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KÄHLER FAMILIES OF GREEN’S FUNCTIONS

by Vincent Guedj & Tat Dat Tô

Abstract. — In a remarkable series of works, Guo, Phong, Song, and Sturm have obtained key
uniform estimates for the Green’s functions associated with certain Kähler metrics. In this note,
we broaden the scope of their techniques by removing one of their assumptions and allowing
the complex structure to vary. We apply our results to various families of canonical Kähler
metrics.
Résumé (Familles de fonctions de Green kählériennes). — Dans une série remarquable de tra-
vaux, Guo, Phong, Song et Sturm ont obtenu d’importantes estimations uniformes pour les
fonctions de Green associées à certaines métriques de Kähler. Dans cette note, nous élargissons
le champ d’application de leurs techniques en supprimant l’une de leurs hypothèses et en per-
mettant à la structure complexe de varier. Nous appliquons nos résultats à diverses familles de
métriques kählériennes canoniques.

Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
1. Uniform estimates for Monge-Ampère potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
2. Green’s functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
3. Geometric applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Introduction

Let (X,ω) be a compact Kähler manifold of complex dimension n. We set Vω =∫
X
ωn and let Gωx denote the Green’s function of ω at the point x. This is the unique

quasi-subharmonic function such that
∫
X
Gωxω

n = 0 and
1

Vω
(ω + ddcGωx ) ∧ ωn−1 = δx.

Here, δx denotes the Dirac mass at point x. Equivalently ∆ωG
ω
x = n(Vωδx − ωn).

Mathematical subject classification (2020). — 32W20, 32U05, 32Q15, 35A23.
Keywords. — Green’s function, Monge-Ampère equation, a priori estimates.

V.G. is partially supported by the Institut Universitaire de France and fondation Charles Defforey.
T.D.T. is partially supported by the project MARGE ANR-21-CE40-0011.

e-ISSN: 2270-518X http://jep.centre-mersenne.org/

http://jep.centre-mersenne.org/


320 V. Guedj & T. D. Tô

In a remarkable series of articles [GPS24, GPSS24a, GPSS23], Guo, Phong, Song
and Sturm have obtained several key estimates for Gωx that are uniform when ω varies
in a large family F of Kähler forms (our normalization for Gωx slightly differs from
theirs, see Definition 1.2 below). Although Gωx is a solution of the Laplace equation,
its dependence on ω is highly non-linear. Nonetheless, these authors succeeded in
obtaining spectacular estimates by comparing the problem at hand with an auxiliary
complex Monge-Ampère equation (an idea originating from [CC21]), for which fine
uniform estimates are available (see [Yau78, Koł98, EGZ09, EGZ08, DP10, BEGZ10,
GL21, GPT23]).

Fix β a reference Kähler form on X, A,B > 0 positive constants, and γ ⩾ 0 a
continuous function such that (γ = 0) has small Hausdorff dimension. The family F

consists in those Kähler forms ω which satisfy the following three assumptions:

(1) an upper-bound on the cohomology class
∫
X
ω ∧ βn−1 ⩽ A;

(2) a uniform pointwise lower bound fω ⩾ γ, where fω := V −1
ω ωn/βn;

(3) a uniform upper bound
∫
X
fω(log fω)

pβn ⩽ B, where p > n.

The first assumption can be restated as the cohomology class of ω remaining within
a bounded subset of H1,1(X,R). It implies a uniform upper bound on the volume
Vω ⩽ C(A), but it is a strictly stronger assumption (see Example 1.7).

The third assumption ensures that ω admits uniformly bounded potentials (as
shown in [Koł98, EGZ08, DP10]), that moreover have good continuity properties (see
[Koł08, DDG+14, GPTW21, GGZ23]). It can be slightly generalized to∫

X

fω(log f)
n(log log[3 + fω])

pβn ⩽ B with p > 2n,

as shown in [GGZ23]. In this article we rather stick to the more classical assumption∫
X
fpωβ

n ⩽ B with p > 1, to simplify the exposition.
Our goal in this note is twofold. First, we eliminate the second assumption by

establishing a key new estimate (Proposition 2.2). Second, we demonstrate that this
new estimate, as well as all the estimates obtained in [GPS24, GPSS24a, GPSS23],
remain uniform as the complex structure varies. This significantly broadens the scope
of geometric applications for these results.

The precise setting is as follows. Let X be an irreducible and reduced complex space.
We let π : X → 2D denote a proper, surjective holomorphic map with connected fibers
such that each fiber Xt = π−1(t) is a n-dimensional compact Kähler manifold, for
t ∈ 2D∗. We allow the central fiber X0 to be a singular, irreducible and reduced
complex space, as this is important for geometric applications. Here D is the unit disk
in C; we assume that the family is defined over a slightly larger disk 2D, and will
establish estimates that are uniform with respect to the parameter t ∈ D∗.

We fix β a relative Kähler form on X, i.e., β is a smooth form on X whose restrictions
βt = β|Xt

are Kähler forms. We assume that the volumes Vβt
:=

∫
Xt
βnt are uniformly

bounded away from 0 and +∞, and let dVXt
= βnt /Vβt

denote the corresponding
probability volume form on Xt.
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Kähler families of Green’s functions 321

Fix p > 1 and A,B > 0. We let K(X, p, A,B) denote the set of all relative Kähler
forms ω on X∖X0 such that for all t ∈ D∗, {ωt} ⩽ A{βt} in H1,1(Xt,R), and∫

Xt

fpt dVXt ⩽ B, where 1

Vωt

ωnt = ftdVXt .

Our main result is the following uniform control on Green’s functions Gωt
x .

Theorem A. — Fix 0 < r < n/(n− 1) and 0 < s < 2n/(2n− 1). For all t ∈ D∗,
x ∈ Xt and ω ∈ K(X, p, A,B) we have

(1) supXt
Gωt
x ⩽ C0 = C0(n, p,A,B);

(2) (1/Vωt)
∫
Xt

|Gωt
x |rωnt ⩽ C1 = C1(n, p, r, A,B);

(3) (1/Vωt
)
∫
Xt

|∇Gωt
x |sωt

ωnt ⩽ C2 = C2(n, p, s, A,B).

These estimates extend [GPS24, Th. 1 & Th. 2] and [GPSS24a, Th. 1.1]. The unifor-
mity with respect to the complex structure crucially depends on the uniform estimates
obtained in [DNGG23].

As in [GPSS24a] they easily imply a uniform control on diameters, as well as a
uniform non-collapsing estimate. Together with the uniform upper bound on volumes,
this yields in particular that the metric spaces (Xt, ωt) are relatively compact in the
Gromov-Hausdorff topology.

Theorem B. — Fix δ such that 0 < δ < 1 and ω ∈ K(X, p, A,B). There exists a
constant C = C(n, p, δ, A,B) > 0 such that for all t ∈ D∗, x ∈ Xt and r > 0,

Cmin(1, r2n+δ) ⩽
1

Vωt

Volωt(Bωt(x, r)) and diam(Xt, ωt) ⩽ C.

