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LOCAL SYSTEMS WHICH DO NOT COME FROM

ABELIAN VARIETIES

by Paul Brommer-Wierig & Yeuk Hay Joshua Lam

Abstract. — For each smooth curve over a finite field, after puncturing it at finitely many
points, we construct local systems on it of geometric origin which do not come from a family
of abelian varieties. We do so by proving a criterion which must be satisfied by local systems
which do come from abelian varieties, inspired by an analogous Hodge theoretic criterion in
characteristic zero.
Résumé (Systèmes locaux ne provenant pas de variétés abéliennes). — Pour chaque courbe lisse
sur un corps fini nous construisons, après l’avoir privée d’un nombre fini de points, des systèmes
locaux d’origine géométrique qui ne proviennent pas d’une famille de variétés abéliennes. Pour
cela, nous prouvons un critère qui doit être satisfait par les systèmes locaux qui proviennent de
variétés abéliennes, inspiré par un critère analogue de la théorie de Hodge en caractéristique
nulle.
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1. Introduction

1.1. Statement of the result. — Let X be a geometrically connected scheme of
finite type over a finite field Fq and let ℓ be a prime number different from p =

char(Fq). A Qℓ-local system on X is a lisse Qℓ-sheaf on X or equivalently a continuous,
finite-dimensional Qℓ-linear representation of πét

1 (X,x) for some choice of geometric
point x of X. In many ways, a Qℓ-local system is the positive characteristic analogue
of a variation of Hodge structure (VHS). One way of constructing Qℓ-local systems is
the following:

Example 1.1.1. — Let f : Y → X be a smooth proper morphism. Then for each i ⩾ 0,
the higher étale direct image Rifét,∗Qℓ gives a Qℓ-local system on X.
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From the local systems in Example 1.1.1, one can of course generate many more lo-
cal systems, by taking duals, direct sums, tensor products, sub- and quotient-objects–
we refer to such local systems as being “of geometric origin”. Given X/Fq, one basic
question is whether one can generate every Qℓ-local system of geometric origin from
a relatively small collection of objects. As a motivating example, the combination of
the Tate conjecture and Honda–Tate theory imply that, when X = Spec(Fq), every
Qℓ-sheaf which comes from geometry is generated by that attached to an abelian
variety. Our main result says that this is a peculiarity of the situation over a point,
and is not true over a positive dimensional base:

Theorem 1.1.2. — Let C be a smooth projective curve over a finite field of character-
istic p. Let ℓ be a prime number different from p. There exists a finite set of points
S ⊆ C and a Qℓ-local system on C ∖ S, of geometric origin, which does not come
from a family of abelian varieties over C ∖ S.

For the precise definition of “coming from a family of abelian varieties”, see Defi-
nition 2.2.1.

1.2. Discussions: Fq versus C. — The situation over Fq is somewhat trickier than
that over C, as we now explain. As alluded to above, it is expected that, over the
point X = Spec(Fq), the cohomology of every variety is generated from that of an
abelian variety. On the other hand, there certainly exists varieties over C whose Hodge
structures are provably not generated from the Hodge structures of abelian varieties;
this seems to have been first observed by Deligne [Del72, §7.6]. Schematically, we have
the inclusions (recall that VHS stands for variations of Hodge structure):{

VHS coming from
abelian varieties

}
⊂

{
VHS on

Shimura varieties

}
⊂

{
general VHS

}
.

That is, VHS coming from families of abelian varieties are a (strict) subset of those
on Shimura varieties, which are in turn a tiny fraction of general VHS; the VHS
coming from abelian varieties are therefore, in some sense, the simplest kind. Similarly,
over Fq, the Qℓ-local systems coming from abelian varieties are arguably the simplest
local systems, and Theorem 1.1.2 says that one cannot build all Qℓ-local systems
from these simple building blocks. Presumably, our criterion also shows that most
local systems do not come from Shimura varieties, although this question is not very
well formulated since there is not yet a theory of special fibers of Shimura varieties of
exceptional type parallel to that of Shimura varieties of abelian type.(1)

Over a general variety X/Fq, we find it an extremely interesting question to try to
classify local systems which come from a family of abelian varieties, or perhaps from
a more general Shimura variety. A more modest goal is to find more criteria to decide
whether a given local system comes from abelian varieties.

