ ∥b1∥L2 ,

where [·] denotes the jump across the boundary. We can then proceed as in the proof
of Lemma 2.1.3 and set ϕR3

(R, θ, Z) = ϕ̀(R,Z), where (R, θ, Z) are axisymmetric
coordinates in R3, then as argued there it holds that

ϕR
3

=
−1

4π| · |
∗ [∂nϕ̀]H2 ∂B̀R3

.(3.15)

We first focus on (c), where dist(x, B̀) ⩾ 1. We use three-dimensional axisymmetric
coordinates (R, θ, Z) again and fix some x. Then we split B̀R3 into parts T−n, . . . Tn−1

where we take T−n . . . Tn−1 as the sets

Ti := B̀R3

∩
{
(R′, θ′, Z ′) | θ′ − θx ∈ [πi/n, π(i+ 1)/n)

}
,

where θx denotes the azimuthal angle of x and the difference is taken modulo 2π

(if x = 0 then we can take any angle). If we set n = ⌊1/ε⌋, then each such piece has
diameter ≲ 1.

For every i we have∣∣∣( 1

4π| · |
∗ [∂nϕ̀]H2 ∂Ti

)
(x)

∣∣∣ ≲ ∥b1∥L2

1 + |i|2 + dist(x, B̂)2
,

where we exploited the facts that due to the rotational symmetry, that the integral
of the boundary values over each Ti is 0 and that dist(x, Ti) ≳ 1 + |i| + dist(x, B̀).
Summing up and using (3.15) gives

|ϕ̀(x)| ≲
∑

|i|⩽1/ε

∥b1∥L2

1 + |i|2 + dist(x, B̀)2

≲ ∥b1∥L2 min
( 1

1 + dist(x, B̀)
,

1

ε(1 + dist(x, B̀))2

)
,

where we estimated the sum with the integral. This shows (c) if m = 0.
For m > 0 the estimates in (c) follow from making the same argument with the

derivatives of the fundamental solution. We set

D := (B̀ +B1(0))∖ B̀.(3.16)

In D the estimates in (b) for m > 0 follow from using elliptic regularity and (a) to
obtain that ∥∥∇mϕ̀

∥∥
L∞(D)

≲
∥∥∇mϕ̀

∥∥
H4/3(D)

≲ ∥b1∥Hm .

The case dist(x, B̀) < 1 and m = 0 follows from this by using the estimate for
dist(x, B̀) = 1 and the fundamental theorem of calculus. □
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Proof of Proposition 3.3.2. — By subtracting both PDEs and rearranging we obtain
that

(3.17)
ˆ
H∖B̀

r⟨∇ϕ̀−∇qϕ,∇ξ⟩+
(
r − R

ε

)
⟨∇qϕ,∇ξ⟩dx = −

ˆ
∂B̀

ξ
(
rb1 −

R

ε
b2

)
dx,

for ξ ∈ H1 compactly supported in H∖ B̀.
In order to be able to use both qϕ and ϕ̀ as test functions for each equation even

though one is defined on the half-space and one on the full space, we introduce
smooth cutoff functions ηl, supported in (H + R

2εeR) ∩ Bl+1(0), which equal 1 in
(H+ ( R

2ε + 1)eR) ∩Bl(0) and whose derivatives have absolute value ⩽ 2 everywhere.
By testing with ηl(ϕ̀− qϕ) we obtain that for large enough l it holds that

ˆ
H∖B̀

ηlr |∇ϕ̀−∇qϕ|2 + ηl

(R
ε
− r

)
∇qϕ · ∇(ϕ̀− qϕ) +∇ηl ·

(
r∇ϕ̀− R

ε
∇qϕ

)
(ϕ̀− qϕ) dx

= −
ˆ
∂B̀

(ϕ̀− qϕ)
(
rb1 −

R

ε
b2

)
dx.

By rearranging and using the Cauchy-Schwarz inequality, we obtain the inequality

∥∥√rηl ∇(ϕ̀− qϕ)
∥∥2
L2 ⩽

∥∥√ηl |r −R/ε|√
r

∇qϕ
∥∥
L2

∥∥√rηl∇(ϕ̀− qϕ)
∥∥
L2

+ 2

ˆ
([R/2ε,R/2ε+1]×R)∪Bl+1(0)∖Bl(0)

(|ϕ̀|+ |qϕ|)
(∣∣r∇ϕ̀∣∣+∣∣∣R

ε
∇qϕ

∣∣∣) dx

+ 2R−1/2ε1/2ctrace
∥∥√rηl ∇(ϕ̀− qϕ)

∥∥
L2

∥∥rb1 − R

ε
b2
∥∥
L2(∂B̀)

=: (I + III) ·
∥∥√rηl ∇(ϕ̀− qϕ)

∥∥
L2 + II,

where ctrace denotes the operator norm of the trace from Ḣ1(B̀ + B1(0) ∖ B̀) to
L2(∂B̀)/constants, which is ≲ 1 and we have estimated r−1/2 with 2R−1/2ε1/2 in the
last summand. Here I, II and III stand for the factors in the first, second, and third
lines of the right-hand side.

Using Lemma 3.3.5, we estimate the first term as

I ≲

(ˆ
H∖B̀

ηl
1

1 + dist(x, B̀)4
(r −R/ε)2

r
dx

)1/2

∥b2∥L2 .(3.18)

We split into the regions r ∈ [ R2ε ,
R
ε −1]∪ [Rε +1, 3R2ε ], r ∈ [Rε −1, Rε +1] and r ⩾ 3R/2ε,

for other r the integrand is 0. This gives that (3.18) is

≲

(ˆ
[1,R/2ε]×R

1

|x|4
|x1|2

R/ε
dx+

ˆ ∞

1

1

|x|4
ε

R
dx+

ˆ
[R/ε,∞)×R

1

|x|4
x1 dx

)1/2

∥b2∥L2

≲ ε1/2
√
| log ε| ∥b2∥L2 .
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We use Lemma 3.3.7 and Lemma 3.3.5 to obtain that for l ≫ 1/ε2, we have

II ≲
1

ε

ˆ
([R/2ε,R/2ε+1]×R)∪Bl+1(0)∖Bl(0)

1

dist(x, B̀)

1

dist(x, B̀)2
dx ∥b1∥L2 ∥b2∥L2

≲
1

ε

(ˆ
Bl+1(0)∖Bl(0)

1

|x|3
dx+

ˆ
R

1

(|x|+ 1/ε)
3 dx

)
∥b1∥L2 ∥b2∥L2

≲
( 1

lε
+ ε

)
∥b1∥L2 ∥b2∥L2 ≲ ε ∥b1∥L2 ∥b2∥L2 .

The third term can be estimated as

III ≲ ε1/2
∥∥∥rb1 − R

ε
b2

∥∥∥
L2(∂B̀)

≲ ε1/2
(
∥b1∥L2(∂B̀) +

1

ε
∥b1 − b2∥L2(∂B̀)

)
.

Hence we obtain that∥∥√rηl ∇(ϕ̀− qϕ)
∥∥2
L2 ≲ ε1/2

√
|log ε|

∥∥√rηl ∇(ϕ̀− qϕ)
∥∥
L2

×
(
∥b2∥L2(∂B̀) + ∥b1∥L2(∂B̀) +

1

ε
∥b1 − b2∥L2(∂B̀)

)
+ ε ∥b1∥L2(∂B̀) ∥b2∥L2(∂B̀).

This implies that

(3.19)
∥∥√rηl ∇(ϕ̀− qϕ)

∥∥
L2

≲ ε1/2
√

|log ε|
(
∥b2∥L2(∂B̀) + ∥b1∥L2(∂B̀) +

1

ε
∥b1 − b2∥L2(∂B̀)

)
.

Now we can apply elliptic regularity estimates around ∂B̀ to the elliptic equation
(3.17) to obtain that for m > 0 it holds that∥∥∇m(ϕ̀− qϕ)

∥∥
L2(∂B̀)

≲
∥∥∥ (r −R/ε)

R/ε
∇qϕ

∥∥∥
Hm(D)

+ ε
∥∥∥rb1 − R

ε
b2

∥∥∥
Hm−1(∂B̀)

+
∥∥∇(ϕ̀− qϕ)

∥∥
L2(D)

≲ ε
√
|log ε|

(
∥b2∥Hm−1 + ∥b1∥Hm−1 +

1

ε
∥b1 − b2∥Hm−1

)
,

where the neighborhood D was defined in (3.16), for the first term we used that

∥qϕ∥Hm(D) ≲ ∥b2∥Hm−1 ,

which follows from Lemma 3.3.5 (c) and in the last step we used the estimate (3.19)
and the fact that r ≈ ε−1. □

3.3.2. Multiple bodies. — We remind the reader of the convention of writing ℓ for
irrelevant exponents. We will work in the rescaled setting and keep q̃ (defined in (1.22)
and (1.24)) fixed independently of ε. We set B̀i = (1/ε)Bi. We will use the method
of reflections to construct the potentials for multiple bodies from the potential of a
single body.
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Fix some sufficiently smooth normal velocity bi on ∂B̀i with
´
∂B̀i

rbi dx = 0 and
let ϕ̀1i ∈ H1

R(H∖ B̀i) solve

div(r∇ϕ̀1i ) = 0 in H∖ B̀i,

∂nϕ̀
1
i = bi on ∂B̀i,

∂nϕ̀
1
i = 0 on ∂H,

and let ϕ̀i ∈ H1
R(H∖

⋃
j B̀j) solve

div(r∇ϕ̀i) = 0 in H∖
⋃

j B̀j ,

∂nϕ̀i = bi on ∂B̀i,

∂nϕ̀i = 0 on ∂B̀j for j ̸= i,

∂nϕ̀i = 0 on ∂H.

We then add corrector functions ϕ̀21, ϕ̀22 . . . to ϕ̀1i , which for j ̸= i fulfill the equations

div(r∇ϕ̀2j ) = 0 in H∖ B̀j ,

∂nϕ̀
2
j = −∂nϕ̀1i on ∂B̀j ,

∂nϕ̀
2
j = 0 on ∂H,

ϕ̀2j ∈ H1
R.

Existence and uniqueness of these follows from Lemma 2.1.2. We set ϕ̀2i = 0.
These correction terms then change the normal trace at all other ∂Bl. For this new

error we can again construct corrector functions ϕ̀31, ϕ̀32 . . . with normal boundary
values −

∑
l ̸=j ∂nϕ̀

2
l and so on. If the sums of the errors and the corrector functions

converge, the limit will be ϕ̀i, since it is unique.

Proposition 3.3.8. — This iteration scheme converges for small enough ε to the solu-
tion ϕ̀i in both the regimes (1.22) and (1.24), the convergence is in H1

R(R3). Further-
more, for all m ∈ N>0 we have the following estimates, if ε is small enough:

(a) For i ̸= j it holds that∥∥∇mϕ̀i
∥∥
L2(∂B̀j)

≲m ε2|log ε|ℓ(1+m)∥bi∥L2 .

(b) For all i it holds that∥∥∇m(ϕ̀1i − ϕ̀i)
∥∥
L2(∂B̀i)

≲m ε4|log ε|ℓ(1+m)∥bi∥L2 .

In particular the estimates for the single body case in Proposition 3.3.2 and Lem-
ma 3.3.7 (a) are still true.

Proof. — The rescaled bodies have pairwise distances ≳1/ε|log ε|, resp. ≳1/ε
√

|log ε|,
hence by Lemma 3.3.7 (c), for i ̸= j we have∥∥∇mϕ̀1i

∥∥
L∞(∂B̀j)

≲m ε1+m|log ε|ℓ(1+m)∥bi∥L2 ,

for every m ⩾ 0.
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This lets us estimate the decay of the correctors ϕ̀2j by the same lemma, which can
again be used to estimate the second-order correctors and so on. Iteratively, we obtain
from Lemma 3.3.7 that∥∥∇mϕ̀lj

∥∥
L2(∂B̀j)

≲m Clε2l−2|log ε|ℓ(l+m+1)∥bi∥L2 ,(3.20)

here C is a numerical factor, depending on k, but not on l or m, coming from the
implicit constant in Lemma 3.3.7 and the fact that we have to sum over k correctors
in each step. By integrating over the decay estimate in Lemma 3.3.7 we obtain that∥∥ϕ̀lj∥∥H1

R(H∖∪jB̀j)
≲

|log ε|
ε

∥∥∂nϕ̀lj∥∥H1(∂B̀j)
.(3.21)

Therefore the scheme converges in H1
R if ε is small enough.

By Lemma 3.3.7, we obtain from (3.20) that

|∇mϕ̀lj | ≲m Clε2l+m−1|log ε|ℓ(m+l+1)∥bi∥L2 on B̀n with n ̸= j,

and for l ⩾ 2 we have∥∥∇mϕ̀lj
∥∥
L2(∂B̀j)

≲m

∥∥∂nϕ̀lj∥∥Hm−1(∂B̀j)
≲m Clε2l−2|log ε|ℓ(m+l+1)∥bi∥L2 ,

where we made use of Lemma 3.3.7 (a).
Hence by summing up, we see that for j ̸= i and small enough ε we have∥∥∇mϕ̀i

∥∥
L2(∂B̀j)

≲m ε2|log ε|ℓ(1+m)∥bi∥L2 ,∥∥∇m(ϕ̀i − ϕ1i )
∥∥
L2(∂B̀i)

≲m ε4|log ε|ℓ(1+m)∥bi∥L2 .