Thus the family of compact metric spaces {(Xt, dωt
), ω ∈ K(X, p, A,B), t ∈ D∗} is

pre-compact in the Gromov-Hausdorff topology.

Following [GPSS23], we further show in Theorem 2.6 that the Sobolev constants
of the metrics ωt are also uniformly bounded.

Theorems A and B have many geometric applications. We explain in Section 3.2
how they provide uniform estimates for families of constant scalar curvature Kähler
metrics (see Corollary 3.2), following [CC21] and [PTT23].

As in [GPSS24a], we then apply our estimates to the study of the Kähler-Ricci
flow. Assume that X is a a smooth minimal model (KX nef), and consider

∂ωt
∂t

= −Ric(ωt)− ωt

the normalized Kähler-Ricci flow starting from an initial Kähler metric ω0. It follows
from [TZ06] that this flow exists for all times t > 0. We obtain here the following
striking result which -in particular- solves [Tos18, Conj. 6.2]:

Theorem C. — Fix δ such that 0 < δ < 1. There exist C = C(ω0) > 0 and c =

c(ω0, δ) > 0 such that for all t > 0 and x ∈ X,
diam(X,ωt) ⩽ C and Volωt

(Bωt
(x, r)) ⩾ cr2n+δVωt

,

whenever 0 < r < diam(X,ωt).

J.É.P. — M., 2025, tome 12



322 V. Guedj & T. D. Tô

This result has been established by Guo-Phong-Song-Sturm under the extra
assumption that the Kodaira dimension kod(X) of X is non-negative, see [GPSS24a,
Th. 2.3]. It is an old conjecture of Mumford that KX nef implies kod(X) ⩾ 0. The
latter is a weak form of the abundance conjecture, one of the most important open
problem in birational geometry. We refer the reader to [Tos18, Tos24] for recent
overviews of the theory of the Kähler-Ricci flow.

In Section 3.4 we show how our estimates provide an alternative proof of an impor-
tant diameter bound of Y. Li [Li23, Th. 1.4]. We anticipate many more applications of
Theorems A and B (see [CGN+23, GP24] for recent developments). In [GPSS23], the
authors have partially extended their techniques to the case of mildly singular Kähler
varieties, showing in particular that Kähler-Einstein currents have bounded diameter.
Our key Proposition 2.2 can be extended to this context as well, as it relies solely
on uniform estimates for solutions to complex Monge-Ampère equations, which are
applicable here according to [DNGG23, Th. 1.9]. Therefore, we expect that most of
the results presented in this note can be extended to families of Kähler varieties (see
[GP24, §3] for some first steps). Very recently Vu [Vu24b] announced a proof of The-
orem B for a fixed variety and an independent proof of Theorem C by using analysis
on Sobolev spaces associated to currents; shortly afterward Guo-Phong-Song-Sturm
[GPSS24b] have provided and alternative proof of Proposition 2.2.

Acknowledgements. — We thank D. H. Phong for enlightening discussions about his
joint works with Guo, Song and Sturm on Green’s functions. We are grateful to
H. C. Lu for several useful comments on a preliminary draft.

1. Uniform estimates for Monge-Ampère potentials

1.1. Quasi-(pluri)subharmonic functions. — Let (X,ω) be a compact Kähler man-
ifold of complex dimension n.

1.1.1. ω-subharmonic functions

Definition 1.1. — A function v : X → R∪{−∞} is ω-subharmonic (ω-sh for short) if
it is locally the sum of a smooth and a subharmonic function, and (ω+ddcu)∧ωn−1 ⩾ 0

in the sense of distributions. Alternatively

∆ωv = n
ddcv ∧ ωn−1

ωn
⩾ −n.

The maximum principle ensures that two ω-sh functions u, v satisfy ∆ωu = ∆ωv if
and only if they differ by a constant. We can thus ensure that u = v by normalizing
them by

∫
X
uωn =

∫
X
vωn = 0.

Definition 1.2. — We let Gx denote the Green function of ω at the point x. This is
the unique ω-sh function such that

∫
X
Gxω

n = 0 and
1

Vω
(ω + ddcGx) ∧ ωn−1 = δx.

Here δx denotes the Dirac mass at point x.

J.É.P. — M., 2025, tome 12



Kähler families of Green’s functions 323

Let us stress that our definition differs from that of [GPSS24a] in two ways: we use
the opposite sign convention, as well as a different volume normalization. If G̃x denotes
the Green function from [GPSS24a], then Gx = −(Vω/n)G̃x.

For any ω-sh function u such that
∫
X
uωn = 0, Stokes theorem yields

u(x) =
1

Vω

∫
X

u(ω + ddcGx) ∧ ωn−1 =
1

Vω

∫
X

Gx(ω + ddcu) ∧ ωn−1.

In particular for u = Gy we obtain the symmetry relation Gx(y) = Gy(x). Green’s
functions are classical objects of study in Riemannian geometry. In particular it is
known that Gx ∈ C∞(X ∖ {x}) and Gx(y) → −∞ as y → x (either at a logarithmic
speed if n = 1, or at a polynomial speed if n ⩾ 2).

While the Laplace operator ∆ω is linear, it depends on ω in a non linear way.
Following [GPS24, GPSS24a, GPSS23] we are going to establish uniform estimates
on normalized ω-sh functions, by comparing them with ω-plurisubharmonic solutions
to certain complex Monge-Ampère equations.

1.1.2. ω-plurisubharmonic functions. — A function is quasi-plurisubharmonic (qpsh
or quasi-psh) if it is locally given as the sum of a smooth and a psh function. Quasi-
psh functions φ : X → R∪ {−∞} satisfying ωφ := ω+ ddcφ ⩾ 0 in the weak sense of
currents are called ω-plurisubharmonic (ω-psh for short).

Definition 1.3. — We let PSH(X,ω) denote the set of all ω-plurisubharmonic func-
tions which are not identically −∞.

Note that constant functions are ω-psh functions. A C2-smooth function u has
bounded Hessian, hence εu is ω-psh if 0 < ε is small enough and ω is positive.

The set PSH(X,ω) is a closed subset of L1(X), for the L1-topology. Subsets of
ω-psh functions enjoy strong compactness and integrability properties, we mention
notably the following: for any fixed r ⩾ 1,

– PSH(X,ω) ⊂ Lr(X); the induced Lr-topologies are equivalent;
– PSHA(X,ω) := {u ∈ PSH(X,ω), −A ⩽ supX u ⩽ 0} is compact in Lr.

We refer the reader to [Dem12, GZ17] for further basic properties of ω-psh functions.

1.1.3. Laplace vs Monge-Ampère solutions. — We shall regularly compare solutions to
the Laplace equation and ω-psh solutions to an auxiliary Monge-Ampère equation.
The following principle will play an important role.