For example, for X/Fq, it is not known whether any rank two Qℓ-local system
comes from a family of abelian varieties, though this is conjectured to be the case by

(1)Although see [BST24] for some spectacular work in this direction.
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Krishnamoorthy [Kri22, Conj. 1.2].(2) Note that, over C, any rank two local system
of geometric origin (or OK-VHS for K some number field) does indeed come from a
family of abelian varieties.

Finally, we expect that, for each fixed curve X/Fq with χ(X) < 0, most local
systems on X of geometric origin do not come from abelian varieties. For example,
in Theorem 1.1.2, we only prove a statement after removing a finite set of points S.
This is presumably unnecessary, but proving it seems to require some new inputs, and
we state it as a question:

Question 1.2.1. — Let X/Fq be a smooth curve of negative Euler characteristic.
Does there exist a local system of geometric origin on X, which does not come from
a family of abelian varieties?

1.3. Sketch of proof. — We give some ideas of the proof of Theorem 1.1.2, by giving
an example of a local system of geometric origin which provably does not come from
an abelian scheme. The case of arbitrary curves is deduced by pulling back this local
system along an appropriate map.

We first recall the situation over C. The analogous question is: given a Q-Hodge
structure V, how can we tell if it comes from an abelian variety? More precisely, when
is V in the Tannakian category ⟨H1(A,Q)⟩ for an abelian variety A/C?

One criterion is as follows: we consider the Mumford–Tate group GV, and its Lie
algebra gV. The latter carries a Hodge structure, which we denote by gV to under-
line this additional structure. If V comes from an abelian variety, then the Hodge
decomposition must take the form

(1.3.1) gV ⊗ C ≃ g−1,1 ⊕ g0,0 ⊕ g1,−1;

that is, the Hodge degrees are concentrated in (−1, 1), (0, 0), (1,−1). This follows from
the fact that, if V is generated from the Hodge structure of an abelian variety A, then
there is a surjection of Q-Hodge structures

g
A
→ gV,

where g
A

denotes the Mumford–Tate Lie algebra of A, equipped with its canonical
Hodge structure. Even better, this necessary condition is almost sufficient. Indeed,
if (1.3.1) holds, then V corresponds to a point on a Shimura variety.

For a local system E on a curve X/Fq, we can similarly consider the Lie algebra gE
of the monodromy group, and again we may view it as a local system, which we denote
by g

E
. However, there is no analogue of the Hodge decomposition (1.3.1).

Instead, we consider p-adic invariants, known as the slopes of g
E

, at a closed point
x ∈ X. These are rational numbers given by the p-adic valuations of eigenvalues of
the Frobenius (at x) action on g

E
.

(2)In slightly less generality.
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The upshot is that, if E comes from an abelian scheme, then the slopes of g
E

are
heavily constrained: they must lie in [−1, 1], in analogy to the constraint provided by
(1.3.1). This provides a necessary criterion, as recorded in Proposition 3.1.2.

It remains to construct a local system of geometric origin over a curve which
violates our criterion. We do this by analyzing the mirror quintic family of Calabi–
Yau threefolds over P1

Fq
∖ {0, 1,∞} and using some p-adic Hodge theory.

1.4. Notation. — Throughout, we fix a prime number p, a finite field Fq of charac-
teristic p and an algebraic closure Fp of Fq. A variety over a field K is by definition
a geometrically connected, separated scheme of finite type over K and a curve is a
one-dimensional variety. We will always write X for a variety over Fq and ℓ denotes
a prime number different from p.

Acknowledgements. — The second-named author thanks Sasha Petrov for an inter-
esting discussion on this subject in CIRM, Luminy, in the summer of 2022. We also
thank Greg Baldi, Nazim Khelifa, Bruno Klingler, Raju Krishnamoorthy and Daniel
Litt for their insightful comments. We are especially grateful to the referees for their
extremely careful reading and helpful suggestions.

