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MINIMAL TIME OF MAGNETIZATION SWITCHING IN

SMALL FERROMAGNETIC ELLIPSOIDAL SAMPLES

by Raphaël Côte, Clémentine Courtès,
Guillaume Ferrière & Yannick Privat

Abstract. — In this paper, we consider a ferromagnetic material of ellipsoidal shape. The asso-
ciated magnetic moment has then two asymptotically stable opposite equilibria, of the form ±m.
In order to use these materials for memory storage purposes, it is necessary to know how to
control the magnetic moment. We use as a control variable a spatially uniform external mag-
netic field and consider the question of flipping the magnetic moment, i.e., changing it from
the +m configuration to the −m one, in minimal time. Of course, it is necessary to impose
restrictions on the external magnetic field used. We therefore include a constraint on the L∞

norm of the control, assumed to be less than a threshold value U . We show that, generically
with respect to the dimensions of the ellipsoid, there is a minimal value of U for this problem
to have a solution. We then characterize it precisely. Finally, we investigate some particular
configurations associated to geometries enjoying symmetry properties and show that in this
case the magnetic moment can be controlled in minimal time without imposing a threshold
condition on U .
Résumé (Temps minimal de commutation de la magnétisation dans de petites structures ellip-
soïdales ferromagnétiques)

Dans cet article, nous considérons un matériau ferromagnétique de forme ellipsoïdale. Le
moment magnétique associé possède alors deux équilibres asymptotiquement stables opposés,
de la forme ±m. Pour utiliser ces matériaux à des fins de stockage de mémoire, il est né-
cessaire de savoir comment contrôler le moment magnétique. Nous utilisons comme variable
de contrôle un champ magnétique externe spatialement uniforme et nous considérons la ques-
tion du renversement du moment magnétique, c’est-à-dire le passage de la configuration +m
à la configuration −m, en un temps minimal. Bien entendu, il est nécessaire d’imposer des
restrictions sur le champ magnétique externe utilisé. Nous incluons donc une contrainte sur
la norme L∞ des contrôles, supposée inférieure à une valeur seuil U . Nous montrons que, de
manière générique par rapport aux dimensions de l’ellipsoïde, il existe une valeur minimale
de U pour que ce problème ait une solution. Nous la caractérisons alors précisément. Enfin,
nous étudions certaines configurations particulières associées à des géométries présentant des
propriétés de symétrie et montrons que, dans ce cas, le moment magnétique peut être contrôlé
en temps minimal sans imposer de condition de seuil sur U .
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1. Introduction

1.1. The Landau-Lifshitz equation for ellipsoidal ferromagnetic samples

Ferromagnetic materials have come into common use in the last few decades, espe-
cially since they are found in devices used to store digital information such as mag-
netic tapes or hard disks, but also in magnetic chips called Magnetic Random Access
Memory (MRAM). These chips have many advantages over their silicon counterparts,
in particular that of requiring energy only to change the value bits and not to main-
tain the storage itself. This is probably one of the most challenging applications since
it opens the door towards new spintronic applications and storage technologies while
allowing a very fast access to information (see, e.g., [18]).

The magnetic moment of a ferromagnetic material represented by a domain Ω ⊂ R3

is usually modeled as a time-varying vector field

m : R× Ω −→ S2,

where S2 is the unit sphere of R3, the evolution of which is driven by the so-called
Landau-Lifshitz equation (see [16])

(1) ∂m

∂t
= −m ∧ h(m)− αm ∧ (m ∧ h(m)),

where the effective field h(m) is defined by

h(m) = 2A∆m+ hd(m) + hext,

with α > 0, a constant (in time and space) damping coefficient which is charac-
terized by the material. We refer for instance to [15, 7] for additional explanations.
The constant A > 0 is the exchange constant, and can be assumed to be equal to
A = 1/2 without loss of generality, with a normalization argument. The demagnetizing
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Minimal time of magnetization switching in small ferromagnetic ellipsoidal samples 149

field hd(m) is the solution of the equations{
div(hd(m) +m) = 0

curl(hd(m)) = 0
in D′(R3),

where m is extended to R3 by 0 outside Ω and D′(R3) stands for the space of dis-
tributions on R3. In other words, hd(m) = ∇ϕ where ϕ : R3 → R is the potential
defined by ∆ϕ = −divm1Ω and [∂nϕ] = m · n on the boundary ∂Ω, so that

ϕ(x) = − 1

4π

∫
Ω

m(y) · (x− y)

|x− y|3
dy.

We refer to [2, 7] and [11, §1] for additional explanations on this representation for-
mula. The field hext is an external one, for instance it can be an external magnetic
field. Note that it is possible to complete and specify this physical model by adding
other relevant terms, for example by taking into account the anisotropic behavior of
the crystal that composes the ferromagnetic material.

Remark 1. — Notably, every solution of (1) maintains a constant norm over time,
which remains equal to 1 given the assumption |m(0, ·)| = 1. Specifically, we can
compute
1

2

∂

∂t
|m(t, x)|2=m(t, x) · ∂m

∂t
(t, x)=−m · (m ∧ h(m) + αm ∧ (m ∧ h(m)))|at (t,x) = 0.

Finally, it is standard to assume homogeneous Neumann boundary conditions on
the magnetization on the boundary of Ω.

In this article, we will consider a ferromagnetic sample of ellipsoidal shape, and
the magnetization m and external field hext both spatially uniform. Indeed, ellip-
soidal domains have been much studied in the literature dedicated to ferromagnetism
[17, 10, 22]: on the one hand, they cover a large variety of geometrical shapes, and on
the other hand, they are the only known bodies that can be uniformly magnetized
in the presence of a spatially uniform inducing field. From the mathematical point of
view, it is nice to consider such samples because the demagnetizing field hd appearing
in the Landau-Lifshitz equation can be determined in an explicit way.

Let us be more precise and clarify the model obtained in this case. In all the
following of this article, let Ω be the ellipsoid of R3 of semi-axes a1 > 0, a2 > 0

and a3 > 0, and (O; e1, e2, e3) be an orthonormal basis chosen so that the Cartesian
equation of Ω reads

(2) x2

a21
+
y2

a22
+
z2

a23
= 1.

An illustration of the ellipsoid Ω is shown in Figure 1. According to [17, 10], for
uniform (in space) magnetizations m on Ω, the demagnetizing field hd(m) can be
explicitly computed and reads

hd(m) = −Dm, with D =

γ1 0 0

0 γ2 0

0 0 γ3

 ,
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where γi (i = 1, 2, 3) is a positive constant depending only on the semi-axes a1, a2
and a3 (we provide the precise dependence in Appendix A).

One can easily infer from this result that, provided that the external field hext
and the initial magnetization m0 are constant in space, so is the magnetic moment
m solving the Landau-Lifshitz equation (1) completed with homogeneous Neumann
boundary conditions.

As a consequence, the Landau-Lifshitz equation with a time-dependent external
magnetic field hext reads as the ordinary differential system

(3)
{
ṁ = α (h0(m)− (h0(m) ·m)m)−m ∧ h0(m) in (0, T ),

m(0) = m0,

where the dotted notation ṁ stands for the time derivative ofm, h0(m) = −Dm+hext,
T > 0, m(t) ∈ S2 ⊂ R3, D = diag([γ1, γ2, γ3]) is a diagonal matrix with positive
coefficients. Up to a change of basis, we will also assume without loss of generality
that

(4) 0 ⩽ γ1 ⩽ γ2 ⩽ γ3 ⩽ 1.

In what follows, we will assume that the ferromagnetic particle is subjected to a
spatially uniform external magnetic field hext, and we are interested in two asymp-
totically stable stationary states of the resulting system, denoted m. We refer to
Appendix B for the characterization on the steady-states of (3) and their stability.
We seek to answer the following question:

Given a maximum value U of the norm of the field hext at all times, can
we determine whether there exists such a field flipping the magnetic spin
from m to −m in minimal time?

x y

z

2a1
2a2

2a3

Figure 1. The ellipsoid shaped ferromagnetic sample
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1.2. State of the art and structure of the article. — The development of the use
of ferromagnetic materials has led to the emergence of new storage possibilities, and
consequently to a renewed interest of the scientific community around the control of
ODE/PDE on this topic.

Indeed, controlling the spin and magnetic moment in ferromagnetic materials is
essential for advanced technologies like spintronics and data storage [9, 6]. It enables
the development of faster, more compact, and energy-efficient devices, such as MRAM
magnetic memory. In spintronics, manipulating electron spin (in addition to charge)
allows for circuits that generate less heat, improving energy efficiency. Additionally,
controlling spin affects the quantum properties of materials, opening possibilities for
advanced quantum physics experiments, such as studying the spin Hall effect. Finally,
mastering magnetic properties paves the way for new applications in magnetic logic
and information processing, where logic operations are performed solely with magnetic
materials.

The use of an external magnetic field to control a ferromagnetic system is a very
present issue in the literature of the field (see for instance [8, 21, 23, 24]).

Many works have focused on both the derivation of relevant models, i.e., sufficiently
close to the physics, but also simple enough to be exploited mathematically, and on
the related optimization issues. Many studies are devoted to these modeling questions,
to the obtaining of exploitable optimality conditions leading to numerical simulations.
Thus, in the same spirit as the present study, the authors of [5] seek to flip the
magnetic spin using electric current injections. Let us mention in the same vein the
works [13, 14] also addressing similar issues: minimization of the distance to a target
state with a fixed time horizon, addition of stochastic term in the model, search for a
feedback and numerical analysis of the considered problems.

Recent progress has been made in the understanding of the control (exact and
approximate) of ellipsoidal samples/networks : [12, 4, 1]. Our study has been partic-
ularly motivated by [3], in which it is notably proved that, when the size of an open
bounded set Ω tends to 0, then we find a uniform magnification in the domain, which
lends itself to the study of ellipsoids.

Structure of the article. — In this paper, we are interested in a single ferromagnetic
particle of ellipsoidal shape in R3. We seek to perform a magnetic moment reversal in
minimal time, using an external magnetic field as a control of the resulting physical
system.

We model this issue in Section 2.1, imposing a maximum L∞ norm on the control
translated using the parameter U > 0, reflecting the difficulty and cost of using very
high magnetic fields. In the absence of additional symmetries on the geometry of
the system, we show the existence of a minimal threshold on U for the minimum
time problem to have a solution. We refine this result when additional symmetries
are assumed on the material geometry. The main results of this paper are gathered
in Section 2.2. Section 3 contains the foundation of the proofs of the main results:
indeed, we state necessary and sufficient conditions guaranteeing the well-posedness
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of the time-optimal problem and write the necessary conditions of optimality to the
first order using the Pontryagin maximum principle.

The proofs of the main results are contained in Sections 4, 5 and 6. Finally, some
numerical simulations are listed in Section 7 to illustrate the qualitative behavior
of the solutions obtained in theoretical theorems. The appendices contain additional
information and/or secondary calculations. Appendix A contains the calculation of
the demagnetizing field in the case of a ferromagnetic ellipsoid sample. Appendix B
contains the proof that ±e1 are indeed the only asymptotically stable states for equa-
tion (3). Finally, Appendix C contains the calculations of the explicit constants in the
case γ1 < γ2.

Notations. — In the whole article, | · | stands for the standard euclidean norm on R3

(or Rd), and we write with a dot · its inner product in Rd.
We are essentially interested in a control problem where the control function is the

external field: we abide by the usual convention, and let

hext = u.

