[Familles de fonctions de Green kählériennes]
Dans une série remarquable de travaux, Guo, Phong, Song et Sturm ont obtenu d’importantes estimations uniformes pour les fonctions de Green associées à certaines métriques de Kähler. Dans cette note, nous élargissons le champ d’application de leurs techniques en supprimant l’une de leurs hypothèses et en permettant à la structure complexe de varier. Nous appliquons nos résultats à diverses familles de métriques kählériennes canoniques.
In a remarkable series of works, Guo, Phong, Song, and Sturm have obtained key uniform estimates for the Green’s functions associated with certain Kähler metrics. In this note, we broaden the scope of their techniques by removing one of their assumptions and allowing the complex structure to vary. We apply our results to various families of canonical Kähler metrics.
Accepté le :
Publié le :
Keywords: Green’s function, Monge-Ampère equation, a priori estimates
Mots-clés : Fonctions de Green, équation de Monge-Ampère, estimées a priori
Vincent Guedj 1 ; Tat Dat Tô 2

@article{JEP_2025__12__319_0, author = {Vincent Guedj and Tat Dat T\^o}, title = {K\"ahler families of {Green{\textquoteright}s} functions}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {319--339}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.291}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.291/} }
TY - JOUR AU - Vincent Guedj AU - Tat Dat Tô TI - Kähler families of Green’s functions JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 319 EP - 339 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.291/ DO - 10.5802/jep.291 LA - en ID - JEP_2025__12__319_0 ER -
Vincent Guedj; Tat Dat Tô. Kähler families of Green’s functions. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 319-339. doi : 10.5802/jep.291. https://jep.centre-mersenne.org/articles/10.5802/jep.291/
[Bam18] - “Convergence of Ricci flows with bounded scalar curvature”, Ann. of Math. (2) 188 (2018) no. 3, p. 753-831 | DOI | MR | Zbl
[BBI01] - A course in metric geometry, Graduate Studies in Math., vol. 33, American Mathematical Society, Providence, RI, 2001 | DOI | MR
[BEGZ10] - “Monge-Ampère equations in big cohomology classes”, Acta Math. 205 (2010) no. 2, p. 199-262 | DOI | MR | Zbl
[CC21] - “On the constant scalar curvature Kähler metrics (I)—A priori estimates”, J. Amer. Math. Soc. 34 (2021) no. 4, p. 909-936 | DOI | MR | Zbl
[CGN + 23] - “Hermite-Einstein metrics in singular settings”, 2023 | arXiv
[DDG + 14] - “Hölder continuous solutions to Monge-Ampère equations”, J. Eur. Math. Soc. (JEMS) 16 (2014) no. 4, p. 619-647 | DOI | MR | Zbl
[Dem12] - Analytic methods in algebraic geometry, Surveys of Modern Math., vol. 1, International Press/Higher Education Press, Somerville, MA/Beijing, 2012
[DK14] - “A priori estimates for complex Hessian equations”, Anal. PDE 7 (2014) no. 1, p. 227-244 | DOI | MR | Zbl
[DNGG23] - “Families of singular Kähler-Einstein metrics”, J. Eur. Math. Soc. (JEMS) 25 (2023) no. 7, p. 2697-2762 | DOI | MR | Zbl
[DP10] - “Degenerate complex Monge-Ampère equations over compact Kähler manifolds”, Internat. J. Math. 21 (2010) no. 3, p. 357-405 | DOI | MR | Zbl
[EGZ08] - “A priori -estimates for degenerate complex Monge-Ampère equations”, Internat. Math. Res. Notices (2008), article ID rnn 070, 8 pages | DOI | MR | Zbl
[EGZ09] - “Singular Kähler-Einstein metrics”, J. Amer. Math. Soc. 22 (2009) no. 3, p. 607-639 | DOI | MR | Zbl
[FGS20] - “Geometric estimates for complex Monge-Ampère equations”, J. reine angew. Math. 765 (2020), p. 69-99 | DOI | MR | Zbl
