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TIME SPENT IN A BALL BY

A CRITICAL BRANCHING RANDOM WALK

by Amine Asselah & Bruno Schapira

Abstract. — We study a critical branching random walk on Zd. We focus on the tail of the
time spent in a ball, and our study, in dimension four and higher, sheds new light on the recent
result of Angel, Hutchcroft and Jarai [AHJ21], in particular on the special features of the critical
dimension four. Finally, we analyze the number of walks transported by the branching random
walk on the boundary of a distant ball.

Résumé (Temps passé dans une boule pour une marche aléatoire branchante critique)
Nous étudions la queue de distribution du temps passé dans une boule par une marche

aléatoire branchante critique. Notre étude apporte un éclairage nouveau aux résultats récents
de Angel, Hutcroft et Jarai, en particulier sur le cas de la dimension 4. Enfin nous étudions
également le nombre de particules déposées sur la frontière d’une boule.
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1. Introduction

In this paper we study a critical branching random walk (BRW) on Zd. Whereas
the study of the volume of the range of random walks is a central object of probability
theory, the range of branching random walks, in dimension larger than one, stayed in
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1442 A. Asselah & B. Schapira

the shadows. Quite recently, Le Gall and Lin [LGL15, LGL16] proved limit theorems
for the volume of the range, say Rn, of a random walk indexed by a Galton-Watson
tree conditioned on having n vertices, as n goes to infinity. In particular they dis-
covered that in dimension five and larger, Rn scales linearly, whereas in dimension
four it scales like n/ log(n), and in dimension three and lower it scales like nd/4. Thus
with BRW one recovers the well-known trichotomy for the asymptotic behavior of the
range of a simple random walk, going back to Dvoretzky and Erdős [DE51], except
that the critical dimension is now equal to four instead of two. Later, Zhu in a series
of works [Zhu16a, Zhu16b, Zhu19, Zhu21] extended part of Le Gall and Lin’s analysis
to general offspring and jump distributions, and most notably brought into light the
notion of branching capacity, which is associated with BRW just as the electrostatic
capacity is associated with random walk. Lalley and Zheng [LZ11], analyzed the occu-
pation statistics at a fixed generation of the tree, and observed similar behaviors as
for a simple random walk. Angel, Hutchcroft and Jarai in [AHJ21] studied the tail
of the local times for the full tree, and discovered that the tail speed is exponential
above the critical dimension (dimensions five and higher), but stretched exponential
in the critical dimension four, a fact which does not have natural counterpart in the
random walk setting. One of our motivation for the present paper is to bring some
light on this remarkable observation, and in particular explain the tail behaviour
in dimensions four and higher. When [AHJ21] follows a moment method, rooted in
statistical mechanics, our approach is probabilistic, and aims at developing an ana-
logue of excursion theory so useful to analyze random walks. Finally, to emphasize the
recent vigor of BRW studies in high dimensions, let us mention [BC12, LSS24] dealing
with recurrence and transience of a discrete snake, some recent results on the electro-
static capacity of the range of a BRW [BW22, BH22, BH23], and others on branching
interlacements [PZ19, Zhu18], or on the range of tree-valued BRWs [DKLT22].

Here, we consider one Euclidean ball centered at the origin, and study two objects:
(i) the tail of the time spent in this ball when the BRW starts at the origin; (ii) the
tail of the (rescaled) number of walks hitting the ball, when the BRW starts from far
away.

To state our results, let us introduce the needed notation. We let T be a critical
Bienaymé-Galton-Watson tree (BGW tree for short), whose offspring distribution has
a finite exponential moment. Consider {Su, u ∈ T} an associated tree-indexed random
walk, which we view alternatively as a branching random walk, where time is encoded
by the tree T and whose jump distribution is the uniform measure θ on the neighbors
of the origin. In other words, independent increments {X(e)} are associated to the
edges of the tree, and if [∅, u] is the sequence of edges between the root ∅ and vertex u,
then

Su = S∅ +
∑

e∈[∅,u]

X(e).