2. Existence of a minimal switching time

Let us recall that, as mentioned in the introduction, we will consider a ferromag-
netic sample whose shape Ω is the ellipsoid with Cartesian equation (2). The dynamics
of the magnetic moment m(·), equal to m0 at the initial time, is hence driven by the
simplified Landau-Lifshitz equation (3).

2.1. Towards an optimal control problem. — The main issue we want to tackle
reads

Given a steady-state m of (3) in S2, can we achieve a reversal by solving
an optimal control problem, i.e., steering the system from m(0) = m to
m(T ) = −m while minimizing T?

In what follows, we will consider particular stationary states: m = ±e1. It is proved in
appendix B that these equilibria are asymptotically stable when γ1 < γ2. Therefore,
they can be used as magnetic spin orientation for memory storage purposes. We will
denote by u(·) the external (spatially uniform) magnetic field imposed on the system.
This is the control variable in this problem. The question is then to ask if it is possible
to steer the solution mu of the system (3) associated to the control u(·) and to the
initial data mu(0) = e1 until mu(T ) = −e1, in minimal time.

Of course, it is necessary to add physical constraints to this problem: if one imposes
no restrictions on the choice of admissible controls, it is likely that the minimal time
problem will have a solution, reached by unrealistic controls(1). For this reason, we will

(1)Indeed, an applied magnetic field in a region cannot be excessively strong, as it is not feasible
to create infinitely strong fields due to physical limitations such as material saturation and thermal
effects.
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assume in what follows the constraint

(CT,U ) |u(t)| ⩽ U a.e. in (0, T ),

in order to limit the choice of controls to realistic possibilities.
All in all, the problem we aim at investigating reads as follows.

Minimal time problem

Let U > 0 and assume that m0 = e1. The problem reads

(P0) TU := inf
(T,u)∈OU

T,

where

OU = {(T, u) | T ∈ R+, u ∈ L∞(0, T ) satisfies (CT,U ) and mu(T ) = −e1},

with mu, the solution to (3) associated to the control function u(·) and the
initial datum e1.

We will investigate the following issues:
– Does Problem (P0) have an optimal solution for any value of U > 0 ?
– How to characterize all the solutions to this problem and understand their geo-

metric dependence to the parameters γi, i = 1, 2, 3?

2.2. Main results. — First, the minimization problem is indeed well-posed, meaning
that the existence of an optimal solution is equivalent to the existence of a minimal
trajectory.

Theorem 2. — Let U > 0. The following properties are equivalent:
(i) There exists an optimal pair (TU , u) ∈ OU for Problem (P0).
(ii) TU is finite.
(iii) OU is nonempty.

The behavior of the control system differs greatly depending on the values of the
parameters γi and more specifically on the values of γ1 and γ2.

Theorem 3. — Assume γ1 < γ2. Then there exists Ucrit > 0 such that
– for all U ∈ (0, Ucrit], (P0) has no solution.
– for all U > Ucrit, (P0) has a solution.

Remark 4. — It is notable that the proof of this theorem provides an explicit lower-
bound estimate of Ucrit. The precise bound is derived in Remark 19.

We are now interested in the case where γ1 = γ2, which is not covered by the
above result. It is interesting to note that in this case, the behavior of the optimized
physical system is very different from the one described in the Theorem 3. Indeed,
this situation of symmetry leads to the fact that there is no longer a threshold from
which the system is controllable.

To complete this analysis, we also investigate in the following result the existence of
optimal planar trajectories. In view of the system symmetry, it is natural to conjecture
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that the optimal trajectory are planar, since all the points in span(e1, e2) ∩ S2 are
stable, and this set is even asymptotically stable. Somewhat surprisingly, we show
here that this is actually not the case.

Theorem 5. — If γ1 = γ2 ⩽ γ3, then the optimal control problem (P0) has a solution
whatever the value of U > 0, meaning that Ucrit = 0, with the notations of Theorem 3.
Furthermore, if γ1 < γ3, the optimal trajectory in S2 is not contained in the plane
span(e1, e2).

It is interesting to notice that Theorem 3 can be refined in the particular case where
γ1 < γ2 = γ3. To this aim, we will deeply exploit the necessary first order optimality
conditions provided by the so-called Pontryagin Maximum Principle (PMP). We refer
to Section 3.3 for a precise statement of such conditions.

Theorem 6. — If γ1 ⩽ γ2 = γ3, then

Ucrit =
α

2
√
1 + α2

(γ2 − γ1).

Furthermore, for all U > Ucrit,

TU =
π

√
1 + α2

√
U2 − U2

crit
.

Remark 7. — In particular, we infer from the result above the following asymptotics:

TU ∼ π√
2Ucrit(1 + α2)

1√
U − Ucrit

as U ↘ Ucrit,

and
TU ∼ π

U
√
1 + α2

as U −→ +∞.

Remark 8 (Case of where the shape of the sample is a sphere). — In the case where Ω

is a sphere, then one has γ1 = γ2 = γ3. Then, both conclusions of Theorem 5 and 6
apply, meaning that Ucrit = 0 and the optimal time is given by TU = π/(U

√
1 + α2).

Furthermore, it may be shown that, in that case, there exists optimal planar trajec-
tories in each of the hyperplanes span(ei, ej) with i ̸= j. We refer for instance to
[3, Proof of Prop. 2], whose main argument can be reproduced in our case.

We end this section by a result on the asymptotic behavior of optimal magnetization
trajectories as U diverges to +∞. We prove that optimal trajectories tend to be
supported on a geodesic on the sphere whenever U is large.

Theorem 9. — Let γ1 ⩽ γ2 ⩽ γ3 and U > Ucrit and m be an optimal trajectory.
Let p be its adjoint state. Then, if U is large enough, m stays close to the plane
V = span(e1, p(TU )) in the following sense: there exists U0 > 0 and C > 0 such that
for every U > U0 and t ∈ [0,TU ],

∥m(t)− PVm(t)∥ ⩽
C

U
,

where PV is the orthogonal projection onto V .

J.É.P. — M., 2025, tome 12



Minimal time of magnetization switching in small ferromagnetic ellipsoidal samples 155

3. Minimization and optimality

3.1. Proof of Theorem 2: existence of an optimal trajectory

Let us assume that OU is nonempty. This allows us to consider a minimizing
sequence (Tn, un)n∈N ∈ ON

U , and mn ∈ C ([0, Tn]) the solution to (3) with field un.
By definition, Tn → TU as n→ ∞. In what follows, we will index similarly a sequence
and any subsequence with a slight abuse of notation, for the sake of simplicity.

Let us introduce the functions ũn, m̃n defined on [0, 1] by

ũn(s) = un(Tns) and m̃n(s) = mn(Tns).

Hence, System (3) rewrites

(5)

 ˙̃mn = Tn

(
α
(
h̃0(m̃n)− (h̃0(m̃n) · m̃n)m̃n

)
− m̃n ∧ h̃0(m̃n)

)
in (0, 1),

m̃n(0) = e1,

where h̃0(m̃n) = −Dm̃n + ũn.
Similarly, since the sequence (ũn)n∈N is bounded in L∞(0, 1), it converges weakly-

star in L∞(0, 1) up to a subsequence to some element u∗ such that |u∗(·)| ⩽ U

a.e. in [0, 1] according to the Banach-Alaoglu-Bourbaki theorem. Since both (m̃n)n∈N
and (ũn)n∈N are bounded in L∞([0, 1]), we infer that so is ˙̃mn according to (5).
Therefore, the sequence (m̃n)n∈N is bounded in W 1,∞(0, 1) and hence converges (up to
a subsequence) towards an element m̃∗ ∈ W 1,∞(0, 1) in C0([0, 1]) according to the
Ascoli theorem. In particular, one has necessarily |m̃∗(·)| = 1. Now, let us rewrite (5)
as the fixed-point equation: for all s ∈ [0, 1],

m̃n(s) = e1 + Tn

∫ s

0

(
α
(
h̃0(m̃n)− (h̃0(m̃n) · m̃n)m̃n

)
− m̃n ∧ h̃0(m̃n)

)
dσ.

Observe that the right-hand side is linear with respect to h̃0(mn) and that, according
to the properties above, (h̃0(m̃n))n∈N converges weakly-star to h̃0(m̃

∗) in L∞(0, 1),
where h̃0(m̃∗) = −Dm̃∗+ ũ∗. Letting n tend to +∞ in the equation above, we obtain:

∀s ∈ [0, 1], m̃∗(s) = e1 + TU

∫ s

0

(
α
(
h̃0(m̃

∗)− (h̃0(m̃
∗) · m̃∗)m̃∗)− m̃∗ ∧ h̃0(m̃∗)

)
dσ.

Moreover, since m̃n(1) = −e1 by construction, the convergence in C0([0, 1]) leads to
m̃∗(1) = −e1. Taking the previous formula with s = 1, we get

−2e1 = TU

∫ 1

0

(
α
(
h̃0(m̃

∗)− (h̃0(m̃
∗) · m̃∗)m̃∗)− m̃∗ ∧ h̃0(m̃∗)

)
dσ.

This proves that TU > 0. Now, let us introduce u∗ as u∗(t) = ũ∗(t/TU ). By undoing
the change of variable above, we get that m̃∗(t/TU ) = mu∗(t) for a.e. t ∈ [0,TU ].
Furthermore, mu∗(0) = e1 and mu∗(TU ) = −e1 since m̃n(0) = e1 and m̃n(1) = −e1.
The converse sense is straightforward and the expected conclusion follows.

Finally, observe that the same reasoning can be reproduced whenever TU is finite.
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3.2. Sufficient and necessary condition for the existence of an admissible trajec-
tory. — Let (m,u) be a solution to (3) on [0, T ], and for t ∈ [0, T ], consider the
mobile frame B(t) = (m(t), ė(t),m(t) ∧ ė(t)) where(2) ė = ṁ/|ṁ|. According to [3],
by observing that

m ⊥ ṁ, ṁ ⊥ m ∧ ṁ and m ⊥ m ∧ (m ∧Dm),

one shows easily, by decomposing u(t) into B(t) and writing the equation for
u− (u ·m)m, the projection of u on m⊥, that there exists λ ∈ L∞(0, T ) such that

(6) u =
1

1 + α2
(αṁ+m ∧ ṁ) +Dm− (Dm ·m)m+ λm.

In fact, λ = u · m. Reciprocally, given any function m ∈ W 1,∞([0, T ],S2), and any
function λ ∈ L∞([0, T ],R), if we define u by (6), then (m,u) is solution to (3). These
considerations can be seen as a consequence of a flatness property of the main system.

Again assuming that (m,u) is admissible trajectory, i.e., a solution to (3), We infer
from (6) that u(t) expands as

(7) u = λm+
( α

1 + α2
|ṁ|+ ė ·Dm

)
ė+

(
Dm · (m ∧ ė) + 1

1 + α2
|ṁ|

)
m ∧ ė.

As, a consequence, using that Dm · (m ∧ ė) = ė · (Dm ∧m) due the triple product
property, we get

|u|2 = λ2 +
( α

1 + α2
|ṁ|+ ė ·Dm

)2

+
(
Dm · (m ∧ ė) + |ṁ|

1 + α2

)2

= λ2 +
(
ė ·Dm+

α|ṁ|
1 + α2

)2

+
(
ė · (Dmu ∧m) +

|ṁ|
1 + α2

)2

.