After rescaling back to the original balls, we obtain the statement. □

Corollary 3.3.9. — Fix some t∗ ∈ TqiM and let ϕ1i,t∗ be the potential for t∗ if there
is only a single body, let ϕi,t∗ be the potential for k bodies, in one of the two regimes
(1.22) or (1.24). Then we have the following bounds for all m ∈ N>0, with implicit
constant bounded locally uniformly in q̃ in both regimes:

(a) For i ̸= j it holds that

∥∇mϕi,t∗∥L2(∂Bj)
≲ ε7/2−m|log ε|ℓ(1+m)|t∗|.

(b) For all i it holds that∥∥∇m(ϕ1i,t∗ − ϕi,t∗)
∥∥
L2(∂Bi)

≲ ε11/2−m|log ε|ℓ(1+m)|t∗|.

All these estimates hold locally uniformly in q̃. In particular, this implies that the
estimates from the single body case in Corollary 3.3.9 still hold for multiple bodies.

Proof. — This follows directly by rescaling the potentials as in the proof of Corol-
lary 3.3.4 and using Proposition 3.3.8. □
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3.3.3. The derivative with respect to q. — In the following, we want to obtain bounds
on the derivative of the potential with respect to q.

As we have already shown that these are smooth in q in Lemma 2.1.10, it is
enough to estimate partial derivatives with respect to the values Ri and Zi. In order
to compare boundary data at different instances of one Bj , we fix some q and use the
affine maps

c0(x, s) =
ρj(Rj + s)

ρj(Rj)
(x− qj) + qj + seR(3.22)

and

d0(x, s) = x+ seZ ,(3.23)

where ρj(·) denotes ρj as a function Rj . As we do not want to move the other bodies,
we define c and d as smooth maps which equal c0 and d0 in a neighborhood of Bj

and which equal the identity in a neighborhood of the other bodies. For technical
reasons, will assume that the neighborhood in which c and d equal the terms in (3.22)
resp. (3.23) has a size ≫ |log ε|−2, which is not restrictive.

We also use the convention of writing ϕi,t∗,Rj
resp. ϕi,t∗,Rj+s for ϕi,t∗ , defined for

the position (Rj , Zj) resp. (Rj + s, Zj) and also use the same notation with Zj for
the Zj-derivative.

Proposition 3.3.10. — Fix some t∗ ∈ TqiM , then for all j, l we have∥∥∂s ((∂τϕi,t∗,Rj+s

)
◦ c(·, s)

)∥∥
L2(∂Bl(q))

≲ ε3/2|log ε|ℓ∥∥∂s ((∂τϕi,t∗,Zj+s

)
◦ d(·, s)

)∥∥
L2(∂Bl(q))

≲ ε3/2|log ε|ℓ.and

Here τ = n⊥ refers to the tangent both on Bl(q) and on the translated body. The
implicit constant is bounded locally uniformly in q̃ in both the regimes (1.22) and
(1.24) in a neighborhood of s = 0.

Proof. — We assume |t∗| = 1 and omit the indices i and t∗. We first show the state-
ment for the derivative in the R-direction and explain in the end why the Z-derivative
works with the same argument. Without loss of generality, we may also assume that
Zj = 0, as the system is invariant under translation.

We rescale by a factor 1/ε again and use the same notation as in the previous
proofs. Clearly, we have ∂Rj

ϕ̀ = ∂Rj
ϕ(ε·), in particular, the derivative exists and it

holds that

div(r∇∂Rj
ϕ̀) = 0,(3.24)

∂n∂Rj
ϕ̀ = 0 on ∂B̀l for l ̸= j and on ∂H.(3.25)

We first want to compute the remaining normal derivative. For this we introduce

c̀(x, s) =
1

ε
c(εx, s).
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For x ∈ ∂B̀j we have

(3.26)
∂s
(
∂nϕ̀Rj+s(c̀(x, s))

)∣∣
s=0

= εδij∂s

(
t∗ · n+

ε

2(Rj + s)

√
ρ̃2jRj

Rj + s
t∗ · eR

)∣∣∣∣
s=0

= −ε2δij
3ρ̃j
4R2

j

t∗ · eR.

Here the expressions for the normal boundary values follow from Definition (1.2) and
Assumption (1.1) after rearranging. This is ≲ ε2 in any Hm-norm.

On the other hand, by the product rule, on ∂B̀j we also have

(3.27) ∂s
(
∂nϕ̀Rj+s(c̀(x, s))

)∣∣
s=0

= ∂sn(c̀(x, s))
∣∣
s=0

· ∇ϕ̀Rj
(x) + n · ∂s∇ϕ̀Rj+s(x)

∣∣
s=0

+ n · ∇2ϕ̀Rj
(x)∂sc̀(x, s)

∣∣
s=0

.

Here n(c̀(x, s)) stands for the normal at c̀(x, s) of the rescaled body centered at
(1/ε)(Rj + s), which is in fact constant, and hence the first summand drops out.

We have by definition

∂sc̀(x, s)
∣∣
s=0

=
1

ε
eR − 1

2Rj
(x− qj).

Combining (3.26) and (3.27), we see that on ∂B̀j we have

∂n∂sϕ̀Rj+s

∣∣
s=0

= −1

ε
∂n∂rϕ̀Rj

+
ρ̃j
2Rj

∂2nϕ̀Rj
− ε2δij

3ρ̃j
4R2

j

t∗ · eR.(3.28)

We now estimate the derivatives of the boundary values on ∂B̀j and on ∂B̀l for l ̸= j

differently.

First case: l ̸= j. — Here c̀ is the identity on ∂B̀l and hence we only need to estimate
∇∂sϕ̀Rj+s. By rescaling we know from Corollary 3.3.9 and Lemma 3.3.7 (a) that∥∥∇mϕ̀

∥∥
L2(∂B̀j)

≲m ε.

By (3.28) it follows that ∥∥∂n∂sϕ̀Rj+s

∣∣
s=0

∥∥
L2(∂B̀j)

≲ 1.(3.29)

Hence we conclude from (3.24), (3.25), (3.29) and by Proposition 3.3.8 that for m ∈
N>0 it holds ∥∥∇m∂sϕ̀Rj+s

∣∣
s=0

∥∥
L2(∂B̀l)

≲m ε2|log ε|ℓ(m+1).

By rescaling back to the original bodies B, one obtains the statement.

Second case: l = j. — We build an auxiliary function that equals the desired deriva-
tive. Consider ∂rϕ̀. It fulfills the PDE

div(r∇∂rϕ̀) = div
(
−∇ϕ̀+

rε

Rj
∇ϕ̀

)
(3.30)

and has the Neumann boundary values ∂n∂rϕ̀ on ∂B̀j .
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Consider the function x · ∇ϕ̀, a direct calculation shows that

(3.31)
div(r∇(x · ∇ϕ̀)) = 0,

∂n(x · ∇ϕ̀) = ∂nϕ̀+
Rj

ε
∂n∂rϕ̀+ ρ̃j∂

2
nϕ̀ on ∂B̀j ,

Here we used the assumption that Zj = 0.
Now consider the function

ϕ̃ := ∂sϕ̀Rj+s

∣∣
s=0

− 1

2Rj
x · ∇ϕ̀+

1

2Rj
ϕ̀+

3

2ε
∂rϕ̀,(3.32)

and set

ϕ̂s(x) =

√
Rj + s

Rj
ϕ̀Rj+s(c̀(s, x)).

Then in a neighborhood of B̀j it holds that ∂sϕ̂s|s=0 = ϕ̃ and hence

∂s
(
(∇ϕ̀Rj+s)(c̀(x, s)

)∣∣
s=0

= ∂s∇ϕ̂s(x)
∣∣
s=0

= ∇ϕ̃(x).(3.33)

Hence to prove the proposition it suffices to estimate ∇ϕ̃.
Let us further reduce this to the case in which k = 1. First consider the case where

i ̸= j = l. Then by (3.28) and by rescaling the estimates on ϕ in Corollary 3.3.9
we have ∥∥∂n∂sϕ̀Rj+s

∣∣
s=0

∥∥
Hm(∂B̀j)

≲
1

ε

∥∥∇2ϕ̀
∥∥
Hm(∂B̀j)

≲m ε2|log ε|ℓ.

Hence we conclude from Proposition 3.3.8 and (3.24) and (3.25) that∥∥∂sϕ̀Rj+s

∣∣
s=0

∥∥
Hm(∂B̀j)

≲m ε2|log ε|ℓ.

Hence by the definition of ϕ̃ (see (3.32)) and Corollary 3.3.9 we have

∥∥∇ϕ̃∥∥
Hm(∂B̀j)

≲m

∥∥∂sϕ̀Rj+s

∣∣
s=0

∥∥
Hm(∂B̀j)

+
1

ε

∥∥∇2ϕ̀
∥∥
Hm(∂B̀j)

+
∥∥∇ϕ̀∥∥

Hm(∂B̀j)

≲m ε2|log ε|ℓ.

After rescaling back to the original bodies B, this shows the statement in the case
i ̸= j = l.

Next, consider the case i = j = l and k > 1, and let ϕ̀1 be the rescaled potential
for a single body and let ϕ̃1 be the version of ϕ̃ from the single body case. As the
formulas (3.25) and (3.28) hold for both ϕ̀ and ϕ̀1, we note that we have∥∥∂n∂s(ϕ̀Rj+s − ϕ̀1Rj+s)

∣∣
s=0

∥∥
Hm(∂B̀j)

≲
1

ε

∥∥∇2(ϕ̀− ϕ̀1)
∥∥
Hm(∂B̀j)

≲m ε4|log ε|ℓ,

here we used Proposition 3.3.8 (b). Hence we conclude that∥∥∇m∂s(ϕ̀Rj+s − ϕ̀1Rj+s)
∣∣
s=0

∥∥
L2(∂B̀j)

≲m ε4|log ε|ℓ.
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By rescaling Corollary 3.3.9 (b) and the definition of ϕ̃ we conclude that∥∥∇(ϕ̃− ϕ̃1)
∥∥
Hm(∂B̀j)

≲m

∥∥∇m∂s(ϕ̀Rj+s − ϕ̀1Rj+s)
∣∣
s=0

∥∥
L2(∂B̀j)

+
1

ε

∥∥∇2(ϕ̀− ϕ̀1)
∥∥
Hm(∂B̀j)

+
∥∥∇(ϕ̀− ϕ̀1)

∥∥
Hm(∂B̀j)

≲m ε4|log ε|ℓ.

This shows the desired estimate once we have proved the case k = 1 after rescaling
back to the original bodies.

It remains to deal with the case k = 1. We drop the indices on the sets B̀j . By
(3.28), (3.30)–(3.32) we have

div(rϕ̃) = −3

2
div

((1
ε
− r

Rj

)
∇ϕ̀

)
in a neighborhood of B̀,(3.34)

∂nϕ̃ = −ε2 3ρ̃j
4R2

j

t∗ · eR.(3.35)

Set B̃ := B1/ε|log ε|2(0)+B̀∖B̀. By assumption the cutoff in the definition of c̀ happens
outside of B̃ and hence (3.34) holds in all of B̃. The crucial observation is that ∂Rj ϕ̀

will decay an order faster than expected.

Lemma 3.3.11. — For x with dist(x, B̀) ⩾ 1 it holds that

|∂sϕRj+s(x)| ≲
ε+ ∥∇ϕ̃∥L2(B̃)

εdist(x, B̀)2
+

1

εdist(x, B̀)3
,

|∇∂sϕ̃Rj+s(x)| ≲
ε+ ∥∇ϕ̃∥L2(B̃)

εdist(x, B̀)3
+

1

εdist(x, B̀)4
.and

The implicit constant is bounded locally uniformly in q̃.

Proof. — We only show the first estimate, the second works completely similarly,
using the derivative of the fundamental solution.

The proof builds on the idea of the proof of Lemma 2.1.3. Recall that in the proof
there, we extended the solution to the full space R3 and used the fundamental solution.
We first need to show an estimate on the Neumann boundary values of the solution
to the interior problem. As in the proof of Lemma 2.1.3, we extend ϕ̀ to H by solving
the Dirichlet problem for div(r∇·) in B̀. We also set

ϕ̂s(x) :=
√

(Rj + s)/Rj ϕ̀Rj+s(c̀(x, s))

inside of B̀. We claim that∥∥∂s((∂nint
ϕ̀Rj+s) ◦ c)

∥∥
L2(∂B̀)

≲
∥∥ϕ̃∥∥

L2(B̃)
+ ε2,(3.36)

here ∂nint
denotes the normal derivative from the inside.
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By applying elliptic regularity estimates to the equations (3.34)–(3.35) and using
the identity ∂sϕ̂s = ϕ̃, we see that

(3.37)

∥∥∇∂sϕ̂s∣∣s=0

∥∥
L2(∂B̀)

=
∥∥∇ϕ̃∥∥

L2(∂B̀)

≲
∥∥∇ϕ̃∥∥

L2(B̃)
+
∥∥∂nϕ̃∥∥L2(∂B̀)

+ ε
∥∥∥(1
ε
− r

Rj

)
∇ϕ̀

∥∥∥
H1(B̀+B1(0)∖B̀)

≲ ε2 +
∥∥∇ϕ̃∥∥

L2(B̃)
.