When z ∈ Zd, we let Pz be the law of the BRW starting from z, i.e., conditioned on
{S∅ = z}, and simply write P when it starts from the origin. Given Λ ⊂ Zd, we define
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the time spent in Λ by the BRW as

ℓT(Λ) :=
∑
u∈T

1{Su ∈ Λ}.

Let Br := {z ∈ Zd : ∥z∥ < r}, where ∥·∥ denotes the Euclidean distance, and write
Θ(f(t, r)) for a function which is uniformly bounded from above and below by f ,
up to multiplicative positive constants (that may depend on the dimension). Our
main result reads as follows.

Theorem 1.1. — One has uniformly in r ⩾ 1, and t ⩾ 1,

P(ℓT(Br) > t) = Θ
( 1√

min(t, r4)

)
×


exp

(
−Θ(t/r4)

)
if d ⩾ 5,

exp
(
−Θ(

√
t/r4)

)
if d = 4,

(1 + t/r4)−2/(4−d) if d = 1, 2, 3.

Note that when t is of order rd, then in the exponential we obtain a factor which is
of order rd−4, in dimension 5 and higher, that is of the same order as the branching
capacity of the ball Br, as shown in [Zhu16a]. This is not merely a coincidence, and
a more general result in this direction has been shown in the recent paper [ASS23].
On the other hand, it remains an interesting open problem to prove the existence of
a limiting constant, in front of the t/r4 in the exponential.

Remark 1.2. — In fact the result in dimension 1 and 2 holds under the weaker assump-
tion that the offspring distribution of the BGW tree has only a finite second moment,
and a finite third moment in dimension three, instead of a finite exponential moment.
Moreover, the proof in dimension 1, 2, 3 can be done the same way as in [AHJ21],
using a simple moment method.

Heuristics. — Let us explain at a heuristic level the difference between dimension four
on one hand and five and higher on the other hand. In the latter case, to occupy Br,
a good strategy for the BRW is to produce waves, which go from the boundary ∂Br,
up to the boundary of a larger concentric ball, say ∂B2r, and back to Br. Furthermore,
(i) each wave starting with order r2 BRWs hits the other boundary with order r2
particles, at a constant cost; and (ii) when a single BRW starts on ∂Br, it spends
typically a time r2 in Br. Thus t/r4 waves typically produce a local time t in Br, and
the cost is that of creating these t/r4 waves.

In dimension four, the situation is drastically different: conditioned on coming from
a distance R, a BRW typically brings r2 · log(R/r) particles on the boundary of Br,
so there is some advantage to coming from far away (the log(R/r) factor is absent
in d ⩾ 5). This can be seen by saying that the process conditioned on hitting Br

has a single spine from which critical BRWs grow. We show that a correct scenario
(see Figure 2 in Section 10) consists in producing log(R/r) spines, bringing a total
number of particles of order r2 · log2(R/r) and we equate this order with t/r2 to get
the desired stretched exponential cost.
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1444 A. Asselah & B. Schapira

We note that the idea of using waves to study the tail of the local time distribution
was also found useful in the recent paper [BHJ23], which studies the thick points of
branching Brownian motion and branching random walks.

Theorem 1.1 generalizes the analysis of [AHJ21], and its proof follows a probabilis-
tic method. In this proof, we encounter many interesting objects whose exponential
moments are studied, and they do present interest on their own. In order to present
these additional results, we now define more objects. For a subset Λ ⊂ Zd, let T(Λ)

be the set of vertices of T at which the BRW is in Λ, as well as at all its ancestral
positions. In other words,

(1.1) T(Λ) :=
{
u ∈ T : Sv ∈ Λ, for all v ⩽ u},

where we write v ⩽ u if v is an ancestor of u (by which we include the case v = u). Also,
the set of vertices corresponding to hitting times of Λ, called here frozen particles,
is denoted as

(1.2) η(Λ) :=
{
u ∈ T : Su ∈ Λ and Sv /∈ Λ for all v < u},

where by v < u we mean that v is an ancestor of u, which is different from u. Our
main new estimates concern the exponential moments of the number of frozen particles
during each wave. There are two distinct problems as whether we deal with starting
points inside the ball, or outside it; the latter problem being the technical core of this
paper.

