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QUANTUM COHOMOLOGY AND FUKAYA SUMMANDS

FROM MONOTONE LAGRANGIAN TORI

by Jack Smith

Abstract. — Let L be a monotone Lagrangian torus inside a compact symplectic manifold X,
with superpotential WL. We show that a geometrically-defined closed–open map induces a
decomposition of the quantum cohomology QH∗(X) into a product, where one factor is the
localisation of the Jacobian ring JacWL at the set of isolated critical points of WL. The proof in-
volves describing the summands of the Fukaya category corresponding to this factor—verifying
the expectations of mirror symmetry—and establishing an automatic generation criterion in
the style of Ganatra and Sanda, which may be of independent interest. We apply our results to
understanding the structure of quantum cohomology and to constraining the possible superpo-
tentials of monotone tori.
Résumé (Cohomologie quantique et facteurs de Fukaya à partir de tores lagrangiens monotones)

Soit L un tore lagrangien monotone dans une variété symplectique compacte X, de super-
potentiel WL. Nous montrons qu’une application ouverte-fermée définie géométriquement induit
une décomposition de la cohomologie quantique QH∗(X) en un produit où l’un des facteurs est
la localisation de l’anneau jacobien JacWL en l’ensemble des points critiques isolés de WL. La
démonstration fait intervenir la description des facteurs de la catégorie de Fukaya correspondant
à ce facteur — vérifiant ainsi ce que prédit la symétrie miroir — et l’introduction d’un critère de
génération automatique, à la manière de Ganatra et Sanda, qui peut avoir son intérêt propre.
Nous appliquons nos résultats pour comprendre la structure de la cohomologie quantique et
pour obtenir des contraintes sur les super-potentiels possibles des tores monotones.
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1. Introduction

1.1. Statement of results. — Let (X,ω) be a compact symplectic manifold of
dimension 2n, and let L ⊂ X be a monotone Lagrangian torus. The goal of this paper
is to explore the relationship between the quantum cohomology of X and a Laurent
polynomial—the superpotential—associated to L.
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288 J. Smith

Recall that monotonicity of L means the existence of some τ > 0 such that the
Maslov index and area homomorphisms µ, ω : π2(X,L) → R satisfy ω = τµ. This is
the relative analogue of being Fano, and allows us to construct the quantum cohomol-
ogy QH∗(X) and the Floer cohomology HF∗(L,L) of L with itself, over an arbitrary
ground field k, using only classical transversality techniques.

These cohomology groups are connected by a Z/2-graded unital k-algebra homo-
morphism

CO0
L : QH∗(X) −→ HF∗(L,L),

which is defined on an arbitrary class α ∈ QH∗(X) roughly as follows. Pick a Poincaré
dual cycle Z ⊂ X, and consider pseudoholomorphic discs in X with boundary on L

which map an interior marked point to Z. Look at the pseudocycle on L swept out by
a boundary marked point on such discs, and take its Poincaré dual class in HF∗(L,L).
This is the length-zero closed–open string map.

More generally, one can equip L with a rank-1 local system L over k, and consider
the same constructions for the pair L♭ = (L,L) instead of L. Incorporating L here
means that every count of pseudoholomorphic discs—in the definition of the Floer
differential, the Floer product, and the closed–open string map—is weighted by the
monodromy of L around each disc boundary. Different choices of L allow us to extract
different information. For example, HF∗(L♭, L♭) typically vanishes for most choices
of L, but is non-zero when L takes specific values. And the map CO0

L♭ usually ‘sees’
different parts of QH∗(X) for different choices of L.

Example 1.1. — If k = C and L is the Clifford torus in X = CPn, defined by

L = {[x0 : . . . : xn] : |x0| = · · · = |xn|},

then by [8] we have HF∗(L♭, L♭) ̸= 0 for exactly n + 1 choices of L, namely those
which are invariant under permutations of the homogeneous coordinates. Moreover,
if H ∈ H2(X) denotes the hyperplane class then we have

QH∗(X) = C[H]/(Hn+1 − 1) ∼=
∏

ζ | ζn+1=1

C[H]/(H − ζ).

The projection maps onto the n + 1 factors of this splitting can be realised by the
maps CO0

L♭ for the n+ 1 interesting choices of L.

For a general monotone torus L, its Floer theory is controlled by its superpotential

WL ∈ Z[H1(L;Z)].

This counts rigid pseudoholomorphic discs u which send a boundary marked point to
a chosen point p in L, weighted by the monomial z[∂u] associated to the boundary
homology class, and by a sign which we will not dwell on. A standard cobordism
argument shows that the resulting WL is independent of auxiliary data, if these are
chosen suitably generically. We will view WL as an element of S = k[H1(L;Z)], and
hence as a function on the space H1(L;k×) = SpecS of rank-1 local systems on L

over k. It is well-known [10, §13], [5, Prop. 3.3.1] that HF∗(L♭, L♭) is non-zero if and
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Quantum cohomology and Fukaya summands from monotone Lagrangian tori 289

only if L is a critical point of WL when viewed in this way. Explicitly, choosing a basis
γ1, . . . , γn for H1(L;Z) gives an identification S ∼= k[z±1

1 , . . . , z±1
n ], where zi = zγi ,

under which WL becomes a Laurent polynomial in the zi and the local system L

corresponds to the point whose zi-coordinate is the monodromy of L around γi. The
critical point condition is then that all partial derivatives ∂WL/∂zi vanish at L.

To extract the information of all L at once, we can work over S instead of k, and
weight each disc u by z[∂u] instead of by the monodromy of L around ∂u. We denote
the resulting Floer cohomology algebra and closed–open string map by

(1) CO0
L : QH∗(X) −→ HF∗

S(L,L).

By the same calculations from [5], the S-subalgebra of HF∗
S(L,L) generated by the

unit is the Jacobian ring JacWL = S/(∂W/∂z1, . . . , ∂W/∂zn). For each L, corre-
sponding to a maximal ideal m in S with residue field k, the map CO0

L♭ can be
recovered from CO0

L by reducing modulo m at chain level.
We call a critical point L isolated if any of the equivalent conditions in Lemma 1.22

holds, and it is these L that are relevant for our purposes. Let Sisol denote the loca-
lisation of S at the set of isolated critical points, i.e., the ring obtained from S by
adjoining a multiplicative inverse to any function which is non-zero at every such L.
Similarly, let JacisolWL and CO0

L,isol : QH∗(X) → HF∗
isol(L,L) denote the localisa-

tions of JacWL and (1) respectively at the set of isolated critical points. Equivalently
one could apply the operation −⊗SSisol to JacWL and (1). Since localisation is exact,
it doesn’t matter whether we localise at chain level or after passing to cohomology.
Our main result is the following.

Theorem A (Corollary 3.15). — As an Sisol-algebra, HF∗
isol(L,L) is generated by the

unit and is equal to JacisolWL. The Z/2-graded unital k-algebra homomorphism

CO0
L,isol : QH∗(X) −→ HF∗

isol(L,L) = JacisolWL

is surjective, and gives rise to an orthogonal decomposition

QH∗(X) = K ×K⊥

(of Z/2-graded unital k-algebras) with respect to the Poincaré pairing. Here

K = kerCO0
L,isol,

and CO0
L,isol induces an isomorphism K⊥ → JacisolWL.

Corollary B. — QH∗(X) has JacisolWL as a factor, in even degree. □

Remark 1.2. — This result has a natural interpretation in terms of mirror symmetry,
which also explains why it is necessary to remove non-isolated critical points; see
Section 1.2.

Remark 1.3. — Sanda [22, §5.1] proves a version of Corollary B but for the locali-
sation of JacWL at the non-degenerate (i.e., Morse) critical points. In this case, the
resulting localisation is simply a product of copies of k, one for each non-degenerate
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290 J. Smith

critical point. Our result strengthens this to allow degenerate isolated critical points,
corresponding to more complicated factors of QH∗(X).

Because HF∗
isol(L,L) is generated by the unit, which is Poincaré dual to any point p

in L, the map CO0
L,isol in Theorem A has a particularly nice geometric description:

given an input α ∈ QH∗(X), pick a Poincaré dual cycle Z as above, and count rigid
pseudoholomorphic discs which send an interior marked point to Z and a bound-
ary marked point to p, weighted by boundary class monomial in Sisol. As usual,
one must also weight by a sign, and use suitably generic auxiliary data. If Z has
(real) codimension-2 and is disjoint from L then it defines a Poincaré dual class
α̃ ∈ H2(X,L;k) and CO0

L,isol(α) can be computed by counting the same discs u as WL,
but additionally weighted by the pairing ⟨[u], α̃⟩. In particular, using the well-known
argument of Auroux–Kontsevich–Seidel [3, Lem. 6.7], we see that CO0

L,isol(c1(X)) is
the image of WL in JacisolWL.

Example 1.4. — Returning to the Clifford torus in CPn, for a suitable choice of basis
of H1(L;Z) we have

WL = z1 + · · ·+ zn +
1

z1 · · · zn
.

We therefore have, over any field k, that

JacWL = k[z±1
1 , . . . , z±1

n ]
/(

1− 1

z21z2 · · · zn
, . . . , 1− 1

z1 · · · zn−1z2n

)
∼= k[z]/(zn+1− 1),

with each zi sent to z. All critical points are isolated, so JacisolWL = JacWL, and we
have

CO0
L,isol((n+ 1)H) = CO0

L,isol(c1(X)) =WL = z + · · ·+ z +
1

zn
= (n+ 1)z.

Dividing through by n + 1 then gives CO0
L,isol(H) = z. (If the characteristic of k

divides n+ 1 then we can make the argument over Z instead of k, divide through by
n+ 1 there, and only then tensor with k. Alternatively we can compute CO0

L,isol(H)

directly, by representing H by a coordinate hyperplane Z = {xi = 0} and obtaining
CO0

L,isol(H) = zi = z.) We conclude that the map

CO0
L,isol : QH∗(X) = k[H]/(Hn+1 − 1) −→ HF∗

isol(L,L) = k[z]/(zn+1 − 1)

is an isomorphism, and induces the trivial splitting of QH∗(X). This is true more
generally when L is a monotone toric fibre [14].