Clearly, this computation and the previous remarks show that, without loss of gen-
erality, we can furthermore assume that an optimal trajectory satisfies λ = 0, or
equivalently, u ·m = 0: we will do this in the following.

Let us introduce, for a given T > 0,

VT = {m ∈ H1([0, T ];S2) | m(0) = e1 and m(T ) = −e1}.

To investigate the existence of an admissible trajectory, it is then convenient to
introduce

Lα(m) :=
(
ė · (Dm ∧m) +

|ṁ|
1 + α2

)2

+
(
ė ·Dm+

α|ṁ|
1 + α2

)2

(8)

Λ(T ) := inf
λ∈L∞([0,T ])

inf
m∈VT

sup
t∈[0,T ]

(
λ2 + Lα(m)

)
= inf

m∈VT

sup
t∈[0,T ]

Lα(m).(9)

We summarize the above discussion in the form of a lemma.

Lemma 10. — The existence of an admissible trajectory for Problem (P0) comes to
the existence of m ∈ VT such that the function u given by (7) with λ = 0 satisfies
∥u∥L∞([0,T ];R3) ⩽ U , which is also equivalent to Λ(T ) ⩽ U2. Also, u satisfies u ·m = 0.

(2)Here, ė is merely a notation, and not the time derivative of a previously defined vector e.
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3.3. Necessary optimality conditions for Problem (P0). — This problem can be
solved by using the Pontryagin maximum principle. The main results of this section
are gathered in Proposition 12, at the end of this section.

The Hamiltonian associated to Problem (P0) is

H : S2 × R3 × {−1, 0} × R3 −→ R

(m, p, p0, u) 7−→ p ·
(
−αm ∧ (m ∧ h0(m))−m ∧ h0(m)

)
.

It can be noted that the dependence of H on the control function u is affine and one
has

H(m, p, p0, u) = p · (−αm ∧ (m ∧ u)−m ∧ u)− p ·
(
−αm ∧ (m ∧Dm)−m ∧Dm

)
.

As a first remark, the magnetization stays in S2 = ∂B, where B is the closed
unit ball of R3. Therefore, our problem is obviously equivalent to the problem with
restricted conditions

TU = inf
(T,u)∈OU

|m|2−1=0

T.

Thus, we use the version of the Pontryagin maximum principle with restricted phase
coordinates, as stated in [20, Th. 22]. This theorem is stated for a minimization of an
integral with fixed T , but it can be easily adapted to the case of a minimal time with
classical changes (see for instance the passage from Theorem 1 to Theorem 2 in the
same reference). With such a statement, we point out that, for all m ∈ R3

∇(|m|2 − 1) = 2m,

and that
2m · (−αm ∧ (m ∧ h0(m))−m ∧ h0(m)) = 0.

Therefore, in our case, this statement gives the exact same necessary conditions, with
an additional orthogonality condition for the adjoint state, stated hereafter.

The first order optimality conditions read as follows: let (T, u) be an optimal pair
for this problem; there exists an absolutely continuous mapping p : [0, T ] → R3 called
adjoint state and a real number p0 ∈ {0,−1} such that the pair (p, p0) is non-trivial
and for almost every t ∈ [0, T ], the following conditions hold.

– Adjoint equations. Setting

F1(m, p) := α
(
p ∧ (m ∧Dm) +Dm ∧ (m ∧ p)−D(m ∧ (m ∧ p))

)
−Dm ∧ p−D(p ∧m),

F2(m, p, u) := −α(p ∧ (m ∧ u) + u ∧ (m ∧ p)) + u ∧ p,

one gets

(10) ṗ = −∂H
∂m

= F1(m, p) + F2(m, p, u).
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Remark that, since |m| = 1, one equivalently has

F1(m, p) = α
(
Dp− (Dm ·m)p− 2(m · p)Dm+ 2(Dm · p)m

)
−Dm ∧ p−D(p ∧m),

F2(m, p, u) = α(p ·m)u+ α(u ·m)p− 2α(p · u)m+ u ∧ p.

– Maximality conditions. For a.e. t ∈ [0, T ], u(t) solves the optimization problem

(11) max
|v|⩽U

H(m(t), p(t), p0, v),

and one has at the final time T

(12) max
|vT |⩽U

H(m(T ), p(T ), p0, vT ) = −p0.

– A useful identity. Since the dynamics only depends on the magnetization m(·)
and the control u(·), the Hamiltonian functional is constant in time:

(13) H(m(t), p(t), p0, u(t)) = −p0, t ∈ [0, T ],

according to (12), by evaluating the expression for t = T .
– An orthogonality condition for the adjoint state. At the final time t = T , the

adjoint state p(T ) is tangent to the boundary |m|2 − 1 = 0 at m(T ) = −e1. This
condition is thus equivalent to

(14) p(T ) · e1 = 0.

– Orthogonality between u and m. As seen in Lemma 10, u ·m = 0 on [0, T ].

Remark 11. — Since the initial and final state are fixed, there is no need to impose
any additional transversality condition on the adjoint state.

Let us analyze the conditions (11) and (12).

The adjoint state p cannot vanish on [0, T ]. — Indeed, in the converse case, if there
exists t0 ∈ [0, T ] such that p(t0) = 0, then by the Cauchy-Lipschitz theorem and the
linearity of the equation on p, it follows that p(·) = 0. Then, by using Condition (12),
one gets p0 = 0, a contradiction with the non-triviality of the pair (p, p0).

On Condition (11). — Observe that v 7→ H(m(t), p(t), p0, v) is affine with respect
to v. According to the Karush-Kuhn-Tucker theorem, there exists µ ⩾ 0 such that
∇vH(m(t), p(t), p0, u(t))− µu(t) = 0 and the slackness condition µ(|u(t)|2 − U2) = 0

is satisfied.
If the set I := {|u| < U} is of positive Lebesgue measure, then one has

α(p(t)− (p(t) ·m(t))m(t)) = p(t) ∧m(t) a.e. t ∈ I.

Taking the scalar product of this identity with p(t) leads to |p(t)|2 = (p(t) · m(t))2

on I. Since p does not vanish, it follows from the equality case in the Cauchy-Schwarz
inequality that p(t) is proportional to m(t). We will show that such a case cannot
occur.
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Let us introduce the function φ := p− (p ·m)m. One can compute that φ satisfies
the differential (linear) relation

(15) φ̇ = αDφ− α(Dm ·m)φ−Dm ∧ φ−D(φ ∧m)

+ u ∧ φ+ (m · (Dm ∧ φ))m− α(u · φ)m,

a.e. in [0, T ]. This follows from an easy but lengthy computation, and from the fact
that the function λ given by λ = p ·m satisfies

λ̇ = −2α(Dm ·m)λ− (Dm ∧ p) ·m− α(u · p)− 2α(Dm · p),

a.e. in [0, T ]. We leave the details to the reader.
Now, let us assume that the set I := {|u(·)| < U} is of positive Lebesgue measure.

According to the discussion above, there exists a bounded function λ such that p = λm

on I, and therefore, φ vanishes on I. Due to (15) being linear in φ, we obtain that
φ(·) = 0 on [0, T ], which means that

p(T ) = (p(T ) ·m(T ))m(T ) = (p(T ) · e1)e1 = 0,

from the orthogonality Condition (14). But recall that p cannot vanish on [0, T ]:
we reached a contradiction.

We conclude that |u| = U a.e. on [0, T ]. It follows that

α(p− (p ·m)m) = p ∧m+ µu on [0, T ],

and using furthermore that

|α(p− (p ·m)m)− p ∧m|2 = α2(|p|2 − (p ·m)2) + |p ∧m|2

= (α2 + 1)(|p|2 − (p ·m)2),

one gets an expression of u in terms of p or φ:

(16) u =
U

(α2 + 1)1/2
α(p− (p ·m)m)− p ∧m√

|p|2 − (p ·m)2
=

U

(α2 + 1)1/2
αφ− φ ∧m

|φ|
.

In particular, we get

m ∧ u =
U

(α2 + 1)1/2
αm ∧ φ− φ

|φ|
,

αm ∧ (m ∧ u) = U

(α2 + 1)1/2
−α2φ− αm ∧ φ

|φ|
.

Substituting those terms in (3) and (15), we get at last

ṁ = m ∧Dm+ αm ∧ (m ∧Dm) + U(α2 + 1)1/2
φ

|φ|
,(17)

φ̇ = αDφ− α(Dm ·m)φ−Dm ∧ φ−D(φ ∧m)(18)

+ (m · (Dm ∧ φ))m− U(α2 + 1)1/2|φ|m.
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On Condition (12). — By setting p(T ) = (0, p2,T , p3,T ) (since p(T ) · e1 = 0) and
vT = (v1,T , v2,T , v3,T ), since m(T ) = −e1, this condition also rewrites

−p0 = max
|vT |⩽U

p(T ) ·

 0

αv2,T − v3,T
αv3,T + v2,T

 = max
v2
2,T+v2

3,T=U2

(
v2,T
v3,T

)
·
(
αp2,T + p3,T
αp3,T − p2,T

)
.

The Cauchy-Schwarz inequality then implies that −p0 = U
√
1 + α2

√
p22,T + p23,T .

It follows that p0 = −1 (else, the pair (p0, p) would be trivial) and Condition (12)
finally rewrites:

U
√
1 + α2 |φ(T )| = −p0 = 1.

Analysis of the optimality conditions. — From the previous discussion, u(t) is given
by (16) for a.e. t ∈ [0, T ], leading to

|φ| (α (u− (u ·m)m)−m ∧ u) = A
(
α2φ− αφ ∧m− αm ∧ φ+m ∧ (φ ∧m)

)
= A(α2 + 1)φ,

where A = U/(α2 + 1)1/2, so that

H(m(t), p(t), p0, u(t)) = U(α2 + 1)1/2|φ| − p · (α (Dm− (Dm ·m)m)−m ∧Dm)

= U(α2 + 1)1/2|φ| −Dm · (α (p− (p ·m)m)− p ∧m)

= U(α2 + 1)1/2|φ| −Dm · (αφ− φ ∧m)

=
(α2 + 1)1/2|φ|

U
(U2 −Dm · u),

and we infer that
(19) |φ(t)|

(
U2 −Dm(t) · u(t)

)
=

U

(α2 + 1)1/2
> 0 a.e. in [0, T ].

On Condition (13). — From the previous discussion, we have for any t ∈ [0, T ]

(20) max
|v|⩽U

H(m(t), p(t), p0, v) = −p0 = 1,

which leads at t = 0 to

(21) U
√

1 + α2|φ(0)| = −p0 = 1.

More generally, with the above expression (16) of u(t) which is the argmax of H,
we get
(22) 1 = U

√
1 + α2|φ| − φ ·

[
αDm−m ∧Dm

]
.

For the sake of clarity, we sum-up all this information in the following result.

Proposition 12 (Necessary first order optimality conditions). — Let (T, u) be an opti-
mal pair for Problem (P0). Then, the adjoint state p defined by (10) does not vanish
on [0, T ] and one has

(23) u =
U

(α2 + 1)1/2
αφ− φ ∧m

|φ|
,

where φ is given by φ = p− (p ·m)m. In particular, one has |u(t)| = U a.e. on [0, T ].
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Moreover, φ satisfies the differential relation (18) completed by the conditions (19)
and

(24) U
√
1 + α2|φ(0)| = U

√
1 + α2|φ(T )| = 1.

Finally, m satisfies (17).