In B̀ we have

div
( c̀(x, s)R
Rj + s

∇ϕ̂s
)
= 0,

as one can see from a direct computation, where c̀(x, s)R denotes the R-component
of c̀. Using for instance the implicit function theorem as in the proof of Lemma 2.1.10,
one can justify that this equation can be differentiated in s. Hence we obtain that
∂sϕ̂s(x) fulfills the equation

div
(
r∇∂sϕ̂s

)
= −div

(
∂s
c̀(x, s)R
Rj + s

∇ϕ̀
)
.

Hence by elliptic regularity for this equation and (3.37) we obtain that∥∥∂nint
∂sϕ̂s

∥∥
L2(∂B̀)

≲
∥∥∇∂sϕ̂s∥∥L2(∂B̀)

+ ε
∥∥∥∂s c̀(x, s)R

Rj + s
∇ϕ̀

∥∥∥
H1(B̀)

≲ ε2 +
∥∥∇ϕ̃∥∥

L2(B̃)
+ ε

∥∥∂nϕ̀∥∥H1(∂B̀)
≲ ε2 +

∥∥∇ϕ̃∥∥
L2(B̃)

.

The claim (3.36) now follows from the fact that ∇ϕ̂s = (∇ϕ̀Rj+s) ◦ c̀(·, s).
Now fix some y ∈ B̃. Then as argued in the proof of Lemma 2.1.3 we have

∂sϕ̀Rj+s(y) = ∂s

(
[∂nϕ̀Rj+s]H

2 ∂B̀(Rj + s)R
3

∗ −1

4π|·|

)
(y),(3.38)

where the convolution is taken with respect to three-dimensional coordinates and
B̀(Rj + s)R

3 is the axisymmetric torus corresponding to B̀ defined with respect to
Rj+s and the factor r in the jump disappears due to the coordinate change. We shall
also view the curves c̀(x, s) as curves in R3, by setting (in axisymmetric coordinates)

c̀(x, s) = (c̀(x, s)R, xθ, c̀(x, s)Z),

where xθ is the azimuthal angle of x.
Using these curves, the convolution in (3.38) can be written as

−∂s
ˆ
∂B̀R3

[∂nϕ̀Rj+s](c̀(x, s))
c̀(x, s)R

r

√
Rj/(Rj + s)

1

4π|y − c̀(x, s)|
dx,

here the factor in the middle is the determinant due to the coordinate change. Now
we can differentiate under the integral, as all derivatives are smooth by Lemma 2.1.10
and use the product rule. We estimate the derivative of the first three factors and of
the last factor separately.
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First, we deal with

−
ˆ
∂B̀R3

∂s

(
[∂nϕ̀Rj+s](c̀(x, s))

c̀(x, s)R
r

√
Rj/(Rj + s)

)∣∣∣
s=0

1

4π|x− y|
dx.

Observe that
ˆ
∂B̀R3

∂s

(
[∂nϕ̀Rj+s](c̀(x, s))

c̀(x, s)R
r

√
Rj/(Rj + s)

)∣∣∣
s=0

dx

= ∂s

ˆ
∂B̀(Rj+s)R3

[∂nϕ̀Rj+s] dx = 0.

Furthermore, we have by (3.36) and (3.26)∥∥∂s([∂nϕ̀Rj+s](c̀(x, s))
)∣∣

s=0

∥∥
L2(∂B̀)

≲ ε2 +
∥∥∇ϕ̃∥∥

L2(B̃)∣∣∣∂s c̀(x, s)R
r

√
Rj/(Rj + s)

∣∣∣ ≲ 1.and

Since the boundary values of ϕ̀ are ≲ ε in any Hm-norm we have∥∥[∂nϕ̀]∥∥L2(∂B̀)
≲

∥∥∂nϕ̀∥∥L2(∂B̀)
+
∥∥ϕ̀∥∥

H1(∂B̀)
≲ ε.(3.39)

Hence we have∥∥∥∂s([∂nϕ̀Rj+s](c̀(x, s))
c̀(x, s)R

r

√
Rj/(Rj + s)

)∣∣∣
s=0

∥∥∥
L2(∂B̀)

≲ ε+
∥∥∇ϕ̃∥∥

L2(∂B̀)
.

Now we combine this with the mean-freeness to estimate∣∣∣∣ˆ
∂B̀R3

∂s

(
[∂nϕ̀Rj+s](c̀(x, s))

c̀(x, s)R
r

√
Rj/(Rj + s)

)∣∣∣
s=0

1

4π|x− y|
dx

∣∣∣∣
≲
ε+ ∥∇ϕ̃∥L2(∂B̀)

εdist(y, B̀)2
.

It remains to estimate the second summand, which isˆ
∂B̀R3

[∂nϕ̀]∇x
1

4π|y − x|
· ∂sc̀(x, 0) dx.

Note that [∂nϕ̀] is mean-free and one easily sees that |∂sc̀(x, 0)| ≲ 1/ε and
|∇∂sc̀(x, 0)| ≲ 1. Hence by exploiting the mean-freeness of [∂nϕ̀] and using (3.39),
we see that∣∣∣∣ˆ

∂B̀R3
[∂nϕ̀]∇x

1

4π|y − x|
· ∂sc̀(x, 0) dx

∣∣∣∣ ≲∥∂sc̀(0)∥sup
dist(y, B̀)3

+
∥∇x∂sc̀(0)∥sup
dist(y, B̀)2

≲
1

εdist(y, B̀)3
+

1

dist(y, B̀)2
.

The statement follows because dist(y, B̀) ≪ ε−1. □
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We continue with the proof of Proposition 3.3.10. By testing the elliptic equation
(3.34), (3.35) with ϕ̃ in B̃ and using partial integration and the Cauchy-Schwarz
inequality, we obtain that

(3.40)
∥∥√r∇ϕ̃∥∥2

L2(B̃)
⩽

3

2

∥∥∥ (1/ε− r/Rj)√
r

∇ϕ̀
∥∥∥
L2(B̃)

∥∥√r∇ϕ̃∥∥
L2(B̃)

−
ˆ
∂B̀

(
3
2 (1/ε− r/Rj) ∂nϕ̀+ r∂nϕ̃

)
ϕ̃dx+

ˆ
∂B̃∖∂B̀

(
3
2 (1/ε− r/Rj) ∂nϕ̀+ r∂nϕ̃

)
ϕ̃dx

:= I + II + III,

where the normal n on ∂B̃ ∖ ∂B̀ is taken as the outer normal and I, II and III are
defined in the obvious way.

Using the decay estimate from Lemma 3.3.7, we can estimate

I ≲ ε

(ˆ
B1/ε|log ε|2∖B1(0)

|x1|2

(|x1|+ 1/ε)|x|4
dx

)1/2∥∥√r∇ϕ̃∥∥
L2(B̃)

≲ ε

(ˆ 1/ε|log ε|2

1

1

x(x+ 1/ε)
dx

)1/2∥∥√r∇ϕ̃∥∥
L2(B̃)

≲ ε3/2|log ε|ℓ
∥∥√r∇ϕ̃∥∥

L2(B̃)
.

To estimate the second term, we note that by partial integration we haveˆ
∂B̀

(
3
2 (1/ε− r/Rj) ∂nϕ̀+ r∂nϕ̃

)
dx

= lim
R→∞

ˆ
∂(H∩BR(0))

(
3
2 (1/ε− r/Rj) ∂nϕ̀+ r∂nϕ̃

)
dx = 0.

Here the last equality follows from the fact that the integrand is 0 on ∂H and by using
the decay estimates from Lemma 3.3.7 and Lemma 3.3.11 together with the definition
of ϕ̃. We can then use that this boundary integral vanishes and the explicit form of
the normal derivatives to estimate

II ≲
∥∥ 3
2 (1/ε− r/Rj) ∂nϕ̀+ r∂nϕ̃

∥∥
L2(∂B̀)

∥∥∇ϕ̃∥∥
L2(B̃)

≲ ε3/2
∥∥√r∇ϕ̃∥∥

L2(B̃)
.

To estimate the third term, we use Lemma 3.3.7 and Lemma 3.3.11 and obtain that

III ≲
1

ε|log ε|2
sup

x∈∂B̃∖∂B̀

|ϕ̃(x)|
(1
ε
|∇ϕ̃(x)|+ 1

ε
|∇ϕ̀(x)|

)
≲

1

ε

(
ε2 + ε

∥∥∇ϕ̃∥∥
L2(B̃)

)(
ε2 + ε

∥∥∇ϕ̃∥∥
L2(B̃)

)
|log ε|ℓ

≲ ε3|log ε|ℓ + ε|log ε|ℓ
∥∥∇ϕ̃∥∥

L2(B̃)
.

Putting these back into the estimate (3.40), we obtain∥∥√r∇ϕ̃∥∥
L2(B̃)

≲ ε3/2|log ε|ℓ.

Now we can apply elliptic regularity estimates to (3.34),(3.35) and obtain together
with the previous estimates on ϕ̀ that∥∥∇ϕ̃∥∥

Hm(∂B̀)
≲m ε2|log ε|ℓ,

ϕ̃ = ∂sϕ̀Zj+s +
1

ε
∂Z ϕ̀; ϕ̂s = ϕ̀Zj+s(d̀(s, x)). □
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3.4. The Christoffel Symbol and the added Inertia

Lemma 3.4.1. — If we identify the tangent space TqM with R2k, then it holds that∣∣∣∣∣∣∣∣M− π


R1ε

2ρ̃21 0 . . .

0 R1ε
2ρ̃21 . . .

0 0 R2ε
2ρ̃2 0

. . .


∣∣∣∣∣∣∣∣ ≲ ε3|log ε|ℓ,

where M was defined in 2.2.1. Here the implicit constant is bounded locally uniformly
in q̃.

Proof. — By partial integration we have for t∗ ∈ TqiM and s∗ ∈ TqjM that

(Mt∗) · s∗ = −
ˆ
∂Bj

r∂nϕi,t∗ϕj,s∗ dx.

If i ̸= j this is ≲ ε3|log ε|ℓ|s∗||t∗| by Corollary 3.3.9 (a). If i = j, then it holds that∣∣∣∣ˆ
∂Bi

r∂nϕi,t∗ϕj,s∗ dx−Ri

ˆ
∂Bi

t∗ · nqϕs∗ dx

∣∣∣∣
≲ ∥ru(t∗)∥L2

∥∥ϕi,s∗ − qϕs∗
∥∥
L2(∂Bi)/constants + ∥ru(t∗)−Rit

∗ · n∥L2

∥∥qϕs∗
∥∥
L2(∂Bi)

,

where we used the fact that ru(t∗) is mean-free and qϕ was defined in 3.3.1. Now by
the Corollaries 3.3.4 and 3.3.9 and the definition of u(t∗) this is ≲ ε3|log ε|ℓ|s∗||t∗|.

Now observe that if t∗ = e1 and s∗ = e2 then t∗ · n is orthogonal to qϕs∗ as the
former is symmetric with respect to the e2-direction while the latter is antisymmetric
in that direction.

If t∗ = s∗ then it follows from the explicit form of qϕs∗ thatˆ
∂Bi

t∗ · nqϕs∗ dx = −π|t∗|2ρ2i . □

Lemma 3.4.2. — It holds that

|Γ| ≲ ε3|log ε|ℓ,

where the Christoffel symbol Γ was defined in 2.2.1 and the implicit constant is bounded
locally uniformly in q̃.

Proof. — By the definition of Γ, it suffices to estimate the derivative of M. If we are
differentiating M with respect to ql for l ̸= i, then it holds that∣∣∣∣−∂ql ˆ

∂Bi

r∂nϕi,t∗ϕj,t∗ dx

∣∣∣∣ ≲ ε ∥ru(t∗)∥L2 ∥∂ql∂τϕj,s∗∥L2 ≲ ε3|log ε|ℓ|t∗||s∗|,

where we used that u(t∗) does not depend on ql, and used the mean-freeness of ru(t∗)
to estimate ∂qlϕj,s∗ with its derivative, and in the last step we used Proposition 3.3.10.
If i = l we can switch the roles of i and j unless i = j = l. For simplicity we only
consider the derivative with respect to Ri in this case, the other derivative is easier.
We again use the diffeomorphism c, defined at the beginning of Section 3.3.3.
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Setting MRi+s for M defined with respect to Ri + s we have

(MRi+st
∗) · s∗ = −

ˆ
∂Bi

c(x, s)R
ρi(Ri + s)

ρi(Ri)
u(t∗) ◦ cϕi,s∗,Ri+s ◦ cdx,(3.41)

where ρi(Ri) refers to ρi as a function of Ri and c(x, s)R is the R-component of c.
Using the fundamental theorem of calculus and Proposition 3.3.10, we see that

(3.42)
∥∥∥∂s( ρi(Ri)

ρi(Ri + s)
ϕi,s∗,Ri+s ◦ c

)∥∥∥
L2/constants

≲ ε5/2|log ε|ℓ|s∗|.

