[Cohomologie quantique et facteurs de Fukaya à partir de tores lagrangiens monotones]
Soit un tore lagrangien monotone dans une variété symplectique compacte , de super-potentiel . Nous montrons qu’une application ouverte-fermée définie géométriquement induit une décomposition de la cohomologie quantique en un produit où l’un des facteurs est la localisation de l’anneau jacobien en l’ensemble des points critiques isolés de . La démonstration fait intervenir la description des facteurs de la catégorie de Fukaya correspondant à ce facteur — vérifiant ainsi ce que prédit la symétrie miroir — et l’introduction d’un critère de génération automatique, à la manière de Ganatra et Sanda, qui peut avoir son intérêt propre. Nous appliquons nos résultats pour comprendre la structure de la cohomologie quantique et pour obtenir des contraintes sur les super-potentiels possibles des tores monotones.
Let be a monotone Lagrangian torus inside a compact symplectic manifold , with superpotential . We show that a geometrically-defined closed–open map induces a decomposition of the quantum cohomology into a product, where one factor is the localisation of the Jacobian ring at the set of isolated critical points of . The proof involves describing the summands of the Fukaya category corresponding to this factor—verifying the expectations of mirror symmetry—and establishing an automatic generation criterion in the style of Ganatra and Sanda, which may be of independent interest. We apply our results to understanding the structure of quantum cohomology and to constraining the possible superpotentials of monotone tori.
Accepté le :
Publié le :
Keywords: Quantum cohomology, Fukaya category, Lagrangian torus, homological smoothness
Mots-clés : Cohomologie quantique, catégorie de Fukaya, tore lagrangien, lissité homologique
Jack Smith 1

@article{JEP_2025__12__287_0, author = {Jack Smith}, title = {Quantum cohomology and {Fukaya} summands from monotone {Lagrangian} tori}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {287--318}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.290}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.290/} }
TY - JOUR AU - Jack Smith TI - Quantum cohomology and Fukaya summands from monotone Lagrangian tori JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 287 EP - 318 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.290/ DO - 10.5802/jep.290 LA - en ID - JEP_2025__12__287_0 ER -
%0 Journal Article %A Jack Smith %T Quantum cohomology and Fukaya summands from monotone Lagrangian tori %J Journal de l’École polytechnique — Mathématiques %D 2025 %P 287-318 %V 12 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.290/ %R 10.5802/jep.290 %G en %F JEP_2025__12__287_0
Jack Smith. Quantum cohomology and Fukaya summands from monotone Lagrangian tori. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 287-318. doi : 10.5802/jep.290. https://jep.centre-mersenne.org/articles/10.5802/jep.290/
[1] - “A geometric criterion for generating the Fukaya category”, Publ. Math. Inst. Hautes Études Sci. (2010) no. 112, p. 191-240 | DOI | Numdam | MR
[2] - Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969 | MR
[3] - “Mirror symmetry and -duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT 1 (2007), p. 51-91 | MR | Zbl
[4] - “Quantum structures for Lagrangian submanifolds”, 2007 | arXiv
[5] - “Lagrangian topology and enumerative geometry”, Geom. Topol. 16 (2012) no. 2, p. 963-1052 | DOI | MR | Zbl
[6] - “Maurer–Cartan elements in symplectic cohomology from compactifications”, 2024 | arXiv