Proposition 1.4. — Fix t > 0, p > 1 and 0 ⩽ f ∈ Lnp(ωn). Let v (resp. φ) be the
unique bounded ω-sh (resp. ω-psh) function such that

(ω + ddcv) ∧ ωn−1 = etvfωn and (ω + ddcφ)n = entφfnωn.

Then φ ⩽ v.

The existence of v is classical. For the existence and uniqueness of φ, see [GZ17].

J.É.P. — M., 2025, tome 12



324 V. Guedj & T. D. Tô

Proof. — It follows from the maximum principle that v is the envelope of bounded
ω-sh subsolutions to this twisted Laplace equation, i.e., for all x ∈ X,

v(x) = sup
{
u(x); u ∈ SH(X,ω) ∩ L∞(X) and (ω + ddcu) ∧ ωn−1 ⩾ etufωn

}
.

Since the function φ2 = 0 is the trivial solution to the twisted Monge-Ampère
equation (ω + ddcφ2)

n = entφ21nωn, the AM-GM inequality (see [DK14, Th. 2.12])
ensures that

(ω + ddcφ) ∧ ωn−1 ⩾ etφfωn.

The conclusion follows as PSH(X,ω) ⊂ SH(X,ω) and φ is a bounded subsolution of
the twisted Laplace equation. □

Uniform a priori estimates for solutions to complex Monge-Ampère equations have
been intensively studied in the past decades. The previous proposition will allow one
to use them and gain uniform L∞ a priori estimates for solutions of the Laplace
equation, as the reference form ω varies (see Section 2).

1.2. Kähler families

1.2.1. Assumptions. — We shall consider the following set of assumptions.

Setting 1.5. — Let X be an irreducible and reduced complex space. We let π : X →
2D denote a proper, surjective holomorphic map with connected fibers such that each
fiber Xt = π−1(t) is a n-dimensional compact Kähler manifold, for t ∈ 2D∗ and X0 is
an irreducible and reduced complex space. We fix β a relative Kähler form on X, set
βt = β|Xt

and assume that the volumes Vβt
:=

∫
Xt
βnt are uniformly bounded away

from 0 and +∞. Let dVXt
= βnt /Vβt

denote the corresponding probability volume
form on Xt.

Here D is the unit disk in C; we assume that the family is defined over a slightly
larger disk (e.g. 2D), and will establish estimates that are uniform with respect to the
parameter t ∈ D∗.

Definition 1.6. — Fix p > 1 and A,B > 0. We let K(X, p, A,B) denote the set of
all relative Kähler forms ω on X ∖ X0 such that for all t ∈ D∗, {ωt} ⩽ A{βt} in
H1,1(Xt,R), and ∫

Xt

fpt dVXt
⩽ B, where 1

Vωt

ωnt = ftdVXt
.

The cohomological assumption ensures that the volumes Vt =
∫
Xt
ωnt ⩽ C(A) are

uniformly bounded from above, but it is a strictly stronger assumption as we observe
in the following example.

Example 1.7. — AssumeX = P1×P1 is the product of two Riemann spheres, endowed
with the Kähler form ωλ(x, y) = λωP1(x) + λ−1ωP1(y), where λ > 0. Observe that
the volume Vωλ

=
∫
X
ω2
λ =

∫
X
2ωP1(x) ∧ ωP1(y) = 2 is constant, while the diameter

diam(X,ωλ) ∼ λ→ ∞ as λ→ ∞.

J.É.P. — M., 2025, tome 12



Kähler families of Green’s functions 325

1.2.2. Uniform a priori estimates. — We shall need the following uniform integrability
result in families, that generalizes previous results of Skoda and Zeriahi:

Theorem 1.8. — Fix p > 1, A,B > 0. There exists α = α(n, p,A,B) > 0 such that
for all ω ∈ K(X, p, A,B), t ∈ D∗ and φt ∈ PSH(Xt, ωt) with supXt

φt = 0,∫
Xt

exp(−αφt)dVXt ⩽ Cα,

where C = C(α, n, p,A,B) > 0 is independent of ω, t, φt.

Proof. — The cohomological assumption means that there exists a smooth closed
(1, 1)-form θt on Xt, cohomologous to ωt, such that θt ⩽ Aβt. The ∂∂-lemma ensures
that ωt = θt + ddcut, where

∫
X
utdVXt

= 0 and ut ∈ PSH(Xt, θt). Since we also have
ut ∈ PSH(Xt, Aβt), it follows from [DNGG23, Conj. 3.1] and [Ou20, Cor. 4.8] that
0 ⩽ supXt

ut ⩽M0 for some uniform constant M0.
Set φ̃t = φt −

∫
Xt
φtdVXt so that

∫
Xt
φ̃tdVXt = 0. Observe similarly that ψt =

φ̃t + ut ∈ PSH(Xt, θt) ⊂ PSH(Xt, Aβt) is normalized by
∫
X
ψtdVXt

= 0, hence
0 ⩽ supXt

ψt ⩽M0. It follows therefore from [DNGG23, Th. 2.9] that∫
Xt

e2α|ψ|dVXt +

∫
Xt

e2α|u|dVXt ⩽ Cα,

for some uniform constants α,Cα > 0. Cauchy-Schwarz inequality now yields∫
Xt

eα|φ̃t|dVXt
⩽

∫
Xt

eα|ψt|eα|ut|dVXt
⩽ Cα.

Now [DNGG23, Th. 1.9] ensures that ∥ut − Vθt∥∞ ⩽M1, where

Vθt = sup{v, v ∈ PSH(X, θt) with v ⩽ 0}.

Thus ψt ⩽ Vθt + supXt
ψt ⩽ ut +M0 +M1 and supXt

φ̃t ⩽M0 +M1. The conclusion
follows as −φt ⩽ |φ̃t|+M0 +M1. □

The following uniform estimate is the key tool for all results to follow.

Theorem 1.9. — Fix p > 1, A,B > 0 and ω ∈ K(X, p, A,B). Assume that there exists
φt ∈ PSH(X,ωt) ∩ L∞(Xt), p′ > 1 and B′ > 0 independent of t such that

1

Vωt

(ωt + ddcφt)
n = gtdVXt

,

with
∫
Xt
gp

′

t dVXt
⩽ B′. Then OscX(φt) ⩽ C = C(p, p′, A,B,B′).

These uniform estimates have a long history. For a fixed cohomology class they have
been established by Kołodziej [Koł98], generalizing a celebrated a priori estimate of
Yau [Yau78]. These have been further generalized in [EGZ09, EGZ08, DP10, BEGZ10]
in order to deal with less positive or collapsing families of cohomology classes on
Kähler manifolds. Alternative proofs have been provided in [GL21, GPT23], while
the family version needed here is obtained in [DNGG23].