4. Proof of Theorem 3

4.1. Preliminary results. — We first state preliminary results, in the form of a series
of lemmas.

Lemma 13. — For all T <∞, the map

L∞(0, T ) −→W 1,∞(0, T )

u 7−→ m solution to (3) with m(0) = e1

is continuous and locally Lipschitz.

Proof. — Let u1, u2 ∈ L∞(0, T ) and m1,m2 the corresponding solution to (3). Define
δm := m1 − m2 and δu := u1 − u2. Simple, though tedious, calculations provide
that δm satisfies
dδm

dt
= α

[
−D δm+ δu− ((−D δm+ δu) ·m1)m1

− ((−Dm2 + u2) · δm)m1 − ((−Dm2 + u2) ·m2)δm
]

−m1 ∧ (−Dδm+ δu)− δm ∧ (−Dm2 + u2).

in (0, T ). Since |m1| = |m2| = 1, we obtain

(25)
∣∣∣dδm
dt

∣∣∣ ⩽ ((4α+ 2)∥D∥2 + (2α+ 1)|u2|) |δm|+ (2α+ 1)|δu|, in (0, T ),

where ∥·∥2 stands for the operator norm associated to the euclidean norm |·|. Since
δm(0) = 0, we have for all t ∈ (0, T )

|δm(t)| ⩽
∫ t

0

∣∣∣dδm
dt

∣∣∣(s) ds ⩽ (2α+ 1)T∥δu∥L∞

+

∫ t

0

((4α+ 2)∥D∥2 + (2α+ 1)∥u2∥L∞) |δm|(s) ds,

and thus by Gronwall’s lemma,

|δm(t)| ⩽ (2α+ 1)T∥δu∥L∞ exp
(
((4α+ 2)∥D∥2 + (2α+ 1)∥u2∥L∞)t

)
, t ∈ [0, T ].

Using this estimate, and plugging it also in (25), we get

∥δm∥W 1,∞ ⩽ C(T, ∥u2∥L∞)∥δu∥L∞ ,

and the conclusion follows. □

Lemma 14. — If γ1 < γ2, there exists δ > 0 such that for all U > 0, if |m(0) + e1| < δ,
then −e1 can be reached in finite time with a control u such that |u| ⩽ U .
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Proof. — Let us introduce m as the solution to (3) with the feedback control term

u(t) =
U√

1 + α2

α(−e1 + (e1 ·m(t))m(t)) + e1 ∧m(t)√
1− (m(t) · e1)2

,

so that the equation on m becomes autonomous, and is well defined as long as
m(t) ̸= ±e1. Observing that{

m,
e1 − (m · e1)m√
1− (m · e1)2

,
m ∧ e1√

1− (m · e1)2

}
is an orthonormal basis, one immediately gets that |u(t)| = U for a.e. t ∈ [0, T ].

Let m = (m1,m2,m3) be the coordinates of m. From (3), the ODEs satisfied by m2

and m3 are

ṁ2 = −α[(γ2 − γ1)m2 − ((γ2 − γ1)m
2
2 + (γ3 − γ1)m

2
3)m2] + (γ1 − γ3)m1m3 + v2,

ṁ3 = −α[(γ3 − γ1)m3 − ((γ2 − γ1)m
2
2 + (γ3 − γ1)m

2
3)m3]− (γ1 − γ2)m1m2 + v3.

Therefore, by setting m̃ := (m2,m3), it follows that m̃ solves the controlled system

(26) ˙̃m = A−m̃+ ξ− + ṽ,

where

A− =

[
−α(γ2 − γ1) (γ3 − γ1)

−(γ2 − γ1) −α(γ3 − γ1)

]
,

ξ− =

[
α((γ2 − γ1)m

2
2 + (γ3 − γ1)m

2
3)m2 − (γ3 − γ1)(1 +m1)m3

α((γ2 − γ1)m
2
2 + (γ3 − γ1)m

2
3)m3 + (γ2 − γ1)(1 +m1)m2

]
,

and ṽ = (v2, v3) where v = (v1, v2, v3) = α(u− (u ·m)m)−m ∧ u, which means here

v = U
√
1 + α2

(−e1 +m1(t)m(t))√
|m(t)|2 − (m1(t))2

= U
√
1 + α2

(−e1 +m1(t)m(t))

|m̃|
,

We infer that ṽ = U
√
1 + α2m1m̃/|m̃|. Observing that (1−m1)(1+m1) = |m̃|2 yields,

as soon as m1 ⩽ 0, |1 +m1| ⩽ |m̃|2 and thus

|ξ−(t)| ⩽ (1 + |α|) δγ+ |m̃(t)|3,

where δγ+ := γ3 − γ1 > 0, and also∣∣∣ṽ + U
√
1 + α2

m̃(t)

|m̃|

∣∣∣ ⩽ U
√

1 + α2|m̃(t)|2.

With these estimates and by taking the inner product of (26) with m̃, we get

1

2

d

dt
|m̃(t)|2 ⩽ −U

√
1 + α2|m̃(t)|+ ∥A−∥2|m̃(t)|2 + U

√
1 + α2|m̃(t)|3

+ (1 + |α|) δγ+ |m̃(t)|4,

and
d

dt
|m̃(t)| ⩽ −U

√
1 + α2 + ∥A−∥2|m̃(t)|+ U

√
1 + α2|m̃(t)|2 + (1 + |α|) δγ+ |m̃(t)|3.
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Let us introduce δU ∈ (0, 1/2) small enough (depending on U > 0) so that

(27) (U
√
1 + α2 + ∥A−∥2)δU + (1 + |α|) δγ+ δ3U ⩽

U
√
1 + α2

2
.

Then, if |m(0) + e1| < δU , which gives |m̃(0)| < δU , one has

d

dt
|m̃(t)| ⩽ −U

√
1 + α2

2
< 0,

as long as |m̃(t)| < δU . This yields that, for such time intervals, the mapping t 7→
|m̃(t)| is decreasing.

Therefore, this shows that if δU satisfies (27) and m(0) is such that |m(0)+e1| < δU ,
then |m̃(t)| < δU for all t ⩾ 0 and that m̃(t) reaches 0 in finite time. In other words,
−e1 can be reached in finite time with a control u such that |u| ⩽ U if m is such that
|m+ e1| < δU .

To conclude, it remains to drop the dependency of δ in U . Let us use that −e1
is asymptotically stable according to Proposition 25. Therefore, there exists δ > 0

such that, starting from a point m(0) chosen so that |m(0) + e1| < δ, we can first let
the system evolve without control until we obtain |m(TU ) + e1| < δU for some finite
time TU . From this moment, we know we can reach −e1 in finite time, whence the
expected conclusion. □

Recall for the sake of readability that the notation TU has been introduced in
Section 2.1.

Lemma 15. — Let γ1 < γ2 and U > 0 such that TU < ∞. Then there exists ε > 0

such that TU−ε <∞.

Proof. — Since TU < ∞ and according to Theorem 2, there exists u∗ ∈ L∞(0,TU )

such that m∗(0) = e1 and m∗(TU ) = −e1. Now, let us consider m the solution to (3)
associated to the control choice u = U−ε

U u∗ for some ε ∈ (0, U) to be defined later.
From Lemma 13, we obtain

∥m−m∗∥W 1,∞(0,TU ) ⩽ C
∥∥∥U − ε

U
u∗ − u∗

∥∥∥
L∞(0,TU )

= Cε
∥u∗∥L∞(0,TU )

U
⩽ Cε,

for some C > 0.
Since m∗(TU ) = −e1 by definition, we can take ε > 0 small enough so that

|m(TU ) + e1| < δ, where δ > 0 is given by Lemma 14. From this lemma, we know we
can reach −e1 in finite time, and since |u| ⩽ U − ε, this leads to TU−ε <∞. □

Lemma 16. — TU is non-increasing with respect to U > 0. In particular, if TU0
<∞

for some U0 > 0, then TU <∞ for all U > U0.

Proof. — This property is an immediate consequence of the definition of TU and the
fact that the sets OU are increasing for the inclusion. □
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4.2. Emergence of a threshold. — The following result is the most crucial for con-
cluding. It quantifies the asymptotic stability of e1 for the evolution of the magneti-
zation m, with respect to u viewed as a perturbation. It is notable that its proof not
only highlights the emergence of a threshold but also provides an explicit expression.

Lemma 17. — Let us assume that γ1 < γ2. There exists Ustab > 0 depending only on
γ3 − γ1, γ2 − γ1 and α such that, for any U < Ustab, the following holds. Let (m,u)

be a solution of (3) on [0,+∞), such that u ∈ L∞([0,∞)) and ∥u∥L∞ ⩽ U . Then for
all t ⩾ 0, m1(t) ⩾ 0.

In other words, m remains in the hemisphere with pole e1, and in particular, m can
not reach −e1. One has the same statement if (m,u) are defined on a bounded interval
[0, T ].

Proof. — Let v = α(u−(u ·m)m)−m∧u. Then, using that v reads as the sum of two
orthogonal terms, one has |v|2 ⩽ (1 + α2)U2. Moreover, since |m|2 = 1, there holds

Dm ·m = γ1 + (γ2 − γ1)m
2
2 + (γ3 − γ1)m

2
3.

As in the proof of Lemma 14, m̃ solves the controlled system

(28) ˙̃m = Am̃+ ξ + ṽ.

where

A =

[
−α(γ2 − γ1) −(γ3 − γ1)

γ2 − γ1 −α(γ3 − γ1)

]
,(29)

ξ =

[
α((γ2 − γ1)m

2
2 + (γ3 − γ1)m

2
3)m2 + (γ3 − γ1)(1−m1)m3

α((γ2 − γ1)m
2
2 + (γ3 − γ1)m

2
3)m3 − (γ2 − γ1)(1−m1)m2

]
.

It is important to note the sign change between A and ξ in this context, as well as A−
and ξ− introduced in the proof of Lemma 14. Let ν ∈ (0, 1] to be fixed later and
define

Tν = inf{t ⩾ 0 | |m̃(t)| ⩾ ν}.

Our goal is to derive suitable bounds on m̃, so that for a well chosen ν, Tν = +∞.
Since m(0) = e1 and m is continuous, we know that Tν > 0. Note that one has

necessarily m1(·) > 0 on (0, Tν). Then, for all t ∈ [0, Tν), using that m is normalized,
there holds like previously 0 ⩽ 1−m1(t) ⩽ 1−m1(t)

2 = |m̃(t)|2, and therefore

|ξ(t)| ⩽ (1 + |α|) δγ+ |m̃(t)|3 ⩽ (1 + |α|) δγ+ ν3,

where δγ+ := γ3−γ1 ⩾ γ2−γ1 =: δγ− > 0. On the other hand, thanks to the Duhamel
formula on (28) using the fact that m̃(0) = 0, there holds

m̃(t) =

∫ t

0

exp
(
(t− s)A

)
(ξ(s) + ṽ(s)) ds
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for all t ⩾ 0. This, together with the previous estimates, drives to

(30)

|m̃(t)| ⩽
∫ t

0

∥∥exp ((t− s)A
)∥∥

2

(
(1 + |α|)δγ+ν3 +

√
1 + α2U

)
ds

⩽ (1 + |α|)(δγ+ν3 + U)

∫ t

0

∥∥exp ((t− s)A
)∥∥

2
ds

⩽ (1 + |α|)(δγ+ν3 + U)

∫ t

0

∥exp (sA)∥2 ds,

for all t ∈ [0, Tν), where ∥·∥2 still stands for the operator norm associated to the
euclidean norm |·|.