Perhaps surprisingly, the proof of Theorem A goes via the (monotone) Fukaya cate-
gory, as follows. We first modify Sanda’s proof of [22, Th. 1.1] to establish an automatic
split-generation result, Theorem 2.8, without assuming existence of a cyclic structure
on the category. This may be of independent interest. Ganatra states a similar (more
general) result, without proof, in [15, Rem. 35]; see also Ganatra–Perutz–Sheridan [16,
Th. 5.2]. We then apply this in Section 3.1, using a description of the A∞-structure
on CF∗(L♭, L♭) from [30] and a smoothness result of Dyckerhoff [12, §7], to show that
for each isolated critical point Li the object L♭

i = (L,Li) split-generates a summand
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of the Fukaya category and has an associated factor Qi in QH∗(X). After arguing in
Section 3.3 that the different Qi are pairwise orthogonal, in Section 3.4 we use results
from [31] to interpret the resulting splitting of QH∗(X) in terms of CO0

L,isol.
More precisely, recall that for each λ ∈ k Sheridan [25] constructs a Z/2-graded

k-linear monotone Fukaya category F(X)λ. We will assume that the category has been
completed with respect to cones and summands, i.e., that we have passed to the the
split-closure of its pre-triangulated envelope, in the language of [24]; see Section 2.1
for more details. For each choice of L, the pair L♭ = (L,L) defines an object in
F(X)λ for λ =WL(L), and by the above discussion this object is non-zero if and only
if L is a critical point of WL. Given a factor Q of QH∗(X), there is an associated
full subcategory F(X)λ,Q of F(X)λ, comprising those objects K for which CO0

K(Q)

contains the unit in HF∗(K,K); see [31, App. A] for an exposition of this notion. The
formal version of the previous paragraph would then say that L♭

i is contained in and
split-generates F(X)λi,Qi

, where λi =WL(Li).

Remark 1.5. — Since QH∗(X) is Artinian (because it is finite-dimensional over k),
it can be decomposed as a product of Artinian local rings Q1×· · ·×Qm, which can be
decomposed no further. The categories corresponding to different Qj are orthogonal,
so to understand F(X)λ one may as well understand each of the summands F(X)λ,Qj .
In our case, each of the factors Qi is local so coincides with one of the Qj .

If we assume that chark ̸= 2, or if we require the Lagrangians in our Fukaya cate-
gory to be orientable, then we can drop the subscript λ from our notation, as follows.
Consider the k-linear endomorphism of QH∗(X) given by quantum multiplication by
c1(X). We denote this by c1⋆. Each Qj is contained in a generalised eigenspace of c1⋆,
say with eigenvalue νj , otherwise it would decompose as a product of its intersec-
tions with different generalised eigenspaces, contradicting locality. We then have that
F(X)λ,Qj = 0 unless λ = νj ; see [31, App. A] for further discussion. We could therefore
abbreviate F(X)νj ,Qj

to F(X)Qj
, and write

F(X)λ =
⊕

j | νj=λ

F(X)Qj
.

As a by-product of our arguments we actually give a complete description of the
categories arising.

Theorem C (Proposition 3.3). — For each i, the category F(X)λi,Qi split-generated
by L♭

i is quasi-equivalent, as a Z/2-graded A∞-category over k, to mf(Ŝ,WL − λi).
This is the dg-category of matrix factorisations of WL − λi over Ŝ, which is defined
to be the completion of S at Li. Under this quasi-equivalence, L♭

i is sent to the matrix
factorisation corresponding to the skyscraper sheaf at the unique closed point of Spec Ŝ.

This is again consistent with the mirror symmetry picture described in Section 1.2.

Definition 1.6. — A toroidal subcategory is a summand F(X)λ,Q of the monotone
Fukaya category that is split-generated by a monotone Lagrangian torus equipped
with an isolated critical point of its superpotential, which we call a toroidal generator.
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292 J. Smith

So in our notation the toroidal subcategories are the F(X)λi,Qi
, and the L♭

i are toroidal
generators.

Theorem C leads to the following automatic split-generation result for toroidal
subcategories, which is of a somewhat different flavour from Theorem 2.8.

Theorem D (Proposition 3.7). — Each toroidal subcategory is split-generated by any
non-zero object.

A similar phenomenon was observed by Sheridan [25, Cor. 2.19] for summands
F(X)λ,Q in the case where Q is 1-dimensional over k, and by Evans–Lekili [13,
Rem. 1.2.3] in the context of subcategories split-generated by homogeneous Lagran-
gians. As suggested in [13, p. 158], one can view this as a form of A∞- or categorical-
semisimplicity.

We conjecture that any two toroidal generators of a toroidal subcategory are quasi-
isomorphic, up to a shift. We have not been able to prove this, but we have the
following partial result.

Theorem E (Proposition 3.8). — For any two toroidal generators T1 and T2 of a given
toroidal subcategory, we have a quasi-isomorphism

T⊕2n−1

1 ⊕ T1[1]⊕2n−1

≃ T⊕2n−1

2 ⊕ T2[1]⊕2n−1

.

Remark 1.7. — The potentially-mysterious form of Theorem E arises from tensoring
one of the Ti with a Koszul complex, which has 2n−1 terms in degree 0 mod 2 and
2n−1 terms in degree 1 mod 2.

Before further discussion and application of our results, we make a few technical
comments.

Remark 1.8
(i) Each Lagrangian in the Fukaya category should be equipped with a Z/2-grading

with respect to a fixed Z/2-grading of X, in the sense of [23]. If we only care about con-
sequences for QH∗(X) then we can equip X with its canonical Z/2-grading, in which
case a Z/2-grading of a Lagrangian is just an orientation (in particular, the torus L
has a Z/2-grading).

(ii) Each Lagrangian should also be equipped with a relative spin structure,
to determine the signs of pseudoholomorphic disc counts. In particular, the super-
potential WL of the torus L depends on the choice of relative spin structure on L.
Happily there is a canonical choice in this case, namely the unique spin struc-
ture induced by picking an arbitrary identification L ∼= Rn/Zn and using this to
trivialise TL.

(iii) To do monotone Floer theory with multiple Lagrangians, we need to assume
that the fundamental group of each has trivial image in π1(X). For all statements
involving the Fukaya category, therefore, we should impose the additional hypothesis
on each Lagrangian K that π1(K) has trivial image in π1(X). (Alternatively one could
weaken these conditions to be about H1 instead of π1, at the expense of strengthening
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the monotonicity condition to be in terms of relative H2 rather than relative π2.)
Theorem A, and therefore also Corollary B, does not require this hypothesis since it
only relies on Floer theory of L with itself.

(iv) We can twist QH∗(X) and the Fukaya category by any homomorphism

B : H2(X;Z) −→ k×,

and our results have an analogue where the local system on each Lagrangian K is
replaced by a lift of B to H2(X,K;Z) → k×. We need to assume that such a lift
exists for our torus L, i.e., that that restriction of B to the image of H2(L;Z) is
trivial. We leave the details to the interested reader.

Remark 1.9. — One could attempt to extend our results—in particular Corollary B—
to non-monotone tori, but this would run into several difficulties:

(i) Suitable technical foundations for the Fukaya category are needed. These should
include establishing the properties described in Sections 2.3 and 2.4, except for Propo-
sition 2.3 which is not expected to hold in general. For simplicity we will also assume
that the category constructed is strictly unital.

(ii) The appropriate version of the superpotential is now somewhat different.
We should work over a Novikov field Λ of characteristic 0, with positive-filtration
part Λ>0, and assume that H1(L; Λ>0) embeds in the space of weak bounding cochains
for L♭ = (L,L). This means that there exists a function PO : H1(L; Λ>0) → Λ>0

such that for all b ∈ H1(L; Λ>0) we have∑
k⩾0

µk(b, . . . , b) = PO(b) · eL♭ ,

where the µk are the A∞-operations on CF∗(L♭, L♭) and eL♭ is the strict unit. This
function PO takes the place of the formal expansion of WL about L.

(iii) It then makes sense to talk about ‘isolated critical points of WL’, meaning
those L for which 0 is an isolated critical point of PO. For such L we have that
HF∗(L♭, L♭) is non-zero, and given by the Clifford algebra corresponding to the Hes-
sian of PO at 0. However, the crucial input to our automatic split-generation result,
Theorem 2.8, is that the A∞-algebra A = CF∗(L♭, L♭) is homologically smooth. In the
monotone case we establish this by relating A to the endomorphism algebra of a ma-
trix factorisation using results from [30], which rely on A being a superfiltered defor-
mation of the exterior algebra. Essentially this means that A looks like H∗(L) but
with correction terms added to its A∞-operations which respect the Z/2-grading and
decrease degree with respect to the Z-grading. Monotonicity ensures that A has this
form. We conjecture, based on the heuristic picture outlined in Section 1.2, that the
even in the non-monotone case the algebra CF∗(L♭, L♭) is smooth at isolated critical
points, but one would need new techniques to establish this.

(iv) Because of the absence of Proposition 2.3 a new technique would be needed
to show that factors Qi of QH∗(X) with different λi values are orthogonal.
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1.2. Mirror symmetry picture. — It is expected that in favourable situations X is
mirror to a Landau–Ginzburg model (Y,W ), where Y is a variety over k and W is
a regular function Y → k. Concretely, this means that the Fukaya category F(X)λ
should be quasi-equivalent to the matrix factorisation category mf(Y,W − λ). The
Lagrangian torus L should be mirror to to an open subvariety U ∼= SpecS ∼= (k×)n

of Y , such that W |U coincides with WL. Moreover, the object L♭ = (L,L) should be
mirror to the matrix factorisation corresponding to the skyscraper sheaf at the point L
in SpecS. Theorem C verifies this prediction at isolated critical points ofWL. (Both L♭

and the matrix factorisation are zero if L is not a critical point.)
The quantum cohomology of X is expected (again, in favourable situations) to

be isomorphic to the Hochschild cohomology of the Fukaya category. More precisely,
for each λ, the generalised λ-eigenspace of c1⋆ acting on QH∗(X) is expected to be
isomorphic to HH∗(F(X)λ) via the full (as opposed to length-zero) closed–open string
map

COλ : QH∗(X) −→ HH∗(F(X)λ).

Under mirror symmetry the right-hand side is HH∗(mf(Y,W − λ)), and this was
computed by Lin–Pomerleano [17, Th. 3.1] to be the hypercohomology of the complex
(Λ∗TY, [W−λ, •]), where [•, •] is the Schouten–Nijenhuis bracket. Each isolated critical
point p of W with critical value λ thus gives rise to a factor in HH∗(mf(Y,W − λ))
which looks like the local Jacobian ring of W at p. Focusing on those isolated critical
points contained in U then gives rise to Corollary B.

In general, WL may have non-isolated critical points. For example, by [20,
Prop. 4.22] if 5 ⩽ k ⩽ 8 then there is a monotone Lagrangian torus in the (monotone)
k-point blowup of CP2 whose superpotential has a 1-dimensional critical locus. In the
notation of [20, Table 1] this locus is given by {x = −1} ∪ {y = −1} for k = 5

and by {x + y = −1} for k ⩾ 6. To compute the contribution to QH∗(X) from a
positive-dimensional critical locus C of WL, mirror symmetry suggests that one has
to understand the corresponding critical locus C of W in Y . Typically C will be a
(partial) compactification of C, and one cannot calculate its contribution to QH∗(X)

from C alone. So there is no reason to expect a simple relationship between QH∗(X)

and the full Jacobian ring JacWL. Moreover, there is a very mundane reason why
neither the localisation of JacWL at a non-isolated critical point nor the coordinate
ring of any component of Spec JacWL containing a non-isolated critical point can
appear as a factor in QH∗(X): both are infinite-dimensional over k by Corollary 1.24.