Proof. — The result follows from [DNGG23, Th. A] and Theorem 1.8. □

J.É.P. — M., 2025, tome 12



326 V. Guedj & T. D. Tô

These uniform estimates remain valid under less restrictive integrability assump-
tions on the densities. To gain clarity in the proofs to follow, we have chosen to restrict
to this setting which is the most useful one in geometric applications. We refer the
reader to [GGZ23, §5] for a discussion of the optimality of the integrability assump-
tions that ensure finiteness of diameters of Kähler metrics.

2. Green’s functions

In this section we prove Theorem A. In the setting 1.5 we fix p > 1, A,B > 0

and ω ∈ K(X, p, A,B). For t ∈ D∗ we consider the Green function Gωt
x of the Kähler

form ωt at the point x ∈ Xt and establish integrability estimates for the latter that are
uniform in t ∈ D∗ and x ∈ Xt. To lighten the notation, we get rid of the t-subscript
and write X instead of Xt and Gx instead of Gωt

x .

2.1. Bounding ω-subharmonic functions from above

Lemma 2.1. — Fix a > 0 and let v be a quasi-subharmonic function on X such that
∆ωv ⩾ −a. Then

sup
X
v ⩽ C

[
a+

1

Vω

∫
X

|v|ωn
]
,

where C = C(n, p,A,B) > 0 only depends on n, p,A,B.

This result is a family version of [GPSS24a, Lem. 5.1].

Proof. — Both the statement and the assumptions are homogeneous of degree 1.
Changing v in (n/a)v we thus reduce to the case a = n. Observe that ∆ωv ⩾ −n is
equivalent to (ω + ddcv) ∧ ωn−1 ⩾ 0.

Regularizing v we can assume that it is smooth. We set v+ = m̃ax(v, 0), where
m̃ax denotes a convex regularized maximum such that 0 ⩽ m̃ax ⩽ 1 + max: the
function m̃ax(x, 0) is identically 0 for x ⩽ −1, equals x for x ⩾ 0 and coincides with
a smooth convex function in [−1, 0], that smoothly connects these two pieces. Since
supX v ⩽ supX v+, it suffices to bound v+ from above. Let φ ∈ PSH(X,ω) be the
unique smooth function such that

(ω + ddcφ)n =
1 + v+
1 +M

ωn

and supX φ = −1, where M =
∫
X
v+(ω

n/Vω) ⩽ 1 +
∫
X
|v|(ωn/Vω).

Set H = 1 + v+ − ε(−φ)α, where α = n/(n+ 1) and ε > 0 is chosen so that
εn+1αn/(1 + αε)n = 1 +M . We are going to show that H ⩽ 0. Observe that

−ddc(−φ)α = α(1− α)(−φ)α−2dφ ∧ dcφ+ α(−φ)α−1ddcφ.

The AM-GM inequality yields

(ω + ddcφ) ∧ ωn−1 ⩾
(1 + v+
1 +M

)1/n

ωn,

hence

∆ω(−ε(−φ)α) ⩾ αε(−φ)α−1∆ωφ ⩾ nαε(−φ)α−1

[(1 + v+
1 +M

)1/n

− 1

]
.
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Kähler families of Green’s functions 327

We infer
∆ωH ⩾ −n+ nαε(−φ)α−1

[(1 + v+
1 +M

)1/n

− 1

]
.

At the point x0 where H reaches its maximum, we have 0 ⩾ ∆ωH hence

(1 + αε)(−φ)1−α ⩾ (−φ)1−α + αε ⩾ αε
(1 + v+
1 +M

)1/n

,

using that (−φ)1−α ⩾ 1. Thus

ε(−φ)α = ε(−φ)n(1−α) ⩾ αnεn+1

(1 + αε)n
1 + v+
1 +M

= 1 + v+,

by our choice of ε and α. This shows that H ⩽ 0 hence 1 + v+ ⩽ ε(−φ)α.
Note that ε ⩽ cn(1+M) since εn+1αn/(1 + αε)n = 1+M . Thus (ω + ddcφ)n/Vω =

FdVX with

F =
1 + v+
1 +M

f ⩽
ε(−φ)α

1 +M
f ⩽ cn(−φ)αf.

Since
∫
X
fpdVX ⩽ A, we can fix 1 < r < p and use Hölder inequality to obtain∫

X

F rdVX ⩽ εr
∫
X

(−φ)rαfrdVX ⩽

(∫
X

fpdVX

)r/p(∫
X

(−φ)rpα/(p−r)dVX
)(p−r)/p

.

The first integral is controlled by A by assumption, the second one is uniformly
bounded by Theorem 1.8. Thus φ is uniformly bounded by Theorem 1.9, hence

sup
X
v ⩽ sup

X
v+ ⩽ ε sup

X
(−φ)α ⩽ cn[1 +M ]C0,

and the conclusion follows as M ⩽ (1/Vω)
∫
X
|v|ωn + 1. □

The following result is a key improvement on the results obtained in [GPSS24a].

Proposition 2.2. — Let u be a continuous function such that
∫
X
uωn=0 and |∆ωu|⩽1.

Then
∥u∥L∞(X) ⩽ C,

where C = C(n, p,A,B) > 0 only depends on n, p,A,B.

Proof. — We let C1 > 0 denote the uniform constant from Lemma 2.1 and we set

δ =
1

4(1 + 4n2C2
1 )

2
.

Observe that the statement to be proved is homogeneous of degree 1, so it suffices
to show that if u is a continuous function such that

∫
X
uωn = 0 and |∆ωu| ⩽ δ,

then M = (1/Vω)
∫
X
|u|ωn ⩽ C is uniformly bounded from above independently of u.

We assume that M ⩾ 1 (otherwise we are done), and we set

v :=
u

M
= εu, where 0 < ε :=

1

M
⩽ 1.

Since ∥∆ωv∥L∞(X) ⩽ 1, (1/Vω)
∫
X
|v|ωn = 1 and

∫
X
vωn = 0, Lemma 2.1 yields

(2.1) ∥v∥L∞(X) ⩽ 2C1.
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Set
H :=

1

n
∆ωu =

ddcu ∧ ωn−1

ωn
, so that ∥H∥L∞(X) ⩽ δ.

Set t =
√
δ ∈ (0, 1) and observe that the function v is εω-sh and satisfies

(εω + ddcv) ∧ (εω)n−1 = εn(1 +H)ωn = etve−tv(1 +H)(εω)n.

We let φ ∈ PSH(X, εω) ∩ L∞(X) be the unique bounded εω-psh solution of the
complex Monge-Ampère equation

(εω + ddcφ)n = entφe−ntv(1 +H)n(εω)n.

It follows from Proposition 1.4 (applied to εω and f = e−tv(1 +H)) that

(2.2) φ ⩽ v.