We will now provide an estimate of the norm of the exponential matrix. Recall
that the characteristic polynomial of A is PA(X) = X2 − Tr(A)X + det(A) with

det(A) = (1 + α2)δγ− δγ+ > 0, Tr(A) = −α(δγ− + δγ+) < 0.

Its discriminant ∆ reads ∆ = Tr(A)2 − 4 det(A) = α2(δγ+ − δγ−)
2 − 4δγ−δγ+.

To compute the eigenvalues of A, we have to distinguish between several cases.

First case: ∆ > 0. — Then its eigenvalues are λ± := 1
2 (Tr(A) ±

√
∆). Remark that

both eigenvalues of A are negative (according to the signs of the trace and the deter-
minant above) and different from each other, which means that A is diagonalizable.
Therefore, we infer(3) that

exp (sA) = esλ+
sA− sλ− I2
sλ+ − sλ−

+ esλ−
sA− sλ+ I2
sλ− − sλ+

=
1√
∆

(
esλ+(A− λ− I2)− esλ−(A− λ+ I2)

)
=

1√
∆

(
(esλ+ − esλ−)A+ (esλ−λ+ − esλ+λ−) I2

)
=
esλ+

√
∆

(
(1− e−s

√
∆)A+ (e−s

√
∆λ+ − λ−) I2

)
= sesλ+

(1− e−s
√
∆

s
√
∆

A− λ−
1− e−s

√
∆

s
√
∆

I2

)
+ esλ− I2 .

Thus, using the facts that λ− < λ+ < 0, ∥A∥2 ⩾ |λ−| and also that the function f

given by f(x) = (1− e−x)/x analytically extended to R is uniformly bounded by 1

on [0,∞), we get

∥exp (sA)∥2 ⩽ esλ+
(
s(∥A∥2 + |λ−|) + 1

)
⩽ esλ+ (2s∥A∥2 + 1) .

(3)Here, the Lagrange interpolation formula is used to compute the exponential of A: for every
matrix M ∈ Md(C) whose spectrum {λi}1⩽i⩽d consists of distinct eigenvalues, one has

exp(M) =
d∑

j=1

eλj
∏
i̸=j

M − λi Id

λj − λi
.
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Hence,∫ t

0

∥exp (sA)∥2 ds ⩽ |λ+|−1
(1− eλ+t) + 2∥A∥2|λ+|

−2
(1− (|λ+|t+ 1)eλ+t)

⩽ (1− eλ+t)
(
|λ+|−1

+ 2∥A∥2|λ+|
−2

)
⩽ 3(1− eλ+t)∥A∥2|λ+|

−2
,

and according to (30), one has for all t ∈ [0, Tν)

|m̃(t)| ⩽ 3∥A∥2|λ+|
−2

(1− eλ+t)(1 + |α|)(δγ+ν3 + U).

To conclude, we will choose U adequately so that the function

x 7−→ 3∥A∥2|λ+|
−2

(1 + |α|)(δγ+x3 + U)

admits a fixed point x0 in (0, 1]. This is possible thanks to the next lemma, whose
proof is postponed to the end of this section for the sake of clarity.

Lemma 18. — Let a, b, c > 0. The function x 7→ a−1(bx3 + c) has a fixed point x0 in
(0, 1] if, and only if c ⩽ ax1 − bx31 where x1 = min{1,

√
a/3b}.

Remark that if x1 is as in this lemma, one has ax1 − bx31 ⩾ 2
3ax1 > 0. Thus,

by applying Lemma 18 with the parameters a = |λ+|2/(3∥A∥2(1+ |α|)), b = δγ+ and
c = U , we arrive at the assumption that

U ⩽
|λ+|2

3∥A∥2(1 + |α|)
x1 − δγ+ x

3
1, with x1 := min

{
1,

|λ+|
3
√

∥A∥2(1 + |α|)δγ+

}
.

Therefore, based on the conclusion of this lemma, we can set ν = x0, and the preceding
estimate yields

|m̃(t)| ⩽ (1− eλ+t)ν,

for all t ∈ [0, Tν). A continuity argument then implies that Tν = ∞. In other words,
for all t ⩾ 0,

|m1(t)| =
√

1− |m̃(t)|2 ⩾
√
1− (1− eλ+t)2ν2 > 0.

Now, m1 is continuous, so that it keeps a constant sign. As m1(0) = 1, m1(t) ⩾ 0 for
all t ⩾ 0, which is the desired conclusion.

Second case: ∆ < 0. — In this case, the eigenvalues are

λ± :=
Tr(A)± i

√
−∆

2
.
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One more time, the two eigenvalues are distinct, complex conjugate with negative real
part. Yet, the same decompositions as previously can still be applied and there holds

exp(sA) = esλ+
sA− sλ− I2
sλ+ − sλ−

+ esλ−
sA− sλ+ I2
sλ− − sλ+

=
1

i
√
−∆

(
esλ+(A− λ− I2)− esλ−(A− λ+ I2)

)
=

1

i
√
−∆

(
(esλ+ − esλ−)A+ (esλ−λ+ − esλ+λ−) I2

)
=
e(s/2)Tr(A)

i
√
−∆

(
(eis

√
−∆/2 − e−is

√
−∆/2)A+ (λ+e

−is
√
−∆/2 − λ−e

is
√
−∆/2) I2

)
=
s

2
e(s/2)Tr(A)

[
2A− Tr(A) I2

]
sinc

(s√−∆

2

)
+ e(s/2)Tr(A) cos

(s√−∆

2

)
I2 .

Thus, we get

∥exp (sA)∥2 ⩽
s

2
e(s/2)Tr(A) (2∥A∥2 − Tr(A)) + e(s/2)Tr(A) ⩽ e(s/2)Tr(A) (2s∥A∥2 + 1) ,

since Tr(A) = λ+ + λ− and |λ±| ⩽ ∥A∥2. Hence, following the same way as in the
first case, we get∫ t

0

∥exp (sA)∥2 ds ⩽ (1− e(1/2)Tr(A)t)
(
2|Tr(A)|−1

+ 8∥A∥2|Tr(A)|
−2

)
⩽ 12(1− e(1/2)Tr(A)t)∥A∥2|Tr(A)|

−2
,

and according to (30), one has for all t ∈ [0, Tν)

|m̃(t)| ⩽ 12∥A∥2|Tr(A)|
−2

(1− e(1/2)Tr(A)t)(1 + |α|)(δγ+ν3 + U).

Now, by mimicking the reasoning done in the first case, by assuming

U ⩽
Tr(A)2

12∥A∥2(1 + |α|)
x1 − δγ+ x

3
1, with x1 := min

{
1,

Tr(A)

6
√

∥A∥2(1 + |α|)δγ+

}
,

and taking ν = x0 given by Lemma 18, the previous estimate leads to

|m̃(t)| ⩽ (1− e(1/2)Tr(A)t)ν,

for all t ∈ [0, Tν). Arguing as in the first case, we infer that Tν = ∞ in this case as
well, and then, m1(t) > 0 for all t ⩾ 0.

Third case: ∆ = 0. — In this case, both eigenvalues are equal, one has λ=Tr(A)/2<0.
Note that, in that case, A − 1

2 Tr(A) I2 is therefore a non-zero nilpotent matrix, and
more precisely (A− 1

2 Tr(A) I2)
2 = (sA− s

2 Tr(A) I2)
2 = 0. Thus, there holds

exp (sA) = exp
(
s
2 Tr(A) I2

)
exp (sA− s

2 Tr(A) I2)

= e(s/2)Tr(A)(I2 +sA− s
2 Tr(A) I2),

which yields

∥exp (sA)∥2 ⩽ e(s/2)Tr(A)(1 + s(∥A∥2 −
1
2 Tr(A))) ⩽ e(s/2)Tr(A)(1 + 2s∥A∥2).
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The computations are then exactly the same ones as in the second case, and the
conclusion follows in the same fashion. □

Proof of Lemma 18. — We are looking for a root x0 ∈ (0, 1] of the polynomial func-
tion f given by f(X) = bX3 − aX + c, whose derivative 3bX2 − a is negative for
X <

√
a/3b =: x2 and positive for X > x2. The minimum in [0, 1] is therefore

reached at x1 and, since f(0) = c > 0, there is a root if and only if f(x1) ⩽ 0, which
corresponds to the assumption in the statement. □

Remark 19. — From the proof of Lemma 17, we obtained the following expression
for Ustab. Consider the matrix A defined there in (29), let ∆ = Tr(A)2 − 4 det(A)

the discriminant of its characteristic polynomial, λ± its eigenvalues chosen so that
λ+ > λ− whenever ∆ > 0, and δγ+ := γ3 − γ1 > 0.

Let

x1(A) :=


min

{
1,

|λ+|
3
√
∥A∥2(1 + |α|)δγ+

}
if ∆ > 0,

min
{
1,

Tr(A)

6
√
∥A∥2(1 + |α|)δγ+

}
else.

Then

Ustab = Γ(∆) :=


|λ+|2

3∥A∥2(1 + |α|)
x1(A)− δγ+ x1(A)

3 if ∆ > 0,

Tr(A)2

12∥A∥2(1 + |α|)
x1(A)− δγ+ x1(A)

3 else.

Note also that, to complement this result, explicit computations of the quantities
involved (like ∥A∥2) are provided in Appendix C.

We now have all the elements to conclude the:

Proof of Theorem 3. — Define

Ucrit := inf{U |TU <∞}.

From Lemma 17, we know that Ucrit > 0. Lemma 16 proves the second point. To inves-
tigate the case where U = Ucrit, observe that, by definition, (P0) has no solution for
all U ∈ (0, Ucrit). Moreover, if (P0) had a solution for U = Ucrit, then Lemma 15
would provide a contradiction with respect to the definition of Ucrit. □

5. Cases with symmetry

In this section, we deal with the two cases when the material satisfies additional
symmetry without being a sphere (in which case the analysis becomes trivial). They
correspond to the cases γ1 = γ2 < γ3 and γ1 < γ2 = γ3.
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5.1. Proof of Theorem 5 (case γ1 = γ2). — From Theorem 2, we have to investigate
the existence of an admissible trajectory for this problem, in other words, the existence
of a control u ∈ OU and a time T > 0 such that mu(T ) = −e1. This property is known
to be true as soon as U is large enough according to [3]. But it has to be proved for
smaller U .

Let us assume that γ1 = γ2. We will prove that, in that case, infT>0 Λ(T ) = 0, (with
Λ(T ) defined by Equation (8)) which will prove that Problem (P0) has a solution
whatever the value of U > 0. For ε > 0, let us consider a particular trajectory mε of
the form mε = (cos(εt), sin(εt), 0). Then, by defining

Fε :=
(
ėε · (Dmε ∧mε) +

|ṁε|
1 + α2

)2

+
(
ėε ·Dmε +

α|ṁε|
1 + α2

)2

,

with ėε = ṁε/|ṁε|, a straightforward computation yields

Fε =
ε2

1 + α2
⩽ ε2.

We infer that infT>0 Λ(T ) ⩽ Fε ⩽ ε2 whence the conclusion, since ε is arbitrary.
Let us now prove the last point of this result, assuming that from now on γ1 < γ3.

Assume that m3(t) = 0 for all t ⩾ 0. Then, Dm = γ1m. By contradiction, if such
an m is an optimal trajectory, Proposition 12 is satisfied, and (17) gives

ṁ = U(α2 + 1)1/2
φ

|φ|
.

