[Temps passé dans une boule pour une marche aléatoire branchante critique]
Nous étudions la queue de distribution du temps passé dans une boule par une marche aléatoire branchante critique. Notre étude apporte un éclairage nouveau aux résultats récents de Angel, Hutcroft et Jarai, en particulier sur le cas de la dimension 4. Enfin nous étudions également le nombre de particules déposées sur la frontière d’une boule.
We study a critical branching random walk on . We focus on the tail of the time spent in a ball, and our study, in dimension four and higher, sheds new light on the recent result of Angel, Hutchcroft and Jarai [AHJ21], in particular on the special features of the critical dimension four. Finally, we analyze the number of walks transported by the branching random walk on the boundary of a distant ball.
Accepté le :
Publié le :
Keywords: Branching random walk, local times, range
Mot clés : Marches aléatoires branchantes, temps local, amplitude
Amine Asselah 1 ; Bruno Schapira 2
@article{JEP_2024__11__1441_0, author = {Amine Asselah and Bruno Schapira}, title = {Time spent in a ball by a~critical~branching~random walk}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1441--1481}, publisher = {\'Ecole polytechnique}, volume = {11}, year = {2024}, doi = {10.5802/jep.281}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.281/} }
TY - JOUR AU - Amine Asselah AU - Bruno Schapira TI - Time spent in a ball by a critical branching random walk JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 1441 EP - 1481 VL - 11 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.281/ DO - 10.5802/jep.281 LA - en ID - JEP_2024__11__1441_0 ER -
%0 Journal Article %A Amine Asselah %A Bruno Schapira %T Time spent in a ball by a critical branching random walk %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 1441-1481 %V 11 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.281/ %R 10.5802/jep.281 %G en %F JEP_2024__11__1441_0
Amine Asselah; Bruno Schapira. Time spent in a ball by a critical branching random walk. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1441-1481. doi : 10.5802/jep.281. https://jep.centre-mersenne.org/articles/10.5802/jep.281/
[AHJ21] - “On the tail of the branching random walk local time”, Probab. Theory Related Fields 180 (2021) no. 1-2, p. 467-494 | DOI | Zbl
[AN04] - Branching processes, Dover Publications, Inc., Mineola, NY, 2004, Reprint of the 1972 original
[ASS23] - “Local times and capacity for transient branching random walks”, 2023 | arXiv
[BC12] - “Recurrence of the -valued infinite snake via unimodularity”, Electron. Comm. Probab. 17 (2012), article ID 1, 10 pages | DOI | Zbl
[BH22] - “Capacity of the range of branching random walks in low dimensions”, Trudy Mat. Inst. Steklov. 316 (2022), p. 32-46 | DOI | Zbl
[BH23] - “Convergence in law for the capacity of the range of a critical branching random walk”, Ann. Appl. Probab. 33 (2023) no. 6A, p. 4964-4994 | DOI | Zbl
[BHJ23] - “Thick points of 4D critical branching Brownian motion”, 2023 | arXiv
[BW22] - “Capacity of the range of tree-indexed random walk”, Ann. Appl. Probab. 32 (2022) no. 3, p. 1557-1589 | DOI | Zbl
[DE51] - “Some problems on random walk in space”, in Proc. Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, Univ. California Press, Berkeley-Los Angeles, CA, 1951, p. 353-367 | DOI | Zbl
[DKLT22] - “Scaling limits of tree-valued branching random walks”, Electron. J. Probab. 27 (2022), article ID 16, 54 pages | DOI
[Kes95] - “Branching random walk with a critical branching part”, J. Theoret. Probab. 8 (1995) no. 4, p. 921-962 | DOI | Zbl
[LGL15] - “The range of tree-indexed random walk in low dimensions”, Ann. Probab. 43 (2015) no. 5, p. 2701-2728 | DOI
[LGL16] - “The range of tree-indexed random walk”, J. Inst. Math. Jussieu 15 (2016) no. 2, p. 271-317 | DOI | Zbl
[LL10] - Random walk: a modern introduction, Cambridge Studies in Advanced Math., vol. 123, Cambridge University Press, Cambridge, 2010 | DOI
[LSS24] - “Recurrence and transience of the critical random walk snake in random conductances”, 2024 | arXiv
[LZ11] - “Occupation statistics of critical branching random walks in two or higher dimensions”, Ann. Probab. 39 (2011) no. 1, p. 327-368 | DOI | Zbl
[NV75] - “An estimate of large deviation probabilities for a critical Galton-Watson process”, Teor. Verojatnost. i Primenen. 20 (1975), p. 181-182 | Zbl
[NV03] - “Limit theorems for probabilities of large deviations of a Galton-Watson process”, Diskret. Mat. 15 (2003) no. 1, p. 3-27, translation in Discrete Math. Appl. 13 (2003), no. 1, p. 1–26 | DOI | Zbl
[PZ19] - “Connectivity properties of branching interlacements”, ALEA Lat. Am. J. Probab. Math. Stat. 16 (2019) no. 1, p. 279-314 | DOI | Zbl
[Shi15] - Branching random walks, Lect. Notes in Math., vol. 2151, Springer, Cham, 2015 | DOI
[Zhu16a] - “On the critical branching random walk I: branching capacity and visiting probability”, 2016 | arXiv
[Zhu16b] - “On the critical branching random walk II: branching capacity and branching recurrence”, 2016 | arXiv
[Zhu18] - “Branching interlacements and tree-indexed random walks in tori”, 2018 | arXiv
[Zhu19] - “An upper bound for the probability of visiting a distant point by a critical branching random walk in ”, Electron. Comm. Probab. 24 (2019), article ID 32, 6 pages | DOI | Zbl
[Zhu21] - “On the critical branching random walk III: The critical dimension”, Ann. Inst. H. Poincaré Probab. Statist. 57 (2021) no. 1, p. 73-93 | DOI | Zbl
Cité par Sources :