Setting ψ = φ/ε ∈ PSH(X,ω), the equation can be rewritten as

(2.3) (ω + ddcψ)n = ent(εψ−v)(1 +H)nωn ⩽ 2nωn,

since εψ − v = φ− v ⩽ 0 and ∥H∥L∞ ⩽ δ ⩽ 1. It follows from Theorem 1.9 that

OscX(ψ) = ∥ψ̃∥L∞(X) ⩽ C0 = C0(n, p,A,B),

where ψ̃ := ψ − supX ψ ⩽ 0. Integrating (2.3) we obtain

1 = entε supX ψ

∫
X

entεψ̃e−ntv(1 +H)n
ωn

Vω
⩽ entε supX ψ(1 + δ)n

∫
X

e−ntv
ωn

Vω
.

We let the reader check that ex ⩽ 1 + x + x2 for |x| ⩽ 1. Since t < n−1(2C1)
−1 and

∥v∥L∞(X) ⩽ 2C1 we infer∫
X

e−ntv
ωn

Vω
⩽ 1− nt

∫
X

v
ωn

Vω
+ n2t2

∫
X

v2
ωn

Vω

= 1 + n2t2
∫
X

v2
ωn

Vω
(since

∫
X

vωn = 0)

⩽ 1 + 4n2C2
1 t

2.

Using that log(1 + x) ⩽ x we therefore obtain

ntε sup
X
ψ ⩾ −n log(1 + δ)− log

(
1 + 4n2C2

1 t
2
)

⩾ −nδ − 4n2C2
1 t

2.

Using that t =
√
δ = 1/2[1 + 4n2C2

1 ] we conclude that

ε sup
X
ψ ⩾ −1

2
.

It follows that φ = (φ− supX φ) + supX φ = εψ̃ + ε supX ψ ⩾ −C0ε− 1/2. Together
with (2.2), this shows that

v ⩾ −C0ε−
1

2
.

Repeating the same argument for −v, we get −v ⩾ −C0ε− 1/2 hence

∥v∥L∞(X) ⩽ C0ε+
1

2
.
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Therefore

1 =
1

Vω

∫
X

|v|ωn ⩽
1

Vω

∫
X

∥v∥L∞(X)ω
n ⩽ C0ε+

1

2
,

which yields
1

Vω

∫
X

|u|ωn ⩽ 2C0.

Unraveling the normalizations we have made, we see that the constant C from the
statement can be chosen as C = 8C0[1 + 4n2C2

1 ]
2, where C0 is the uniform constant

provided by Theorem 1.9 (taking gt = 2nωnt /dVXt) and C1 is the uniform constant
from Lemma 2.1. □

2.2. Green’s functions

Theorem 2.3. — Fix r and s such that 0 < r < n/(n− 1) and 0 < s < 2n/(2n− 1).
For all t ∈ D∗, x ∈ Xt and ω ∈ K(X, p, A,B) we have

(1) supXt
Gωt
x ⩽ C0 = C0(n, p,A,B);

(2) (1/Vωt)
∫
Xt

|Gωt
x |rωnt ⩽ C1 = C1(n, p, r, A,B);

(3) (1/Vωt
)
∫
Xt

|∇Gωt
x |sωt

ωnt ⩽ C2 = C2(n, p, s, A,B).

Given Proposition 2.2 above, the proof is a combination of the main results of
[GPS24, GPSS24a] with the uniform estimates provided by Theorem 1.9.

Proof. Step 1. — Consider h = −1{Gx⩽0}+
∫
{Gx⩽0} ω

n/Vω. Observe that −1 ⩽ h ⩽ 1

and
∫
X
hωn = 0. We let v denote the unique solution ∆ωv = h with

∫
X
vωn = 0.

It follows from Proposition 2.2 that ∥v∥L∞(X) ⩽ C. Thus

C ⩾ v(x) =
1

Vω

∫
X

v(ω + ddcGx) ∧ ωn−1

=
1

Vω

∫
X

Gxdd
cv ∧ ωn−1 = n

∫
{Gx⩽0}

(−Gx)
ωn

Vω
.

Since
∫
X
Gxω

n = 0, we infer∫
X

|Gx|
ωn

Vω
= 2

∫
{Gx⩽0}

(−Gx)
ωn

Vω
⩽

2C

n
.

It therefore follows from Lemma 2.1 that supX Gx ⩽ C0, proving (1).
Observe, more generally, that if v an ω-psh function with

∫
X
vωn = 0, then

(2.4) v(x) =
1

Vω

∫
X

Gx(ω + ddcv) ∧ ωn−1 ⩽ sup
X
Gx ⩽ C0.

Step 2. — We have shown (2) for r = 1 in the previous step. We now show (2) for
r < 1 + 1/n Set Gx = Gx − C0 − 1 ⩽ −1 and consider u the ω-sh solution of

1

Vω
(ω + ddcu) ∧ ωn−1 =

(−Gx)
βωn∫

X
(−Gx)βωn

,
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with
∫
X
uωn = 0, where 0 < β < 1/n. We are going to show that u ⩾ −C is uniformly

bounded below. It will follow that

−C ⩽ u(x) =

∫
X

u
(ω + ddcGx) ∧ ωn−1

Vω

=

∫
X

Gx
(ω + ddcu) ∧ ωn−1

Vω
= −

∫
X
(−Gx)

1+βωn/Vω∫
X
(−Gx)βωn/Vω

.

Since 1 ⩽ −Gx we obtain
∫
X
(−Gx)

βωn/Vω ⩽
∫
X
(−Gx)ω

n/Vω = 1 + C0, hence∫
X

(−Gx)
1+β ω

n

Vω
⩽ C[1 + C0],

proving (2) for r = 1 + β, as Gx differs from Gx by a uniform additive constant.
To prove that u is uniformly bounded below, we consider the normalized solution

φ ∈ PSH(X,ω) ∩ L∞(X),
∫
X
φωn = 0, of the Monge-Ampère equation

1

Vω
(ω + ddcφ)n =

(−Gx)
nβωn∫

X
(−Gx)nβωn

.

Since −Gx ⩾ 1, the density of the right-hand side is bounded from above by
(−Gx)

nβfω. It follows from Hölder inequality that the latter belongs to Lp
′
(dVX),

p′ < p, since∫
X

(−Gx)
nβp′fp

′

ω dVX =

∫
X

(−Gx)
nβp′fp

′−1
ω

ωn

Vω

⩽

(∫
X

fpωdVX

)(p′−1)/(p−1) (∫
X

(−Gx)
nβp′s′ ω

n

Vω

)1/s′

⩽ C ′,

where s′=(p− 1)/(p− p′) is the conjugate exponent of s=(p− 1)/(p′ − 1): we choose
p′ > 1 very close to 1 (thus s′ > 1 is very close to 1 as well) so that nβp′s′ < 1, and
the last integral is under control by the first step.