Furthermore, we have

∥∂su(t∗) ◦ c∥L2 ≲ ε3/2,(3.43)

as one sees by rescaling (3.26). It is easy to see that∣∣∣∂s(c(x, s)R ρi(Ri + s)2

ρi(Ri)2

)∣∣∣ ≲ ε,(3.44)

uniformly in x. We can now use this to estimate the derivative of (3.41) by the product
rule:∣∣∣∣∂s ˆ

∂Bi

c(x, s)R
ρi(Ri + s)

ρi(Ri)
u(t∗) ◦ cϕi,s∗,Ri+s ◦ cdx

∣∣∣
s=0

∣∣∣∣
⩽ ∥ru(t∗)∥L2

∥∥∥∂s( ρi(Ri)

ρi(Ri + s)
ϕi,s∗,Ri+s ◦ c

)∣∣∣
s=0

∥∥∥
L2/constants

+
∥∥∥∂s(c(x, s)R ρi(Ri + s)2

ρi(Ri)2

)∥∥∥
L∞

∥u(t∗)∥L2 ∥ϕi,s∗∥L2(∂Bi)

+ ∥rϕi,s∗∥L2(∂Bi)

∥∥∂s(u(t∗) ◦ c)∣∣s=0

∥∥
L2

≲ ε3|log ε|ℓ.

Here we used (3.43),(3.42),(3.44) and used Lemma 3.3.7 (a) (after rescaling) to esti-
mate ∥ϕi,s∗∥L2(∂Bi)

⩽ ε3/2. □

4. The stream function

4.1. Overview and strategy. — In this section, we want to compute the asymptotics
of G and A and their derivatives with respect to q, which requires us to compute the
asymptotics of the streamfunction ψ. The streamfunction will, up to lower order terms,
resemble the asymptotics of the Biot-Savart law (1.21). Plugged in the definition of G,
the leading order term of the stream function gives 0, so for a direct computation,
one would need a higher order expansion of the stream function.

As we need to compute a derivative of the streamfunction anyway we take the alter-
native approach of expressing G as the derivative of the energy of the streamfunction,
which gives the asymptotics of G just from the highest order term of the stream func-
tion at the expense of requiring an estimate on the second derivative with respect
to q, which is not much more complicated than just computing the first derivative.

Unlike for the potential function, the interaction between the different bodies will
matter and we will obtain an interaction term in G, which can be computed from the
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highest order parts alone. This will yield the asymptotic of G in Propositions 4.5.2
and 4.5.3

The computation of A on the other hand will be more straightforward and the
highest order term suffices (see Proposition 4.6.1 below).

The main difficult here is that the limiting object ln |x| does not lie in H1, so we
can not expect L2-based estimates to work for the streamfunction. As we are only
interested in the boundary data anyway, we will directly characterize it in terms of
the single-layer potential on the boundary.

In this section, we will make massive use of the fundamental solution K of the
operator div( 1r∇·), as introduced in (2.11). By an abuse of notation, we will also
denote the linear operator

f 7−→
ˆ
∪i∂Bi

K(x, y)f(x) dx

by K. Similarly, we will write

KR(x, y) =
R

2π

(
log(|x− y|)− log(8) + 2− log(R)

)
,

and also write KR for the associated integral operator. Recall that in Lemma 2.1.6,
we showed that the function 1

r∂nψi is a solution of the system
ˆ
∪j∂Bj

K(x, y)µ(x) dx is constant on each Bj(4.1)
ˆ
∂Bj

µ(x) dx = δij .(4.2)

Our goal is to show that for a single body 1
r∂nψ converges to a constant by showing

that the kernel K converges to KR (for which the solution of the analogous system
is constant).

For multiple bodies we will show that the “cross-terms” in K are an order lower
and that the corresponding lower order terms in 1

r∂nψi are essentially given through
the derivatives of K itself.

The derivatives with respect to q are estimated by differentiating the equation
(4.1)–(4.2) with respect to q and estimating the derivative of K in Propositions 4.4.1
and 4.4.2.

Recall that the kernel K can be written as

K(x, y) =
−1

2π

√
xRyR F

( |x− y|2

xRyR

)
,(4.3)

where xR and yR stand for the R-component and

F (s) =

ˆ π

0

cos(t)√
2(1− cos(t)) + s

dt

(see [13, §2]). This integral cannot be elementarily evaluated, however it has a series
expansion at 0, which we will make use of:
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Lemma 4.1.1. — For small enough s > 0 there is an expansion

F (s) = −1

2
log(s) + log(8)− 2 +

∑
j⩾1

ajs
j + bjs

j log(s).(4.4)

This series has a positive radius of convergence, in particular, we also have the cor-
responding asymptotics for the derivatives of F .

Proof. — The statement is known, see e.g. [36, Footnote 101] and the computation
of the explicit terms can be found there. We provide the proof of the convergence of
the expansion here as we were not able to find it in the literature.

By elementary manipulations, one sees that

F (s) = (1 + s/2)

ˆ π/2

0

1√
1 + s/4− sin2(t)

dt− 2

ˆ π/2

0

√
1 + s/4− sin2(t) dt.

These integrals can be rewritten by using complete elliptic integrals of the first and
second kind [8]. These are defined as

Kelliptic(m) =

ˆ π/2

0

(1−m2 sin2(t))−1/2 dt,

Eelliptic(m) =

ˆ π/2

0

(1−m2 sin2(t))1/2 dt.

With this it holds that

F (s) =
(
1 +

s

2

) 1√
1 + s/4

Kelliptic

(√
1− s/(4 + s)

)
− 2

√
1 + s/4 Eelliptic

(√
1− s/(4 + s)

)
.

It suffices to show that the functions Kelliptic(
√
1− t2) and Eelliptic(

√
1− t2) have an

expansion of the type ∑
j⩾0

cjt
2j + djt

2j log(t)(4.5)

for small enough t, because close to s = 0 the functions 1/
√
1 + s/4;

√
1 + s/4 and√

s/(4 + s) are analytic and one easily sees that the class of functions with an expan-
sion of the type (4.5) with a positive radius of convergence are stable under compo-
sition and multiplication with analytic functions.

It is known [34, p. 53] that there is an expansion

Kelliptic(
√
1− t2) = log (4/t)− 2

(∑
j⩾1

1

2j(2j − 1)

∞∑
l=j

(2l)!

22l(l!)2
t2l

)
.(4.6)

By the facts that
∑

j 1/2j(2j − 1) < ∞ and (2l)!/22l(l!)2 < 1, we see that this
converges for |t| < 1. By using the definition and elementary calculations, one can see
that

Eelliptic(m) = m(1−m2)K ′
elliptic(m) +mKelliptic(m).
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This implies

(4.7) Eelliptic(
√

1− t2) = t2
√
1− t2

(
Kelliptic(

√
1− t2)

)′√1− t2

t

+
√

1− t2Kelliptic

(√
1− t2

)
.

One then obtains the desired expansion by combining (4.6), (4.7) and using a binomial
series for the prefactor

√
1− t2. □

We set

h(s) := F (s) +
1

2
log(s)− log 8 + 2,

g(x, y) := −h
( |x− y|2

xRyR

)
for the remainder. For all n and small enough |x− y| it holds that

|∇ng(x, y)| ≲n |x− y|2−n
∣∣log |x− y|

∣∣,(4.8)

locally uniformly in xR and yR by Lemma 4.1.1 above.

4.2. The case of a single body. — In this subsection we drop the index i.

Lemma 4.2.1
(a) The linear map K is invertible from L2

0(∂B) to Ḣ1(∂B) with operator norm
≲ 1 for small enough ε.

(b) We have

∥K∥L2(∂B)→L2(∂B) ≲ ε|log ε|.

(c) We have that ∥∥K −KR

∥∥
L2(∂B)→H1(∂B)

≲ ε|log ε|∥∥K −KR

∥∥
L2(∂B)→L2(∂B)

≲ ε2|log ε|.and

All these estimates are locally uniform in q.

Proof
(a) and (b) Observe that for (a) it is enough to show (c) and to show that KR

is invertible with operator norm ≲ 1, as one sees e.g. by using a geometric series.
Similarly, for (b) it is enough to show that∥∥KR

∥∥
L2(∂B)→L2(∂B)

≲ ε|log ε|.(4.9)

Let θ ∈ T := [0, 1) parametrize ∂B, then we claim that the kernel KR acts as

(4.10)
e2πθin 7−→ − R

2|n|
ερ̃e2πθin for n ̸= 0,

1 7−→ −Rερ̃(− log(ερ̃) + log(8)− 2 + log(R)),

which clearly has the desired operator norm and is invertible with norm ≲ 1 from
L2(∂B) to H1(∂B), as one loses the factor ε again due to the derivative.
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To show the claim (4.10), we first observe that the constant 1
2π (log(8)−2+log(R))

acts as multiplication with ερ̃(log(8) − 2 + log(R)) on constants and maps other
frequencies to 0. The claim (4.10) then follows from the lemma below.

Lemma 4.2.2. — The kernel log |x− y| acts as the Fourier multiplier

1 7−→ 2περ̃ log(ερ̃),

e2πinθ 7−→ −ερ̃π
|n|

e2πinθ.

Here θ ∈ T = [0, 1) is a constant speed parametrization of the boundary ∂B.

Proof. — Note that when parametrizing the boundary with θ ∈ T, the action of the
kernel corresponds to convolution with

2περ̃
(
log(ερ̃) + log |1− e2πiθ|

)
.

We have that

log |1− e2πiθ| = Re log 1− e2πiθ

and this can be approximated in L2 by Re log(1 − (1 − δ)e2πiθ) for δ ↘ 0 by
e.g. dominated convergence. Now it holds that

Re log(1− (1− δ)e2πiθ) = −Re

∞∑
j=1

(1− δ)j

j
e2πijθ = −

∞∑
j=1

(1− δ)j

j
cos(2πjθ),

where we used the Taylor series of the logarithm around 1.
By the Plancherel theorem, we can take the limit δ ↘ 0 in this Fourier series and

obtain the statement by the well-known formula {f1 ∗ f2 = pf2 pf2. □

Proof of part (c) of Lemma 4.2.1. — It suffices to show that the kernels K −KR and
∂y(K −KR) are bounded on L2(∂B). We can write

(4.11)
2π(K −KR)(x, y) = −(

√
xRyR −R)(− log(|x− y|) + log(8)− 2 + log(R))

−1

2

√
xRyR log

(
xRyR/R

2
)
+

√
xRyR g(x, y),

where we used the expansion (4.4) and the definition of KR. It is easy to see that

|√xRyR −R| ≲ ε and
∣∣log(xRyR/R2)

∣∣ ≲ ε,

hence one obtains L2-boundedness from Schur’s lemma (cf. [18, App. A.1]). Taking a
y-derivative in (4.11), we get

2π∂y(K −KR)(x, y) = −∂y(
√
xRyR −R)

(
− log(|x− y|) + log(8)− 2 + log(R)

)
+ (

√
xRyR −R)∂y log(|x− y|)− 1

2
∂y

(√
xRyR log(xRyR/R

2)
)
+O(|x− y|| log |x− y|).

Clearly, the O-term is bounded from L2 to L2 and of the desired order. It is easy to
check that

|∂y(
√
xRyR −R)| ≲ 1 and

∣∣∂y√xRyR log xRyR/R
2)
∣∣ ≲ 1.
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This shows boundedness of all terms by Schur’s lemma except for

(
√
xRyR −R)∂y log |x− y|

by direct estimates. For this we use the lemma below to conclude. □

Lemma 4.2.3. — Let j ∈ C1(∂B × ∂B), then for all f ∈ L2(∂B) it holds that∥∥∥∥ˆ
∂B

j(x, y)f(x)∂y log |x− y|dx
∥∥∥∥
L2

y(∂B)

≲
(
∥j∥sup + ε ∥j∥C1

)
∥f∥L2 .

This estimate holds locally uniformly in q.

Proof. — We can write j(x, y) = p1(x) + p2(x, y)|x − y| with ∥p1∥sup ≲ ∥j∥sup and
∥p2∥sup ≲ ∥j∥C1 . Then the kernel p1(x)∂y log |x − y| has operator norm ≲ ∥p1∥sup
by applying Lemma 4.2.2 to the function p1f . The other part has operator norm
≲ ε ∥p2∥sup, as one can easily check that

|(x− y)∂y log |x− y|| ≲ 1. □

Proposition 4.2.4. — It holds that∥∥∥1
r
∂nψ − 1

2περ̃

∥∥∥
L2(∂B)

≲ ε1/2|log ε|,

where the implicit constant is bounded locally uniformly in q.