Remark 1.10. — An important perspective on the picture sketched above is via the
Borman–Sheridan class. Roughly speaking, suppose L lies in the complement of an
anticanonical divisor D, and is exact in X∖D. Let N ∼= T ∗L ⊂ X∖D be a Weinstein
neighbourhood of L. Tonkonog [33] shows that there exists a class BS in the symplectic
cohomology SH0(X ∖D) which is sent to 1⊗WL under the Viterbo restriction map

SH∗(X ∖D) −→ SH∗(N) ∼= Hn−∗(ΛL) ∼= Hn−∗(L× ΩL) ∼= H∗(L)⊗ k[H1(L;Z)].
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Here ΛL and ΩL denote the free- and based-loop spaces of L respectively. On the other
hand, Borman–Sheridan–Varolgunes [7] and Borman–El Alami–Sheridan [6] show that
in good situations QH∗(X) can be obtained as a deformation of SH∗(X ∖ D), with
deformation defined by Lie bracket with the class BS.

The mirror symmetry interpretation of these results is that Y = Spec SH0(X ∖D)

is mirror to X ∖D, with

HH∗(DbCoh(Y )) ∼= HH∗(W(X ∖D)) ∼= SH∗(X ∖D),

where W denotes the wrapped Fukaya category. The function W is then given by BS,
viewed as an element of the coordinate ring of Y . The chart U corresponds to
Spec SH0(N), and Tonkonog’s result corresponds to our assertion that W |U = WL.
Thinking of W−λ as an element of HHeven(DbCoh(Y )), it defines a Z/2-graded defor-
mation of DbCoh(Y ) to mf(Y,W − λ), and this is mirror to deforming W(X ∖D) to
F(X)λ by compactifying X ∖D to X. On Hochschild cohomology, this deformation
should be equivalent to turning on a differential given by ‘bracket with W ’, and this
is what Borman, Sheridan, et al show.

It would be interesting to explore how critical points of WL are reflected in the
class BS.

1.3. Constraints on quantum cohomology from monotone tori. — The results of
Theorem A and Corollary B mean that one can deduce facts about the structure of
QH∗(X) from the presence of a monotone torus L ⊂ X and knowledge of WL. Sanda
uses this approach in [22] to construct factors of k in QH∗(X) from non-degenerate
critical points of WL, and from (even-dimensional, oriented, spin) Lagrangian rational
homology spheres. With our results we can now identify larger factors.

Example 1.11. — The quadric threefold X contains a monotone torus L whose super-
potential

WL = x+ y + z +
1

xy
+

1

yz
∈ k[x±1, y±1, z±1] ∼= S

can be computed by toric degeneration [13, Rem. 7.1.3], [18, Th. 1]. If k has charac-
teristic 2 then JacWL vanishes and we don’t learn anything, so assume from now on
that chark ̸= 2. We then have

JacisolWL = JacWL
∼= k[y]/(y3 − 4).

So by Corollary B the algebra QH∗(X) contains a 3-dimensional factor isomorphic to
k[y]/(y3 − 4). Since QH∗(X) is 4-dimensional, we conclude that there is an algebra
isomorphism

QH∗(X) ∼= k[x]/(y3 − 4)× k.

If chark = 3 then the first factor is local and does not decompose any further.
We can actually upgrade this to a complete description of QH∗(X), still assuming

chark ̸= 2, as follows. Since the minimal Chern number of X is 3, we can equip
QH∗(X) with a Z/6-grading. With respect to this grading QH∗(X) is 2-dimensional
in degree 0, and 1-dimensional in degrees 2 and 4, with QH2(X) generated by H.
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Therefore, for degree reasons, we have H4 = νH for some ν ∈ k. Applying CO0
L,isol

to this equation, we deduce that ν = 4. Therefore QH∗(X) = k[H]/(H4 − 4H).

Example 1.12. — From [20, Prop. 4.22] the monotone blowup X = Bl4 CP2 of CP2

at four points contains a monotone torus with potential

WL = (1 + x+ y)
(
1 + 1/x

)(
1 + 1/y

)
− 3 ∈ k[x±1, y±1] ∼= S.

Over C this has three non-degenerate critical points, namely (x, y) = (−1,−1) and
(x, y) = (ξ, ξ) where ξ2 = ξ + 1. Sanda [22] combines these with idempotents arising
from Lagrangian spheres to show that QH∗(X) is semisimple in this case. Using our
results, we see that over any field QH∗(X) contains a factor of

JacisolWL = JacWL
∼= k × k[ξ]/(ξ2 − (ξ + 1)).

If chark = 5 then the second factor is local and does not decompose further,
so QH∗(X) is not semisimple.

1.4. Constraints on monotone tori from quantum cohomology. — Turning around
Corollary B, knowledge of QH∗(X) places restrictions on the possible superpotentials
of monotone tori in X. The crudest—but already non-trivial—constraints come from
the total dimension D of QH∗(X), i.e., the sum of the Betti numbers of X. The
simplest statement is the following.

Corollary 1.13. — The number of isolated critical points of WL is at most D. □

Previously this could only have been said for nondegenerate critical points. A slight-
ly more refined statement is the following.

Corollary 1.14. — The sum of the Milnor numbers of the isolated singularities of WL

is at most D. □

Knowledge of the ring structure on QH∗(X) of course allows one to go further.

Corollary 1.15. — There is an injection from the set of isolated critical points of WL

to the set of factors when QH∗(X) is decomposed as a product of local rings. More-
over, the localisation of JacWL at each isolated critical point is isomorphic to the
corresponding local factor of QH∗(X). □

Example 1.16. — Let L be any monotone Lagrangian torus in X = CPn, with super-
potential WL. If chark does not divide n + 1 then QH∗(X) ∼= k×(n+1), so WL has
at most n + 1 isolated critical points, all of which are non-degenerate. However,
if chark = p does divide n + 1, say n + 1 = pab with b not divisible by p, then
QH∗(X) ∼= (k[x]/(xp

a

))×b, so WL has at most b isolated critical points, at each of
which JacWL looks like k[x]/(xp

a

).

Sometimes one can argue that certain local factors of QH∗(X) cannot arise from
isolated critical points of superpotentials of monotone tori, and therefore strengthen
Corollary 1.15. This idea is illustrated in Sections 4.1 and 4.2, where we prove the
following.
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Proposition 1.17. — Suppose L is a monotone Lagrangian torus in the cubic surface.
If chark ̸= 3 then WL has at most one isolated critical point and it must be non-
degenerate, whilst if chark = 3 then WL cannot have any isolated critical points.

Remark 1.18. — Pascaleff–Tonkonog [20, Table 1] give a monotone torus L in the
cubic surface with

WL =
(1 + x+ y)3

xy
− 6.

This has a critical point at (1, 1), which is non-degenerate outside characteristic 3.
In characteristic 3 it falls onto the 1-dimensional critical locus {1 + x + y = 0}, and
thus becomes non-isolated.

Proposition 1.19. — Consider the quadric threefold X, and let V be the Lagrangian
sphere arising as the vanishing cycle of the toric degeneration (from Example 1.11)
of X to a cone over a quadric surface. Suppose K is a monotone Lagrangian torus
in X which is disjoint from V . If chark = 2 then WK has no isolated critical points;
if chark = 3 then it has at most one isolated critical point, with local Jacobian ring
k[y]/(y− 1)3; and if chark ̸= 2, 3 then it has at most three isolated critical points, all
of which are non-degenerate.

Remark 1.20. — The torus L considered in Example 1.11 is disjoint from V and
attains these bounds.

Remark 1.21. — Our constraints on WL are essentially local in flavour, although
cumulative over the different isolated critical points. There are also strong global
constraints on WL coming from the work of Tonkonog [34], in which it is shown that
the periods of WL, i.e., the constant terms in powers of WL, are independent of L.
It would be interesting to explore what can be done by combining these two flavours
of constraint.

1.5. Isolated critical points. — We end this introduction with a brief summary of
the notion of isolatedness of critical points, which plays a key role in our results.

Each critical point L of WL corresponds to a k-valued point of Spec JacWL,
or equivalently a maximal ideal m ⊂ JacWL with residue field k. Let JacLWL denote
the localisation of JacWL at L, i.e., at the ideal m.

Lemma 1.22. — For a critical point L of WL, the following are equivalent:
(i) JacLWL is finite-dimensional over k.
(ii) JacLWL is Artinian.
(iii) JacLWL has Krull dimension zero.
(iv) L constitutes an irreducible component of Spec JacWL.
(v) L is an isolated point of Spec JacWL, in the sense that {L} is open in

Spec JacWL.

Proof. — (i) ⇔ (ii): By [2, Exer. 8.3] a finitely generated k-algebra is Artinian if and
only if it is finite-dimensional over k.
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(ii) ⇔ (iii): By [2, Th. 8.5] a ring is Artinian if and only if it is Noetherian and of
Krull dimension zero.

(iii) ⇔ (iv): JacLWL has Krull dimension zero if and only if there are no primes
in JacLWL except for the localisation of m itself. This is equivalent to m being a
minimal prime in JacWL, and hence to L constituting an irreducible component of
Spec JacWL.

(iv) ⇔ (v): If L constitutes an irreducible component then the union of the other
components is a closed complement to {L}. Conversely, if {L} is open then {L} ∪
(Spec JacWL ∖ {L}) is a decomposition of Spec JacWL into disjoint closed subsets
which can be refined into a decomposition into irreducible components. □

Definition 1.23. — The critical point L is isolated if any of these equivalent condi-
tions holds.

Corollary 1.24. — If L is a non-isolated critical point, and C is any component of
Spec JacWL containing L, then the localisation JacLWL and the coordinate ring k[C]

are both infinite-dimensional over k.

Proof. — The statement about JacLWL is an immediate consequence of condition (i)
above. Suppose now, for contradiction, that k[C] is finite-dimensional over k. Then
it is Artinian, so by [2, Th. 8.5] (as above) it has Krull dimension zero. This means
that the minimal prime p ⊂ JacWL defining C is actually maximal, and hence equal
to the ideal m defining L. Therefore m is itself minimal, so the localisation JacLWL

of JacWL at m has Krull dimension zero. This contradicts condition (iii) above,
completing the proof. □

Note that if the isolated critical points of WL are L1, . . . ,Lr (there are only finitely
many, by condition (iv)) then Spec JacWL decomposes into disjoint open sets

{L1} ∪ · · · ∪ {Lr} ∪ (Spec JacWL ∖ {L1, . . . ,Lr}).

We obtain a corresponding decomposition of JacWL into a direct product of rings

JacWL = JacL1
WL × · · · × JacLr

WL ×
(
JacWL

/
(JacL1

WL × · · · × JacLr
WL)

)
.

Definition 1.25. — The isolated part of the Jacobian ring, denoted JacisolWL, is the
localisation of JacWL at {L1, . . . ,Lr}. Equivalently, it is JacL1

WL×· · ·×JacLr
WL.

Before moving on, recall the following facts from commutative algebra, which we
shall use later.