Our first result concerns the case of a starting point lying inside the ball Br, and we
freeze walks as they reach its outer boundary ∂Br. The result holds true irrespective
of the dimension. For simplicity we write ηr := η(∂Br).

Theorem 1.3. — Assume d ⩾ 1. There exist positive constants c and λ0 (only depend-
ing on the dimension), such that for any 0 ⩽ λ ⩽ λ0, and any r ⩾ 1,

(1.3) sup
x∈Br

Ex

[
exp(λ|ηr|/r2)

]
⩽ exp(cλ/r2).

Moreover,

(1.4) sup
x∈Br

Ex

[
exp(λ|ηr|/r2)

∣∣ ηr ̸= ∅
]
⩽ exp(cλ),

and

(1.5) sup
x∈Br/2

Ex

[
exp(λ|ηr|/r2)

]
⩽ exp

(
λ+ cλ2/r2

)
.

Actually (1.4) easily follows from (1.3), once we know that the probability for
the BRW to exit Br starting from a point inside Br, is at least of order 1/r2, see
Lemma 3.8. On the other hand, (1.5) follows from (1.4), once we know that the former
probability, starting from a point in Br/2 is at most of order 1/r2, see Proposition 3.11.

Thus the heart of the matter is to prove (1.3). For this, we first show an analogous
estimate for the total time spent inside the ball Br by a BRW killed on its bound-
ary, whose set of particles is given by T(Br), see (1.1) and Proposition 1.4 below.
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Then we observe that |ηr| and |T(Br)| are linked via some natural martingales whose
exponential moments are controlled by those of |T(Br)|.

Proposition 1.4. — Assume d ⩾ 1. There exist positive constants c and λ0, such that
for any 0 ⩽ λ ⩽ λ0, and any r ⩾ 1,

sup
x∈Br

Ex

[
exp

(
λ|T(Br)|/r4

)]
⩽ exp(cλ/r2).

In fact we prove a slightly stronger result in Proposition 9.1, which provides an
important additional factor 1/r2 in the tail distribution, needed in the proof of The-
orem 1.1.

To conclude the proof of Theorem 1.1, we need to control the exponential moments
of |ηr|, when starting from a point outside Br. This part is delicate, and this is where
the role of the dimension comes into play. Roughly, the reason for this is that it
could happen that many particles would freeze on ∂Br, only after doing very large
excursions away from it. In dimension five and higher the price to pay for these large
excursions is too expensive for playing a significant role. As a consequence one can
deduce a result which is similar to Theorem 1.3. Let us however emphasize the factor
(1 − ε) appearing in (1.8), which comes from the transience of the random walk in
dimension three and higher, and which guarantees that only a finite number of waves
matter.

Theorem 1.5. — Assume d ⩾ 5. There exist positive constants c, r0 and λ0 (only
depending on the dimension), such that for any 0 ⩽ λ ⩽ λ0, any r ⩾ r0, and x ∈ Bc

2r,

(1.6) Ex

[
exp(λ|ηr|/r2)

]
⩽ exp(cλ/∥x∥2).

As a consequence,

(1.7) sup
x∈∂B2r

Ex

[
exp(λ|ηr|/r2)

∣∣∣ ηr ̸= ∅
]
⩽ exp(cλ),

and there exists ε ∈ (0, 1), such that for any r ⩾ r0, and any 0 ⩽ λ ⩽ λ0,

(1.8) sup
x∈∂B2r

Ex

[
exp

(
λ|ηr|/r2

)]
⩽ exp

(
λ(1− ε)/r2

)
.

We note that the restriction r ⩾ r0 in the above theorem could be dropped and
replaced by r ⩾ 1, at the cost of some mild additional work, but since we shall not
need it, we refrain from giving more details.

