[Temps minimal de commutation de la magnétisation dans de petites structures ellipsoïdales ferromagnétiques]
Dans cet article, nous considérons un matériau ferromagnétique de forme ellipsoïdale. Le moment magnétique associé possède alors deux équilibres asymptotiquement stables opposés, de la forme . Pour utiliser ces matériaux à des fins de stockage de mémoire, il est nécessaire de savoir comment contrôler le moment magnétique. Nous utilisons comme variable de contrôle un champ magnétique externe spatialement uniforme et nous considérons la question du renversement du moment magnétique, c’est-à-dire le passage de la configuration à la configuration , en un temps minimal. Bien entendu, il est nécessaire d’imposer des restrictions sur le champ magnétique externe utilisé. Nous incluons donc une contrainte sur la norme des contrôles, supposée inférieure à une valeur seuil . Nous montrons que, de manière générique par rapport aux dimensions de l’ellipsoïde, il existe une valeur minimale de pour que ce problème ait une solution. Nous la caractérisons alors précisément. Enfin, nous étudions certaines configurations particulières associées à des géométries présentant des propriétés de symétrie et montrons que, dans ce cas, le moment magnétique peut être contrôlé en temps minimal sans imposer de condition de seuil sur .
In this paper, we consider a ferromagnetic material of ellipsoidal shape. The associated magnetic moment has then two asymptotically stable opposite equilibria, of the form . In order to use these materials for memory storage purposes, it is necessary to know how to control the magnetic moment. We use as a control variable a spatially uniform external magnetic field and consider the question of flipping the magnetic moment, i.e., changing it from the configuration to the one, in minimal time. Of course, it is necessary to impose restrictions on the external magnetic field used. We therefore include a constraint on the norm of the control, assumed to be less than a threshold value . We show that, generically with respect to the dimensions of the ellipsoid, there is a minimal value of for this problem to have a solution. We then characterize it precisely. Finally, we investigate some particular configurations associated to geometries enjoying symmetry properties and show that in this case the magnetic moment can be controlled in minimal time without imposing a threshold condition on .
Accepté le :
Publié le :
Keywords: Ferromagnetic materials, Landau-Lifshitz equation, optimal control, minimal time
Mots-clés : Matériaux ferromagnétiques, équation de Landau-Lifshitz, contrôle optimal, temps minimal
Raphaël Côte 1 ; Clémentine Courtès 2 ; Guillaume Ferrière 2 ; Yannick Privat 3
@article{JEP_2025__12__147_0, author = {Rapha\"el C\^ote and Cl\'ementine Court\`es and Guillaume Ferri\`ere and Yannick Privat}, title = {Minimal time of magnetization switching in small ferromagnetic ellipsoidal samples}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {147--184}, publisher = {\'Ecole polytechnique}, volume = {12}, year = {2025}, doi = {10.5802/jep.287}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.287/} }
TY - JOUR AU - Raphaël Côte AU - Clémentine Courtès AU - Guillaume Ferrière AU - Yannick Privat TI - Minimal time of magnetization switching in small ferromagnetic ellipsoidal samples JO - Journal de l’École polytechnique — Mathématiques PY - 2025 SP - 147 EP - 184 VL - 12 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.287/ DO - 10.5802/jep.287 LA - en ID - JEP_2025__12__147_0 ER -
%0 Journal Article %A Raphaël Côte %A Clémentine Courtès %A Guillaume Ferrière %A Yannick Privat %T Minimal time of magnetization switching in small ferromagnetic ellipsoidal samples %J Journal de l’École polytechnique — Mathématiques %D 2025 %P 147-184 %V 12 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.287/ %R 10.5802/jep.287 %G en %F JEP_2025__12__147_0