Lemma 1.26
(i) Over any ring, localisation of modules is exact [32, Prop. 10.9.12], and is equiv-

alent to tensoring with the localisation of the ring [32, Lem. 10.12.15].
(ii) Over a Noetherian ring, I-adic completion (for any ideal I) of finitely-generated

modules is exact [32, Lem. 10.97.1(1)] and is equivalent to tensoring with the I-adic
completion of the ring [32, Lem. 10.97.1(3)]. □
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In particular, we can view JacLWL (defined to be the localisation of JacWL at L)
as the Jacobian ring of WL over the localisation SL of S at L, or as (JacWL)⊗S SL.
Similarly, letting ̂ denote m-adic completion, we have natural isomorphisms

ĴacWL
∼= Jacobian ring of WL over Ŝ ∼= (JacWL)⊗S Ŝ.

1.6. Structure of the paper. — In Section 2 we start by recalling various categorical
preliminaries, in particular split-generation and the Shklyarov (or Mukai) pairing.
We then recap relevant features and properties of the Fukaya category, and finally
combine these to prove a general automatic split-generation result, Theorem 2.8,
in the spirit of Sanda and Ganatra. Section 3 applies these ideas to the specific case
of a monotone Lagrangian torus, first considering a single isolated critical point, then
showing that different isolated critical points do not interact, and finally relating the
abstract categorical isomorphisms we obtain to the concrete geometrically-defined
map CO0

L,isol. We end by giving the details of some of the examples considered above,
in Section 4.

Acknowledgements. — I am grateful to Ed Segal for valuable input to Section 3.2, and
in particular for explaining the proof of Proposition 3.7. I would also like to thank
Nick Sheridan for helpful correspondence, and Ivan Smith for influential questions
and comments and for drawing my attention to the cubic surface example.

2. Generation from smoothness

2.1. Split-generation. — First we recap various categorical preliminaries, closely
following [15].

Recall that an A∞-category C has a pretriangulated envelope, denoted TwC, and an
idempotent completion or split-closure, denoted ΠC. Each of these is well-defined up
to quasi-equivalence and carries a cohomologically full and faithful embedding of C.
An explicit model for TwC is the category of twisted complexes (hence the name),
given by embedding C in C-mod using Yoneda, and then taking the full subcategory
obtained from the image by iteratively taking mapping cones.

We will mostly be interested in the split-closed pretriangulated envelope, ΠTwC,
sometimes also denoted perf(C) (e.g. in [15]). For example, F(X)λ implicitly means
the split-closed pretriangulated envelope of the Fukaya category whose objects are
actual Lagrangians. The embedding

ΠTwC −→ ΠTw(ΠTw C)

is a quasi-equivalence, and we say that a categorical property is Morita-invariant if
it is preserved by quasi-equivalences and by applying ΠTw. Similarly, a construc-
tion is Morita-invariant if quasi-equivalences and embeddings C → ΠTwC induce
(quasi-)isomorphisms on it. For example, Hochschild homology is Morita-invariant
since a functor F : C→ D induces a homomorphism HH∗(C)→ HH∗(D) which is an
isomorphism if F is a quasi-equivalence or an embedding of the form C → ΠTwC.
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Similarly, Hochschild cohomology is Morita-invariant, in the sense that a functor
F : C→ D induces a zigzag

(2) HH∗(C) −→ HH∗(C,D)←− HH∗(D)

and both of these arrows are isomorphisms if F is a quasi-equivalence or an embedding
C→ ΠTwC.

Remark 2.1. — We refer the reader to [21, §2] and [25, App. A] for the fundamentals
of Hochschild homology and cohomology in the setting of Fukaya categories. In (2) the
group HH∗(C,D) denotes Hochschild cohomology of C with coefficients in D, viewed
as a C-bimodule via F , and the groups HH∗(C) and HH∗(D) are really shorthand for
HH∗(C,C) and HH∗(D,D). The first arrow is pushforward on coefficients, whilst the
second arrow is pullback on Hochschild cochains.

If D is a full subcategory of C then there is a cohomologically full and faithful
embedding of ΠTwD into ΠTwC. We say that D split-generates C if this embedding
is a quasi-equivalence.

2.2. The Shklyarov pairing. — Recall that a dg- or A∞-category over k is proper if
the total cohomology of each morphism space is finite-dimensional. Any such category
has a Shklyarov pairing on its Hochschild homology, denoted ⟨−,−⟩Shk. This was
introduced by Shklyarov [28] for dg-algebras (i.e., dg-categories with a single object)
and extended to A∞-categories by Sheridan [26, §5], who calls it the Mukai pairing.
Sheridan proves that this pairing is Morita-invariant [26, Prop. 5.20], in the sense
that it is preserved by the isomorphism on Hochschild homology induced by a quasi-
equivalence or an embedding C → ΠTwC. It follows immediately from his explicit
formula for the pairing [26, (35)] that the pairing is also preserved under inclusions of
full subcategories, and that if A1,A2 ⊂ C are full subcategories which are categorically
orthogonal (morphism complexes between A1 and A2 are acyclic) then the images of
HH∗(A1) and HH∗(A2) in HH∗(C) are orthogonal with respect to it.

Recall next that a dg- or A∞-category over k is (homologically) smooth if its
diagonal bimodule is split-generated by Yoneda bimodules. Shklyarov shows that if
a dg-algebra is smooth and proper then its Shklyarov pairing is non-degenerate [28,
Th. 5.3], and that its Hochschild homology is finite-dimensional [27, Th. 4.6], so the
pairing is in fact perfect. Since smoothness is Morita-invariant [15, Prop. 20], and every
A∞-algebra is quasi-isomorphic to a dg-algebra, it follows from Sheridan’s results that
the same properties hold for smooth and proper A∞-algebras.

Proposition 2.2 ([26, Prop. 5.24]). — If an A∞-algebra A is smooth and proper then
HH∗(A) is finite-dimensional and its Shklyarov pairing is perfect. □

2.3. The closed–open and open–closed string maps. — Now we focus on the case of
interest, where C is the Fukaya category F(X)λ. Recall from [25, §§2.5–2.6] that there
is closed–open string map

COλ : QH∗(X) −→ HH∗(F(X)λ).
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which is a Z/2-graded unital k-algebra homomorphism. There is likewise an open–
closed string map

OCλ : HH∗(F(X)λ) −→ QH∗+n(X),

which is a Z/2-graded QH∗(X)-module map, where α ∈ QH∗(X) is defined to act
on HH∗(X) via the cap product action of COλ(α). Recalling that c1⋆ denotes the
quantum multiplication action of c1(X) on QH∗(X), we have the following.

Proposition 2.3 ([21, Th. 9.5(1)], or [25, Cor. 2.11] over C). — Assume that chark ̸= 2

or that we only allow orientable Lagrangians in the Fukaya category. Then the image
of OCλ is contained in the generalised λ-eigenspace QH∗(X)λ of c1⋆. □

Remark 2.4. — There is a corresponding result for COλ, but we will not use it. Over C
this states that COλ vanishes on QH∗(X)µ if µ ̸= λ; see [25, Prop. 2.9] or [21, Th. 9.6].
In general (i.e., without assuming that k is algebraically closed) it states that COλ

vanishes on the unique c1⋆-invariant complement C to QH∗(X)λ in QH∗(X). This can
be proved by factorising the characteristic polynomial χ(T ) of c1⋆ as (T − λ)mp(T )
for some non-negative integer m and some polynomial p with p(λ) ̸= 0. By Bézout’s
lemma there exist polynomials f and g such that 1 = (T − λ)mf(T ) + p(T )g(T ).
The maps (c1 − λ)mf(c1)⋆ and p(c1)g(c1)⋆ then represent projection onto C and
QH∗(X)λ respectively. One argues, as in [25, Prop. 2.9], that COλ(p(c1)) is invertible in
HH∗(F(X)λ). On the other hand, by Cayley–Hamilton we have χ(c1) = 0 in QH∗(X),
and hence

(3) 0 = COλ(χ(c1)) = COλ((c1 − λ)mp(c1)) = COλ((c1 − λ)m) ∪ COλ(p(c1)),

where ∪ is the cup product on HH∗(F(X)λ). Combining (3) with the fact that
COλ(p(c1)) is invertible, we deduce that COλ((c1 − λ)m) = 0. Therefore COλ annihi-
lates all multiples of (c1 − λ)mf(c1), and hence annihilates C.

The category F(X)λ is proper, so its Hochschild homology comes equipped with
its Shklyarov pairing. Meanwhile, quantum cohomology carries the Poincaré pairing
⟨−,−⟩X . Crucially, OCλ is compatible with these pairings in the following sense.

Proposition 2.5 ([15, Th. 31, credited to Ganatra–Perutz–Sheridan])
For any classes a and b in HH∗(F(X)λ) we have

⟨a, b⟩Shk = (−1)n(n+1)/2⟨OCλ(a),OCλ(b)⟩X . □

Given a full subcategory A ⊂ F(X)λ we can compose COλ with the restriction map

HH∗(F(X)λ) −→ HH∗(A)

to give a homomorphism COA : QH∗(X)→ HH∗(A). Similarly we can compose OCλ

with the homomorphism HH∗(A) → HH∗(F(X)λ) induced by the inclusion functor
to give a homomorphism OCA : HH∗(A)→ QH∗+n(X).
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2.4. The weak proper Calabi–Yau structure. — Sheridan shows [25, §2.8] that
F(X)λ also carries an n-dimensional weak proper Calabi–Yau (wpCY) structure
[φ] ∈ HHn(F(X)λ)

∨.

Lemma 2.6 ([25, Lem. A.2]). — This induces a perfect pairing

⟨−,−⟩wpCY : HH∗(F(X)λ)×HHn−∗(F(X)λ) −→ k via ⟨ψ, b⟩wpCY = [φ](ψ ∩ b).

The same arguments show that the pairing remains perfect after restricting to a
full subcategory A on a subset of Lagrangians. We denote this restricted pairing by
⟨−,−⟩wpCY,A. □

He then shows that COλ and OCλ are adjoint with respect to this pairing, in the
following sense.

Proposition 2.7 ([25, Prop. 2.6]). — For α∈QH∗(X) and b∈HHn−∗(F(X)λ) we have

⟨COλ(α), b⟩wpCY = ⟨α,OCλ(b)⟩X .

By the same arguments, for any full subcategory A ⊂ F(X)λ on a subset of Lagran-
gians, the maps COA and OCA are likewise adjoint with respect to ⟨−,−⟩wpCY,A. □

2.5. Decompositions and the generation. — For each object T in F(X)λ let

COT : QH∗(X) −→ HH∗(hom∗(T, T ))

denote the restriction of COλ to T ; this is just COA in the case where A contains a
single object, T . Let

CO0
T : QH∗(X) −→ H∗(hom∗(T, T ))

denote the projection of COT to length-zero Hochschild cochains. Given an idempotent
e ∈ QH∗(X) of even degree, or equivalently a factor Q = e ⋆ QH∗(X) of QH∗(X),
there is an associated full subcategory F(X)λ,Q of F(X)λ, comprising those objects T
for which CO0

T (e) = 1T ∈ H∗(hom∗(T, T )).