In dimension four, the situation is more subtle, and large excursions start to play
a decisive role. In particular, one can show that all exponential moments of |ηr|/r2
are infinite, when starting for instance from ∂B2r. Thus one needs to consider instead
a truncated version of ηr and renormalize it conveniently. We do this here, by killing
the BRW once it reaches some large distance. To formulate our result, we define the
deposition on Br of trajectories which remain in BR for R > 2r:

ηr,R = ηr ∩ T(BR).

J.É.P. — M., 2024, tome 11



1446 A. Asselah & B. Schapira

In other words ηr,R is the set of vertices of T(BR) corresponding to hitting times
of ∂Br. Then, we obtain the following.

Theorem 1.6. — Assume d = 4. There exist positive constants c, r0 and λ0, such that
for any 0 ⩽ λ ⩽ λ0, any r ⩾ r0, R ⩾ 2r, and all x ∈ BR ∖B2r,

(1.9) Ex

[
exp

( λ|ηr,R|
r2 log(R/r)

)]
⩽ exp

( cλ

∥x∥2 log(R/r)

)
.

Furthermore, if R ⩾ 4r,

(1.10) sup
x∈∂B2r

Ex

[
exp

( λ|ηr,R|
r2 log(R/r)

) ∣∣∣ ηr,R ̸= ∅
]
⩽ exp(cλ),

and there exists ε ∈ (0, 1), such that

(1.11) sup
x∈∂B2r

Ex

[
exp

( λ|ηr,R|
r2 log(R/r)

)]
⩽ exp

( λ(1− ε)
r2 log(R/r)

)
.

Here as well, we note that the restriction r ⩾ r0 could be dropped and replaced by
r ⩾ 1.

These estimates allow to consider starting points which are not contained in the
ball (equivalently balls not centered at the origin). For instance when d ⩾ 5, then
uniformly in r ⩾ 1, t ⩾ 1, and ∥x∥ ⩾ 2r,

Px(ℓT(Br) > t) = Θ
(
rd−4/∥x∥d−2

)
× exp

(
−Θ(t/r4)

)
.

Similar estimates could be proved when ∥x∥ ⩽ 2r, depending on the value of t, and
the same could also be done in lower dimension.

The rest of the paper is organized as follows. Section 2 sets the notation and recall
some basic results. Section 3 deals with some moment bounds for a Bienaymé-Galton-
Watson process. We also recall there the spine decomposition of the BRW obtained
by Zhu, and give bounds for the small moments of |ηr| both when the starting point
lies inside and outside the ball. Section 4 deals with Theorem 1.1 in low dimensions,
and Section 5 deals with the exponential moments of the size of the localized BRW,
as presented in Proposition 1.4. Theorem 1.3 is proved in Section 6. The technical
heart of the paper spreads over three sections: Theorem 1.5 dealing with d ⩾ 5 is
proved in Section 7, Theorem 1.6 dealing with d = 4 is proved in Section 8, and the
conclusion of the proof of the upper bounds in Theorem 1.1 for d ⩾ 4 is explained in
Section 9. Finally, the lower bounds in high dimensions are given in Section 10.

Acknowledgements. — We would like to thank Ofer Zeitouni for many stimulating
and enthusiastic discussions at an early stage of this work.

2. Notation and basic tools

We let T be a Bienaymé-Galton-Watson tree (BGW for short), with offspring dis-
tribution some measure µ on the set of integers. Throughout the paper we assume
that µ is critical, in the sense that its mean is equal to one, and that it has a finite
variance, which we denote by σ2. When dimension is three, we assume furthermore
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Time spent in a ball by a critical branching random walk 1447

that it has a finite third moment, and in higher dimension we assume that it has some
finite exponential moment. For u ∈ T we let ξu be its number of children, so that

E[ξu] = 1, Var(ξu) = σ2, for all u ∈ T.