Proof. — We have that

K
1

r
∂nψ and KR

1

2περ̃

are constant on ∂B and 1
r∂nψ− 1/2περ̃ is mean-free by the definition of ψ, hence we

may subtract these two identities from each other and obtain that∥∥∥1
r
∂nψ − 1

2περ̃

∥∥∥
L2

0(∂B)
≲

∥∥∥(K −KR)
1

2περ̃

∥∥∥
Ḣ1(∂B)

≲ ε1/2|log ε|,

here we made use of Lemma 4.2.1 (a) in the first estimate and of (c) in the second. □

4.3. Multiple bodies. — Next we consider multiple bodies again. Recall that we
defined

L2
0(
⋃

i ∂Bi) :=
{
f ∈ L2(

⋃
i ∂Bi) |

ˆ
∂Bi

f dx = 0 ∀i
}
.

We denote the space H1(
⋃

i ∂Bi) modulo locally constant functions with Ḣ1(
⋃

i ∂Bi)

with the norm ∥∂τ ·∥L2(∪i∂Bi)
where τ = n⊥. We set

K̃(x, y) = K(x, y)I{∃i with x,y∈∂Bi}.

and also denote the associated linear operator with K̃.

Lemma 4.3.1. — We have

∥K − K̃∥L2(∂Bi)→Ḣ1(∂Bj)
≲ ε|qi − qj |−1

locally uniformly in q̃ (in both regimes (1.22) and (1.24)).
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Proof. — The statement is nontrivial only for i ̸= j. By the expansions (4.3) and (4.4),
we have

|∂yK(x, y)| =
∣∣∣∣∂y√xRyR F( |x− y|2

xRyR

)
+

√
xRyR F

′
( |x− y|2

xRyR

)
∂y

|x− y|2

xRyR

∣∣∣∣ ≲ 1

|x− y|
.

The statement immediately follows since the bodies have pairwise distance ≈ |qi − qj |.
□

Corollary 4.3.2. — The operator K is invertible from L2
0(
⋃

i ∂Bi) to Ḣ1(
⋃

i ∂Bi) for
small enough ε with operator norm ≲ 1, where the implicit constant and the smallness
requirement for ε are locally uniform in q̃. Furthermore, for i ̸= j, it holds that∥∥K−1

∥∥
Ḣ1(∂Bj)→L2

0(∂Bi)
≲ ε|qi − qj |−1.(4.12)

Proof. — By Lemma 4.2.1 (a), invertibility holds for the operator K̃. By using e.g. a
geometric series, this implies invertibility and by Lemma 4.3.1, we have that∥∥K−1 − K̃−1

∥∥
Ḣ1(∪i∂Bi)→L2

0(∪i∂Bi)
≲ ε|qi − qj |−1.

This shows the statement, since ∥K̃−1∥Ḣ1(∂Bj)→L2
0(∂Bi)

= 0 by definition. □

Let ψ1
i denote ψi in case Bi is the only body present.

Proposition 4.3.3. — For all i we have∥∥∥1
r
∂n(ψ

1
i − ψi)

∥∥∥
L2(∂Bi)

≲ ε3/2|log ε|ℓ,

where the implicit constant is bounded locally uniformly in q̃. In particular the estimate
from the single body case in Proposition 4.2.4 still holds.

Proof. — We have that

K
1

r
∂nψi = const on all ∂Bj

K̃
(1
r
∂nψ

1
i

∣∣
∂Bi

)
= const on all ∂Bj .and

By subtracting the two equations, we see that

K
(1
r

(
∂nψi − ∂nψ

1
i

∣∣
∂Bi

))
+(K − K̃)

(1
r
∂nψ

1
i

∣∣
∂Bi

)
= const.

Now we can use Corollary 4.3.2 and that 1
r (∂nψ − ∂nψ

1
i

∣∣
∂Bi

) is mean-free and (4.12)
and that

(K − K̃)
(1
r
∂nψ

1
i

∣∣
∂Bi

)
= 0

on ∂Bi by definition to obtain that∥∥∥1
r

(
∂nψi − ∂nψ

1
i

∣∣
∂Bi

)∥∥∥
L2

0(∂Bi)
≲ ε|log ε|ℓ

∥∥∥(K − K̃)
(1
r
∂nψ

1
i

∣∣
∂Bi

)∥∥∥
Ḣ1(∪l∂Bl)

≲ ε3/2|log ε|ℓ. □
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Proposition 4.3.4. — For i ̸= j we have that∥∥∥1
r
∂nψi −

2

r
n · ∇yK(qi, qj)

∥∥∥
L2(∂Bj)

≲ ε3/2|log ε|ℓ,

where “∇y” refers to the gradient in the second variable and the implicit constant is
bounded locally uniformly in q̃.

In particular, it follows from the asymptotics (4.3) and (4.4) that ∥∂nψi∥L2(∂Bj)
≲

ε1/2|qi − qj |−1 for i ̸= j, locally uniformly in q̃.

Proof. — Let ψ1
i be the potential in case there is only a single body Bi. Let µ ∈

L2
0(∂Bj) be such that

Kµ+K
(1
r
∂nψ

1
i |∂Bi

)
= const on ∂Bj .

This is well-defined by Lemmas 4.2.1 and 4.3.1 and it holds that ∥µ∥L2(∂Bj)
≲

ε1/2|qi − qj |−1. Then for m ̸= j by Lemma 4.3.1, it holds that
∥Kµ∥Ḣ1(∂Bm) ≲ ε3/2|log ε|ℓ

and hence ∥∥∥Kµ+K
(1
r
∂nψ

1
i |∂Bi

)∥∥∥
Ḣ1(∂Bm)

≲ ε1/2|qi − qj |−1.

Subsequently we conclude by (4.12) that∥∥∥µ− 1

r
∂nψi

∥∥∥
L2

0(∂Bj)
≲ ε3/2|log ε|ℓ,(4.13)

and therefore it suffices to compute µ.
We first estimate ∇ψ1

i . We know from the definition of ψ1
i and the maximum

principle that 1
r∂nψ

1
i ⩾ 0 on ∂Bi. Hence we can use the mean value theorem to

estimate
(4.14)

∥∥∥∇K(1
r
∂nψ

1
i |∂Bi

)
−∇yK(qi, ·)

∥∥∥
C0(∂Bj)

≲ ε sup
z∈Bi
y∈∂Bj

∇2
z,yK(z, y) ≲ ε|log ε|ℓ,

where we used the asymptotics (4.3) and (4.4). Similarly we have
∥∇K(qi, qj)−∇yK (qi, ·)∥C0(∂Bj)

≲ ε sup
y∈Bj

|∇2
yK(qi, y)| ≲ ε|log ε|ℓ.

Hence we have that ∥∥ψ1
i − x · ∇yK(qi, qj)

∥∥
Ḣ1(∂Bj)

≲ ε3/2|log ε|ℓ.(4.15)

We have

K
(−1)

Rj
x = − 2

Rj
n+ const(4.16)

by (4.10) (where n denotes the normal as usual). By Lemma 4.2.1 and the definition
of µ we have∥∥µ+K

(−1)

Rj

(
ψ1
i

)∥∥
L2

0(∂Bj)
=

∥∥(K(−1)

Rj
−K−1

) (
ψ1
i

)∥∥ ≲ ε3/2|log ε|ℓ.(4.17)

Together (4.15), (4.16) and (4.17) imply that∥∥∥µ− 2

Rj
n · ∇yK(qi, qj)

∥∥∥
L2

0(∂Bj)
≲ ε3/2|log ε|ℓ.

J.É.P. — M., 2025, tome 12



402 D. Meyer

Finally we can replace the Rj in the denominator by r as ∥n · ∇yK(qi, qj)∥L2(∂Bj)
≲

ε1/2|qi − qj |−1 by (4.3) and (4.4). □

4.4. The derivative with respect to q. — To compute derivatives with respect to q,
we only need to consider partial derivatives with respect to a single Ri or Zi, as every-
thing is smooth by Lemma 2.1.12. In the following we write ψi,Rj+s instead of ψi to
emphasize with respect to which Rj the function ψi is defined and analogously write
ψi,Zj+s. For mixed derivatives we write ψi,Rj+s1,Rm+s2 if we want to indicate multiple
positions. We set

δsj (x) :=

{
ρj(Rj + s)/ρj(Rj) if x ∈ ∂Bj ,

1 else,

where we again write ρj(·) for ρj as a function of Rj .

Proposition 4.4.1. — For all i, j, l it holds that∥∥∥∂s(δsj(1r ∂nψi,Rj+s

)
◦ c

)∥∥∥
L2(∂Bl)

≲ ε1/2
(
min
a̸=b

|qa − qb|
)−2

,

where the diffeomorphism c was introduced in the beginning of Section 3.3.3 and cor-
responds to the change of Rj.

Similarly it holds that∥∥∥∂s((1
r
∂nψi,Zj+s

)
◦ d

)∥∥∥
L2(∂Bl)

≲ ε1/2
(
min
a ̸=b

|qa − qb|
)−2

,

where the diffeomorphism d was introduced in the beginning of Section 3.3.3 and cor-
responds to the change of Zj.

The implicit constant in both estimates is locally uniform in q̃.

Proposition 4.4.2
(a) For all i, j, l we have∥∥∥∂2s(δsj(1r ∂nψi,Rj+s

)
◦ c

)∥∥∥
L2(∂Bl)

≲ ε1/2|log ε|ℓ,

and the same holds for the second derivative with respect to Zj and the mixed second
derivative. The implicit constant is bounded locally uniformly in q̃.

(b) For all i, j, l,m with j ̸= m we have∥∥∥∂s1∂s2(δs1j δs2m(1
r
∂nψi,Rj+s1,Rm+s2

)
◦ cjm(s1, s2)

)∥∥∥
L2(∂Bl)

≲ ε1/2|log ε|ℓ,

where cjm is the composition of the map c defined for j and m with arguments s1
and s2 respectively. The same estimate holds for the derivatives with respect to the
values Zj or mixed derivatives. The implicit constant is bounded locally uniformly
in q̃.

We shall only prove the statements for the Rj-derivative and focus on the first deri-
vative and occasionally comment on the slight changes needed for the Zj-derivative,
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which is generally easier. The second derivatives can be handled with the same tech-
nique, but the involved calculations become a lot more tedious, so we omit most of
them. We set

KRj
s (x, y) =

(
1 + I∂Bj

(x)
( Rj

Rj + s
− 1

))
K(c(x, s), c(y, s)),

and similarly

KZj
s := K(d(x, s), d(y, s)).

We also write KRj
s for the associated linear map. Note that for f supported on ∂Bj

it holds that

KRj
s f(y) =

Rjρj
(Rj + s)ρj(Rj + s)

K(f ◦ c−1)(c(y, s)),

where we again write ρj(·) to denote ρj as a function of Rj and where the additional
prefactor comes from the change of the minor radius. For f supported on any other ∂Bi

it holds

KRj
s f(y) = K(f)(c(y, s)).

Similarly, for mixed second derivatives with respect to different indices, one would
use the kernel

KRj ,Rm
s1,s2 (x, y) =

(
1 + I∂Bj

(x)
( Rj

Rj + s
− 1

)
+ I∂Bm

(x)
( Rm

Rm + s
− 1

))
×K(cjm(x, s1, s2), cjm(y, s1, s2)).

Lemma 4.4.3. — The linear operator KRj
s is Fréchet differentiable in s as a map from

L2(∂Bj) to Ḣ1(∂Bj) for all i, and we have∥∥∂sKRj
s

∥∥
L2(∂Bj)→Ḣ1(∂Bj)

,
∥∥∂2sKRj

s

∥∥
L2(∂Bj)→Ḣ1(∂Bj)

≲ ε|log ε|,

furthermore, the Fréchet derivative is given by integration against the pointwise deri-
vative in s.

Note that the corresponding derivatives of KZj
s are trivially 0 by the explicit form

of K in (4.3). The statement for mixed second derivatives also trivially reduces to the
derivative with respect to a single index, as only the change of Rj matters.