Theorem 2.8. — Suppose L♭ is a Lagrangian in F(X)λ, and that its endomorphism
A∞-algebra A is smooth. The following then hold:

(i) OCA gives an isomorphism from HH∗(A) onto its image Q ⊂ QH∗(X).
(ii) If chark ̸= 2 or L is orientable then Q is contained in the generalised λ-eigen-

space, QH∗(X)λ, of c1⋆.
(iii) As a Z/2-graded vector space, QH∗(X) is the internal direct sum Q⊕Q⊥.
(iv) Both Q and Q⊥ are two-sided ideals in QH∗(X), so we obtain a decomposition

of Z/2-graded algebras QH∗(X) = Q×Q⊥.
(v) The Q-component e of 1X ∈ QH∗(X) is an even-degree idempotent, satisfying

Q = e ⋆QH∗(X) and Q⊥ = (1X − e) ⋆QH∗(X).
(vi) COL♭ =COA induces an algebra isomorphism Q→HH∗(A), and kerCOL♭ =Q⊥.
(vii) L♭ lies in F(X)λ,Q and split-generates it.
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Proof
(i) The algebra A is smooth by assumption, and proper because we’re dealing

with compact Lagrangians, so by Proposition 2.2 HH∗(A) is finite-dimensional and
its Shklyarov pairing is perfect. Since OCλ is an isometry with respect to this pairing,
in the sense of Proposition 2.5, we deduce that it is injective on HH∗(A) and hence
induces an isomorphism onto Q.

(ii) This follows immediately from Proposition 2.3.
(iii) From the proof of (i), the restriction of the Poincaré pairing to Q is perfect. The

vector space decomposition of QH∗(X) then follows from the elementary linear algebra
result that if V is a finite-dimensional vector space, β is an arbitrary bilinear form
on V , and W ⊂ V is a subspace on which β is non-degenerate, then V =W ⊕W⊥β .
The fact that Q is actually a Z/2-graded subspace is an immediate consequence of
OCλ being a Z/2-graded map. Q⊥ is then automatically Z/2-graded since the Poincaré
pairing is Z/2-graded. Note also that since the Poincaré pairing is symmetric on even-
degree elements and skew-symmetric on odd-degree elements we have Q⊥ = ⊥Q.

(iv) Suppose we can show that Q is a left ideal. The Frobenius algebra property
of QH∗(X) then tells us that ⊥Q (= Q⊥) is a right ideal. Since both Q and Q⊥ are
Z/2-graded subspaces, graded-commutativity of QH∗(X) then implies that both are
in fact two-sided ideals, and we’re done.

It therefore suffices to show that Q is a left ideal, so take q ∈ Q and α ∈ QH∗(X).
We wish to show that αq ∈ Q. By definition of Q there exists a ∈ HH∗(A) with
q = OCA(a). We can write this as OCλ(i∗a), where i∗ : HH∗(A) → HH∗(F(X)λ) is
the homomorphism induced by inclusion A → F(X)λ. Using the fact that OCλ is a
QH∗(X)-module map we obtain

αq = αOCλ(i∗a) = OCλ(COλ(α) ∩ i∗a).

The image of i∗ is manifestly a HH∗(F(X)λ)-submodule of HH∗(F(X)λ), so it contains
COλ(α) ∩ i∗a. This means that αq is in the image of OCλ ◦i∗ = OCA, which is pre-
cisely Q, as wanted.

(v) It follows from (iii) that 1X splits into even-degree pieces e∈Q and 1X−e∈Q⊥.
The algebra decomposition in (iv) then tells us that e(1X−e) = 0, so e is idempotent.
It also tells us that e and 1X − e are the units in Q and Q⊥ respectively, so Q =

eQH∗(X) and Q⊥ = (1− e)QH∗(X).
(vi) Let ε ∈ HH∗(A) be the unique element satisfying e = OCA(ε). Again writing

OCA as OCλ ◦i∗ and using the fact that OCλ is a QH∗(X)-module map, we see that
for all α ∈ Q

α = αe = OCλ(COλ(α) ∩ i∗ε) = OCλ(i∗(COA(α) ∩ ε)).

This forces COL♭ = COA to be injective on Q. By now combining (i) with the equality
dimHH∗(A) = dimHHn−∗(A) resulting from Lemma 2.6 we obtain dimHH∗(A) =

dimQ, and deduce that COL♭ is actually an isomorphism Q→ HH∗(A).
It remains to show that kerCOL♭ = Q⊥, and since we know

dimQ⊥ = dimQH∗(X)− dimQ ⩽ dimQH∗(X)− rankCOL♭ = dimkerCOL♭
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it is enough to show that kerCOL♭ ⊂ Q⊥. Suppose then that α ∈ kerCOL♭ . Since
COL♭ is an algebra homomorphism we get COL♭(eα) = 0. But eα is in Q, so by
injectivity of COL♭ on Q we deduce that eα = 0, and hence α = (1X − e)α. Thus
α ∈ (1X − e)QH∗(X) = Q⊥, and so kerCOL♭ ⊂ Q⊥.

(vii) To prove that L♭ lies in F(X)λ,Q we need to show that CO0
L♭(e) = 1L♭ , for

which it suffices to show that COL♭(e) is the unit 1HH∗(A) in HH∗(A). To do this, note
that since COL♭ induces an isomorphism Q → HH∗(A) there exists a unique e′ ∈ Q
such that COL♭(e′) = 1HH∗(A). We then have

COL♭(e′) = COL♭(ee′) = COL♭(e) ∪ COL♭(e′) = COL♭(e).

Injectivity of COL♭ on Q gives e′ = e, and hence COL♭(e) = 1HH∗(A), as wanted.
For any other object T in F(X)λ,Q, we have CO0

T (e) = 1T by definition.
So CO0

T ◦OCA(ε) = 1T , where ε ∈ HH∗(A) is the unique element with OCA(ε) = e,
as above. The fact that T is split-generated by L♭ then follows from Abouzaid’s
generation criterion [1, Prop. 1.3, Lem. 1.4]. □

Remark 2.9. — An alternative approach is to modify the argument of [22, Th. 4.10]
as follows ([22] assumes the existence of a cyclic structure on F(X)λ, which we cir-
cumvent using the wpCY structure). By the first part of the above proof, OCA is an
isomorphism from HH∗(A) onto its image, on which ⟨−,−⟩X is perfect. For a and b

in HH∗(A) Proposition 2.7 gives

⟨COA ◦OCA(a), b⟩wpCY,A = ⟨OCA(a),OCA(b)⟩X ,

and ⟨−,−⟩wpCY,A is perfect by Lemma 2.6. We conclude that COA ◦OCA induces an
isomorphism

HH∗−n(A) −→ HH∗(A).

Let ε ∈ HH−n be the unique element with COA ◦OCA(ε) = 1HH∗(A), and let e ∈
QH0(X) be OCA(ε). We then have

e2 = eOCA(ε) = OCλ(i∗(COA(e) ∩ ε)) = OCλ(i∗(1HH∗(A) ∩ ε)) = OCA(ε) = e,

so e is an idempotent and hence induces an algebra decomposition QH∗(X) = Q×Q⊥,
where Q = eQH∗(X) and Q⊥ = (1X − e)QH∗(X). One can then complete the proof
similarly to above.

3. Proof of the main results

3.1. A single isolated critical point. — Suppose L ⊂ X is a monotone Lagrangian
torus with superpotential WL, viewed as an element of S = k[H1(L;Z)]. Suppose L

is an isolated critical point of WL, in the sense of Lemma 1.22, and let λ = WL(L)

be the corresponding critical value. Then let L♭ ∈ F(X)λ be the object obtained by
equipping L with the local system L. We denote the A∞-algebra hom∗(L♭, L♭) =

CF∗(L♭, L♭) by A, which we also view as an A∞-category with one object.
In [9] Cho–Hong–Lau construct a localised mirror functor

LM : F(X)λ −→ mf(S,WL − λ).
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The critical point L of WL corresponds to a point in SpecS, whose skyscraper sheaf
defines an object E in mf(S,WL−λ). Letting B denote the endomorphism dg-algebra
of E, it is shown in [30, Th. 5] that LM induces a quasi-isomorphism Φ : A→ B.

Remark 3.1. — A priori the functor is defined on actual monotone Lagrangians in
F(X)λ, rather than on more general summands of twisted complexes, but this is
enough for our purposes.

Let SL denote the localisation of S at the maximal ideal m corresponding to L,
and let Ŝ denote the m-adic completion of S. We can consider the analogues of E

and B over SL and Ŝ, which we denote by adding a subscript L or a hat.

Lemma 3.2. — The natural maps B→ BL → B̂ are quasi-isomorphisms.

Proof. — The algebra B is a finite rank free module over S, and BL and B̂ are
obtained by tensoring over S with SL and Ŝ respectively. By Lemma 1.26 (using the
fact that SL is Noetherian), the induced maps H∗(B)→ H∗(BL)→ H∗(B̂) are

H∗(B) −→ H∗(B)⊗S SL −→ H∗(B)⊗S Ŝ.

These are isomorphisms since H∗(B) is annihilated by m (because E is). □

Because L is an isolated critical point of WL, the category mf(SL,WL−λ) falls into
the setting considered by Dyckerhoff in [12] (more precisely, (SL,WL−λ) satisfies his
condition (B)), where he shows that EL split-generates mf(SL,WL−λ) [12, Cor. 5.3].
Note that our SL and EL correspond to Dyckerhoff’s R and kstab respectively, that
our S is different from his, and that he writes Ĉpe for what we denote by ΠTwC.
Combining the above ideas allows us to prove the following.

Proposition 3.3. — We have quasi-equivalences

(4) ΠTwA ≃ Πmf(SL,WL − λ) ≃ mf(Ŝ,WL − λ).

In other words, the full subcategory of F(X)λ split-generated by L♭ is quasi-equivalent
to mf(Ŝ,WL−λ). Under this quasi-equivalence, L♭ is sent to the matrix factorisation Ê

associated to the skyscraper sheaf at L.

Proof. — From the quasi-isomorphisms Φ : A → B and B → BL we get that
ΠTwA ≃ ΠTwBL. Dyckerhoff’s split-generation result tells us that ΠTwBL ≃
Πmf(SL,WL − λ) (there is no need for a Tw here since matrix factorisation cate-
gories are already pretriangulated), so the first quasi-equivalence in (4) follows. The
second is then a consequence of Dyckerhoff’s description [12, Th. 5.7] of idempotent
completion as completion of the ring. □

We also obtain the following two results.

Proposition 3.4. — The A∞-algebra A is smooth.

Proof. — Dyckerhoff shows that mf(SL,WL − λ) is smooth [12, §7]. The result then
follows from Proposition 3.3, by Morita-invariance of smoothness. □
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Proposition 3.5. — HH∗(A) is isomorphic to the localisation JacLWL of the Jaco-
bian algebra of WL at L, concentrated in even degree.

Proof. — By (4) and Morita invariance we have HH∗(A) ∼= HH∗(mf(SL,WL − λ)).
The latter is computed by Dyckerhoff [12, Cor. 6.5] to be exactly JacLWL.

