Kähler families of Green’s functions
[Familles de fonctions de Green kählériennes]
Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 319-339.

Dans une série remarquable de travaux, Guo, Phong, Song et Sturm ont obtenu d’importantes estimations uniformes pour les fonctions de Green associées à certaines métriques de Kähler. Dans cette note, nous élargissons le champ d’application de leurs techniques en supprimant l’une de leurs hypothèses et en permettant à la structure complexe de varier. Nous appliquons nos résultats à diverses familles de métriques kählériennes canoniques.

In a remarkable series of works, Guo, Phong, Song, and Sturm have obtained key uniform estimates for the Green’s functions associated with certain Kähler metrics. In this note, we broaden the scope of their techniques by removing one of their assumptions and allowing the complex structure to vary. We apply our results to various families of canonical Kähler metrics.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.291
Classification : 32W20, 32U05, 32Q15, 35A23
Keywords: Green’s function, Monge-Ampère equation, a priori estimates
Mots-clés : Fonctions de Green, équation de Monge-Ampère, estimées a priori

Vincent Guedj 1 ; Tat Dat Tô 2

1 Institut Universitaire de France et Institut de Mathématiques de Toulouse, Université de Toulouse, 118 route de Narbonne, 31400 Toulouse, France
2 Sorbonne Université, Institut de mathématiques de Jussieu – Paris Rive Gauche, 4, place Jussieu, 75252 Paris Cedex 05, France.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2025__12__319_0,
     author = {Vincent Guedj and Tat Dat T\^o},
     title = {K\"ahler families of {Green{\textquoteright}s} functions},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {319--339},
     publisher = {\'Ecole polytechnique},
     volume = {12},
     year = {2025},
     doi = {10.5802/jep.291},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.291/}
}
TY  - JOUR
AU  - Vincent Guedj
AU  - Tat Dat Tô
TI  - Kähler families of Green’s functions
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2025
SP  - 319
EP  - 339
VL  - 12
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.291/
DO  - 10.5802/jep.291
LA  - en
ID  - JEP_2025__12__319_0
ER  - 
%0 Journal Article
%A Vincent Guedj
%A Tat Dat Tô
%T Kähler families of Green’s functions
%J Journal de l’École polytechnique — Mathématiques
%D 2025
%P 319-339
%V 12
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.291/
%R 10.5802/jep.291
%G en
%F JEP_2025__12__319_0
Vincent Guedj; Tat Dat Tô. Kähler families of Green’s functions. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 319-339. doi : 10.5802/jep.291. https://jep.centre-mersenne.org/articles/10.5802/jep.291/

[Bam18] R. Bamler - “Convergence of Ricci flows with bounded scalar curvature”, Ann. of Math. (2) 188 (2018) no. 3, p. 753-831 | DOI | MR | Zbl

[BBI01] D. Burago, Y. Burago & S. Ivanov - A course in metric geometry, Graduate Studies in Math., vol. 33, American Mathematical Society, Providence, RI, 2001 | DOI | MR

[BEGZ10] S. Boucksom, P. Eyssidieux, V. Guedj & A. Zeriahi - “Monge-Ampère equations in big cohomology classes”, Acta Math. 205 (2010) no. 2, p. 199-262 | DOI | MR | Zbl

[CC21] X. Chen & J. Cheng - “On the constant scalar curvature Kähler metrics (I)—A priori estimates”, J. Amer. Math. Soc. 34 (2021) no. 4, p. 909-936 | DOI | MR | Zbl

[CGN + 23] J. Cao, P. Graf, P. Naumann, M. Păun, T. M. Peternell & X. Wu - “Hermite-Einstein metrics in singular settings”, 2023 | arXiv

[DDG + 14] J.-P. Demailly, S. Dinew, V. Guedj, H. H. Pham, S. Kołodziej & A. Zeriahi - “Hölder continuous solutions to Monge-Ampère equations”, J. Eur. Math. Soc. (JEMS) 16 (2014) no. 4, p. 619-647 | DOI | MR | Zbl

[Dem12] J.-P. Demailly - Analytic methods in algebraic geometry, Surveys of Modern Math., vol. 1, International Press/Higher Education Press, Somerville, MA/Beijing, 2012

[DK14] S. Dinew & S. Kołodziej - “A priori estimates for complex Hessian equations”, Anal. PDE 7 (2014) no. 1, p. 227-244 | DOI | MR | Zbl

[DNGG23] E. Di Nezza, V. Guedj & H. Guenancia - “Families of singular Kähler-Einstein metrics”, J. Eur. Math. Soc. (JEMS) 25 (2023) no. 7, p. 2697-2762 | DOI | MR | Zbl

[DP10] J.-P. Demailly & N. Pali - “Degenerate complex Monge-Ampère equations over compact Kähler manifolds”, Internat. J. Math. 21 (2010) no. 3, p. 357-405 | DOI | MR | Zbl

[EGZ08] P. Eyssidieux, V. Guedj & A. Zeriahi - “A priori L -estimates for degenerate complex Monge-Ampère equations”, Internat. Math. Res. Notices (2008), article ID rnn 070, 8 pages | DOI | MR | Zbl

[EGZ09] P. Eyssidieux, V. Guedj & A. Zeriahi - “Singular Kähler-Einstein metrics”, J. Amer. Math. Soc. 22 (2009) no. 3, p. 607-639 | DOI | MR | Zbl

[FGS20] X. Fu, B. Guo & J. Song - “Geometric estimates for complex Monge-Ampère equations”, J. reine angew. Math. 765 (2020), p. 69-99 | DOI | MR | Zbl