Proof. — It is easy to see that the kernel is pointwise smooth in s for x ̸= y by
using the Expansions (4.3) and (4.4) and the differentiability of c. We shall estimate
the operator norm of the first pointwise derivative. A similar, but tedious calcula-
tion, which we omit here can be made to show that the second and third pointwise
derivatives are bounded, which by the mean value theorem justifies that the first two
pointwise derivatives agree with the Fréchet derivatives.
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Let us estimate the first derivative with respect to s of the different parts of the
kernel:

∂s log |c(x, s)− c(y, s)| = ∂s log (ρj(Rj + s)/ρj) = − 1

2(Rj + s)
,(4.18) ∣∣∣∂s Rj

Rj + s

√
c(x, s)Rc(y, s)R

∣∣∣ ≲ ε,(4.19) ∥∥∥∂s Rj

Rj + s

√
c(x, s)Rc(y, s)R

∥∥∥
C1

x,y(∂Bj×∂Bj)
≲ 1,(4.20)

∂s log(Rj + s) =
1

Rj + s
,(4.21) ∣∣∣∂s log (Rj + s)2

c(x, s)Rc(y, s)R

∣∣∣ ≲ ε,(4.22) ∥∥∥∂s log (Rj + s)2

c(x, s)Rc(y, s)R

∥∥∥
C1

x,y(∂Bj×∂Bj)
≲ 1.(4.23)

Furthermore we have∣∣∣∂s (c(x, s)− c(y, s))2

c(x, s)Rc(y, s)R

∣∣
s=0

∣∣∣ = ∣∣∣∂s|x− y|2 ρj(Rj + s)2

ρ2jc(x, s)Rc(y, s)R

∣∣
s=0

∣∣∣ ≲ |x− y|2,(4.24)

and similarly it holds ∣∣∣∣∂y∂s (c(x, s)− c(y, s))2

c(x, s)Rc(y, s)R

∣∣
s=0

∣∣∣∣ ≲ |x− y|.(4.25)

Now we may use the expansions (4.3) and (4.4) to write

2π∂y∂sK
Rj
s (x, y)

∣∣
s=0

= ∂s∂y

( Rj

Rj + s

√
c(x, s)Rc(y, s)R

)
×

(
log(|x− y|)− log(8) + 2− 1

2
log(xRyR) + g(x, y)

)
+ ∂s

( Rj

Rj + s

√
c(x, s)Rc(y, s)R

)
∂y

(
log(|x− y|)− 1

2
log

(
xRyR/R

2
j

)
+ g(x, y)

)
+ ∂y (

√
xRyR) ∂s

(
log(|c(x, s)− c(y, s)|)− 1

2
log

(c(x, s)Rc(y, s)R
(Rj + s)2

)
+ log(Rj + s)

)
+
√
xRyR ∂y∂s

(
log(|c(x, s)− c(y, s)|)− 1

2
log

c(x, s)Rc(y, s)R
(Rj + s)2

)
− ∂y (

√
xRyR) ∂sh

( (c(x, s)− c(y, s))2

c(x, s)Rc(y, s)R

)
−√

xRyR ∂s∂yh
( (c(x, s)− c(y, s))2

c(x, s)Rc(y, s)R

)
= I + II + III + IV + V+VI.

Here I–VI stand for the obvious terms and we dropped some constants whose deriva-
tive vanishes.
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– The boundedness of the terms I and II follows from the estimates (4.19) and
(4.20) above and Schur’s lemma and further from using Lemma 4.2.3 for the derivative
of the logarithm.

– The boundedness of III follows directly from (4.18) and (4.22) by using Schur’s
lemma.

– The boundedness of IV follows from (4.18) and (4.23).
– The boundedness of V and VI follows from (4.24) resp. (4.25) and the estimate

(4.8) on g. □

Lemma 4.4.4. — The kernel KRj
s is Fréchet-differentiable in s as a map from L2(∂Bi)

to Ḣ1(∂Bl) for i ̸= l and, locally uniformly in q̃, we have that∥∥∂sKRj
s

∥∥
L2

0(∂Bi)→Ḣ1(∂Bl)
≲ ε|qi − ql|−2∥∥∂2sKRj

s

∥∥
L2

0(∂Bi)→Ḣ1(∂Bl)
≲ ε|qi − ql|−3.and

Furthermore, the Fréchet derivative is given by integration against the pointwise deri-
vative in s. The same estimates also hold for the Kernel KZj

s and the second deriva-
tives of KRj ,Rm

s1,s2 .

Proof. — We only consider the case l = j and the first derivative, the other cases and
the second derivative are very similar. In this case, the kernel is smooth in (x, y, s) and
hence the Fréchet- and pointwise derivative agree by e.g. the mean value theorem.

By (4.3) and (4.4), we have that

−2π∂s∂yK
Rj
s (x, y) = ∂s∂y

√
xRc(y, s)R F

( |x− y|2

xRyR

)
+ ∂s

√
xRc(y, s)R F ′

( |x− y|2

xRyR

)
∂y

|x− y|2

xRyR

+ ∂y
√
xRyR F ′

( |x− c(y, s)|2

xRc(y, s)R

)
∂s

|x− c(y, s)|2

xRc(y, s)R

+
√
xRyR

[
F ′

( |x− c(y, s)|2

xRc(y, s)R

)
∂y∂s

|x− c(y, s)|2

xRc(y, s)R

+ F ′′
( |x− c(y, s)|2

xRc(y, s)R

)
∂s

|x− c(y, s)|2

xRc(y, s)R
∂y

|x− y|2

xRyR

]
.

It is easy to see that all relevant derivatives of the prefactor are ≲ 1 and that |∂sc| ≲ 1.
Hence the absolute value of this is

≲
∣∣∣F( |x− y|2

xRyR

)
+ F ′

( |x− y|2

xRyR

)
(1 + |x− y|) + F ′′

( |x− y|2

xRyR

)
|x− y|2

∣∣∣.
From the asymptotics of F (see (4.4)), we see that for |x−y| small this is ≲ 1/|x− y|2.
Hence we see that ∥∥∂sKRj

s

∥∥
L2(∂Bi)→Ḣ1(∂Bj)

≲ ε|qi − ql|−2. □
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Proof of Propsition 4.4.1. — We know from Lemma 2.1.12 that 1
rψj,Rj+s is differen-

tiable, hence we may differentiate the equation

KRj
s δsj

1

r
∂nψi,Rj+s ◦ c = const on each ∂Bm

with respect to s, as KRj
s is differentiable by Lemma 4.4.3. This yields that

∂sK
Rj
s

(1
r
∂nψi

)
+K

(
∂s

(
δsj

(1
r
∂nψi,Rj+s

)
◦ c

))
= const on each ∂Bm.

Note that ∂sδ
s
j
1
r∂nψi,Rj+s ◦ c is mean-free on each ∂Bm, because the integral of

δsj
1
r∂nψi,Rj+s ◦ c over ∂Bm is either 1 or 0 for all s by definition. Furthermore by

Lemma 4.4.3 and Lemma 4.4.4, we have∥∥∥∂sKRj
s

(1
r
∂nψi

)∥∥∥
Ḣ1(∪m∂Bm)

≲ ε1/2
(
|log ε|+min

a ̸=b
|qa − qb|−2

)
.

We can absorb the logarithm into the second summand by definition of the regimes.
By Corollary 4.3.2, we conclude. □

Proof of Proposition 4.4.2. — We only consider the second derivative with respect
to Rj , all others work the same because one has the same or better estimates. We have

∂2sK
Rj
s

(1
r
∂nψi

)
+ 2∂sK

Rj
s

(
∂sδ

s
j

(1
r
∂nψi,Rj+s

)
◦ c

)
+K

(
∂2sδ

s
j

(1
r
∂nψi,Rj+s

)
◦ c

)
= const

on all ∂Bm. Note that by Lemmas 4.4.3, 4.4.4 and Proposition 4.4.1 it holds that∥∥∥∂2sKRj
s

1

r
∂nψi

∥∥∥
Ḣ1(∪m∂Bm)

+
∥∥∥∂sKRj

s

(
∂sδ

s
j

(1
r
∂nψi,Rj+s

)
◦ c

)∥∥∥
Ḣ1(∪m∂Bm)

≲ ε1/2|log ε|ℓ.

Hence from Corollary 4.3.2 we conclude the statement. □

4.4.1. Further estimates on the derivative ofK. — To compute the force G, we will also
need estimates in the L2 → L2-topology.

Lemma 4.4.5. — For all j it holds that∥∥∂sKRj
s

∥∥
L2(∂Bj)→L2(∂Bj)

≲ ε,∥∥∂2sKRj
s

∥∥
L2(∂Bj)→L2(∂Bj)

≲ ε,and

locally uniformly in q̃ and furthermore, the pointwise and Fréchet derivatives agree.

Here we only need the estimate in the Rj-direction, because the derivative in the
Zj-direction is 0. Also note that changes of the other values Rm trivially give a
derivative of zero here.
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Proof. — We only show this for the first derivative with respect to Rj , the second
derivative is very similar. We may expand the kernel as

2π
(
∂sK

Rj
s (x, y)

∣∣
s=0

)
= ∂s

( Rj

Rj + s

√
c(x, s)Rc(y, s)R

)(
log(|x− y|)− log(8) + 2− 1

2
log (xRyR) + g(x, y)

)
+
√
xRyR ∂s

[
log (|c(x, s)− c(y, s)|)− 1

2
log(c(x, s)Rc(y, s)R)

− h
( |c(x, s)− c(y, s)|2

c(x, s)Rc(y, s)R

)]
.

It is easy to see that ∣∣∣∂s( Rj

Rj + s

√
c(x, s)Rc(y, s)R

)∣∣∣ ≲ ε

and by reusing (4.18) and (4.22) and (4.21) one sees that

(4.26)
∣∣∣∣∂s(log(|c(x, s)− c(y, s)|)− 1

2
log(c(x, s)Rc(y, s)R)

− h
( |c(x, s)− c(y, s)|2

c(x, s)Rc(y, s)R

))∣∣∣∣ ≲ 1.

The boundedness follows by Schur’s Lemma. The Fréchet differentiability follows from
the boundedness of the second derivative and the mean value theorem. □

4.5. The force G. — We compute the asymptotics of G, defined in 2.2.1. The crucial
lemma for the “self-interaction” terms is the following:

Lemma 4.5.1. — We haveˆ
F

1

2
r
〈1
r
∇⊥ψi,

1

r
∇⊥ψj

〉
dx = −1

2
Cij ,

and for any t∗l associated with Bl it holds that

∂q
1

2
Cij · t∗l =

1

2

ˆ
∂Bl

1

r
∂nϕl,t∗l

〈
∇⊥ψi,∇⊥ψj

〉
dx,

where the values Cij were defined in 2.1.4.

Proof. — We have that
1

2

ˆ
F

r
1

r2
〈
∇⊥ψi,∇⊥ψj

〉
dx = −

∑
l

1

2

ˆ
∂Bl

1

r
Cil∂nψj dx = −1

2
Cij .

Here the partial integration is justified by Lemmas 2.1.5 and 2.1.6. Note that it holds

∂qψj · t∗l = ∂qCjm · t∗l − ∂nψju(t
∗
l )(4.27)

on ∂Bm as one can see by differentiating Cjm = ψj(xl) by q for some point xl on
∂Bm moving with normal velocity u(t∗l ).
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Now by the Reynolds transport theorem (which can be used by the integrability
statement in Lemma 2.1.12) the derivative of this with respect to q in direction t∗l ∈
TqlM equals
1

2
∂qCij · t∗l = −

ˆ
F

1

r

〈
∇⊥ψi,∇⊥∂qψj · t∗l

〉
dx+

1

2

ˆ
∂Bl

1

r

〈
∇⊥ψi,∇⊥ψj

〉
u(t∗l ) dx

=
∑
m

ˆ
∂Bm

1

r
∂qψj · t∗l ∂nψi dx+

1

2

ˆ
∂Bl

1

r

〈
∇⊥ψi,∇⊥ψj

〉
u(t∗l ) dx

=
∑
m

ˆ
∂Bm

1

r

(
∂qCjm · t∗l − ∂nψju(t

∗
l )
)
∂nψi dx+

1

2

ˆ
∂Bl

1

r

〈
∇⊥ψi,∇⊥ψj

〉
u(t∗l ) dx

= ∂qCji · t∗l −
ˆ
∂Bl

1

r

〈
∇⊥ψi,∇⊥ψj

〉
u(t∗l ) dx+

1

2

ˆ
∂Bl

1

r

〈
∇⊥ψi,∇⊥ψj

〉
u(t∗l ) dx,

where we have made use of equation (4.27) in the third line and of the facts that ∂qCjm

is a constant function and that the matrix C is symmetric by the first statement. □

Proposition 4.5.2. — For every tangent vector t∗, we have that∣∣∣G(q, ei) · t∗ − 1

4π
log(ερ̃)(t∗i ) · eR

∣∣∣ ≲ 1, and |∂qG(q, ei)| ≲ 1.

These estimate are locally uniform in q̃.

Proof. — By Lemma 4.5.1 and the definition of G(q, ei) in 2.2.1, it equals 1
2 times

the derivative of the energyˆ
(∪l∂Bl)2

K(x, y)
1

r2
∂nψi(x)∂nψi(y) dxdy

with respect to q. We first consider the partial derivative in the direction Ri.
Note that K 1

r∂nψi is constant and that 1
r∂nψi is mean-free on all boundaries except

∂Bi, hence the integral over all boundaries except (∂Bi)
2 is zero.

Using the diffeomorphism c, we can rewrite the energy with respect to Ri + s asˆ
(∂Bi)2

Ri + s

Ri
KRi

s (δsi )
2
(1
r
∂nψi,Ri+s

)
◦ c

(1
r
∂nψi,Ri+s

)
◦ cdx dy.

Here the factor δsi is the determinant due to the change of coordinates.
We can differentiate under the integral as everything is smooth by Lemma 2.1.12.

We first show that the parts where a derivative falls on 1
r∂nψi are small. Indeed by

Lemma 4.2.1 and Proposition 4.4.1 we have∥∥∥K∂s(δsi (1r ∂nψi,Ri+s

)
◦ c

)∥∥∥
L2(∂Bi)

≲ ε|log ε|ℓ
∥∥∥∂s(δsi (1r ∂nψi,Ri+s

)
◦ c

)∥∥∥
L2(∂Bi)

≲ ε3/2|log ε|ℓ.