We denote the root of the tree by ∅. We write |u| the generation of a vertex
u ∈ T, i.e., its distance to the root of the tree. We let u ∧ v be the least common
ancestor of u and v, i.e., the vertex at maximal distance from the root, among the
ancestors of both u and v. For n ⩾ 0, we let Zn be the number of vertices at gen-
eration n; in particular by definition Z0 = 1 (the process {Zn}n⩾0 is often called a
BGW process, or sometimes just a Galton-Watson process in the literature). We also
let Tn := {u ∈ T : |u| ⩽ n}. It follows from our hypotheses on µ, that for any n ⩾ 1,
one has

(2.1) E[Zn] = 1, and Var(Zn) = nσ2.

We also recall Kolmogorov’s estimate (see [AN04, Th. 1 p. 19]):

(2.2) P(Zn ̸= 0) ∼ 2

σ2n
, as n −→∞.

Recall the definition (1.1) of T(Λ), for Λ ⊂ Zd, and for n ⩾ 1, set

(2.3) Zn(Λ) = {u ∈ T(Λ) : |u| = n}.

We define the outer boundary of a subset Λ ⊂ Zd as

∂Λ := {z ∈ Λc : ∃y ∈ Λ with ∥y − z∥ = 1}.

We let (Xe)e be a collection of independent and identically distributed random vari-
ables indexed by the edges of the tree, with joint law the uniform measure on the
neighbors of the origin in Zd (for a formal construction, see for instance [Shi15]).
Then we define the branching random walk {Su, u ∈ T}, as the tree-indexed random
walk, which means that for any vertex u, Su−S∅ is the sum of the random variablesXe

along the unique geodesic path from u to the root. We write E the expectation with
respect to the BRW. We let P be the law of the standard random walk (which we
shall also abbreviate as SRW) {Sn}n⩾0 on Zd, starting from the origin. For x ∈ Zd,
we let Px be the law of the SRW starting from x. For r > 0, we denote by Hr the
hitting time of ∂Br, for the SRW:

(2.4) Hr := inf{n ⩾ 0 : Sn ∈ ∂Br}.

If d ⩾ 3, we let G be the Green’s function, which is defined for any z ∈ Zd, by

G(z) =

∞∑
n=0

P(Sn = z).

We recall that under our assumption on the jump distribution, there exists a constant
cG > 0 (only depending on the dimension), such that (see [LL10, Th. 4.3.1]):

(2.5) G(z) = cG · ∥z∥2−d + O(∥z∥−d).

J.É.P. — M., 2024, tome 11



1448 A. Asselah & B. Schapira

Furthermore, the function G is harmonic on Zd ∖ {0}, in the sense that for all x
different from the origin, G(x) = Ex[G(S1)]. As a consequence, using the optional
stopping time theorem, we deduce that for some positive constants c and C, one has
for any r ⩾ 1 and any x /∈ Br,

(2.6) crd−2

∥x∥d−2
⩽

G(x)

supz∈∂Br
G(z)

⩽ Px(Hr <∞) ⩽
G(x)

infz∈∂Br G(z)
⩽

Crd−2

∥x∥d−2
.

As in [AHJ21], we shall also make use of Paley-Zygmund’s inequality, which asserts
that for any nonnegative random variable X having finite second moment, and for
any ε ∈ [0, 1),

(2.7) P(X ⩾ εE[X]) ⩾
(1− ε)2 · E[X]2

E[X2]
.

A useful variant of (2.7), which comes after a little algebra reads

(2.8) P
(
X ⩾ ε · E[X | X ̸= 0]

)
⩾

(1− ε)2 · E[X]2

E[X2]
.

Finally, given two functions f and g, we write f ≲ g, if there exists a constant C > 0,
such that f ⩽ Cg, and similarly for f ≳ g.

3. Preliminary results

3.1. Exponential moments for the BGW process. — In this subsection, we prove
two elementary facts on the BGW process. Recall that we assume the offspring dis-
tribution µ to have mean one, and some finite exponential moment. Our first result
shows that some exponential moment of Zn/n is finite, conditionally on Zn being
nonzero (which is also known to converge in law to an exponential random variable
with mean one as n goes to infinity, see [AN04, Th. 2 p. 20]).

Lemma 3.1. — There exist λ > 0, such that

sup
n⩾1

E
[
exp(λZn/n)

∣∣ Zn ̸= 0
]
<∞.