By taking the third coordinate, we get φ3(t) = 0 for all t ⩾ 0. Thus, we also get
Dφ = γ1φ and (18) gives

φ̇ = −γ1m ∧ φ−D(φ ∧m)− U(α2 + 1)1/2|φ|m.

By taking again the third coordinate, we get

0 = −γ1(m ∧ φ) · e3 −D(φ ∧m) · e3 = (γ3 − γ1)(m ∧ φ) · e3 = (γ3 − γ1)(e3 ∧m) · φ.

Since γ3 > γ1, this proves that (e3 ∧m) · φ = 0. However, at t = 0, this means that

0 = (e3 ∧ e1)φ(0) = φ2(0).

Now φ1(0) = φ(0) · m(0) = 0, and we obtained φ(0) = 0: this is a contradiction
with (24).

5.2. Proof of Theorem 6 (case γ2 = γ3). — For this case, we first show that the
(PMP) conditions are also sufficient conditions for optimal trajectories :

Lemma 20. — Let U > Ucrit. Then any trajectory m satisfying the (PMP) conditions
( (10)–(13) with p0 = −1) is an optimal trajectory.

Proof. — Let m∗ be an optimal trajectory, and p∗ the associated adjoint state.
By definition, they satisfy the (PMP) conditions. Now, let (m, p) be a trajectory
and its adjoint state satisfying the (PMP) conditions. Let also φ = p − (p · m)m

and φ∗ = p∗ − (p∗ · m∗)m∗. In particular, we know that φ(0) satisfies (24) and

J.É.P. — M., 2025, tome 12



170 R. Côte, C. Courtès, G. Ferrière & Y. Privat

φ(0) ⊥ m(0) = e1, and similarly for φ∗ with respect to m∗. Thus, there exists
θ ∈ [0, 2π] such that Rθφ(0) = φ∗(0) where Rθ is the rotation along e1 of angle θ:

Rθ =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 .

On the other hand, since γ2 = γ3, we have DRθ = RθD for all θ, but also Rθf∧Rθg =

Rθ(f ∧ g) for any f, g ∈ R3. Last, Rθm∗(0) = Rθe1 = e1. Thus, (Rθm,Rθφ) satisfies
the same system of ODEs as (m∗, φ∗) (i.e., (3)–(10) with u(·) or u∗(·) satisfying (23))
with the same initial data. By the Cauchy-Lipschitz theorem and using the fact that
both φ and φ∗ never vanish thanks to (19), we obtain (Rθm,Rθφ) = (m∗, φ∗), i.e.,
(m,φ) = (R−θm∗, R−θφ∗), and thus the conclusion. □

The following two results exploit in a precise way the (necessary and sufficient)
optimality conditions.

Lemma 21. — Let U > 0 and (m, p) satisfy the (PMP) conditions ( (10)–(13) with
p0 = −1) and φ = p− (p ·m)m. Then, for every t ⩾ 0, φ(t) · (e1 ∧m(t)) = 0.

Proof. — We know that φ satisfies (18) and m satisfies (17) with u given by (23).
Moreover,

d

dt
(φ · (e1 ∧m)) = φ̇ · (e1 ∧m) + φ · (e1 ∧ ṁ).

Using the facts that u ⊥ m and m ⊥ (e1 ∧m), there holds

φ̇ · (e1 ∧m) = αDφ · (e1 ∧m)− α(Dm ·m)φ · (e1 ∧m)− (Dm ∧ φ) · (e1 ∧m)

−D(φ ∧m) · (e1 ∧m) +
U√

1 + α2
(φ ∧ (φ/|φ| ∧m)) · (e1 ∧m),

φ · (e1 ∧ ṁ) = −αφ · (e1 ∧Dm) + α(Dm ·m)φ · (e1 ∧m)

+ φ · (e1 ∧ (m ∧Dm)) + U
√
1 + α2φ · (e1 ∧ φ/|φ|).

First, we point out that φ ⊥ m so that φ ∧ (φ ∧m) = −|φ|2m, and thus

(φ ∧ (φ ∧m)) · (e1 ∧m) = 0.

Similarly, U
√
1 + α2φ·(e1∧φ/|φ|) = 0. Then, using the triple product formula, we get

φ · (e1 ∧Dm) = −Dm · (e1 ∧ φ),
(Dm ∧ φ) · (e1 ∧m) = (φ ∧ (e1 ∧m)) ·Dm = −(φ · e1)(m ·Dm),

(m ∧Dm) · (e1 ∧ φ) = ((e1 ∧ φ) ∧m) ·Dm = (m · e1)(φ ·Dm).

Moreover, since γ2 = γ3, we know that, for any vector f ∈ R3 such that f · e1 = 0,
Df = γ2f = γ3f . With the fact that D is symmetric, this leads to

Dφ · (e1 ∧m) = φ ·D(e1 ∧m) = γ2φ · (e1 ∧m),

Dm · (e1 ∧ φ) = m ·D(e1 ∧ φ) = γ2m · (e1 ∧ φ) = −γ2φ · (e1 ∧m),

D(φ ∧m) · (e1 ∧m) = (φ ∧m) ·D(e1 ∧m) = γ2(φ ∧m) · (e1 ∧m).
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Last, using again the double product, we have

φ · (e1 ∧ (m ∧Dm)) = (φ ·m)(e1 ·Dm)− (φ ·Dm)(e1 ·m) = −(φ ·Dm)(e1 ·m).

But one has then

(φ · e1)(m ·Dm)− (φ ·Dm)(e1 ·m) = e1 ·
[
(Dm ·m)φ− (Dm · φ)m

]
= −e1 · (Dm ∧ (m ∧ φ))
= −Dm · ((m ∧ φ) ∧ e1)=−m ·D((m ∧ φ) ∧ e1)
= −γ2m · ((m ∧ φ) ∧ e1)=γ2(φ ∧m) · (e1 ∧m).

This means

φ · (e1 ∧ (m ∧Dm))− (Dm ∧ φ) · (e1 ∧m)−D(φ ∧m) · (e1 ∧m) = 0.

Hence,
d

dt
(φ · (e1 ∧m)) = 0.

The conclusion comes by integration, noticing furthermore that m(0) = e1 and thus
e1 ∧m(0) = 0. □

Lemma 22. — Let U > 0 and (m, p) satisfy the (PMP) conditions ( (10)–(13) with
p0 = −1). Let m = (m1,m2,m3) be the coordinates of m, and define

t0 := inf{t ⩾ 0 |m(t) = ±e1} > 0

(possibly +∞) and θ ∈ [0, π] such that m1 = cos θ on [0, t0). Then m1 and θ satisfy
on [0, t0)

ṁ1 = α(γ2 − γ1)(1−m2
1)m1 − U

√
1 + α2

√
1−m2

1,

θ̇ = −α(γ2 − γ1) sin θ cos θ + U
√

1 + α2.(31)

Last, t0 = ∞ if U ⩽ Ucrit and t0 = TU if U > Ucrit.

Proof. — Let p its adjoint state and φ = p − (p · m)m. Then φ · (e1 ∧ m) = 0

from Lemma 21, which means that φ is orthogonal to both m and e1 ∧ m for all
times in [0,TU ]. Moreover, as soon as m(t) ̸= ±e1 (i.e., as soon as t ∈ (0,TU )),
(m(t), e1 ∧m(t),m(t) ∧ (e1 ∧m(t))) is an orthogonal basis of R3. Therefore, φ(t) is
colinear to m(t) ∧ (e1 ∧m(t)), i.e., there is λ ∈ C ((0,TU ),R) such that

φ = λm ∧ (e1 ∧m) = λ
[
e1 −m1m

]
.

Moreover, from (22), we know that φ does not vanish, thus neither does λ, which has
a constant sign. Then, we also have

e1 · φ(t) = λ(t)(1−m2
1) and |φ(t)| = |λ(t)|

√
1−m2

1,

which leads to
e1 ·

φ(t)

|φ(t)|
= sign(λ)

√
1−m2

1,
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with sign(λ) = ±1 constant in time. We also have

(Dm ·m) = γ1m
2
1 + γ2(m

2
2 +m2

3) = γ2 − (γ2 − γ1)m
2
1,

e1 · (m ∧Dm) = Dm · (e1 ∧m) = m ·D(e1 ∧m) = m · γ2(e1 ∧m) = 0.

Therefore, the evolution equation on m1 is

(32) ṁ1 = α(γ2 − γ1)(1−m2
1)m1 + sign(λ)U

√
1 + α2

√
1−m2

1.

On the other hand, we know that m̃ = (m2,m3) satisfies at t = 0:

˙̃m(0) = U
√
1 + α2

φ̃(0)

|φ(0)|
,

with φ̃(0) ̸= 0 since φ(0) · e1 = 0 and |φ(0)| = 1/U
√
1 + α2 > 0. Since m̃(0) = (0, 0),

this means that |m̃| is not vanishing on (0, ε] for some ε > 0 small enough. Since
|m|2 = 1, this necessarily means that m2

1 < 1 on (0, ε]. Now, we can introduce θ(t)
the first angle of the spherical coordinate such that m1 = cos θ, and we can assume
that θ(0) = 0 and θ(t) > 0 on (0, ε]. The angle θ(t) is then well defined on [0, t0) where
t0 = min{t > 0 |m(t) = ±e1} and θ(t) ∈ [0, π]. Moreover, since m1 is C 1 (due to (32),
for example), θ is C 1 on (0, t0) as well. Then, on this interval, we can replace m1

in (32) by its expression in terms of θ, which leads to

−θ̇ sin θ = α(γ2 − γ1) sin
2 θ cos θ + sign(λ)U

√
1 + α2 sin θ,

hence
θ̇ = −α(γ2 − γ1) sin θ cos θ − sign(λ)U

√
1 + α2.

From this, we also see that θ is C 1 at t = 0 with θ̇(0) = − sign(λ)U
√
1 + α2. As θ ⩾ 0

on [0, t0], we can easily see that sign(λ) = −1 (otherwise we would have θ̇(0) < 0).
This gives the expected ODEs on m1 and θ, but on [0, t0) only.

To conclude, we shall prove that t0 = ∞ if U ⩽ Ucrit or t0 = TU if U > Ucrit, which
is equivalent to prove that m does not reach e1 again (up to reaching −e1 before),
or equivalently that θ does not come back to 0 before reaching π. This follows from
the fact that θ satisfies an autonomous first-order ODE of the form θ̇ = f(θ) with
f(0) > 0. □

We are now in position to prove Theorem 6.

Proof of Theorem 6. — Let U > 0 and (m,φ) satisfy the (PMP) conditions ((10)–(13)
with p0 = −1). From Lemma 20 and Theorem 3, we have 2 cases:

– either U ⩽ Ucrit, and then no trajectory reaches −e1 (and so in particular m),
– or U > Ucrit, and then m reaches −e1.
Therefore, we shall analyze only the case when U > Ucrit andm is able to reach −e1.

From Lemma 22, we can define θ(t) ∈ [0, π] such that m1 = cos θ, and it satisfies (31).
Since it is an autonomous ODE of the form θ̇ = f(θ) with f(0) > 0, it is easy to prove
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that θ is able to reach π (which means m1 reaches −1 or also m reaches −e1) if and
only if f > 0 on [0, π], where f(x) = −α(γ2 − γ1) sinx cosx+ U

√
1 + α2. From this,

f(x) > 0 ∀x ∈ [0, π] ⇐⇒ 1

2
sin (2x) <

U
√
1 + α2

α(γ2 − γ1)
∀x ∈ [0, π]

⇐⇒ U >
α

2
√
1 + α2

(γ2 − γ1).