[7] - “Quantum cohomology as a deformation of symplectic cohomology”, J. Fixed Point Theory Appl. 24 (2022) no. 2, article ID 48, 77 pages | DOI | MR | Zbl
[8] - “Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus”, Internat. Math. Res. Notices (2004) no. 35, p. 1803-1843 | DOI | MR | Zbl
[9] - “Localized mirror functor constructed from a Lagrangian torus”, J. Geom. Phys. 136 (2019), p. 284-320 | DOI | MR | Zbl
[10] - “Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds”, Asian J. Math. 10 (2006) no. 4, p. 773-814 | DOI | MR | Zbl
[11] - “Quantum cohomology of rational surfaces”, in The moduli space of curves (Texel Island, 1994), Progress in Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, p. 33-80 | DOI | MR | Zbl
[12] - “Compact generators in categories of matrix factorizations”, Duke Math. J. 159 (2011) no. 2, p. 223-274 | DOI | MR | Zbl
[13] - “Generating the Fukaya categories of Hamiltonian -manifolds”, J. Amer. Math. Soc. 32 (2019) no. 1, p. 119-162 | DOI | MR | Zbl
[14] - Lagrangian Floer theory and mirror symmetry on compact toric manifolds, Astérisque, vol. 376, Société Mathématique de France, Paris, 2016
[15] - “Automatically generating Fukaya categories and computing quantum cohomology”, 2016 | arXiv
[16] - “Mirror symmetry: from categories to curve counts”, 2015 | arXiv
[17] - “Global matrix factorizations”, Math. Res. Lett. 20 (2013) no. 1, p. 91-106 | DOI | MR | Zbl
[18] - “Potential functions via toric degenerations”, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012) no. 2, p. 31-33 | DOI | MR | Zbl
[19] - “Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings”, Internat. Math. Res. Notices (1996) no. 7, p. 305-346 | DOI | MR | Zbl
[20] - “The wall-crossing formula and Lagrangian mutations”, Adv. Math. 361 (2020), article ID 106850, 67 pages | DOI | MR | Zbl
[21] - “The monotone wrapped Fukaya category and the open-closed string map”, Selecta Math. (N.S.) 23 (2017) no. 1, p. 533-642 | DOI | MR | Zbl
[22] - “Computation of quantum cohomology from Fukaya categories”, Internat. Math. Res. Notices (2021) no. 1, p. 769-803 | DOI | MR | Zbl
[23] - “Graded Lagrangian submanifolds”, Bull. Soc. math. France 128 (2000) no. 1, p. 103-149 | DOI | Numdam | MR | Zbl
[24] - Fukaya categories and Picard–Lefschetz theory, Zurich Lectures in Advanced Math., European Mathematical Society, Zürich, 2008 | DOI | MR
[25] - “On the Fukaya category of a Fano hypersurface in projective space”, Publ. Math. Inst. Hautes Études Sci. 124 (2016), p. 165-317 | DOI | Numdam | MR | Zbl
[26] - “Formulae in noncommutative Hodge theory”, J. Homotopy Relat. Struct. 15 (2020) no. 1, p. 249-299 | DOI | MR | Zbl
[27] - “On Serre duality for compact homologically smooth DG algebras”, 2007 | arXiv
[28] - “Hirzebruch-Riemann-Roch-type formula for DG algebras”, Proc. London Math. Soc. (3) 106 (2013) no. 1, p. 1-32 | DOI | MR | Zbl
[29] - “Floer cohomology and pencils of quadrics”, Invent. Math. 189 (2012) no. 1, p. 149-250 | DOI | MR | Zbl
[30] - “Superfiltered -deformations of the exterior algebra, and local mirror symmetry”, J. London Math. Soc. (2) 105 (2022) no. 4, p. 2203-2248 | DOI | MR | Zbl
[31] - “Hochschild cohomology of the Fukaya category via Floer cohomology with coefficients”, 2023 | arXiv
[32] - “The Stacks Project”, 2023, https://stacks.math.columbia.edu
[33] - “From symplectic cohomology to Lagrangian enumerative geometry”, Adv. Math. 352 (2019), p. 717-776 | DOI | MR | Zbl
[34] - “String topology with gravitational descendants, and periods of Landau–Ginzburg potentials”, 2019 | arXiv
[35] - “The rising sea: Foundations of algebraic geometry notes” (2017), draft, http://math.stanford.edu/~vakil/216blog/
Cité par Sources :