Note that the result is not new, and much stronger results are known, see for
instance [NV75, NV03], but for reader’s convenience we shall provide a direct and
short proof here.

Proof. — Note that by (2.2), there exists c > 0, such that for all n ⩾ 1,

E
[
exp(λZn/n)

∣∣ Zn ̸= 0
]
= 1 +

E
[
exp(λZn/n)

]
− 1

P(Zn ̸= 0)

⩽ 1 + cn
(
E
[
exp(λZn/n)

]
− 1

)
.

Thus it suffices to show that for some positive constants c and λ0, one has for all
λ ⩽ λ0, and all n ⩾ 1,

(3.1) φn(λ) := E
[
exp(λZn/n)

]
⩽ exp

(λ+ cλ2

n

)
.
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We prove this by induction over n. Note that the result for n = 1 follows from the
fact that Z1 is distributed as µ, which has a finite exponential moment by hypothesis.
Indeed, this implies that for some c0 > 0, and all λ small enough,

φ1(λ) = E
[
exp(λZ1)

]
⩽ 1 + λ+ λ2E

[
Z2
1 exp(λZ1)

]
⩽ 1 + λ+ c0λ

2 ⩽ exp(λ+ c0λ
2).

Now assume that (3.1) holds true for some n, and let us show it for n+1. Recall that
conditionally on Zn, Zn+1 is distributed as a sum of Zn i.i.d. random variables with
the same law as Z1. Therefore, plugging the above computation yields

φn+1(λ) = E
[
exp

(λZn+1

n+ 1

)]
= E

[
φ1

( λ

n+ 1

)Zn
]
⩽ φn

( λn

n+ 1
+ c0

λ2n

(n+ 1)2

)
.

Note that the induction hypothesis reads also as n logφn(λ) ⩽ λ+ cλ2. Then

(n+ 1) logφn+1(λ) ⩽
n+ 1

n

( n

n+ 1
λ+ c0

n

(n+ 1)2
λ2 + c

( λn

n+ 1
+ c0

λ2n

(n+ 1)2

)2)
⩽ λ+

c0
n+ 1

λ2 + c
n

n+ 1
λ2 + 2cc0

λ3

n
+ cc20

λ4

n2

⩽ λ+ cλ2 − c− c0
n+ 1

λ2 + 2cc0
λ3

n
+ cc20

λ4

n2
.

Thus if we choose c = 2c0, and λ small enough so that for any n ⩾ 1,

4c0
n+ 1

n
λ+ 2c20

n+ 1

n2
λ2 < 1,

one obtains
φn+1(λ) ⩽ exp

(λ+ cλ2

n+ 1

)
.

This establishes the induction step, and concludes the proof of the lemma. □

Our second result concerns the exponential moments for the total size of the BGW
tree, up to some fixed generation, and is proved along the same lines.

Lemma 3.2. — There exist positive constants c and λ0, such that for any λ ∈ [0, λ0],
and any n ⩾ 1,

E
[
exp(λ|Tn|/n2)

]
⩽ exp

(λ+ cλ2

n

)
.

Proof. — We prove the result by induction on n ⩾ 1. The case n = 1 has already
been seen in the proof of Lemma 3.1, and only relies on the fact that Z1 has a finite
exponential moment by assumption. Assume now that it holds for some n, and let us
prove it for n + 1. Since conditionally on Z1, |Tn+1| is the sum of Z1 i.i.d. random
variables distributed as |Tn|, we deduce from the induction hypothesis, that for some c
and λ0 one has for all λ ⩽ λ0,

E
[
exp

( λ|Tn+1|
(n+ 1)2

) ∣∣ Z1

]
⩽ exp

(λn/(n+ 1) + cλ2(n/(n+ 1))3

n+ 1
Z1

)
⩽ exp

(λ+ cλ2 − λ/(n+ 1)

n+ 1
Z1

)
.
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Integrating now both sides over Z1, and using the result for n = 1, gives