It follows from Theorem 1.9 that the oscillation of φ is uniformly bounded, hence φ̃
is uniformly bounded, where φ̃ = φ − supX φ. Now

∫
X
φ̃ωn/Vω = − supX φ, thus

supX φ is uniformly bounded as well, and we obtain

−M0 ⩽ φ ⩽ +M0

for some uniform M0. Since
∫
X
(−Gx)

nβωn/Vω ⩽
∫
X
(−Gx)ω

n/Vω ⩽ 1 + C0 =: Cn1 ,
it follows from the AM-GM inequality that (ω + ddcφ) ∧ ωn−1 ⩾ ((−Gx)

β/C1)ω
n,

while (−Gx)
βωn ⩾ (ω + ddcu) ∧ ωn−1 since −Gx ⩾ 1. We infer that φ − u/C1 is an

ω-sh function normalized by
∫
X
(φ − u/C1)ω

n = 0. It follows from (2.4) that it is
uniformly bounded from above, hence

−(M0 + C0)C1 ⩽ u ⩽ C0,

showing that u is uniformly bounded, as claimed.
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Step 3. — We now establish (2) for the optimal values of r by a recursive argument.
Indeed the reasoning from Step 2 shows that if

∫
X
(−Gx)

β′
(ωn/Vω) ⩽ C then for any

β > 0 with nβ < β′, one has
∫
X
(−Gx)

1+β(ωn/Vω) ⩽ C ′. By induction this yields, for
all k ∈ N, ∫

X

(−Gx)
r ω

n

Vω
⩽ Cr for r < 1 +

1

n
+

1

n2
+ · · ·+ 1

nk
.

Thus a uniform control can be obtained for all r < n/(n− 1).

Step 4. — It follows from Step 3, Lemma 2.5 below and Hölder inequality that (3)
holds for s < 2n/(2n− 1). Indeed set r = (s/(2− s))(1 + β), and observe that by
choosing 0 < β very small and r arbitrarily close to n/(n− 1), we obtain s arbitrarily
close to 2n/(2n− 1). Setting 2α = s(1 + β), we thus get∫

X

|∇Gx|sωn =

∫
X

|∇Gx|sωn =

∫
X

|∇Gx|s

|Gx|α
|Gx|αωn

⩽

(∫
X

|∇Gx|2

|Gx|2α/s
ωn

)s/2(∫
X

|Gx|2α/(2−s)ωn
)(2−s)/2

=

(∫
X

|∇Gx|2

|Gx|1+β
ωn

)s/2(∫
X

|Gx|rωn
)(2−s)/2

⩽ C(s). □

Remark 2.4. — All these estimates are valid, more generally, for any ω-psh function v
which is normalized by

∫
X
vωn = 0. Indeed using Stokes theorem we obtain

v(x) =
1

Vω

∫
X

Gx(ω + ddcv) ∧ ωn−1 ⩽ sup
X
Gx ⩽ C0.

Hölder inequality, Fubini theorem and the symmetry Gx(y) = Gy(x) yield∫
x

|v(x)|r ω
n(x)

Vω
⩽

∫
x

[∫
y

|Gx(y)|
(ω + ddcv) ∧ ωn−1(y)

Vω

]r
ωn(x)

Vω

⩽
∫
x

[∫
y

|Gx(y)|r
(ω + ddcv) ∧ ωn−1(y)

Vω

]
ωn(x)

Vω

=

∫
y

[∫
x

|Gy(x)|r
ωn(x)

Vω

]
(ω + ddcv) ∧ ωn−1(y)

Vω
⩽ C1.

Similarly∫
x

|∇xv(x)|s
ωn(x)

Vω
⩽

∫
x

[∫
y

|∇xGx(y)|
(ω + ddcv) ∧ ωn−1(y)

Vω

]s
ωn(x)

Vω

⩽
∫
x

[∫
y

|∇xGx(y)|s
(ω + ddcv) ∧ ωn−1(y)

Vω

]
ωn(x)

Vω

=

∫
y

[∫
x

|∇xGy(x)|s
ωn(x)

Vω

]
(ω + ddcv) ∧ ωn−1(y)

Vω
⩽ C2.

We have used the following observation [GPSS24a, Lem. 5.6].
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Lemma 2.5. — Fix β > 0. Then

1

Vω

∫
X

dGx ∧ dcGx ∧ ωn−1

(−Gx + C0 + 1)1+β
⩽

1

β
.

Here C0 denotes the uniform constant from Theorem 2.3.1.

Proof. — The function u(y) = (−Gx(y)+C0+1)−β takes values in [0, 1] with u(x) = 0.
Since du = βdGx/(−Gx + C0 + 1)1+β , we infer

0 =
1

Vω

∫
X

u(ω + ddcGx) ∧ ωn−1 =
1

Vω

∫
X

uωn − β

Vω

∫
X

dGx ∧ dcGx ∧ ωn−1

(−Gx + C0 + 1)β+1
.

The result follows. □

2.3. Sobolev estimates. — The following is our improved and family version of
[GPSS23, Th. 2.1 & Lem. 6.2].

Theorem 2.6. — Fix r such that 1 < r < 2n/(n− 1), t ∈ D∗ and ω ∈ K(X, p, A,B).

(1) For all u ∈W 1,2(Xt), we have(
1

Vωt

∫
Xt

|u− u|2rωnt
)1/r

⩽ C1
1

Vωt

∫
Xt

|∇u|2ωt
ωnt ,

where u = (1/Vωt)
∫
Xt
uωnt and C1 = C1(n, p, r, A,B) > 0.

(2) If Ω ⊂ Xt is a domain and u ∈W 1,2(Ω) has compact support in Ω, then(
1

Vωt

∫
Ω

|u|2rωnt
)1/r

⩽ C2

[
1 +

Vωt(Ω)

Vωt
(Xt ∖ Ω)

]
1

Vωt

∫
Ω

|∇u|2ωt
ωnt ,

where C2 = C2(n, p, r, A,B) > 0.

Proof. — The proof is very similar to that of [GPSS23, Th. 2.1 & Lem. 6.2], so we
only sketch it. We fix β ∈ (0, 1) such that (1 + β)r < n/(n− 1). Green’s formula and
Hölder inequality yield

|u(x)− u| =
∣∣∣∣ 1

Vω

∫
X

du ∧ dcGx ∧ ωn−1

∣∣∣∣
⩽

(
1

Vω

∫
X

dGx ∧ dcGx ∧ ωn−1

(−Gx)1+β

)1/2 (
1

Vω

∫
X

(−Gx)
1+β |∇u|2ωωn

)1/2

⩽
1

β1/2

(
1

Vω

∫
X

(−Gx)
1+β |∇u|2ωωn

)1/2

,

hence

(2.5)
(∫

X

|u− u|2rωn
)1/r

⩽
1

β

∥∥∥∥ 1

Vω

∫
X

(−Gx)
1+β |∇u|2ωωn

∥∥∥∥
Lr(X,ω)

.
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It follows from Minkowski’s inequality for integrals that∥∥∥∥ 1

Vω

∫
X

(−Gx)
1+β |∇u|2ωωn

∥∥∥∥
Lr(X,ω)

⩽
1

Vω

∫
X

(∫
X

(−Gx)
r(1+β)ωn(x)

)1/r

|∇u|2ω(y)ωn(y)

⩽ C1
V

1/r
ω

Vω

∫
X

|∇u|2ωωn,

using Theorem 2.3.2. Together with (2.5) we obtain(
1

Vω

∫
X

|u− u|2rωn
)1/r

⩽ C1
1

Vω

∫
X

|∇u|2ωωn.