2. Reminder on ℓ-adic local systems

2.1. Tannakian categories. — For a field K, we denote by VecK the Tannakian
category of finite-dimensional K-vector spaces. Let C be a neutral Tannakian category
over K and let ω : C → VecK be a K-linear fiber functor ([DM82, Def. 2.19]). The
functor Aut⊗(ω) is representable by an affine group scheme G over K and there
exists an equivalence of tensor categories of C with RepK(G), the category of finite-
dimensional linear representations of G over K, see loc. cit., Th. 2.11. We call G the
Tannaka group of C.

A Tannakian subcategory of C is by definition a full abelian subcategory that
is stable under ⊗, duals and subobjects. If C′ is a Tannakian subcategory of C

with Tannaka group G′, there exists a faithfully flat morphism of K-group schemes
G → G′, see loc. cit., Cor. 2.9, Prop. 2.21(a). In particular G → G′ is an epimorphism.
For an object V of C we denote by ⟨V ⟩ the smallest Tannakian subcategory of C

containing V . It is the full subcategory of C generated by V under ⊕,⊗, duals and
subobjects.

We call the Tannaka group of ⟨V ⟩ the monodromy group of V and we denote it
by GV . It is a linear algebraic group over K, see [DM82, Prop. 2.20(b)]. Let gV be the
Lie algebra of GV . Thanks to the adjoint representation Ad: GV → GL(gV ) we can
consider gV as an object of ⟨V ⟩, in particular of C. For emphasis, we write g

V
for the

object of C given in this way. We call g
V

the monodromy Lie algebra of V .

2.2. Monodromy of ℓ-adic local systems. — We define LS(X,Qℓ) as the category of
lisse Qℓ-sheaves on X. It is a Qℓ-linear Tannakian category. For a geometric point x

J.É.P. — M., 2025, tome 12
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of X, it admits a fiber functor

ωx,Qℓ
: LS(X,Qℓ) −→ VecQℓ

,

given by sending a lisse Qℓ-sheaf to its stalk at x.

Definition 2.2.1. — We say a Qℓ-local system E on X comes from a family of abelian
varieties if there exists an abelian scheme f : A → X such that E is an object of
⟨R1fét,∗Qℓ⟩.

Let E be a Qℓ-local system on X. The monodromy group GE of E is the Tannaka
group of the Tannakian category ⟨E⟩. On the other hand, we can also define the
geometric monodromy group Ggeo

E of E as follows: The natural projection π : XFp
=

X ×Fq
Spec(Fp) → X defines via pullback a tensor functor

π∗ : LS(X,Qℓ) −→ LS(XFp
,Qℓ).

In terms of representations, π∗ corresponds to the functor restricting a continu-
ous, finite-dimensional Qℓ-linear representation of πét

1 (X,x) to the normal subgroup
πét
1 (XFp

, x).
Finally, Ggeo

E is the Tannaka group of the Tannakian subcategory generated by π∗E

inside of LS(XFp
,Qℓ). Let ggeoE denote the Lie algebra of Ggeo

E . Note that Ggeo
E is a

normal subgroup of GE, and hence ggeoE has an action of GE. It may therefore be
viewed as a Qℓ-local system on X. We denote this Qℓ-local system by ggeo

E
.

3. Proof of Theorem 1.1.2

3.1. The criterion. — We now state and prove the criterion alluded to in the intro-
duction. We first set some notation for this subsection: We continue to write X for a
variety over a finite field Fq of characteristic p. We will write x for a Fqr -point of X
and x for a geometric point lying over x. By E we denote a Qℓ-local system on X.
Finally, we fix a valuation v on Q such that v(p) = 1.

The stalk Ex admits an action by the geometric qr-Frobenius, denoted by Fx. In all
our applications, E will be algebraic, i.e., for every closed point x, the eigenvalues
of Fx are in Q. We define the multiset of v-slopes at x as the multiset consisting of
the rational numbers

v(λ)

[κ(x) : Fp]
,

where λ is an eigenvalue of Fx and κ(x) denotes the residue field at x.