Hence∣∣∣∣ˆ
(∂Bi)2

K(x, y)∂s

(
δsi

(1
r
∂nψi,Ri+s

)
◦ c

)1
r
∂nψi(y) dx dy

∣∣∣∣
≲ ε3/2|log ε|ℓ

∥∥∥1
r
∂nψi

∥∥∥
L2(∂Bi)

≲ ε|log ε|ℓ.
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The same argument can also be made for all terms involving one or two derivatives
of 1

r∂nψi or KRj
s by the estimates in Lemmas 4.2.1, 4.4.5 and Propositions 4.4.1

and 4.4.2 and also for derivatives with respect to Rj or Zj for j ̸= i. As the second
derivative of (Ri + s)/Ri vanishes, this shows the estimate for the derivative, in the
direction Rj .

Hence we are left with the main contribution where the derivative falls on
(Ri + s)/Ri, which isˆ

(∂Bi)2

1

Ri
K(x, y)

1

r2
∂nψi(x)∂nψi(y) dx dy.

It can be rewritten as 
(∂Bi)

1

Ri
KRi

(x, y) dx dy

+O
(
ε−1

∥∥K −KRi

∥∥
L2→L2 + ∥K∥L2→L2

∥∥∥1
r
∂nψi −

1

2περ̃i

∥∥∥
L2

∥∥∥1
r
∂nψi

∥∥∥
L2

)
.

The O-term is ≲ ε|log ε|ℓ by Lemma 4.2.1 and Proposition 4.3.3. We computed in the
claim (4.10) that the main integral equals

1

2π

(
log (ερ̃i)− log(8)− 2− logRi

)
. □

Next, we consider the “cross-terms” in G, given by the interaction between ψi

and ψj .

Proposition 4.5.3. — Let t∗ = (t∗1, . . . t
∗
k) be a tangent vector, identified with a vector

in R2k as usual, then for i ̸= j we have that∣∣∣∣ˆ
∪m∂Bm

1

r
u(t∗)∂nψi∂nψj dx− t∗j · ∇yK(qi, qj)− t∗i · ∇yK(qj , qi)

∣∣∣∣ ≲ ε|log ε|ℓ,

where the normal velocity u(t∗) was defined in (1.2). Furthermore it holds that

|∂qG(q, γ)| ≲ max
i,j

|qi − qj |−2|γ|2.

Both of these estimates are locally uniform in q̃.

Proof. — We first prove the first statement for the contribution of ∂Bj , which also
covers the contribution of ∂Bi by symmetry. We have

(4.28)
ˆ
∂Bj

1

r

(
t∗j · n− ρj

2Rj
t∗j · eR

)
∂nψj∂nψi dx

=

ˆ
∂Bj

1

r
t∗j · n∂nψi∂nψj dx+O

(
ε ∥∂nψi∥L2(∂Bj)

∥∂nψj∥L2(∂Bj)

)
.

By Propositions 4.3.3 and 4.3.4, the error term here is ≲ ε|log ε|ℓ.
We can now use Proposition 4.3.4 and (4.28) to obtain thatˆ
∂Bj

1

r
u(t∗)∂nψi∂nψj dx = 2

ˆ
∂Bj

(t∗ · n)n · ∇yK(qi, qj)
1

r
∂nψj dx+O

(
ε|log ε|ℓ

)
.
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We further have

2

ˆ
∂Bj

(t∗ · n)n · ∇yK(qi, qj)
1

r
∂nψj dx = 2

 
∂Bj

(t∗ · n)n · ∇yK(qi, qj) dx

+O
(
ε1/2

∣∣∇yK(qi, qj)
∣∣ ∥∥∥1
r
∂nψj −

1

2περ̃j

∥∥∥
L2(∂Bj)

)
.

By Proposition 4.3.3, the error term is ≲ ε|log ε|ℓ. The main integral equals

t∗ · ∇yK(qi, qj).

For m with m ̸= i, j, one can directly see by Proposition 4.3.4 that the integral is
≲ ε|log ε|ℓ. It remains to estimate the derivative. Note that G is a quadratic form in γ
and that we have already shown the statement for γ = el in Proposition 4.5.2, and
that the “off-diagonal” coefficients in G are exactly the integrals we estimated in the
first step, so we need to estimate their derivatives.

For notational simplicity we only consider the derivative of the integral on ∂Bj

with respect to Rl, as the derivative with respect to Zl enjoys the same estimates,
this is not restrictive. We begin with the derivative with respect to Rl for l ̸= j.

By Propositions 4.4.1 it holds that∥∥∥∂s 1
r
∂nψi,Rl+s

∥∥∥
L2(∂Bj)

≲ ε1/2|qi − qj |−2 and
∥∥∥∂s 1

r
∂nψj,Ri+s

∥∥∥
L2(∂Bj)

≲ ε1/2|log ε|ℓ,

which by the Cauchy-Schwarz inequality and Propositions 4.3.3 and 4.3.4 implies the
statement.

Finally, consider the derivative with respect to Rj . We can rewrite the integral asˆ
∂Bj(Rj)

(
t∗ · n− ρj(Rj + s)

2(Rj + s)
t∗ · eR

)(
δsj

1

r
∂nψj,Rj+s

)
◦ c

(
∂nψi,Rj+s

)
◦ cdx.

Here the factor δsj is the Jacobian due to the coordinate change. Using Proposi-
tion 4.4.1, we see that∥∥∥∂s(δsj(1r ∂nψj,Rj+s

)
◦ c

)∥∥∥
L2(∂Bj)

≲ ε1/2|log ε|ℓ.

Furthermore by Proposition 4.4.1 we have∥∥∥∂s((1
r
∂nψi,Rj+s

)
◦ c

)∥∥∥
L2(∂Bj)

≲ ε1/2|qi − qj |−2.

Hence, by the Cauchy-Schwarz inequality we conclude. □

4.6. The mixed term A. — We estimate the force A (defined in 2.2.1), which contains
both the stream function and the potentials.

Proposition 4.6.1. — For all s∗, t∗ ∈ TqM we have that

(A(q, γ)t∗) · s∗ −→ (t∗)T


0 R1γ1 0 . . .

−R1γ1 0 . . .

. . .

. . . 0 Rkγk

. . . −Rkγk 0

 s∗,
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with a rate of O(ε|log ε|ℓ) locally uniformly in q̃. Furthermore, it holds that

|∂qA| ≲ ε|log ε|ℓ,

locally uniformly in q̃.

In particular, A is invertible for small enough ε with an inverse of order ≲ 1 by the
assumption that all γi are ̸= 0.

Proof. — Recall that A was defined as

(A(q, γ)t∗) · s∗ =
∑
l

ˆ
∂Bl

(
−∂τϕ(s∗)∂nϕ(t∗) + ∂τϕ(t

∗)∂nϕ(s
∗)
)
∂n

∑
j

γjψj dx,

where ϕ(s∗) and ϕ(t∗) are the summed up potentials. Without loss of generality,
we may assume |t∗| = |s∗| = 1, t∗ ∈ TqiM , s∗ ∈ TqjM , and that only γl is nonzero.
We first show the convergence for i ̸= j. By definition we have

∥∂nϕi,t∗∥L∞(∂Bi)
≲ 1 and ∥∂nϕj,s∗∥L∞(∂Bj)

≲ 1

and on all other boundaries the normal derivatives vanish. By Corollary 3.3.9, we have

∥∂τϕi,t∗∥L2(∂Bj)
≲ ε5/2|log ε|ℓ

and vice versa. Furthermore we have

∥∂nψl∥L2(∂Bi)
, ∥∂nψl∥L2(∂Bj)

≲ ε−1/2

for all l by Propositions 4.3.3 and 4.3.4. By the Cauchy-Schwarz inequality we conclude
convergence to 0. Similarly, we can directly estimate the derivative. By Propositions
3.3.10 and 4.4.1, we know that all derivatives of the boundary values enjoy estimates
which are at worst an order |log ε|ℓ worse, hence these derivatives are small by the
Cauchy-Schwarz inequality and the product rule.

Next, consider the case i = j ̸= l. Here we again have

∥∂τϕi,t∗∥L2(∂Bi)
≲ ε1/2

by Corollary 3.3.9 and the same holds for the potential with respect to s∗. On the
other hand we also have

∥∂nψl∥L2(∂Bi)
≲ ε1/2|log ε|ℓ

by Proposition 4.3.4. By the Cauchy-Schwarz inequality, this implies that∣∣∣∣ˆ
∂Bi

∂nψl (−∂τϕi,s∗∂nϕi,t∗ + ∂τϕi,t∗∂nϕi,s∗) dx

∣∣∣∣ ≲ ε|log ε|ℓ.

The smallness of the derivative of this term again follows from the fact that all deriva-
tives have estimates which are at worst an order |log ε|ℓ worse by Propositions 3.3.10
and 4.4.1.

It remains to consider the case i = j = l. In this case we have the same estimates
as above for the tangential derivatives and furthermore by Corollary 3.3.9 we have∥∥∂τ (ϕi,t∗ − qϕt∗)

∥∥
L2(∂Bi)

≲ ε3/2|log ε|ℓ and
∥∥∂n(ϕi,t∗ − qϕt∗)

∥∥
L2(∂Bi)

≲ ε3/2,
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where the “two-dimensional” potential qϕ was defined in 3.3.1 and the same holds for
the potentials with respect to s∗.

Also by Proposition 4.3.3, we have∥∥∥1
r
∂nψi −

1

2πρ̃iε

∥∥∥
L2(∂Bi)

≲ ε1/2|log ε|ℓ.

Finally, we clearly have ∥r −Ri∥L2(∂Bi)
≲ ε3/2. Hence by the Cauchy-Schwarz

inequality we see that
ˆ
∂Bi

∂nψi (−∂τϕi,s∗∂nϕi,t∗ + ∂τϕi,t∗∂nϕi,s∗) dx

= Ri

 
∂Bi

(
−∂τ qϕs∗∂n qϕt∗ + ∂τ qϕt∗∂n qϕs∗

)
dx+O

(
ε|log ε|ℓ

)
.

By the antisymmetry of these integrals with respect to t∗ and s∗ it suffices to consider
the case t∗ = e1 and s∗ = e2. In this case, we can use the explicit form of qϕt∗ in 3.3.1
to see that 

∂Bi

(
−∂τ qϕs∗∂n qϕt∗ + ∂τ qϕt∗∂n qϕs∗

)
dx =

 
τ · e2n · e1 − τ · e1n · e2 dx = 1.

The smallness of the derivative follows again from the fact that all the derivatives of
the boundary values have estimates which are an order ε|log ε|ℓ better by Propositions
3.3.10 and 4.4.1.

Finally, all these estimates are locally uniform in q̃ because all the used estimates
for the boundary values are. □

Definition 4.6.2. — We let J1
γ and J2

γ be the velocities in (1.25) and (1.23), i.e.,

(J1
γ (q̃))i :=

1

2π

∑
j ̸=i

γj
(q̃i − q̃j)

⊥

|q̃i − q̃j |2
− γi

4πR0
eZ ,

(J2
γ (q̃))i :=

1

2π

∑
j ̸=i

γj
(q̃i − q̃j)

⊥

|q̃i − q̃j |2
+
q̃Riγi
4πR2

0

eZ .

Corollary 4.6.3. — In the regime (1.24) ( = distances ≈ |log ε|), we have that

A−1G

|log ε|
−→ −J1

γ (q̃)

locally uniformly in q̃.

Proof. — By Propositions 4.5.2 and 4.6.1 have that

A(q, γ)
−1
G(q, ei)

|log ε|
−→ 1

4πR0γi
eZ,i,

where eZ,i ∈ (R2)k ≃ R2k denotes the vector which has an eZ in the i-th component
and no other entries.
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As G is a quadratic form in γ by definition, it remains to show the statement for
the “off-diagonal” terms in G. By Propositions 4.5.3 and 4.6.1 we have that

lim
ε→0

A(q, γ)−1 (G(q, ei + ej)−G(q, ei)−G(q, ej))

|log ε|

= − lim
ε→0

1

R0|log ε|

(Pj

γj
∇⊥

y K(qi, qj) +
Pi

γi
∇⊥

y K(qj , qi)
)

=
1

2π

(Pi(q̃j − q̃i)
⊥

γi|q̃i − q̃j |2
+
Pj(q̃i − q̃j)

⊥

γj |q̃i − q̃j |2
)
.

Here Pl : R2 → (R2)k is the map to the l-th coordinate and in the last step we used
the asymptotics (4.3) and (4.4). □

Corollary 4.6.4. — In the regime (1.22) (= distances ≈ |log ε|1/2), we have that

A−1G

|log ε|1/2
− |log ε|1/2

4πR0
vZ −→ −J2

γ (q̃)

locally uniformly in q̃, where vZ ∈ (R2)k is the vector (eZ , eZ , . . . ).

Proof. — The calculation of the “off-diagonal” terms is the same as in the previous
proof. For the diagonal terms, we have by Propositions 4.5.2 and 4.6.1 that

A(q, γ)−1G(q, ei)

|log ε|1/2
− |log ε|1/2

4γiπRi
−→ 0.