Alternatively, we have HH∗(A) ∼= HH∗(B) and the latter is computed in [30, Th. 4]
to be the Jacobian of WL over Ŝ. By an analogous argument to that at the end of
the proof of Proposition 3.14, this is equivalent to the localisation JacLWL. □

Plugging Propositions 3.3 and 3.4 into Theorem 2.8, we obtain the following.

Theorem 3.6. — QH∗(X) decomposes as a product of Z/2-graded algebras

Q×Q⊥ = eQH∗(X)× (1X − e)QH∗(X),

where COL♭ has kernel Q⊥ and induces an isomorphism Q → HH∗(A) ∼= JacLWL.
The summand F(X)λ,Q of the Fukaya category contains L♭, which split-generates it,
and is quasi-equivalent to mf(Ŝ,WL−λ). Under this quasi-equivalence, L♭ corresponds
to the matrix factorisation Ê associated to the skyscraper sheaf at L. □

3.2. The structure of toroidal subcategories. — Before moving on from the case
of a single critical point, we make a slight detour to prove two structural results about
toroidal subcategories of the Fukaya category. Recall from Definition 1.6 that these
are summands split-generated by a monotone torus equipped with an isolated critical
point of its superpotential. The reader only interested in quantum cohomology may
skip to Section 3.3.

Proposition 3.7. — For a toroidal subcategory C, any non-zero object in C split-
generates it.

Proof. — By Theorem 3.6 the category C is quasi-equivalent to a category of the form
mf(Ŝ,WL−λ), continuing the notation of the previous subsection. We may thus work
in the latter category instead.

So let G be an arbitrary non-zero object in mf(Ŝ,WL − λ), and let
i∗ : mf(Ŝ,WL − λ) −→ mf(Ŝ/m, 0)

i∗ : mf(Ŝ/m, 0) −→ mf(Ŝ,WL − λ)

be the pullback (restriction) and pushforward (inclusion) functors associated to the
inclusion of the closed point L in Spec Ŝ. Consider then the object i∗i∗G. On the one
hand, i∗G can only be a direct sum of shifts of Ŝ/m, so i∗i∗G is a direct sum of shifts
of Ê. We deduce that i∗i∗G split-generates Ê. On the other hand, i∗i∗G is the (derived)
tensor product of G with the Koszul resolution of the skyscraper sheaf at L. This in
turn is a twisted complex built from G, so we deduce that G split-generates i∗i∗G.

Combining these two deductions we see that G split-generates Ê. We know already
from [12, Cor. 5.3] that Ê split-generates mf(Ŝ,WL − λ), so we conclude that G also
split-generates the category, which is what we want. □

I am grateful to Ed Segal for suggesting this argument.
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Recall, again from Definition 1.6, that a toroidal generator for the toroidal cate-
gory C is any object of the form L♭ (i.e., a monotone torus equipped with an isolated
critical point of its superpotential) that split-generates C. Equivalently, by Proposi-
tion 3.7, it is any non-zero object in C of the form L♭. We conjecture that any two
toroidal generators are quasi-isomorphic, up to a shift, and can prove the following
partial result.

Proposition 3.8. — If T1 and T2 are toroidal generators of a toroidal subcategory C

then we have a quasi-isomorphism

T⊕2n−1

1 ⊕ T1[1]⊕2n−1

≃ T⊕2n−1

2 ⊕ T2[1]⊕2n−1

.

Proof. — Following the notation of Proposition 3.7, we may assume that T1 is L♭ and
hence corresponds to Ê in mf(Ŝ,WL − λ). We abbreviate T2 to T and write T for the
corresponding matrix factorisation.

We claim that for every element x of the ideal m, the endomorphism of T given
by scalar multiplication by x is nullhomotopic (i.e., exact). Assuming this for now,
consider the object i∗i∗T, mimicking the proof of Proposition 3.7.

First view i∗i
∗T as the tensor product of T with the Koszul resolution of the

skyscraper sheaf at L. This Koszul resolution looks like 2n−1 copies of Ŝ and 2n−1

copies of Ŝ[1], connected by maps which are each given by scalar multiplication by
an element of m. By our claim we can thus represent i∗i∗T by 2n−1 copies of T and
2n−1 copies of T[1], connected by nullhomotopic maps. We deduce that

(5) i∗i
∗T ≃ T⊕2n−1

⊕ T[1]⊕2n−1

.

Now instead use the fact that i∗T is a sum of copies of Ŝ/m and Ŝ/m[1]. More
precisely, suppose

T = · · · f1−−−→ Ŝ⊕k f0−−−→ Ŝ⊕k f1−−−→ Ŝ⊕k f0−−−→ · · · ,

where the f i are Ŝ-linear maps satisfying f i+1 ◦ f i =WL · idŜk . We then get

(6) i∗T = · · · f1−−−→ (Ŝ/m)⊕k f0−−−→ (Ŝ/m)⊕k f1−−−→ (Ŝ/m)⊕k f0−−−→ · · ·

≃ (Ŝ/m)⊕ℓ ⊕ (Ŝ/m)[1]⊕ℓ,

where f i denotes the reduction of f i modulo m and ℓ denotes

dimk(ker f
1/ im f0) = dimk(ker f

0/ im f1).

Applying i∗ to (6) and using the fact that i∗(Ŝ/m) ≃ Ê then gives

(7) i∗i
∗T ≃ Ê⊕k ⊕ Ê[1]⊕k.

The result now follows from (5) and (7) if we can show k = 2n−1. To do this, con-
sider the endomorphism algebra of i∗i∗T. Computing its dimension using (5) and (7)
gives

22n−2 dimk End
∗(Ê) = k2 dimk End

∗(T).
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Since End∗(T) ∼= HF∗(T, T ) and End∗(Ê) ∼= HF∗(L♭, L♭), both of which are 2n-dimen-
sional, we deduce that k = 2n−1, as needed.

It remains to prove the claim, namely that each element of m acts nullhomo-
topically on T. To do this, recall from Proposition 3.5 and its proof that HH∗(C)

is the localisation (or, equivalently, completion) JacLWL of JacWL at L. More-
over, we know HH∗(C) acts on each object O of C by projection to length zero
π : HH∗(C) → End∗(O), and it follows from [12, p. 266] that the corresponding ac-
tion of JacLWL on C is by scalar multiplication. Explicitly, the following diagram
commutes

Ŝ End∗(O)

JacLWL HH∗(C),

scalar mult

J

∼=

π

where J is reduction modulo the Jacobian ideal (so in particular all elements of
this ideal act nullhomotopically on every O). We can therefore rephrase our claim
as follows: when O = T, the unique maximal ideal in HH∗(C) is in the kernel of π.
Since T1 and T2, or equivalently Ê and T, were both equally defined to be toroidal
generators of C, by symmetry it suffices to prove this rephrased claim for O = Ê. And
in this case the claim can be proved directly, either by viewing Ê as the skyscraper
sheaf at L in the singularity category of WL − λ, or by the computation in [30, §5],
where reduction modulo m is identified with projection to length zero. □

3.3. Combining isolated critical points. — Returning to the main thread, our next
task is to show that the splittings of QH∗(X) arising from different critical points
of WL are compatible with each other, and that the corresponding objects do not
interact.

Suppose then that the isolated critical points of WL are L1,L2, . . . ,Lr. Let λi =
WL(Li), and let L♭

i be the object (L,Li) in F(X)λi
. By Theorem 3.6, for each i we

get a splitting

QH∗(X) = Qi ×Q⊥
i = ei QH∗(X)× (1X − ei)QH∗(X).

Proposition 3.9. — The idempotents ei are pairwise algebraically orthogonal, i.e.,
eaeb = 0 for all a and b with a ̸= b. (This implies, by the Frobenius algebra property,
that the Qi are pairwise geometrically orthogonal with respect to the Poincaré pairing.)

Proof. — Fix distinct a and b. First suppose λa ̸= λb. By Theorem 2.8(ii) there exist
positive integers ma and mb such that (c1−λa)maea = 0 and (c1−λb)mbeb = 0. Since
the polynomials (T −λa)ma and (T −λb)mb are coprime there exist polynomials f(T )
and g(T ) such that

1 = f(T )(T − λa)ma + g(T )(T − λb)mb .
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Plugging in T = c1, and multiplying both sides by ea and eb (which have even degree
so commute with everything), we get

eaeb = f(c1)
(
(c1 − λa)maea

)
eb + g(c1)

(
(c1 − λb)mbeb

)
ea = 0,

as wanted.
It remains to consider the case where λa and λb are equal to some common value λ.

In this case L♭
a and L♭

b both lie in F(X)λ, and it is well known that they are orthogonal
in the sense that HF∗(L♭

a, L
♭
b) = 0. This can be proved by considering the Oh spectral

sequence [19]
E1 = H∗(L;L−1

a ⊗k Lb) =⇒ HF∗(L♭
a, L

♭
b),

and noting that the cohomology group

H∗(L;L−1
a ⊗k Lb)

with local coefficients L−1
a ⊗k Lb vanishes. The full subcategories Aa and Ab on L♭

a

and L♭
b are therefore categorically orthogonal, so by the discussion in Section 2.2

the images of HH∗(Aa) and HH∗(Ab) in HH∗(F(X)λ) are orthogonal with respect to
the Shklyarov pairing. By Proposition 2.5 we then deduce that the Qa and Qb are
orthogonal with respect to the Poincaré pairing.

Now, eaeb lies in ea QH∗(X) = Qa, so it must be orthogonal to every element of Qb.
But it also lies in eb QH∗(X) = Qb, on which the Poincaré pairing is non-degenerate.
We conclude that eaeb = 0. □

Combining this with Theorem 3.6, and letting Ai = CF∗(L♭
i , L

♭
i), we get the fol-

lowing.

Corollary 3.10. — QH∗(X) decomposes as a product of Z/2-graded algebras

Q1 × · · · ×Qr ×
r⋂

i=1

Q⊥
i = e1 QH∗(X)× · · · × er QH∗(X)×

( r∏
i=1

(1X − ei)
)
QH∗(X).

Each map
COL♭

i
: QH∗(X) −→ HH∗(Ai) ∼= JacLi

WL

induces an isomorphism from Qi = ei QH∗(X) and annihilates the other factors.
Consequently we have

Q1 × · · · ×Qr
∼= JacL1 WL × · · · × JacLr WL

∼= JacisolWL.

Each summand F(X)λi,Qi
of the Fukaya category is described in Theorem 3.6; in par-

ticular, it contains and is split-generated by L♭
i. □

3.4. Constructing the map geometrically. — Corollary 3.10 tells us that the map

(8) COL♭
1
× · · · × COL♭

r
: QH∗(X) −→ HH∗(A1)× · · · ×HH∗(Ar)

is surjective and induces an algebra decomposition of QH∗(X) into the kernel times
the image. We also know that the image is isomorphic to JacisolWL, although this
isomorphism is somewhat indirect. Our next aim is to give a more geometric descrip-
tion of this map (8), which goes directly to JacisolWL and avoids any categorical
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A∞-algebraic constructions, and hence give a more concrete realisation of this alge-
bra decomposition.