Lemma 3.1.1. — Let f : A → X be an abelian scheme over Fq. Then every v-slope α

of R1fét,∗Qℓ satisfies
0 ⩽ α ⩽ 1.

Proof. — Because the abelian variety Ax is polarizable, we deduce that for every
v-slope α of (R1fét,∗Qℓ)x = H1

ét(Ax,Qℓ), 1−α is also a v-slope. Since every eigenvalue
of Fx is an algebraic integer, we see that both α ⩾ 0 and 1− α ⩾ 0, as required. □

J.É.P. — M., 2025, tome 12
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Proposition 3.1.2. — If E comes from a family of abelian varieties, then the v-slopes
of g

E
at x lie in [−1, 1].

Proof. — Assume f : A → X is an abelian scheme over Fq such that E is an object of
the Tannakian subcategory generated by E′ = R1fét,∗Qℓ. The inclusion of Tannakian
categories ⟨E⟩ ↪→ ⟨E′⟩ induces an epimorphism of monodromy groups GE′ →→ GE.
This in turn induces an epimorphism of Qℓ-local systems g

E′ →→ g
E

. Consequently,
every v-slope of g

E
at x is a v-slope of g

E′ at x. We are thus reduced to the case of
E = R1fét,∗Qℓ. Let us write V = H1

ét(Ax,Qℓ) = (R1fét,∗Qℓ)x. The natural inclusion
g
E,x

↪→ End(V ) = V ⊗ V ∨ is compatible with the Frobenius action. In particular,
each v-slope of g

E
at x is of the form α − β, where α and β are v-slopes of E at x.

Applying Lemma 3.1.1 yields the result. □

Remark 3.1.3. — We note that Proposition 3.1.2 has a crystalline counterpart where
Qℓ-local systems are replaced by overconvergent F -isocrystals, as we wrote in the
initial version of this paper. We thank one of the referees for pointing out that the
use of F -isocrystals is unnecessary.

3.2. Filtered φ-modules. — We briefly recall the notion of a filtered φ-module. For
a perfect field k of characteristic p, write W (k) for the ring of Witt vectors over k

and let K = W (k)[1/p]. Denote by σ : K → K the automorphism induced by the
absolute Frobenius on k.

Definition 3.2.1. — A filtered φ-module is a triple (D,φ,Fil
•
), where

(i) D is a finite dimensional K-vector space, φ : D → D is a σ-linear automorphism;
(ii) Fil

• is a decreasing filtration by sub K-vector spaces which is separated (i.e.,⋂
i∈Z Fil

i = {0}) and exhaustive (i.e.,
⋃

i∈Z Fil
i = D).

A morphism of filtered φ-modules is a K-linear map compatible with φ and filtrations.
We denote the category of filtered φ-modules by MFK .

Remark 3.2.2. — Suppose Y/K is a smooth proper variety with good reduction,
whose special fiber we denote by Yk. It is straightforward to check that, for each i,
the triple (Hi

cris(Yk/W (k))[1/p], φ,Fil
•
) is an object of MFK ; here φ is the crystalline

Frobenius, and Fil
• is the filtration induced by the Hodge filtration on de Rham

cohomology and the comparison isomorphism Hi
cris(Yk/W (k))[1/p] ≃ Hi

dR(Y/K).

3.3. The mirror quintic family violates Proposition 3.1.2. — We first give a brief
reminder on the Dwork family and the construction of the mirror quintic family of
Calabi-Yau threefolds in P4 following [Kat09]. Let R be a Z[1/5]-algebra and denote
by µ5,R = Spec(R[t]/(t5 − 1)) the group-scheme of fifth roots of unity over R.

