[Systèmes locaux ne provenant pas de variétés abéliennes]
Pour chaque courbe lisse sur un corps fini nous construisons, après l’avoir privée d’un nombre fini de points, des systèmes locaux d’origine géométrique qui ne proviennent pas d’une famille de variétés abéliennes. Pour cela, nous prouvons un critère qui doit être satisfait par les systèmes locaux qui proviennent de variétés abéliennes, inspiré par un critère analogue de la théorie de Hodge en caractéristique nulle.
For each smooth curve over a finite field, after puncturing it at finitely many points, we construct local systems on it of geometric origin which do not come from a family of abelian varieties. We do so by proving a criterion which must be satisfied by local systems which do come from abelian varieties, inspired by an analogous Hodge theoretic criterion in characteristic zero.
Accepté le :
Publié le :
Keywords: Local systems, abelian varieties, Frobenius slopes
Mots-clés : Systèmes locaux, variétés abéliennes, pentes de Frobenius
Paul Brommer-Wierig 1 ; Yeuk Hay Joshua Lam 1

@article{JEP_2025__12__341_0, author = {Paul Brommer-Wierig and Yeuk Hay Joshua Lam}, title = {Local systems which do not come from abelian varieties}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {341--350}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.292}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.292/} }
TY - JOUR AU - Paul Brommer-Wierig AU - Yeuk Hay Joshua Lam TI - Local systems which do not come from abelian varieties JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 341 EP - 350 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.292/ DO - 10.5802/jep.292 LA - en ID - JEP_2025__12__341_0 ER -
%0 Journal Article %A Paul Brommer-Wierig %A Yeuk Hay Joshua Lam %T Local systems which do not come from abelian varieties %J Journal de l’École polytechnique — Mathématiques %D 2025 %P 341-350 %V 12 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.292/ %R 10.5802/jep.292 %G en %F JEP_2025__12__341_0
Paul Brommer-Wierig; Yeuk Hay Joshua Lam. Local systems which do not come from abelian varieties. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 341-350. doi : 10.5802/jep.292. https://jep.centre-mersenne.org/articles/10.5802/jep.292/
[Bat94] - “Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties”, J. Algebraic Geom. 3 (1994) no. 3, p. 493-535 | MR | Zbl
[BST24] - “Integral canonical models of exceptional Shimura varieties”, 2024 | arXiv
[Del72] - “La conjecture de Weil pour les surfaces K3”, Invent. Math. 15 (1972), p. 206-226 | DOI | MR | Zbl
[Del81] - “Cristaux ordinaires et coordonnées canoniques”, in Algebraic surfaces (Orsay, 1976–78), Lect. Notes in Math., vol. 868, Springer, Berlin, 1981, p. 80-137, with the collaboration of L. Illusie, with an appendix by Nicholas M. Katz | Zbl
[DK17] - “Slopes of indecomposable -isocrystals”, Pure Appl. Math. Q 13 (2017) no. 1, p. 131-192 | MR
[DM82] - “Tannakian Categories”, in Hodge cycles, motives, and Shimura varieties, Lect. Notes in Math., vol. 900, Springer-Verlag, Berlin-New York, 1982, p. 101-228 | DOI | Zbl
[HSBT10] - “A family of Calabi-Yau varieties and potential automorphy”, Ann. of Math. (2) 171 (2010) no. 2, p. 779-813 | DOI | MR | Zbl
[Kat09] - “Another look at the Dwork family”, in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progress in Math., vol. 270, Birkhäuser Boston, Boston, MA, 2009, p. 89-126 | DOI | Zbl
[KM74] - “Some consequences of the Riemann hypothesis for varieties over finite fields”, Invent. Math. 23 (1974), p. 73-77 | DOI | MR | Zbl
[Kri22] - “Rank 2 local systems, Barsotti-Tate groups, and Shimura curves”, Algebra Number Theory 16 (2022) no. 2, p. 231-259 | DOI | MR | Zbl
[Yu09] - “Variation of the unit root along the Dwork family of Calabi-Yau varieties”, Math. Ann. 343 (2009) no. 1, p. 53-78 | MR | Zbl
Cité par Sources :