[GGZ23] - “Diameter of Kähler currents”, 2023, to appear in J. reine angew. Math. | arXiv
[GL21] - “Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds”, 2021, to appear in J. Eur. Math. Soc. (JEMS) | arXiv
[GP24] - “Bogomolov-Gieseker inequality for log terminal Kähler threefolds”, 2024 | arXiv
[GPS24] - “Green’s functions and complex Monge-Ampère equations”, J. Differential Geom. 127 (2024) no. 3, p. 1083-1119 | DOI | MR | Zbl
[GPSS23] - “Sobolev inequalities on Kähler spaces”, 2023 | arXiv
[GPSS24a] - “Diameter estimates in Kähler geometry”, Comm. Pure Appl. Math. 77 (2024) no. 8, p. 3520-3556 | DOI | MR | Zbl
[GPSS24b] - “Diameter estimates in Kähler geometry II: removing the small degeneracy assumption”, Math. Z. 308 (2024) no. 3, article ID 43, 7 pages | DOI | MR | Zbl
[GPT23] - “On estimates for complex Monge-Ampère equations”, Ann. of Math. (2) 198 (2023) no. 1, p. 393-418 | DOI | MR | Zbl
[GPTW21] - “On the modulus of continuity of solutions to complex Monge-Ampère equations”, 2021 | arXiv
[GS22] - “Local noncollapsing for complex Monge-Ampère equations”, J. reine angew. Math. 793 (2022), p. 225-238 | DOI | MR | Zbl
[GZ17] - Degenerate complex Monge-Ampère equations, EMS Tracts in Math., vol. 26, European Mathematical Society, Zürich, 2017 | DOI | MR
[JS22] - “Diameter estimates for long-time solutions of the Kähler-Ricci flow”, Geom. Funct. Anal. 32 (2022) no. 6, p. 1335-1356 | DOI | MR | Zbl
[Koł98] - “The complex Monge-Ampère equation”, Acta Math. 180 (1998) no. 1, p. 69-117 | DOI | MR | Zbl
[Koł08] - “Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in : the case of compact Kähler manifolds”, Math. Ann. 342 (2008) no. 2, p. 379-386 | DOI | MR | Zbl
[Li21] - “On collapsing Calabi-Yau fibrations”, J. Differential Geom. 117 (2021) no. 3, p. 451-483 | DOI | MR | Zbl
[Li23] - “Collapsing Calabi-Yau fibrations and uniform diameter bounds”, Geom. Topol. 27 (2023) no. 1, p. 397-415 | DOI | MR | Zbl
[LNTZ17] - “Bounding diameter of singular Kähler metric”, Amer. J. Math. 139 (2017) no. 6, p. 1693-1731 | DOI | MR | Zbl
[Ou20] - “Admissible metrics on compact Kähler varieties”, 2020 | arXiv
[PTT23] - “Singular cscK metrics on smoothable varieties”, 2023 | arXiv
[Tos10] - “Adiabatic limits of Ricci-flat Kähler metrics”, J. Differential Geom. 84 (2010) no. 2, p. 427-453 | MR | Zbl
[Tos18] - “KAWA lecture notes on the Kähler-Ricci flow”, Ann. Fac. Sci. Toulouse Math. (6) 27 (2018) no. 2, p. 285-376 | DOI | Numdam | MR | Zbl
[Tos20] - “Collapsing Calabi-Yau manifolds”, in Surveys in differential geometry 2018. Differential geometry, Calabi-Yau theory, and general relativity, Surv. Differ. Geom., vol. 23, International Press, Boston, MA, 2020, p. 305-337 | MR | Zbl
[Tos24] - “Immortal solutions of the Kähler-Ricci flow”, 2024 | arXiv
[TZ06] - “On the Kähler-Ricci flow on projective manifolds of general type”, Chinese Ann. Math. Ser. B 27 (2006) no. 2, p. 179-192 | DOI | MR | Zbl
[Vu24a] - “Continuity of functions in complex Sobolev spaces”, Pure Appl. Math. Q 20 (2024) no. 6, p. 2769-2780 | DOI | MR | Zbl
[Vu24b] - “Uniform diameter estimates for Kähler metrics”, 2024 | arXiv
[Wan18] - “The local entropy along Ricci flow Part A: the no-local-collapsing theorems”, Camb. J. Math. 6 (2018) no. 3, p. 267-346 | DOI | MR | Zbl
[Yau78] - “On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I”, Comm. Pure Appl. Math. 31 (1978) no. 3, p. 339-411 | DOI | MR | Zbl
Cité par Sources :