This gives the desired expression of Ucrit.
Let us now compute the minimal time in that case. From the ODE (31) satisfied

by θ for the optimal trajectory, we know that

TU =

∫ π

0

dθ

−α(γ2 − γ1) sin θ cos θ + U
√
1 + α2

=

∫ π

0

dθ

− 1
2α(γ2 − γ1) sin 2θ + U

√
1 + α2

=

∫ 2π

0

dx

−α(γ2 − γ1) sinx+ 2U
√
1 + α2

=
1

2
√
1 + α2

∫ π

−π

dx

−Ucrit sinx+ U
.

With the change of variable y = tan(x/2), so that dx = 2dy/(1 + y2), sinx =

2y/(1 + y2), we get

TU =
1

2
√
1 + α2

∫ +∞

−∞

2 dy

−2Ucrity + U(1 + y2)

=
1√

1 + α2

∫ +∞

−∞

dy

U(y − Ucrit/U)2 + (U2 − U2
crit)/U

=
1

U
√
1 + α2

∫ +∞

−∞

dy

y2 + (U2 − U2
crit)/U

2

=
1

U
√
1 + α2

√
U2 − U2

crit
U2

∫ +∞

−∞

dz

((U2 − U2
crit)/U

2)z2 + (U2 − U2
crit)/U

2
,

with the change of variable y =
√
(U2 − U2

crit)/U
2 z. Therefore,

TU =
1

U
√
1 + α2

√
U2

U2 − U2
crit

∫ +∞

−∞

dz

z2 + 1
=

π
√
1 + α2

√
U2 − U2

crit
. □

6. Proof of Theorem 9: on almost planar trajectories

Let us first state a result based on tedious computations, whose detail is left to the
reader.

Lemma 23. — Let U > Ucrit, m be an optimal trajectory and p its adjoint state. Then
ζ := p ∧m = φ ∧m satisfies

ζ̇ = α
(
D(m ∧ ζ) ∧m− (m ∧ ζ) ∧Dm

)
−Dm ∧ ζ −Dζ ∧m.
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Similarly, denoting Z := ζ/|ζ|, then at every point where ζ does not vanish, one has

(33) Ż = PZ⊥

[
α
(
D(m ∧ Z) ∧m− (m ∧ Z) ∧Dm

)
−Dm ∧ Z −DZ ∧m

]
,

where PZ⊥ : x 7→ x− (Z · x)Z is the projection onto the orthogonal space to Z.

The proof of the Theorem 9 relies on the following result, establishing the existence
of a planar trajectory joining e1 to −e1, without any norm condition on the chosen
control.

Lemma 24 (Existence of planar trajectory). — For any ε > 0, there exists a trajectory
of the form m(t) = (m1(t),m2(t), 0) defined on [0, Tε] for some Tε > 0, joining the
state e1 to −e1 and such that

F :=
(
ė · (Dm ∧m) +

|ṁ|
1 + α2

)2

+
(
ė ·Dm+

α|ṁ|
1 + α2

)2

⩽
1

4
(γ2 − γ1)

2(1 + ε).

for all t ∈ [0, Tε]. Furthermore, Tε ≲ 1/ε.

Proof of Lemma 24. — Define m1(t) = cos θ(t) and m2(t) = sin θ(t), our goal is to
define a suitable function θ, such that θ(0) = 0 and θ(Tε) = π.

Observe that ė, Dm,m are coplanar so that ė · (Dm ∧m) = 0. Also

|ṁ| = |θ̇|, ė ·Dm = sgn(θ̇)(γ2 − γ1) sin(θ) cos(θ) = sgn(θ̇)
γ2 − γ1

2
sin(2θ).

Hence

F =
1

(1 + α2)2
|θ̇|2 +

(
sgn(θ̇)

γ2 − γ1
2

sin(2θ) +
α|θ̇|

1 + α2

)2

=
1

1 + α2
|θ̇|2 + sgn(θ̇)

α(γ2 − γ1)

1 + α2
sin(2θ)|θ̇|+ (γ2 − γ1)

2

4
sin2(2θ).

This is a quadratic expression in |θ̇|. Assume that θ̇ > 0 and let us solve the equation
F = 1

4 (γ2 − γ1)
2(1+ ε): this is a polynomial equation of degree 2, whose discriminant

reads

∆ =
α2(γ2 − γ1)

2

(1 + α2)2
sin2(2θ)− 4

(1 + α2)

(γ2 − γ1)
2

4
(sin2(2θ)− 1− ε)

=
(γ2 − γ1)

2

(1 + α2)2
(
(1 + ε)(1 + α2)− sin2(2θ)

)
.

Observe that ∆ > 0 for all θ, so that we can choose

θ̇ =
γ2 − γ1

2

(
−α sin(2θ) +

√
(1 + ε)(1 + α2)− sin2(2θ)

)
=: fε(θ).

As
fε(θ) ⩾

γ2 − γ1
2

(√
ε(1 + α2) + α2 − α

)
⩾

ε(1 + α2)√
ε(1 + α2) + α

> 0,

we infer that this ODE on θ admits a unique solution θε, strictly increasing such that
θ̇ε ≳ ε, and so, there exists a unique Tε ≲ 1/ε such that θε(Tε) = π. This provides
the desired trajectory. □

J.É.P. — M., 2025, tome 12



Minimal time of magnetization switching in small ferromagnetic ellipsoidal samples 175

Let Uplan = (γ2 − γ1)/2. Lemma 24 shows in particular that Ucrit ⩽ Uplan. We are
now in position to complete the:

Proof of Theorem 9. — Let ζ and Z as in Lemma 23: Z satisfies (33). Observe more-
over that the equations on ζ and Z remain unchanged if one replaces D into D− λI3
for some λ ∈ R. We can therefore assume that the spectral norm of D is ∥D∥ =

(γ3 − γ1)/2 by taking λ = (γ3 + γ1)/2. Then, since |Z| = |m| = 1 and ∥PZ⊥∥ = 1,
we get ∣∣∣Ż∣∣∣ ⩽ 2(1 + α)∥D∥ = (1 + α)(γ3 − γ1).

On the other hand, according to Lemmas 10 and 24, we know that for all U > Uplan,
there holds TU ⩽ C/(U − Uplan) for some constant C > 0. Thus, one has

(34) |Z(t)− Z(TU )| ⩽ (1 + α)(γ3 − γ1)TU ⩽ (1 + α)(γ3 − γ1)
C

U − Uplan
.

for all t ∈ [0,TU ]. We also know that |ζ| = |φ|. Thus, by introducing ψ = φ/|φ|, one
gets Z = ψ∧m and m∧Z = ψ since φ ·m = 0. A straightforward computation yields
that the pair (m,ψ) satisfies

ψ̇ = α(Dψ − (Dψ · ψ)ψ)− U
√
1 + α2m−Dm ∧ ψ +D(m ∧ ψ)

− (ψ ·D(m ∧ ψ))ψ − ((m ∧ ψ) ·Dm)m,

ṁ = −α (Dm− (Dm ·m)m) +m ∧Dm+ U
√

1 + α2ψ.(35)

From estimate (34), we infer that, for U large enough,

∀t ∈ [0,TU ], |ψ(t)−m ∧ Z(TU )| ⩽
C

U
.

Putting this in Equation (35) for m, we get some constant C > 0 such that for all U
large enough and t ∈ [0,TU ],∣∣∣ṁ− U

√
1 + α2m ∧ Z(TU )

∣∣∣ ⩽ C,

which leads to

|ṁ · Z(TU )| ⩽ C.

Since m(TU ) ·Z(TU ) = 0 by definition and using once again that TU ⩽ C/(U − Uplan),
we get for all U large enough and t ∈ [0,TU ]

|m · Z(TU )| ⩽
C

U
.

However, p(TU ) = φ(TU ) (since p(TU ) ·m(TU ) = 0 from the orthogonality condition)
and m(TU ) = −e1, and thus the orthogonal space of V is exactly span(Z(TU )), which
means that m(t)− PVm(t) = (m · Z(TU ))Z(TU ). The conclusion easily follows. □
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7. Conclusion

7.1. Extension of our results. — It would be natural to extend our study in sev-
eral directions. On the one hand, we would like to complete our study of a single
ferromagnetic particle of ellipsoidal shape by studying other criteria, and typically a
combination of time and L2 cost of control. This problem could read:

Second version of the optimal control problem: case of L2 constraints

Let λ > 0 and let us assume that m0 = e1. The problem reads

(Pλ) Eλ
U = inf

(T,u)∈OU

T +
λ

2

∫ T

0

|u(t)|2 dt,

where mu is the solution to (3) associated to the control function u(·),
or alternatively, if one aims at dropping the effect of the L∞ constraint on the control,

Modified second version of the optimal control problem: case of L2 constraints

Let λ > 0 and let us assume that m0 = e1. The problem reads

(Pλ) Eλ
U = inf

(T,u)∈
⋃

U⩾0
OU

T +
λ

2

∫ T

0

|u(t)|2 dt,

where mu is the solution to (3) associated to the control function u(·).
Finally, we also plan to study similar issues for more realistic physical systems,

for example a network of ellipsoidal particles, possibly rectilinear, as in the model
introduced in [1].

7.2. Numerical illustrations of our results. — We provide hereafter several nu-
merical illustrations of our results. More precisely, we want to determine numerically
the existence or not of an admissible trajectory connecting e1 to −e1, in accordance
with what we have found theoretically. Let us first notice that a trajectory m can
easily be computed numerically by solving the ODE (3) with the expression (23) for
the control u where the variable φ is given by (15).

To initialize both ODE (3) and (15), m(0) = e1 is given, but φ(0) is unknown.
On the one hand, we overcome this difficulty by noticing that φ(0).e1 = 0, which allows
us to have only two unknowns: φ2(0) and φ3(0) to be determined. On the other hand,
working with the normalized variable ψ = φ/|φ| enables us to reduce the unknowns
to only one angle variable ϑ ∈ [0, 2π] such that (ψ2(0), ψ3(0)) = (cos(ϑ), sin(ϑ)).
ODEs (3) and (15) are thus replaced by the system (35).

Numerically, implement a shooting method to determine ϑ ∈ [0, 2π]: namely, for
each ϑ, we solve the system (35) on a very large time horizon by a fourth-order
Runge-Kutta method and determine if the trajectory m reaches −e1 on a certain
time T .

We list below the numerical results, all obtained with α = 0.6. The initial posi-
tion e1 is represented with a red circle on the sphere and the goal −e1 with a green
star. Parameters γi, ϑ and control U are specified in the caption of each figure. For
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each one, we have represented the trajectory m on the sphere as well as the coordinates
of m and of the control u as functions of time.

(a) Admissible trajectory for
ϑ = 0.8976, large control U = 10

(b) The components of m and u for ϑ = 0.8976, large control
U = 10

(c) Admissible trajectory for
ϑ = 2.2440, medium control U = 3

(d) The components of m and u for ϑ = 2.2440, medium
control U = 3

(e) Generic trajectory for
ϑ = 0.8976, small control U = 0.1

(f) The components of m and u for ϑ = 0.8976, small control
U = 0.1

Figure 2. Non-symmetric test case with (γ1; γ2; γ3) = (0.2; 0.5; 1),
top: with a large control U = 10, middle: with a medium control
U = 3 and bottom: with a small control U = 0.1.