We consider the map of smooth schemes π′
R : Y ′ → P1

R ∖ ({∞} ∪ µ5,R) over R,
where the fiber above t ∈ P1

R ∖ ({∞} ∪ µ5,R) is given by the hypersurface

X5
0 + · · ·+X5

4 − 5tX0 · · ·X4

J.É.P. — M., 2025, tome 12
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in P4
R. The morphism π′

R is smooth and proper by [Kat09, Lem. 2.1], and we refer to
it as the Dwork family. We define

H = {(ζ1, . . . , ζ5) ∈ µ5
5,R | ζ1 · · · ζ5 = 1}/∆,

where ∆ ≃ µ5,R ↪→ µ5
5,R is the diagonal subgroup. The group H acts on the fibers

of the Dwork family. The restriction of π′
R over P1

R ∖ ({0,∞} ∪ µ5,R) is the pullback
of a smooth proper morphism πR : Y → P1

R ∖ {0, 1,∞} along the fifth power map.
Moreover, the family πR also admits an action by H, see [Kat09, p. 102].

We now specialize to the situation where R = Fq is a finite field of characteristic
p ̸= 5. For brevity, we write π for the family πFq over Fq. Let us define the Qℓ-local
system on P1

Fq
∖ {0, 1,∞} by

(3.3.1) E := (R3πét,∗Qℓ)
H .

Remark 3.3.1. — It is expected that E is isomorphic to R3π̌∗Qℓ for another family
of Calabi–Yau threefolds π̌ : Z → P1

Fq
∖ {0, 1,∞}. This is known to be true in

characteristic zero, where Z can be taken to be the mirror quintic family. However,
the construction involves a crepant resolution of the singular family Y/H (see [Bat94,
Th. 4.2.2], where this is done for a much more general class of Calabi–Yau varieties),
which, as far as we can tell, has not been worked out in positive characteristic.

Lemma 3.3.2. — The Qℓ-local system E has geometric monodromy Sp4,Qℓ
.

Proof. — All we have to do is compute the Zariski closure of the image of the asso-
ciated representation πét

1 (P1
Fp

∖ {0, 1,∞}, x) → GL4(Qℓ). The statement then follows
from [Kat09, Th. 8.6] using a specialization argument. □

We write X = P1
Fq

∖ {0, 1,∞} and π : Y → X as above. Let x ∈ X(Fqr ) and let x

be a geometric point lying over x. Let Fx denote geometric qr-Frobenius acting on Yx.
We set V = H3

ét(Yx,Qℓ), as well as Vp = H3
cris(Yx/W (Fqr ))⊗W (Fqr )Qp, and write φ for

its crystalline Frobenius endomorphism. Notice that V H and V H
p inherit Frobenius

actions from V and Vp respectively, as H acts by algebraic maps. We define

Pét(T ) = det(1− TFx | V H) and Pcris(T ) = det(1− Tφer | V H
p ),

where q = pe.

Lemma 3.3.3. — The polynomial Pét(T ) has Z-coefficients and moreover Pét(T ) =

Pcris(T ).

Proof. — Since H is a finite group, the composition of the projection map and the
natural inclusion

pr: V −→ V H −→ V

is induced by an algebraic cycle (with Q-coefficients). Moreover, the endomorphism
Fx : V → V is induced by an algebraic cycle. The eigenvalues of the composi-
tion Fx ◦ pr, again induced by an algebraic cycle, is the multi-set consisting of 0

with multiplicity dim(V ) − dim(V H), and the eigenvalues of Frobenius on V H .

J.É.P. — M., 2025, tome 12
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By [KM74, Th. 2(2)], we see that Pét(T ) has Z-coefficients and is moreover inde-
pendent of the choice of a Weil cohomology theory. In particular, we deduce that
Pét(T ) = Pcris(T ). □

Lemma 3.3.4. — For every valuation v of Q with v(p) = 1, the generic v-slopes of E
are 0, 1, 2, 3.

The following proof was suggested to us by one of the referees; in the previous ver-
sion we had a somewhat cumbersome argument using the Colmez–Fontaine theorem
on weakly admissible filtered φ-modules. We thank the referee for this simplification.