In [31] we consider the Floer cohomology HF∗
S(L,L) of L with coefficients in S =

k[H1(L;Z)]. Explicitly, this means that we work over S and weight the contribution of
each pseudoholomorphic disc u by the monomial in S corresponding to its boundary
homology class, as discussed in Section 1.1. There is similarly a unital k-algebra
homomorphism

CO0
L : QH∗(X) −→ HF∗

S(L,L),

also described in Section 1.1.

Remark 3.11. — The map CO0
L always lands in the graded-centre of HF∗

S(L,L), so
one could equally take its codomain to be the graded-opposite algebra HF∗

S(L,L)op.
This will be useful later. We shall really only need this map after localising at isolated
critical points, which will make the codomain graded-commutative anyway.

Recall from Definition 1.25 that Sisol is the localisation of S at the set {L1, . . . ,Lr}
of isolated critical points of WL. Concretely this is just the ring obtained from S by
inverting every f ∈ S that satisfies f(Li) ̸= 0 for all i, and can be viewed as the
product SL1

× · · · × SLr
of the localisations at the individual Li.

Definition 3.12. — Let HF∗
isol(L,L) and

CO0
L,isol : QH∗(X) −→ HF∗

isol(L,L)

denote the analogues of HF∗
S(L,L) and CO0

L constructed with Sisol in place of S.
By Lemma 1.26(i) we could equivalently define them by starting with HF∗

S(L,L)

and CO0
L and either localising at the isolated critical points or tensoring with Sisol.

Similarly, for each i let HF∗
Li
(L,L) and CO0

L,Li
denote the analogues of HF∗

S(L,L)

and CO0
L constructed with SLi in place of S, or equivalently their localisations at Li

or tensor products with SLi .

The technical heart of this subsection is the following pair of results, which we shall
prove shortly.

Lemma 3.13. — As an Sisol-algebra, HF∗
isol(L,L) is generated by the unit and is iso-

morphic to JacisolWL.

Proposition 3.14. — For each i there is an algebra isomorphism

φi : HH
∗(Ai) −→ HF∗

Li
(L,L),

such that φi ◦ COL♭
i
= CO0

L,Li
.

From these we can deduce the result we really want.

Corollary 3.15. — CO0
L,isol : QH∗(X) → HF∗

isol(L,L) is surjective and induces an
algebra decomposition of QH∗(X) into the kernel times the image. Moreover, the image
is equal to JacisolWL times the unit.
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Proof. — Apply the maps φ1, . . . , φr from Proposition 3.14 to the r factors in (8),
to see that

(9) CO0
L,L1

× · · · × CO0
L,Lr

: QH∗(X) −→ HF∗
L1

(L,L)× · · · ×HF∗
Lr

(L,L)

= HF∗
S(L,L)⊗S (SL1

× · · · × SLr
)

is surjective and induces an algebra decomposition of QH∗(X). From the description

Sisol = SL1
× · · · × SLr

we obtain an identification of the map (9) with

CO0
L,isol : QH∗(X) −→ HF∗

isol(L,L) = HF∗
S(L,L)⊗S Sisol,

and by Lemma 3.13 the image is JacisolWL times the unit. □

From the definition of CO0
L we see that, as a map to JacisolWL, CO0

isol has exactly
the geometric description given below Corollary B.

Having seen the utility of Lemma 3.13 and Proposition 3.14, we now give the
promised proofs.

Proof of Lemma 3.13. — We want to show that the unique Sisol-algebra map Sisol →
HF∗

isol(L,L) induces an isomorphism JacisolWL → HF∗
isol(L,L). Being an isomor-

phism can be checked locally at maximal ideals, so it suffices to show that for each i

the unique SLi-algebra map SLi → HF∗
Li
(L,L) induces an isomorphism JacLi WL →

HF∗
Li
(L,L).

To compute HF∗
Li
(L,L) we will use the Oh spectral sequence [19]

E1 = H∗(L;SLi
) =⇒ HF∗

Li
(L,L).

This is most easily constructed by using a pearl model for the Floer complex, and filter-
ing the generators (which are critical points of a Morse function) by their Morse index;
see [4]. The E1 differential on the spectral sequence, denoted d1, can be described as
follows. Let

WL =
∑

γ∈H1(L;Z)

nγz
γ ∈ S = k[H1(L;Z)].

Recall that each nγ is an integer counting the number of index 2 discs with boundary
in class γ, and the sum is finite by Gromov compactness. Given a class b ∈ H1(L;SLi

),
by definition d1b computes the Morse index 0 part of the pearl differential of b. And
this can be calculated geometrically to be∑

γ

⟨γ, b⟩nγzγ

(times the unit), where ⟨·, ·⟩ is the pairing between H1(L) and H1(L).
Now fix a basis e1, . . . , en for H1(L;Z), with respect to which each γ has components

(γ1, . . . , γn), let zi be the monomial zei so that S = k[z±1
1 , . . . , z±1

n ], and let b1, . . . , bn
be the dual basis for H1(L;Z). We then deduce that

d1(z
−1
i bi) =

∑
γ

⟨γ, z−1
i bi⟩nγzγ =

∑
γ

γinγz
γ1

1 · · · z
γi−1
i · · · zγn

n =
∂WL

∂zi
.
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Since E1 = H∗(L;SLi
) can be viewed as the exterior algebra over SLi

on generators
z−1
i bi, the differential d1 is then completely determined by the Leibniz rule. Explicitly,
(E1,d1) looks like the Koszul complex associated to (∂WL/∂z1, . . . , ∂WL/∂zn).

To complete the proof it therefore suffices to show that (∂WL/∂z1, . . . , ∂WL/∂zn)

is a regular, hence Koszul-regular, sequence in SLi
; then the cohomology of the Koszul

complex is concentrated in degree zero, where it is manifestly JacLi
WL. Since SLi

is a regular local ring of Krull dimension n, and JacLi WL has Krull dimension 0

because Li is an isolated critical point, regularity of the sequence
(∂WL/∂z1, . . . , ∂WL/∂zn)

follows from [35, Exer. 26.2.D]. □

Proof of Proposition 3.14. — Throughout the proof we fix an Li and drop all subscript
i’s, so we’re in the setup of Section 3.1. Recall from that subsection that the localised
mirror functor induces a quasi-isomorphism Φ : A→ B, where B is the endomorphism
algebra of the matrix factorisation E. This in turn induces an isomorphism HH∗(A)→
HH∗(A,B), as in (2), which we denote by H(Φ∗).

By restricting [31, Th. B] to L♭ we obtain a commutative diagram combining H(Φ∗)

with the maps CO♭
L and CO0

L:

QH∗(X) HH∗(A)

HF∗
S(L,L)op HH∗(A,B).

CO0
L

COL♭

H(Φ∗)

H(ΘL♭)

Here ΘL♭ is a certain cohomologically unital A∞-algebra homomorphism
CF∗

S(L,L)op −→ CC∗(A,B),

and HF∗
S(L,L)op is the graded-opposite algebra of HF∗

S(L,L); recall Remark 3.11.
The constructions of HF∗

S(L,L), CO0
L, and ΘL♭ still make sense if we work over

the completion Ŝ of S at the maximal ideal m corresponding to L, and we denote
the corresponding objects and maps by adding hats. Recall from Lemma 3.2 that the
natural map B → B̂ is a quasi-isomorphism, so H(Φ̂∗) is still an isomorphism. The
virtue of passing to these completions is that H(Θ̂L♭) is an isomorphism [31, Th. C].
We deduce that there is a commutative diagram

QH∗(X) HH∗(A)

HF∗
Ŝ
(L,L)op HH∗(A, B̂)

ĈO0
L

COL♭

H(Φ̂∗)

H(Θ̂L♭)

in which the bottom and right-hand arrows are isomorphisms.
The completion map SL → Ŝ on coefficients induces a map

C : HF∗
L(L,L) −→ HF∗

Ŝ
(L,L)
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(C for ‘completion’). We claim that this is an isomorphism and satisfies ĈO0
L =

C ◦ CO0
L,L. (We can safely drop all mention of opposite algebras here—see Re-

mark 3.16.) Then
C−1 ◦H(Θ̂L♭)−1 ◦H(Φ̂∗)

defines the desired isomorphism φ : HH∗(A)→ HF∗
L(L,L).

To prove the claimed properties of C, recall from Lemma 1.26(ii) that (by exactness
of completion) HF∗

Ŝ
(L,L) may be viewed as the m-adic completion of HF∗

S(L,L), and
that this is naturally isomorphic to HF∗

S(L,L)⊗S Ŝ. More precisely, the natural map

HF∗
S(L,L)⊗S Ŝ −→ HF∗

Ŝ
(L,L)

is an isomorphism, and ĈO0
L is CO0

L tensored with Ŝ. Similarly, from Definition 3.12
(which uses Lemma 1.26(i)) the natural map

HF∗
S(L,L)⊗S SL −→ HF∗

L(L,L)

is an isomorphism, and CO0
L,L is CO0

L tensored with SL. We conclude that C corre-
sponds to tensoring with Ŝ over SL, and that it satisfies ĈO0

L = C ◦CO0
L,L. It remains

to show that C is an isomorphism, or equivalently that the natural map

HF∗
L(L,L) −→ HF∗

L(L,L)⊗SL
Ŝ

is an isomorphism.
To do this, we first use Lemma 1.26(ii) again to interpret HF∗

L(L,L)⊗SL
Ŝ as the

m-adic completion of HF∗
L(L,L). It is then left to show that HF∗

L(L,L) is m-adically
complete. For this, recall from the proof of Lemma 3.13 that HF∗

L(L,L) ∼= JacLWL,
which is Artinian since L is isolated. We then have by [2, Prop. 8.6] that the ideal
m JacLWL in JacLWL is nilpotent. Thus JacLWL, and hence HF∗

L(L,L), is indeed
m-adically complete, as wanted. □

Remark 3.16. — The above discussion shows that HF∗
L(L,L) and HF∗

Ŝ
(L,L) are

both isomorphic to JacLWL, which is (graded-)commutative. Therefore they both
naturally coincide with their opposite algebras.

Remark 3.17. — One can use these methods to give an alternative proof of Propo-
sition 3.5, computing of HH∗(A). Similarly, one can reprove Theorem 2.8(ii), namely
that OCλ(HH∗(A)) lies in the generalised λ-eigenspace of c1⋆, in the case where L is
a torus.