First of all, in the non-symmetric case, a threshold on the control appears. If the
control is sufficiently large, there is (at least) an initialization of ψ (i.e., at least
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one angle ϑ) which allows to have an admissible trajectory represented in Subfigures
2(a)–2(b). On the contrary, if the control is not large enough, no initialization of ψ
will give an admissible trajectory. We have represented for instance one of them in
Subfigures 2(e)–2(f) with a particular ϑ but be aware that they all have the same
behavior whatever the initialization of ψ: the trajectory remains in the northern half-
sphere without enough control. Figure 2 is thus a perfect illustration of Theorem 3.
Note that it also helps to illustrate Theorem 9 since the larger U is, the closer the
trajectory is to a planar trajectory, as we can see by comparing Subfigures 2(c)–2(d)
with a medium control and Subfigures 2(a)–2(b) with a larger control.

(a) Generic trajectory (b) The components of m and u

Figure 3. Non-symmetric test case with (γ1; γ2; γ3) = (0.0; 0.8; 1),
ϑ = 2.5646 and a small control U = 0.2.

Figure 3 illustrates once again the case of control too weak to reach −e1, for other γi
parameters.

The symmetric case γ1 = γ2 is shown in Figure 4. Even for small controls (U =

0.7 numerically), there is (at least) one initialization of ψ leading to an admissible
trajectory reaching −e1 in finite time. This illustrates well Theorem 5: Ucrit = 0 in this
symmetric case. When γ2 < γ3 (Subfigures 4(a)–4(b)), the admissible trajectories are
non planar whereas it is, in the case of a spherical symmetry (Subfigures 4(c)–4(d))
without changing anything other than the symmetry of the test case. This is again in
accordance with the second statement of Theorem 5.

For the symmetric case γ2 = γ3, we see numerically in Figure 5 that for small values
of U , an admissible trajectory exists. With the parameters of Figure 5, Theorem 6 gives
the following value for Ucrit =

α
2
√
1+α2

(γ2−γ1) ≃ 0.026, which effectively allows to have
admissible trajectories for very small values of U . Note also in Subfigure 5(b) that all
admissible trajectories reach the target −e1 in a time greater than 14. With the values
chosen for Figure 5, π/

√
1 + α2

√
U2 − U2

crit ≃ 13.58 corresponds to the minimum
time determined in Theorem 6. Here again, we notice the non-planar character of the
trajectory.
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(a) Admissible trajectory with
γ3 = 1.0

(b) The components of m and u with γ3 = 1.0

(c) Admissible trajectory with
γ3 = 0.2 (spherical case)

(d) The components of m and u with γ3 = 0.2 (spherical
case)

Figure 4. Symmetric test case γ1 = γ2 with (γ1; γ2) = (0.2; 0.2),
ϑ = 0.3206 and a small control U = 0.7, top: γ3 = 1.0 and bottom:
γ3 = 0.2 (spherical case).

(a) Admissible trajectory (b) The components of m and u

Figure 5. Symmetric γ2=γ3 test case with (γ1; γ2; γ3)=(0.1; 0.2; 0.2),
ϑ = 2.7925 and a small control U = 0.2.
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7.3. Perspectives. — The obtained results provide a complete characterization of
the question of the magnetic moment reversal in minimal time in a simple config-
uration. Indeed, we have considered here only one ellipsoidal particle. In order to
approach more realistic configurations, we wish to analyze a model in which several
ferromagnetic particles of ellipsoidal shape are combined to form a network. We refer
for example to [1] for a possible model. After having characterized the set of stationary
configurations, we will then ask ourselves the question of controllability in minimal
time, in order to go from one stationary state to another.

Appendix A. Computation of the demagnetizing field in a ferromagnetic
ellipsoid sample

It is shown in [17, 10] that the demagnetizing tensor D reads D = diag([γ1, γ2, γ3]),
where the γi’s are given by

γi =
a1a2a3

2

∫ +∞

0

dt√
(a21 + t2)(a22 + t2)(a23 + t2)(a2i + t2)

.

Such an expression can be rewritten in terms of the elliptic integral of the second
kind E, defined by

E(x, p) =

∫ x

0

(1− p sin2 θ)1/2 dθ, x ∈ R, p ∈ (0, 1).

If a1 ⩾ a2 ⩾ a3, then, one has 0 ⩽ γ1 ⩽ γ2 ⩽ γ3 ⩽ 1 and these coefficients read

γ1 = 1− γ2 − γ3,

γ2 = − a3
a22 − a23

(
a3 −

a1a2
(a21 − a22)

1/2
E
(a2
a1
,
a21 − a23
a21 − a22

))
,

γ3 =
a2

a22 − a23

(
a2 −

a1a3
(a22 − a23)

1/2
E
(a3
a1
,
a21 − a22
a21 − a23

))
.

In the case where a1 ⩾ a2 = a3 (prolate spheroid), these formula simplify into

γ1 = − a23
(a21 − a23)

3/2

(
(a21 − a23)

1/2 + a1 argcoth
( a1
(a21 − a23)

1/2

))
,

γ2 = γ3 =
1− γ1

2
.

In the case where a1 = a2 ⩾ a3 (oblate spheroid), these formula simplify into

γ3 = − a21
(a21 − a23)

3/2

(
(a21 − a23)

1/2 + a3 arctan
( a3
(a21 − a23)

1/2

)
− π

2
a3

)
,

γ1 = γ2 =
1− γ3

2
.
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Appendix B. Stability of steady-states for Equation (3)

Let us first notice that, if m is a steady-state of Equation (3) and if no control is
applied on this system (hext = 0), then by orthogonality of the terms in the right-hand
side, it satisfies

h0(m) = (h0(m) ·m)m and m ∧ h0(m) = 0.

Therefore, m is an eigenfunction of Dm and we infer that m = ±ej , j = 1, 2, 3

whenever γ1 < γ2 ⩽ γ3.

Proposition 25 (Asymptotic stability). — Let γ1, γ2, γ3 be sorted in ascending order
γ1 < γ2 ⩽ γ3. Then, in the absence of any control hext, the steady-state ±e1 is
an asymptotically stable equilibrium state for Equation (3). Nevertheless, the steady-
states ±e2 and ±e3 are linearly unstable steady-states for Equation (3).

Proof. — Let h = (h1, h2, h3)
T ∈ R3 be a small perturbation such that e1 + h is still

an admissible magnetization, i.e., on the unit sphere S2 ⊂ R3. We obtain:

∥e1+h∥2 = 1 ⇐⇒ (1+h1)
2+h22+h

2
3 = 1 ⇐⇒ h1 = −1

2

(
h21 + h22 + h33

)
= O(∥h∥2).

The unknown h1 is therefore of second order and does not occur in a linearized system
of the first order.

By linearizing Equation (3) around the equilibrium state e1, one has, without any
control u:

(36)
{
ḣ2 = α(γ1 − γ2)h2 + (γ1 − γ3)h3 +O(∥h∥2),

ḣ3 = α(γ1 − γ3)h3 + (γ2 − γ1)h2 +O(∥h∥2).
The Jacobian matrix of the linearized system around e1 is therefore :

J =

(
α(γ1 − γ2) γ1 − γ3
γ2 − γ1 α(γ1 − γ3)

)
.

Since γ1 < γ2 ⩽ γ3, one has

det(J)=(α2 + 1)(γ1 − γ2)(γ1 − γ3)>0 and Tr(J)=α
[
(γ1 − γ2) + (γ1 − γ3)

]
<0.

We infer that the two eigenvalues of the Jacobian matrix are of negative real parts.
The steady state e1 is therefore linearly stable and is a hyperbolic point (no eigenvalue
with zero real part).

The Hartman-Grobman theorem [19] allows to conclude about the asymptotic sta-
bility of e1 for the non-linear Equation (3) without any control u. As for −e1, similar
computations give the conclusion. Regarding now the stability of ±ek, k = 2, 3, notice
that a similar computation drives to the following expression of the Jacobian deter-
minant: det J = (α2 + 1)(γ2 − γ1)(γ2 − γ3) < 0. The expected conclusion follows. □

Remark 26. — If γ1 ⩽ γ2 ⩽ γ3, an eigenvalue of the Jacobian matrix may have a
zero real part. In which case one can conclude that e1 is linearly (non-asymptotically)
stable, but the Hartman-Grobman theorem no longer applies to return to the non-
linear Equation (3).
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Appendix C. Complement in the case γ1 < γ2: explicit computations of
the constants

Let us use the notations introduced in Remark 19. We compute

A∗A =

[
(1 + α2)δγ2− −2αδγ− δγ+
−2αδγ− δγ+ (1 + α2)δγ2+

]
,

Tr(A∗A) = (1 + α2)(δγ2− + δγ2+) > 0, det(A∗A) = (1− α2)2δγ2−δγ
2
+ ⩾ 0,

and the discriminant of its characteristic polynomial is

Tr(A∗A)2 − 4 det(A∗A) = (1 + α2)2(δγ2− + δγ2+)
2 − 4(1− α2)2δγ2−δγ

2
+

= (1 + α2)2(δγ2− − δγ2+)
2 + 16α2δγ2−δγ

2
+

= (1 + α2)2(δγ− − δγ+)
2(δγ− + δγ+)

2 + 16α2δγ2−δγ
2
+ > 0.

and its largest eigenvalue is therefore

∥A∥22

=
(1 + α2)(δγ2− + δγ2+) +

√
(1 + α2)2(δγ− − δγ+)2(δγ− + δγ+)2 + 16α2δγ2−δγ

2
+

2
.

On the other hand, when ∆ = α2(δγ+ − δγ−)
2 − 4δγ−δγ+ ⩾ 0, we have

λ+ =
−α(δγ+ + δγ−) +

√
α2(δγ+ − δγ−)2 − 4δγ−δγ+

2
,

and therefore, with Γ = δγ−1
+ δγ−,

|λ+|2

∥A∥2(1 + |α|)δγ+

=

√
2

4(1 + |α|)

(
α(1 + Γ)−

√
α2(1− Γ)2 − 4Γ

)2

(
(1 + α2)(1 + Γ2) +

√
(1 + α2)2(Γ− 1)2(1 + Γ)2 + 16α2Γ2

)1/2
.

Similarly, when ∆ < 0, we obtain

|TrA|2

∥A∥2(1 + |α|)δγ+

=

√
2

(1 + |α|)
α2(1 + Γ)2(

(1 + α2)(1 + Γ2) +
√
(1 + α2)2(Γ− 1)2(1 + Γ)2 + 16α2Γ2

)1/2
.

Remark also that ∆ = δγ2+
(
α2(1− Γ)2 − 4Γ

)
. Therefore, if we define

x̃0 :=


|λ+|2

∥A∥2(1 + |α|)δγ+
, if ∆ ⩾ 0,

Tr(A)2

4∥A∥2(1 + |α|)δγ+
, if ∆ < 0,

and then x̃1 := min
(
1,
√
x̃0/3

)
, we obtain that both of them only depend on Γ and α

and thus so is µ0 = (x0/3)x1 − x31. Last, the conditions on U becomes U ⩽ δγ+ µ0,
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which is in agreement with the invariances on D (invariance by shifting of the γis,
invariance by multiplication of the γis with respect to a change of time variable and
a multiplication of the external field-control).
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