[GGZ23] V. Guedj, H. Guenancia & A. Zeriahi - “Diameter of Kähler currents”, 2023, to appear in J. reine angew. Math. | arXiv

[GL21] V. Guedj & C. H. Lu - “Quasi-plurisubharmonic envelopes 1: Uniform estimates on Kähler manifolds”, 2021, to appear in J. Eur. Math. Soc. (JEMS) | arXiv

[GP24] H. Guenancia & M. Păun - “Bogomolov-Gieseker inequality for log terminal Kähler threefolds”, 2024 | arXiv

[GPS24] B. Guo, D. H. Phong & J. Sturm - “Green’s functions and complex Monge-Ampère equations”, J. Differential Geom. 127 (2024) no. 3, p. 1083-1119 | DOI | MR | Zbl

[GPSS23] B. Guo, D. H. Phong, J. Song & J. Sturm - “Sobolev inequalities on Kähler spaces”, 2023 | arXiv

[GPSS24a] B. Guo, D. H. Phong, J. Song & J. Sturm - “Diameter estimates in Kähler geometry”, Comm. Pure Appl. Math. 77 (2024) no. 8, p. 3520-3556 | DOI | MR | Zbl

[GPSS24b] B. Guo, D. H. Phong, J. Song & J. Sturm - “Diameter estimates in Kähler geometry II: removing the small degeneracy assumption”, Math. Z. 308 (2024) no. 3, article ID 43, 7 pages | DOI | MR | Zbl

[GPT23] B. Guo, D. H. Phong & F. Tong - “On L estimates for complex Monge-Ampère equations”, Ann. of Math. (2) 198 (2023) no. 1, p. 393-418 | DOI | MR | Zbl

[GPTW21] B. Guo, D. H. Phong, F. Tong & C. Wang - “On the modulus of continuity of solutions to complex Monge-Ampère equations”, 2021 | arXiv

[GS22] B. Guo & J. Song - “Local noncollapsing for complex Monge-Ampère equations”, J. reine angew. Math. 793 (2022), p. 225-238 | DOI | MR | Zbl

[GZ17] V. Guedj & A. Zeriahi - Degenerate complex Monge-Ampère equations, EMS Tracts in Math., vol. 26, European Mathematical Society, Zürich, 2017 | DOI | MR

[JS22] W. Jian & J. Song - “Diameter estimates for long-time solutions of the Kähler-Ricci flow”, Geom. Funct. Anal. 32 (2022) no. 6, p. 1335-1356 | DOI | MR | Zbl

[Koł98] S. Kołodziej - “The complex Monge-Ampère equation”, Acta Math. 180 (1998) no. 1, p. 69-117 | DOI | MR | Zbl

[Koł08] S. Kołodziej - “Hölder continuity of solutions to the complex Monge-Ampère equation with the right-hand side in L p : the case of compact Kähler manifolds”, Math. Ann. 342 (2008) no. 2, p. 379-386 | DOI | MR | Zbl

[Li21] Y. Li - “On collapsing Calabi-Yau fibrations”, J. Differential Geom. 117 (2021) no. 3, p. 451-483 | DOI | MR | Zbl

[Li23] Y. Li - “Collapsing Calabi-Yau fibrations and uniform diameter bounds”, Geom. Topol. 27 (2023) no. 1, p. 397-415 | DOI | MR | Zbl

[LNTZ17] G. La Nave, G. Tian & Z. Zhang - “Bounding diameter of singular Kähler metric”, Amer. J. Math. 139 (2017) no. 6, p. 1693-1731 | DOI | MR | Zbl

[Ou20] W. Ou - “Admissible metrics on compact Kähler varieties”, 2020 | arXiv

[PTT23] C.-M. Pan, T. D. Tô & A. Trusiani - “Singular cscK metrics on smoothable varieties”, 2023 | arXiv

[Tos10] V. Tosatti - “Adiabatic limits of Ricci-flat Kähler metrics”, J. Differential Geom. 84 (2010) no. 2, p. 427-453 | MR | Zbl

[Tos18] V. Tosatti - “KAWA lecture notes on the Kähler-Ricci flow”, Ann. Fac. Sci. Toulouse Math. (6) 27 (2018) no. 2, p. 285-376 | DOI | Numdam | MR | Zbl

[Tos20] V. Tosatti - “Collapsing Calabi-Yau manifolds”, in Surveys in differential geometry 2018. Differential geometry, Calabi-Yau theory, and general relativity, Surv. Differ. Geom., vol. 23, International Press, Boston, MA, 2020, p. 305-337 | MR | Zbl

[Tos24] V. Tosatti - “Immortal solutions of the Kähler-Ricci flow”, 2024 | arXiv

[TZ06] G. Tian & Z. Zhang - “On the Kähler-Ricci flow on projective manifolds of general type”, Chinese Ann. Math. Ser. B 27 (2006) no. 2, p. 179-192 | DOI | MR | Zbl

[Vu24a] D.-V. Vu - “Continuity of functions in complex Sobolev spaces”, Pure Appl. Math. Q 20 (2024) no. 6, p. 2769-2780 | DOI | MR | Zbl

[Vu24b] D.-V. Vu - “Uniform diameter estimates for Kähler metrics”, 2024 | arXiv

[Wan18] B. Wang - “The local entropy along Ricci flow Part A: the no-local-collapsing theorems”, Camb. J. Math. 6 (2018) no. 3, p. 267-346 | DOI | MR | Zbl

[Yau78] S. T. Yau - “On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I”, Comm. Pure Appl. Math. 31 (1978) no. 3, p. 339-411 | DOI | MR | Zbl

Cité par Sources :