Proof. — By Lemma 3.3.3, we deduce that in order to compute the generic v-slopes
of V H , we are reduced to computing the generic slopes of the action of φer on V H

p .
Thanks to [Yu09, Th. 2.2] the Dwork family is generically ordinary, so assume

that Yx is ordinary. Applying [Del81, Prop. 1.3.2] there exists a decomposition

Vp =
⊕
i⩾0

V φ=pi

p ⊗Qp
Qp

such that for every j ⩾ 0, we have

(3.3.2)
(⊕
i<j

V φ=pi

p ⊗Qp
Qp

)
⊕
(
Filj ⊗W (Fqr )[1/p] Qp

)
= Vp,

where Filj is the Hodge filtration induced by any choice of lift Yx̃ of Yx to W (Fqr ).
Since the action of H lifts to Yx̃, it follows that (V H

p , φ|V H
p
,Fil

•|V H
p
) is a direct sum-

mand of (Vp, φ,Fil
•
) as filtered φ-modules, we deduce that V H

p is also ordinary in the
sense that there are analogous decompositions as (3.3.2). It follows that the slopes of
Frobenius acting on V H

p are precisely the Hodge numbers of (V H
p ,Fil

•
). It remains to

show that the latter Hodge numbers are 0, 1, 2, 3: this is a well-known computation–see
for example [HSBT10, Lem. 1.5]. □

Proposition 3.3.5. — The Qℓ-local system E does not come from a family of abelian
varieties.

Proof. — By Lemma 3.3.2, we have ggeoE ≃ sp4,Qℓ
. Note that there exists a canonical

isomorphism of Qℓ-local systems

det(E)⊗−1/2 ⊗ Sym2(E) ≃ ggeo
E

.

Thus, it suffices to compute the generic slopes of

det(E)⊗−1/2 ⊗ Sym2(E) ≃ Sym2(E)(3).

By Lemma 3.3.4, the generic slopes of E are 0, 1, 2, 3, each occurring with multiplicity
one. Therefore, the generic slopes of Sym2(E)(3) are as follows:

slope −3 −2 −1 0 1 2 3

multiplicity 1 1 2 2 2 1 1

Applying Proposition 3.1.2 shows that E cannot come from a family of abelian vari-
eties. □
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Remark 3.3.6. — As pointed out by the referee, since our criterion is checked gener-
ically on P1

Fq
∖ {0, 1,∞}, we actually get the technically stronger statement that for

any Zariski dense open U ⊂ P1
Fq

∖ {0, 1,∞}, E|U does not come from a family of
abelian varieties.

Remark 3.3.7 (More examples of local systems violating Proposition 3.1.2)
The following example was pointed out to us by the referee. Suppose p ⩾ 5, and

take V to be any of the local systems in [DK17, Prop. A.2.1]. Then V is a rank three
local system on P1

Fp
∖{0, 1,∞}. It has generic slopes 0, 1, 2, by Cor. A.3.2(e) of loc. cit.

Moreover, it has maximally unipotent monodromy at 0 ∈ P1 (see Remark A.1.4 of
loc. cit.), and therefore the connected component of its geometric monodromy has Lie
algebra sl3, which has generic slopes

slope −2 −1 0 1 2

multiplicity 1 2 2 2 1

and we therefore conclude by Proposition 3.1.2.
In fact, this example is closely related to the one we gave in Proposition 3.3.5: they

are both examples of hypergeometric local systems.

3.4. General case. — We now come to the proof of Theorem 1.1.2.

Proof of Theorem 1.1.2. — Take any finite separable morphism C → P1
Fq

. Let S ⊆ C

be the finite set of points mapping to {0, 1,∞} and consider the induced morphism
f : C ∖ S → P1

Fq
∖ {0, 1,∞}. Write F = f∗E, where E is the Qℓ-local system (3.3.1)

(if p ̸= 5) or the Qℓ-local system from Remark 3.3.7 (if p ̸= 2, 3). For every closed
point x of C ∖ S we have g

F,x
≃ g

E,f(x)
, where x, f(x) denote geometric points lying

over x, f(x) respectively. Hence F does not come from a family of abelian varieties
over C∖S by Proposition 3.1.2 and Proposition 3.3.5, respectively Remark 3.3.7. □
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