For the second inequality, as in [GPSS23, Lem. 6.2], using Green formula, one has
for any x ∈ Ω and β > 0,

|u(x)|2 ⩽
C

Vω(Ωc)

∫
X

|∇u|2ωω2 +
1

βVω

∫
X

(−G(x, y))1+β |∇u|2ωωn.

Raising to the power r on both sides and arguing similarly to what we have done
above, we obtain the required inequality. □

3. Geometric applications

3.1. Diameter bounds and non-collapsing. — Among the various applications of
Theorem A, we stress the following diameter and non-collapsing estimates.

Theorem 3.1. — Fix δ such that 0 < δ < 1 and ω ∈ K(X, p, A,B). There exists
C = C(n, p, δ, A,B) > 0 such that for all t ∈ D∗, x ∈ Xt, and r > 0,

Cmin(1, r2n+δ) ⩽
1

Vωt

Volωt
(Bωt

(x, r)) and diam(Xt, ωt) ⩽ C.

Thus the family of compact metric spaces {(Xt, dωt
), ω ∈ K(X, p, A,B), t ∈ D∗} is

pre-compact in the Gromov-Hausdorff topology.

Due to its prominent role in geometric analysis, there has been an intensive search
for such uniform diameter estimates in the past decade. We simply list the most recent
contributions which require as an extra assumption

– a Ricci lower bound [LNTZ17, FGS20, GS22];
– X be of general type [Bam18, Wan18, JS22];
– strong continuity of Monge-Ampère potentials [Li21, GGZ23, Vu24a];
– a uniform lower bound on ωn/dVX [GPS24, GPSS24a, GPSS23].
The proof of Theorem 3.1 is similar to that of [GPSS24a, Th. 1.1].

Proof. — We fix (x0, y0) ∈ X2 such that dω(x0, y0) = diam(X,ω). The function
ρ : x ∈ X 7→ dω(x0, x) ∈ R+ is 1-Lipschitz with ρ(x0) = 0. Green’s formula applied
to the function ρ at the point x0 yields∫

X

ρωn =

∫
X

dρ ∧ dcGx0 ∧ ωn−1 ⩽
∫
X

|∇Gx0 |ωωn.
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Using again Green’s formula at y0 and the previous inequality, we obtain

diam(X,ω) =
1

Vω

∫
X

ρωn − 1

Vω

∫
X

dρ ∧ dcGy0 ∧ ωn−1

⩽
1

Vω

∫
X

|∇Gx0
|ωωn +

1

Vω

∫
X

|∇Gy0 |ωωn ⩽ C,

where the last inequality follows from Theorem 2.3.3.
Next we prove the non-collapsing estimate. We fix x ∈ X and consider the uni-

formly bounded function ρ : y ∈ X 7→ dω(x, y) ∈ R+. Fix r ∈ (0, 1] and let χ be a
non-negative smooth cut-off function with support in Bω(x, r) such that χ ≡ 1 on
Bω(x, r/2) and supX |∇χ|ω ⩽ C/r. Thus ρχ is a C-Lipschitz function.

We pick s ∈ (1, 2n/(2n− 1)) and denote by s∗ = s/(s− 1) ∈ (2n,∞) the conjugate
exponent of s. Applying Green’s formula to ρχ at y ∈ Bω(x, r)

c, we obtain∫
X

ρχωn =
1

Vω

∫
X

d(χρ) ∧ dcGy ∧ ωn−1

⩽ C

(∫
X

|∇Gy|sωωn
)1/s

(Volω(Bω(x, r)))
1/s∗

⩽ CV 1/s
ω

(
Volω(Bω(x, r))

)1/s∗
,

by Theorem 2.3.3. Applying Green’s formula again with z ∈ ∂Bω(x, r/2), we infer
r

2
=

1

Vω

∫
X

ρχωn +
1

Vω

∫
X

d(χρ) ∧ dcGz ∧ ωn−1

⩽ 2CV −1+1/s
ω

(
Volω(B(x, r))

)1/s∗
= 2C

(Volω(B(x, r))

Vω

)1/s∗

.

Since s∗ = s/(s− 1) ∈ (2n,∞), this implies the non-collapsing estimate.
Set F := {(Xt, dωt

), ω ∈ K(X, p, A,B), t ∈ D∗}. Gromov’s theorem [BBI01,
Th. 7.4.15] ensures that this family is pre-compact in the Gromov-Hausdorff topology
iff there is a uniform bound on the diameters and for each ε > 0 one can find in each
X ∈ F an ε-net consisting of no more than N = N(ε)-points. This follows easily from
the uniform non-collapsing estimate, together with the uniform upper bound on the
global volumes Volωt

(Xt) ⩽ V0. □

3.2. Diameters of smoothable cscK metrics. — In this section we consider (X,β) a
compact n-dimensional Kähler variety with Kawamata log terminal (klt) singularities
which admits a Q-Gorenstein smoothing π : X → D, i.e.,

– X is a Q-Gorenstein complex space of complex dimension n+ 1,
– π is a proper surjective holomorphic map such that X|π−1(0) ∼ X0,
– Xt = X|π−1(t) is smooth for all t ∈ D∗,
– there is a smooth form βX such that βt = βX|Xt

is Kähler with β0 = β.
When the Mabuchi functional Mβ is coercive, it has been shown in [PTT23, Th. C]

that so are the Mabuchi functionals Mβt
, hence there exists a unique constant scalar

curvature Kähler metric ωt cohomologous to βt.
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Corollary 3.2. — In the setting above, there exists D > 0 such that for all t ∈ D∗,

diam(Xt, ωt) ⩽ D.

Proof. — For t ∈ D∗, the unique constant scalar curvature Kähler metric ωt ∈ [βt]

satisfies the following coupled equations:{
(βt + ddcφt)

n = eFtβnt ,

∆ωt
Ft = −st +Trωt

Ric(βt).