The statement then follows from the definition of q̃ and the fact that e.g. by the mean
value theorem we have

|log ε|1/2

4πRi
− |log ε|1/2

4πR0
+

(Ri −R0)|log ε|1/2

4πR2
0

−→ 0. □

5. Passage to the limit

In this section, we write q̃ε instead of q̃ to emphasize the ε-dependence.

Proof of Theorem 1.1.2. — We write the system (2.16) in the rescaled time s =

t|log ε|2 and the rescaled position q̃ε, defined as in (1.24), it then reads as

(5.1) |log ε|3
(
E(q)q̃′′ε +

1

2
q̃′ε(∇q̃εE(q) · q̃′ε) +M(q)q̃′′ε + |log ε|−1

〈
Γ(q), q̃′ε, q̃

′
ε

〉)
= G(q, γ) + |log ε|(A(q, γ)q̃′),

where the time derivatives are denoted with a ′ and all derivatives taken with respect
to the rescaled time and space.

We first show that the velocity in rescaled time and space is bounded, until either
we approach the boundary or some component of q̃ goes to infinity.

We take C as some large compact subset of Mε containing q̃ε(0). If q̃ε ∈ C, then
this implies that each qi lies in a compact subset of H. It follows from the definition
of Mε that if we view the manifolds Mε as subsets of R2k that for small enough ε
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such a set C is also a subset of Mε′ for ε′ < ε. Hence C can be chosen as the same
set for all small enough ε.

Recall further that the matrix A is invertible by Proposition 4.6.1 and that its
inverse has operator norm ≲ 1 as long as q̃ε ∈ C. We may hence rewrite the equation as

|log ε|3
[(
E(q) +M(q)

)( d
ds

(
q̃′ε +

A−1G

|log ε|

))
+

1

2

(
∇q̃εE · q̃′ε

)(
q̃′ε +

A−1G

|log ε|

)
+

1

2

(
∇q̃εM · q̃′ε

)(
q̃′ε +

A−1G

|log ε|

)]
− |log ε|3

[(
E(q) +M(q)

) d
ds
A−1G

|log ε|
+

1

2

(
∇q̃εE · q̃′ε

)A−1G

|log ε|
+ |log ε|−1

〈
Γ(q), q̃′ε,

A−1G

|log ε|

〉
−
〈
|log ε|−1Γ(q)− 1

2
∇q̃εM(q), q̃′ε, q̃

′
ε +

A−1G

|log ε|

〉]
= |log ε|A

(
q̃′ε +

A−1G

|log ε|

)
,

where we used the notation ⟨N, a, b⟩ = Na · b in the penultimate line.
By testing against q̃′ε + A−1G/|log ε| and dividing out the |log ε|3 we obtain that

from the antisymmetry of A that

(5.2) d
ds

1

2

((
q̃′ε +

A−1G

|log ε|

)T

(E(q) +M(q))
(
q̃′ε +

A−1G

|log ε|

))
=

(
q̃′ε +

A−1G

|log ε|

)T

(E(q) +M(q))
d
ds
A−1G

|log ε|

+
1

2

(
q̃′ε +

A−1G

|log ε|

)T

(∇q̃εE · q̃′ε)
A−1G

|log ε|

+ |log ε|−1
〈
Γ(q), q̃′ε,

A−1G

|log ε|

〉(
q̃′ε +

A−1G

|log ε|

)
−
〈
|log ε|−1Γ(q)− 1

2
∇q̃εM(q), q̃′ε, q̃

′
ε +

A−1G

|log ε|

〉(
q̃′ε +

A−1G

|log ε|

)
=: I + II + III + IV,

where I–IV stand for the terms in each line. Our goal is to show that each of these
terms is ≲ ε2(1 + |q̃′ε|2 + ε|log ε|ℓ|q̃′ε|3) as long as q̃ε ∈ C.

For q̃ε ∈ C we have the following estimates. By Lemmas 3.2.1 and 3.4.1, we have
ε2 ≲ E +M ≲ ε2(5.3)

(in the sense that the smallest and highest eigenvalues have these bounds). Further-
more by Proposition 4.6.1 we have

|A|, |∇q̃A|, |A−1|, |∇q̃A
−1| ≲ 1.(5.4)

By Propositions 4.5.2 and 4.5.3, we have
|G|, |∇q̃G| ≲ |log ε|,(5.5)

finally by Propositions 3.2.1 (b) and 3.4.2, we have
|∇q̃εE|, |Γ| ≲ ε3|log ε|ℓ.(5.6)
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Hence we conclude for q̃ε ∈ C that

|I| ≲ ε2(1 + |q̃′ε|2) and |II|, |III| ≲ ε3|log ε|ℓ(1 + |q̃′ε|3).

We have that IV = 0. Indeed if we set p := q̃′ε + A−1G/|log ε| then, by the definition
of Γ (2.2.1), it holds

⟨Γ(q), q̇, p⟩p =
∑
i,j,k

1

2
(∂jM(q)ik + ∂iM(q)jk − ∂kM(q)ij)q̇ipjpk

=
∑
i,j,k

1

2
∂iM(q)jkq̇ipjpk =

1

2|log ε|
(∇q̃εM · q̇)p · p.

Hence, plugging these estimates into (5.2), we obtain by (5.3) that as long as q̃ε ∈ C,
we have

(5.7) d
ds

((
q̃′ε +

A−1G

|log ε|

)T

(E(q) +M(q))
(
q̃′ε +

A−1G

|log ε|

))
≲ ε2 +

((
q̃′ε +

A−1G

|log ε|

)T

(E(q) +M(q))
(
q̃′ε +

A−1G

|log ε|

))
+ |log ε|ℓ

((
q̃′ε +

A−1G

|log ε|

)T

(E(q) +M(q))
(
q̃′ε +

A−1G

|log ε|

))3/2

.

As long as we have((
q̃′ε +

A−1G

|log ε|

)T

(E(q) +M(q))
(
q̃′ε +

A−1G

|log ε|

))
⩽ ε1/2,

the last term in (5.7) can be absorbed in the first two and by Gronwall’s lemma we
obtain that((
q̃′ε +

A−1G

|log ε|

)T

(E(q) +M(q))
(
q̃′ε +

A−1G

|log ε|

))
(s)

≲ es
(
ε2 +

(
q̃′ε +

A−1G

|log ε|

)T

(E(q) +M(q))
(
q̃′ε +

A−1G

|log ε|

)
(0)

)
.

By (5.3) and the assumption about the initial velocities, this implies that∣∣∣q̃′ε + A−1G

|log ε|

∣∣∣ ≲ es,

and hence

|q̃′ε| ≲ es

until either q̃ε leaves the set C or up to a time of order |log ε|. By (5.4), (5.5) and
(5.1), this implies that

|log ε|2
(
E(q)q̃′′ε +

1

2
q̃′ε (∇q̃εE(q) · q̃′ε) +M(q)q̃′′ε + |log ε|−1

〈
Γ(q), q̃′ε, q̃

′
ε

〉)
−→ 0

in W−1,∞ up to a time of order |log ε| or until q̃ε leaves C. Hence we obtain that

Aq̃′ε +
G

|log ε|
∗

−−⇀ 0 in L∞.
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Because A−1 and G/|log ε| converge strongly, we see by Corollary 4.6.3 that

q̃′ε − J1
γ (q̃ε)0 in L∞

until q̃ε leaves C, which takes at least ≳ 1 time, as q̃′ε is bounded (J1
γ (q̃ε) was defined

in 4.6.2). Hence we have that

q̃ε(v)− q̃ε(0)−
ˆ v

0

J1
γ (q̃ε(s)) ds −→ 0

for all times v ≲ 1 and q̃ε converges locally uniformly to some q̃0 by compactness,
as long as long as q̃ε lies in C. Therefore we see that q̃0 must be a solution of q̃′0 =

J1
γ (q̃0) because J1

γ is locally uniformly continuous.
Finally, we may remove the condition that q̃ε lies in a compact set C, by taking C

so large that the solution of q′ = J1
γ (q) lies in the interior of C until some time T ,

which is possible for small enough ε whenever q does not blow until time T . Then we
have uniform convergence of q̃ε as long as it lies in C. As the limit lies in the interior
of C, the solution q̃ε also lies in C for small enough ε up to time T .

Hence we have convergence, as long as the limiting solution does not blow up. □

Proof of Theorem 1.1.3. — The proof is quite similar to the previous one. In the
rescaled time s = |log ε|t, and the rescaled spatial variable q̃ε, defined as in (1.22)
the system (2.16) reads as

(5.8) |log ε|3/2
(
E(q)q̃′′ε +

1

2
q̃′ε(∇q̃εE(q) · q̃′ε) +M(q)q̃′′ε + |log ε|−1/2

〈
Γ(q), q̃′ε, q̃

′
ε

〉)
= G(q, γ) + |log ε|1/2(A(q, γ)q̃′ε).

Similarly as in the previous proof we can rewrite the equation, tested against q̃′ε +
A−1G/|log ε|1/2 as

d
ds

1

2

((
q̃′ε +

A−1G

|log ε|1/2
)T

(E(q) +M(q))
(
q̃′ε +

A−1G

|log ε|1/2
))

=
(
q̃′ε +

A−1G

|log ε|1/2
)T

(E(q) +M(q))
d
ds

( A−1G

|log ε|1/2
)

+
1

2

(
q̃′ε +

A−1G

|log ε|1/2
)T (

∇q̃εE · q̃′ε
)( A−1G

|log ε|1/2
)

+ |log ε|−1/2
〈
Γ(q), q̃′ε,

A−1G

|log ε|1/2
〉(
q̃′ε +

A−1G

|log ε|1/2
)

−
〈
|log ε|−1/2Γ(q)− 1

2
∇q̃εM(q), q̃′ε, q̃

′
ε +

A−1G

|log ε|1/2
〉(
q̃′ε +

A−1G

|log ε|1/2
)

=: I + II + III + IV.

Let vZ denote the vector (eZ , eZ , . . . ) ∈ R2k. We would like to estimate the shifted
velocity q̃′ε + (|log ε|1/2/4πR0)vZ . We again use a compact set C ⊂ Mε containing
q̃ε(0). Then we let C̃ := C+ vZR. On this set we still have uniform estimates because
the system is invariant in the vZ direction. If q̃ε ∈ C̃, then we clearly we still have the
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estimates (5.3) and (5.6). Furthermore by Propositions 4.5.2 and 4.5.3 we then also
have

|G| ≲ |log ε| and |∇q̃εG| ≲ |log ε|1/2.

Furthermore by Proposition 4.6.1 we have

|A| ≲ 1, |∇q̃εA| ≲ |log ε|−1/2

and from Corollary 4.6.4 one sees that∣∣∣ A−1G

|log ε|1/2
− |log ε|1/2

4πR0
vZ

∣∣∣ ≲ 1.

Hence, we directly see that

|II|, |III| ≲ ε3|log ε|ℓ
(
1 +

∣∣∣q̃′ε + |log ε|1/2

4πR0
vZ

∣∣∣3).
The term IV again drops out by the same calculation as in the previous proof. Note
that we have

d
ds

( A−1G

|log ε|1/2
)
=

1

|log ε|1/2
((
∇q̃εA

−1
)
G+A−1∇q̃εG

) (
q̃′ε +

|log ε|1/2

4πR0
vZ

)
,

because the derivative of A−1G in the vZ direction is 0, as the system is invariant in
that direction. Hence we see that

|I| ≲ ε2

|log ε|1/2
(∣∣∣q̃′ε + |log ε|1/2

4πR0
vZ

∣∣∣+ ∣∣∣ A−1G

|log ε|1/2
− |log ε|1/2

4πR0
vZ

∣∣∣)
×
(
|A−1|2|∇q̃εA||G|+ |A−1||∇q̃εG|

)∣∣∣q̃′ε + |log ε|1/2

4πR0
vZ

∣∣∣
≲ ε2

(
1 +

∣∣∣q̃′ε + |log ε|1/2

4πR0
vZ

∣∣∣2).
From the assumption that ∣∣∣q̃′ε(0) + |log ε|1/2

4πR0
vZ

∣∣∣ ≲ 1,

we see by the same Gronwall argument as in the previous proof that∣∣∣q̃′ε(s) + |log ε|1/2

4πR0
vZ

∣∣∣ ≲ es

until q̃ε leaves C̃ or until a time of order |log ε|. From this, we conclude that q̃′′ε is
bounded in W−1,∞ and by (5.3) and (5.6) we see that

|log ε|3/2
(
E(q)q̃′′ε +

1

2
q̃′ε(∇q̃εE(q) · q̃′ε) +M(q)q̃′′ε + |log ε|−1/2

〈
Γ(q), q̃′ε, q̃

′
ε

〉)
−→ 0

in W−1,∞ until q̃ε leaves C̃. Hence we see again that

q̃′ε +
|log ε|1/2

4πR0
vZ +

( A−1G

|log ε|1/2
− |log ε|1/2

4πR0
vZ

) ∗
−−⇀ 0 in L∞.

This implies the statement by the same argument as in the previous proof and Corol-
lary 4.6.4. □
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