Raphaël Côte; Clémentine Courtès; Guillaume Ferrière; Yannick Privat. Minimal time of magnetization switching in small ferromagnetic ellipsoidal samples. Journal de l’École polytechnique — Mathématiques, Tome 12 (2025), pp. 147-184. doi : 10.5802/jep.287. https://jep.centre-mersenne.org/articles/10.5802/jep.287/
[1] - “Control of a network of magnetic ellipsoidal samples”, Math. Control Relat. Fields 1 (2011) no. 2, p. 129-147 | DOI | MR | Zbl
[2] - “Computation of the demagnetizing potential in micromagnetics using a coupled finite and infinite elements method”, ESAIM Control Optim. Calc. Var. 6 (2001), p. 629-647 | DOI | Numdam | MR | Zbl
[3] - “Magnetization switching on small ferromagnetic ellipsoidal samples”, ESAIM Control Optim. Calc. Var. 15 (2009) no. 3, p. 676-711 | DOI | Numdam | MR | Zbl
[4] - “Magnetization switching in small ferromagnetic ellipsoidal samples”, in Proc. 48h IEEE Conference on Decision and Control (Shanghai, December 2009), IEEE, 2009, p. 2106-2111 | DOI
[5] - “Optimal control for a coupled spin-polarized current and magnetization system”, Adv. Comput. Math. 48 (2022) no. 3, article ID 28, 40 pages | DOI | MR | Zbl
[6] et al. - “Spin-transfer torque magnetic random access memory (STT-MRAM)”, ACM Journal on Emerging Technologies in Computing Systems (JETC) 9 (2013) no. 2, p. 1-35 | DOI
[7] - Micromagnetics, Interscience, 1963
[8] - “Control of travelling walls in a ferromagnetic nanowire”, Discrete Contin. Dynam. Syst. Ser. S 1 (2008) no. 1, p. 51-59 | DOI | MR | Zbl
[9] - “The emergence of spin electronics in data storage”, Nature materials 6 (2007) no. 11, p. 813-823 | DOI
[10] - “The Newtonian potential and the demagnetizing factors of the general ellipsoid”, Proc. Roy. Soc. Ser. A 472 (2016) no. 2190, article ID 20160197 | MR | Zbl
[11] - “Variational principles of micromagnetics revisited”, SIAM J. Math. Anal. 52 (2020) no. 4, p. 3580-3599 | DOI | MR | Zbl
[12] - “On controllability of a two-dimensional network of ferromagnetic ellipsoidal samples”, Differential Equations Dynam. Systems 27 (2019) no. 1, p. 277-297 | DOI | MR | Zbl
[13] - “Optimal control in evolutionary micromagnetism”, IMA J. Numer. Anal. 35 (2015) no. 3, p. 1342-1380 | DOI | MR | Zbl
[14] - “On stochastic optimal control in ferromagnetism”, Arch. Rational Mech. Anal. 233 (2019) no. 3, p. 1383-1440 | DOI | MR | Zbl
[15] - Magnetic domains: the analysis of magnetic microstructures, Springer Science & Business Media, 2008
[16] - Electrodynamics of continuous media, vol. 8, Elsevier, 2013 | MR
[17] - “Demagnetizing factors of the general ellipsoid”, Physical review 67 (1945) no. 11-12, p. 351 | DOI
[18] - “Magnetic domain-wall racetrack memory”, Science 320 (2008) no. 5873, p. 190-194 | DOI
[19] - Differential equations and dynamical systems, vol. 7, Springer Science & Business Media, 2013 | MR
[20] - The mathematical theory of optimal processes, The Macmillan Company, New York, 1964 | MR
[21] - “Control and stabilization of steady-states in a finite-length ferromagnetic nanowire”, ESAIM Control Optim. Calc. Var. 21 (2015) no. 2, p. 301-323 | DOI | Numdam | MR | Zbl
[22] - “Ellipsoids (v1. 0): 3-D magnetic modelling of ellipsoidal bodies”, Geoscientific Model Development 10 (2017) no. 9, p. 3591-3608 | DOI
[23] - “Mathematical models of hysteresis. A survey”, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIII (Paris, 1994/1996), Pitman Res. Notes Math. Ser., vol. 391, Longman, Harlow, 1998, p. 327-340
[24] - “On energy-minimization in ferromagnetism controlled by applied fields”, Ann. Mat. Pura Appl. (4) 192 (2013) no. 1, p. 115-125 | DOI | MR | Zbl
Cité par Sources :