The volumes
∫
X
βnt are uniformly bounded away from zero and infinity, while it follows

from [PTT23, Th. 5.3] that the smooth densities ft=eFt satisfy ∥ft∥Lp(Xt,βn
t )⩽B, for

some p > 1 and for all t ∈ D∗. Thus ω ∈ K(X, p, 1, B), and the uniform bound for
diam(Xt, ωt) follows from Theorem 3.1. □

3.3. Estimates along the Kähler-Ricci flow. — We assume here that X is a com-
pact Kähler manifold with KX nef (a smooth minimal model). We consider

∂ωt
∂t

= −Ric(ωt)− ωt,

the normalized Kähler-Ricci flow starting from an initial Kähler metric ω0. It follows
from [TZ06] that this flow exists for all times t > 0. We refer the reader to [Tos18,
Tos24] for recent overviews of the theory of the Kähler-Ricci flow.

It has been a challenging open problem up to now to obtain uniform geometric
bounds along the flow as t→ +∞. We obtain here the following striking result which
-in particular- solves [Tos18, Conj. 6.2]:

Theorem 3.3. — Fix δ such that 0 < δ < 1. There exist C = C(ω0) > 0 and c =

c(ω0, δ) > 0 such that for all t > 0 and x ∈ X,

diam(X,ωt) ⩽ C and Volωt
(Bωt

(x, r)) ⩾ cr2n+δVωt
,

whenever 0 < r < diam(X,ωt).

This result has been established by Guo-Phong-Song-Sturm under the extra
assumption that the Kodaira dimension kod(X) of X is non-negative (see [GPSS24a,
Th. 2.3]). Recall that

kod(X) = lim sup
m→+∞

[
log dimH0(X,mKX)

logm

]
measures the asymptotic growth of the number of holomorphic pluricanonical forms,
while the numerical dimension ν = ν(X) = sup{k ⩾ 0, c1(KX)k ̸= 0} measures the
asymptotic growth of volumes under the NKRF,

(3.1) Volωt(X) =

(
n

ν

)
c1(KX)ν{ω0}n−νe−(n−ν)t[1 + o(1)].

It is known that ν(X) ⩾ kod(X) and the equality turns out to be equivalent to
the abundance conjecture (see [Tos18, Conj. 6.3]). The extra assumption made in
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[GPSS24a, Th. 2.3] requires that kod(X) ̸= −∞; it is equivalent to

ν(X) ⩾ 0
?

=⇒ kod(X) ⩾ 0,

which has been an open problem for the last fifty years.

Proof. — Fix χ a smooth closed (1, 1)-form representing c1(KX). It follows from the
∂∂-lemma that ωt = e−tω0 + (1 − e−t)χ + ddcφt for some φt ∈ C∞(X). One can
normalize the latter so that the NKRF is equivalent to the parabolic equation

(e−tω0 + (1− e−t)χ+ ddcφt)
n = e∂tφt+φt−(n−ν)tωn0

on X × R+, with φ0 = 0. Here ν denotes the numerical dimension of KX .
We claim that there exists C0, C1 > 0 such that for all t > 0 and x ∈ X,

φt(x) ⩽ C0 and ∂tφt(x) ⩽ C1.

It will then follow from (3.1) that V −1
ωt
ωnt = ftω

n
0 with ∥ft∥∞ ⩽ C2. The uniform

diameter and non-collapsing estimates are thus consequences of Theorem A.

Upper bound on φt. — We set Vt =
∫
X
ωnt and I(t) =

∫
X
φtω

n
0 /V0. Since the forms

e−tω0+(1− e−t)χ ⩽ C0ω0 are uniformly bounded from above, it follows from [GZ17,
Prop. 8.5] that supX φt ⩽ I(t) +C for some uniform constant C > 0, hence it suffices
to bound I(t) from above. The concavity of the logarithm ensures∫

X

log
(ωnt
ωn0

)ωn0
V0

= log Vt − log V0 +

∫
X

log
(ωnt /Vt
ωn0 /V0

)ωn0
V0

⩽ log Vt − log V0.

Therefore

I ′(t) =

∫
X

∂tφt
ωn0
V0

⩽ −I(t) + [log Vt + (n− ν)t− log V0] ⩽ −I(t)− C ′.

Using that I(0) = 0 we conclude that I(t) ⩽ C ′, as desired.

Upper bound on ∂φt. — Consider H(t, x) = (et − 1)∂tφt(x) − φt(x) − h(t), where
h(t) = νt+ (n− ν)et. A direct computation shows that( ∂

∂t
−∆ωt

)
(H) = −Trωt

(ω0) + (n− ν)[et − 1] + n− h′(t) ⩽ 0.

The maximum principle thus ensures that H(t, x) ⩽ maxx∈X H(0, x) ⩽ 0, hence

(et − 1)∂tφt(x) ⩽ φt(x) + νt+ (n− ν)et ⩽ C0 + net.

Thus ∂tφt(x) ⩽ C1 for all t ⩾ 1, while such an upper bound is clear on X × [0, 1] by
compactness. The proof is complete. □
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3.4. Fiberwise Calabi-Yau metrics. — Our estimates can be applied in the study
of adiabatic limits of Ricci-flat Kähler metrics on a Calabi-Yau manifold under the
degeneration of the Kähler class, as initiated by Tosatti in [Tos10].

Let (X,βX) be an N -dimensional Kähler manifold with nowhere vanishing holo-
morphic volume form Ω normalized so that

∫
X
iN

2

Ω ∧ Ω = 1. Let π : X → Y be a
holomorphic fibration onto a Riemann surface (Y, βY ), with connected fibres by Xy,
y ∈ Y . We assume without loss of generality that

∫
Xy

βN−1
X = 1 and

∫
Y
βY = 1, and

that the singular fibres have at worst canonical singularities. We let ωt denote the
Calabi–Yau metrics on X in the class of βt = tβX + π∗βY , t > 0.

Understanding the behavior of (X,ωt) as t → 0 as been the subject of intensive
studies in the past decade, notably through collaborations of Gross, Hein, Li, Tosatti,
Weinkove, Yang and Zhang (see [Tos20] and the references therein). Theorem A allows
one to provide an alternative proof of the main result of [Li23].

Theorem 3.4 ([Li23, Th. 1.4]). — There exists C > 0 such that

diam
(
Xy,

ωt
t

)
⩽ C

for all 0 < t ⩽ 1 and for all y ∈ Y ∖ S.

Here S ⊂ Y denotes the discriminant locus; π is a submersion over Y ∖ S so that
every fiber Xy, y ∈ Y ∖ S is smooth.

Proof. — Set n=N − 1 and ωy=ωt/t|Xy
. Observe that Vωy

=
∫
Xy

ωny =
∫
Xy

βN−1
X =1.

It follows from [Li23, Prop. 2.3] and [DNGG23, Lem. 4.4] that there exists p > 1 such
that

ωny = f(βX |Xy
)n with

∫
Xy

fp(βX |Xy
)n ⩽ B,

for some constant B > 0 independent of t, y. The conclusion follows therefore from
Theorem 3.1 applied to the family (Xy, ωy) with A = 1. □
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