4. Worked examples

4.1. The cubic surface. — Let X be the cubic surface, or equivalently the monotone
6-point blowup of CP2. Our goal is to constrain the possible superpotentials of mono-
tone tori in X using Corollary 1.15, so our first task is to decompose QH∗(X) as a
product of local rings. This quantum cohomology ring was computed by Crauder–
Miranda [11] and an explicit presentation given by Sheridan in [25, Prop. B.1].
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Viewing X as Bl6 CP2, QH∗(X) is generated as an algebra by the classes

H,E1, . . . , E6

of a hyperplane and of the six exceptional spheres respectively. A basis is given by
1, H, P,E1, . . . , E6, where P is the point class, and with respect to this basis quantum
multiplication by H and E1 have matrices

H⋆ =



0 120 252 42 42 42 42 42 42

1 63 120 25 25 25 25 25 25

0 1 0 0 0 0 0 0 0

0 −25 −42 −15 −9 −9 −9 −9 −9

0 −25 −42 −9 −15 −9 −9 −9 −9

0 −25 −42 −9 −9 −15 −9 −9 −9

0 −25 −42 −9 −9 −9 −15 −9 −9

0 −25 −42 −9 −9 −9 −9 −15 −9

0 −25 −42 −9 −9 −9 −9 −9 −15


and

E1⋆ =



0 42 84 20 14 14 14 14 14

0 25 42 15 9 9 9 9 9

0 0 0 −1 0 0 0 0 0

1 −15 −20 −9 −5 −5 −5 −5 −5

0 −9 −14 −5 −5 −3 −3 −3 −3

0 −9 −14 −5 −3 −5 −3 −3 −3

0 −9 −14 −5 −3 −3 −5 −3 −3

0 −9 −14 −5 −3 −3 −3 −5 −3

0 −9 −14 −5 −3 −3 −3 −3 −5


.

One can compute (we used Macaulay2 for this) that these maps have a common
eigenvector

V = 48 + 21H + P − 7(E1 + · · ·+ E6),

with eigenvalue 21 and 7 respectively. By symmetry, V is an eigenvector for every
Ei⋆, with eigenvalue 7. One can also compute that on the orthogonal complement
of V the elements H + 6 and Ei + 2 are nilpotent. We conclude that if chark ̸= 3

then there are two maximal ideals in QH∗(X), namely

(H − 21, E1 − 7, . . . , E6 − 7) and (H + 6, E1 + 2, . . . , E6 + 2),

whilst if chark = 3 then these two ideals coincide and are the unique maximal ideal in
QH∗(X). So in the former case QH∗(X) has two local factors, say Q1 (spanned by V )
and Q2 (its orthogonal complement), whilst in the latter case QH∗(X) is already local
and does not decompose further. Let us restrict attention to orientable Lagrangians,
so that the second part of Remark 1.5 applies and we can refer to the summands
of the Fukaya category as F(X)Q1

= F(X)21,Q1
and F(X)Q2

= F(X)−6,Q2
outside

characteristic 3, and F(X) = F(X)0,QH∗(X) in characteristic 3. Sheridan works over C
and refers to F(X)Q1 and F(X)Q2 as the small and large summands of the category
respectively.

J.É.P. — M., 2025, tome 12



Quantum cohomology and Fukaya summands from monotone Lagrangian tori 315

Now viewing X as a cubic surface in CP3, it can be degenerated to the Cayley
cubic X0 defined by

{[w : x : y : z] ∈ CP3 : xyz + wyz + wxz + wxy = 0}.

The Cayley cubic X0 has four ordinary double points, so the degeneration gives rise to
four pairwise disjoint Lagrangian spheres S1, . . . , S4 in X as vanishing cycles. They are
automatically monotone because they are simply-connected, and satisfy HF∗(Si, Sj) =

0 for i ̸= j since Si and Sj are disjoint. Moreover, degree considerations in the Oh
spectral sequence H∗(Si) ⇒ HF∗(Si, Si) show that HF∗(Si, Si) ̸= 0. The Si thus
constitute four orthogonal non-zero objects in the monotone Fukaya category.

Suppose chark ̸= 3. The existence of the Si means that at least one of F(X)Q1

and F(X)Q2
contains orthogonal non-zero objects, so in particular contains a non-zero

object which doesn’t split-generate it. It cannot be F(X)Q1
, since Q1 is 1-dimensional,

so it must be F(X)Q2 . Thus, by Theorem D, F(X)Q2 cannot be a toroidal subcategory
in the sense of Definition 1.6. We deduce that in Corollary 1.15 only the factor Q1

can be hit.
Suppose instead that chark = 3. Now Theorem D tell us that that full Fukaya

category cannot be toroidal, so in Corollary 1.15 there are no factors to hit.
Combining these observations proves Proposition 1.17.

4.2. The quadric threefold. — Consider again the quadric threefold X from Exam-
ple 1.11. We saw there that if chark ̸= 2 then

(10) QH∗(X) ∼= JacWL × k

for a specific monotone torus L, and that JacWL is local if chark = 3 and isomorphic
to k×3 otherwise. We conclude that for any monotone torus in X, its potential can
have at most two isolated critical points in characteristic 3 (one non-degenerate and
the other with local Jacobian ring k[y]/(y − 1)3), and at most four isolated critical
points, all of which must be non-degenerate, if chark ̸= 2, 3.

If chark = 2 then QH∗(X) is local, isomorphic to k[E]/(E4), where E is a generator
of H4(X;Z) and satisfies E2 = H (a hyperplane class, as before). This is well-known,
but can be computed by combining our previous work with knowledge of the classical
cohomology ring

H∗(X;Z) = Z[H,E]/(H2 − 2E,E2),

as follows. For degree reasons, in QH∗(X;Z) we must have H2 = 2E and E2 = κH

for some κ ∈ Z. We obtain

QH∗(X;Q) = Q[H,E]/(H2 − 2E,E2 − κH) ∼= Q[H]/(H4 − 4κH),

and then the k = Q case of Example 1.11 gives 4κ = ν = 4, so κ = 1. Therefore

QH∗(X;Z) = Z[H,E]/(H2 − 2E,E2 −H).

So in characteristic 2 we get k[E]/(E4), as claimed, and we see that the potential of
a monotone torus can have at most one isolated critical point, with this algebra as its
local Jacobian ring.
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Going further, it was shown by Ivan Smith [29, Lem. 4.6] over C, and by Evans–
Lekili [13, §7.1] over arbitrary k, that the summand of the Fukaya category not split-
generated by the torus L is split-generated by the Lagrangian sphere V appearing
in Proposition 1.19. If chark ̸= 2 then this is the summand of the category corre-
sponding to the k factor in (10), whilst if chark = 2 then it is the whole category
(we will assume that we only allow orientable Lagrangians so Remark 1.5 applies).
If this summand of the category had a toroidal generator T then, by Theorem D,
T would split-generate V , so in particular T and V would have to intersect. So if we
take a monotone torus disjoint from V then in Corollary 1.15 the factor of QH∗(X)

corresponding to V cannot be hit.
The upshot of these discussions is Proposition 1.19.

4.3. The 4-point blowup of CP2. — Recall from Example 1.12 that the monotone
blow-up X = Bl4 CP2 of CP2 at four points contains a monotone torus L for which
JacWL fills out a 3-dimensional piece of the 7-dimensional quantum cohomology
algebra. In [22] Sanda computed the 4-dimensional complement to JacWL inside
QH∗(X) using Lagrangian spheres, but we now explain how it is possible to use just
tori, as follows. This is somewhat orthogonal to the main ideas of the paper, but
illustrates how one can sometimes combine critical points of different tori.

Pascaleff–Tonkonog [20, §4] explain how L can be mutated along certain vectors
in Z2 called mutation directions to produce a new monotone torus whose superpo-
tential is obtained from WL by a prescribed change of variables (the wall-crossing
formula). Moreover, the mutation directions can themselves be mutated, and the
new torus can be further mutated along the mutated directions. This whole process
can then be iterated as desired. We will be interested in the mutation of L along
(−1, 0), and the mutation of the new torus along the mutation of (0,−1), which is
just (0,−1) itself. We will similarly be interested in the mutation of L along (0,−1),
and the mutation of the new torus along the mutation of (−1, 0), which is (−1,−1).
We use variables (u, v), (s, t), (u′, v′), and (s′, t′) for the potentials of these four tori
respectively. This is summarised, along with the corresponding changes of variable,
in Figure 1.

The superpotential of each of these mutated tori has a critical point not visible
to L—in the sense that it cannot be obtained from a critical point of WL by the
relevant change of variables—or to any of the other tori we’re considering. Explicitly,
these new critical points are

(u, v) = (−1,−1), (u′, v′) = (−1, 1), (s, t) = (−1,−1), and (s′, t′) = (1,−1).

Each of these critical points gives rise to a factor of k in QH∗(X). Moreover, these are
all orthogonal to each other and to the 3-dimensional piece of QH∗(X) coming from L,
for the following reason. Let L♭

1 and L♭
2 be two distinct torus objects among those

that we’re considering. It suffices, as in Proposition 3.9, show that HF∗(L♭
1, L

♭
2) = 0

whenever it makes sense (i.e., whenever L♭
1 and L♭

2 lie in the same F(X)λ). The proof
of the wall-crossing formula in [20] involves computing Floer cohomology HF∗

U (L
♭
1, L

♭
2)
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(x, y)(u, v)(s, t) (u′, v′) (s′, t′)

(−1, 0)(0,−1) (0,−1) (−1,−1)

(
s + t + st,

t(1 + s)

s

)
= (u(1 + v), v) = (x, y) =

(
u
′
,
v′(1 + u′)

u′

)
=

(
s
′
+ t

′
,
t′(1 + s′ + t′)

s′

)
(
s,

t(1 + s)

s

)
= (u, v) =

(
x

1 + y
, y

)
=

(
u′2

u′ + v′ + u′v′
,
v′(1 + u′)

u′

)
=

(
s′

1 + t′
,
t′(1 + s′ + t′)

s′

)
(
s + t + st,

t(s + t + st)

s(1 + t)

)
=

(
u(1 + v),

uv(1 + v)

1 + u + uv

)
=

(
x,

xy

1 + x

)
= (u

′
, v

′
) =

(
s
′
+ t

′
,
t′(s′ + t′)

s′

)

(s, t) =

(
u,

uv

1 + u

)
=

(
x

1 + y
,

xy

1 + x + y

)
=

(
u′2

u′ + v′ + u′v′
,

u′v′

u′ + v′

)
=

(
s′

1 + t′
, t

′
)

(s(1 + t), t) =

(
u(1 + u + uv)

1 + u
,

uv

1 + u

)
=

(
x(1 + x)

1 + x + y
,

xy

1 + x + y

)
=

(
u′2

u′ + v′
,

u′v′

u′ + v′

)
= (s

′
, t

′
)

Figure 1. Mutations and changes of variable.

in a Liouville domain U ⊂ X, and because our critical points are not related by the
changes of variables we have HF∗

U (L
♭
1, L

♭
2) = 0. But there is a spectral sequence from

HF∗
U (L

♭
1, L

♭
2) to HF∗(L♭

1, L
♭
2), which accounts for the contributions of holomorphic

strips exiting U , so we conclude that HF∗(L♭
1, L

♭
2) = 0 as wanted. We therefore have

QH∗(X) ∼= k × k[ξ]/(ξ2 − (ξ + 1))︸ ︷︷ ︸
L

×k × k × k × k︸ ︷︷ ︸
mutated tori

.
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