[Temps minimal de commutation de la magnétisation dans de petites structures ellipsoïdales ferromagnétiques]
Dans cet article, nous considérons un matériau ferromagnétique de forme ellipsoïdale. Le moment magnétique associé possède alors deux équilibres asymptotiquement stables opposés, de la forme
In this paper, we consider a ferromagnetic material of ellipsoidal shape. The associated magnetic moment has then two asymptotically stable opposite equilibria, of the form
Accepté le :
Publié le :
Keywords: Ferromagnetic materials, Landau-Lifshitz equation, optimal control, minimal time
Mots-clés : Matériaux ferromagnétiques, équation de Landau-Lifshitz, contrôle optimal, temps minimal
Raphaël Côte 1 ; Clémentine Courtès 2 ; Guillaume Ferrière 2 ; Yannick Privat 3

@article{JEP_2025__12__147_0, author = {Rapha\"el C\^ote and Cl\'ementine Court\`es and Guillaume Ferri\`ere and Yannick Privat}, title = {Minimal time of magnetization switching in small ferromagnetic ellipsoidal samples}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {147--184}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.287}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.287/} }
TY - JOUR AU - Raphaël Côte AU - Clémentine Courtès AU - Guillaume Ferrière AU - Yannick Privat TI - Minimal time of magnetization switching in small ferromagnetic ellipsoidal samples JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 147 EP - 184 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.287/ DO - 10.5802/jep.287 LA - en ID - JEP_2025__12__147_0 ER -
%0 Journal Article %A Raphaël Côte %A Clémentine Courtès %A Guillaume Ferrière %A Yannick Privat %T Minimal time of magnetization switching in small ferromagnetic ellipsoidal samples %J Journal de l’École polytechnique — Mathématiques %D 2025 %P 147-184 %V 12 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.287/ %R 10.5802/jep.287 %G en %F JEP_2025__12__147_0
Raphaël Côte; Clémentine Courtès; Guillaume Ferrière; Yannick Privat. Minimal time of magnetization switching in small ferromagnetic ellipsoidal samples. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 147-184. doi : 10.5802/jep.287. https://jep.centre-mersenne.org/articles/10.5802/jep.287/
[1] - “Control of a network of magnetic ellipsoidal samples”, Math. Control Relat. Fields 1 (2011) no. 2, p. 129-147 | DOI | MR | Zbl
[2] - “Computation of the demagnetizing potential in micromagnetics using a coupled finite and infinite elements method”, ESAIM Control Optim. Calc. Var. 6 (2001), p. 629-647 | DOI | Numdam | MR | Zbl
[3] - “Magnetization switching on small ferromagnetic ellipsoidal samples”, ESAIM Control Optim. Calc. Var. 15 (2009) no. 3, p. 676-711 | DOI | Numdam | MR | Zbl
[4] - “Magnetization switching in small ferromagnetic ellipsoidal samples”, in Proc. 48h IEEE Conference on Decision and Control (Shanghai, December 2009), IEEE, 2009, p. 2106-2111 | DOI
[5] - “Optimal control for a coupled spin-polarized current and magnetization system”, Adv. Comput. Math. 48 (2022) no. 3, article ID 28, 40 pages | DOI | MR | Zbl
[6] et al. - “Spin-transfer torque magnetic random access memory (STT-MRAM)”, ACM Journal on Emerging Technologies in Computing Systems (JETC) 9 (2013) no. 2, p. 1-35 | DOI
[7] - Micromagnetics, Interscience, 1963
[8] - “Control of travelling walls in a ferromagnetic nanowire”, Discrete Contin. Dynam. Syst. Ser. S 1 (2008) no. 1, p. 51-59 | DOI | MR | Zbl
[9] - “The emergence of spin electronics in data storage”, Nature materials 6 (2007) no. 11, p. 813-823 | DOI
[10] - “The Newtonian potential and the demagnetizing factors of the general ellipsoid”, Proc. Roy. Soc. Ser. A 472 (2016) no. 2190, article ID 20160197 | MR | Zbl
[11] - “Variational principles of micromagnetics revisited”, SIAM J. Math. Anal. 52 (2020) no. 4, p. 3580-3599 | DOI | MR | Zbl
[12] - “On controllability of a two-dimensional network of ferromagnetic ellipsoidal samples”, Differential Equations Dynam. Systems 27 (2019) no. 1, p. 277-297 | DOI | MR | Zbl
[13] - “Optimal control in evolutionary micromagnetism”, IMA J. Numer. Anal. 35 (2015) no. 3, p. 1342-1380 | DOI | MR | Zbl
[14] - “On stochastic optimal control in ferromagnetism”, Arch. Rational Mech. Anal. 233 (2019) no. 3, p. 1383-1440 | DOI | MR | Zbl
[15] - Magnetic domains: the analysis of magnetic microstructures, Springer Science & Business Media, 2008
[16] - Electrodynamics of continuous media, vol. 8, Elsevier, 2013 | MR
[17] - “Demagnetizing factors of the general ellipsoid”, Physical review 67 (1945) no. 11-12, p. 351 | DOI
[18] - “Magnetic domain-wall racetrack memory”, Science 320 (2008) no. 5873, p. 190-194 | DOI
[19] - Differential equations and dynamical systems, vol. 7, Springer Science & Business Media, 2013 | MR
[20] - The mathematical theory of optimal processes, The Macmillan Company, New York, 1964 | MR
[21] - “Control and stabilization of steady-states in a finite-length ferromagnetic nanowire”, ESAIM Control Optim. Calc. Var. 21 (2015) no. 2, p. 301-323 | DOI | Numdam | MR | Zbl
[22] - “Ellipsoids (v1. 0): 3-D magnetic modelling of ellipsoidal bodies”, Geoscientific Model Development 10 (2017) no. 9, p. 3591-3608 | DOI
[23] - “Mathematical models of hysteresis. A survey”, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIII (Paris, 1994/1996), Pitman Res. Notes Math. Ser., vol. 391, Longman, Harlow, 1998, p. 327-340
[24] - “On energy-minimization in ferromagnetism controlled by applied fields”, Ann. Mat. Pura Appl. (4) 192 (2013) no. 1, p. 115-125 | DOI | MR | Zbl
Cité par Sources :