E
[
exp

( λ|Tn+1|
(n+ 1)2

)]
⩽ exp

(λ+ cλ2 − λ/(n+ 1) + c(λ+ cλ2)2/(n+ 1) + cλ2/(n+ 1)3

n+ 1

)
⩽ exp

(λ+ cλ2 − (λ− 2cλ2 + O(λ3))/(n+ 1)

n+ 1

)
,

and the right-hand side is well smaller than exp((λ+ cλ2)/(n+ 1)), provided λ0 is
small enough. This concludes the proofs of the induction step, and of the lemma. □

3.2. Spine decomposition for the BRW. — We present here a spine decomposition
of the BRW conditioned to hit a set, which was introduced by Zhu to derive upper
bounds on hitting probabilities, see [Zhu16a, Zhu21]. We shall use it also later for
proving the lower bound in Theorem 1.1 in dimension four.

Following the terminology of [Zhu16a, Zhu21], an adjoint BGW tree is a BGW tree
in which only the law of the number of children of the root has been modified, and
follows the law µ̃, given by µ̃(i) :=

∑
j⩾i+1 µ(j), for i ⩾ 0. The associated tree-indexed

random walk is the adjoint BRW. Then we define kΛ(x), for x ∈ Zd, as the probability
for an adjoint BRW starting from x to hit Λ. Now, given an integer n and a path
γ : {0, . . . , n} → Zd, we define, with |γ| = n,

(3.2) pΛ(γ) :=

|γ|−1∏
i=0

θ
(
γ(i+ 1)− γ(i)

)
·
(
1− kΛ(γ(i))

)
,

where we recall that θ is the uniform measure on the neighbors of the origin. In other
words, pΛ(γ) is the probability that a SRW starting from γ(0) follows the path γ

during its first n steps, when it is killed at each step with probability given by the
function kΛ at its current position.

We next define the probability measures {µz
Λ}z∈Λc on the integers by

µz
Λ(m) :=

∑
ℓ⩾0

µ(ℓ+m+ 1)rΛ(z)
ℓ/
(
1− kΛ(z)

)
, for all m ⩾ 0,

where rΛ(z) is the probability that a BRW starting from z does not visit Λ, condition-
ally on the root having only one child. We call biased BRW starting from z, a BRW
starting from z, conditioned on the number of children of the root having law µz

Λ.
Furthermore, a finite path γ is said to go from x to Λ, which we denote as γ:x→Λ,

if for n = |γ|, γ(n) ∈ Λ, and γ(i) /∈ Λ for all i < n. In other words this simply
means that the path γ is defined up to its hitting time of Λ (note that it includes
the possibility that n = 0 and γ(0) ∈ Λ). We shall also later write for simplicity
γ : x → y, when Λ is reduced to a single point y. Moreover, if Λ ⊂ A, we write
γ : A → Λ when the path γ is such that γ(0) ∈ A, and γ goes from γ(0) to Λ. Then
given x ∈ Zd, and γ : x→ Λ, we call γ-biased BRW, the union of γ, together with for
each i ∈ {0, . . . , |γ| − 1}, a biased BRW starting from γ(i), independently for each i,
and starting from γ(n) some usual independent BRW.
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We are now in position to describe the law of the BRW starting at some x ∈ Zd, and
conditioned on hitting Λ. For simplicity, we restrict ourselves to the part which inter-
sects Λ, since this is the only one that is needed here. On the event {ℓT(Λ) > 0}, one
defines the first entry vertex, as the smallest vertex u ∈ T in the lexicographical order,
for which Su ∈ Λ. Then, denoting by ←−u the unique geodesic path in the BGW tree
going from the root to the vertex u, we let Γ = Γ(T) be the path in Zd, made of the suc-
cessive positions of the BRW along that path. Thus if ←−u = (u0 = ∅, u1, . . . , un = u),
with n = |u|, then

Γ =
(
S∅ = x, Su1

, . . . , Sun

)
.

Note that by definition Γ is a path which goes from x to Λ in our terminology. The
following result comes from [Zhu21, Prop. 2.4].

Proposition 3.3 ([Zhu21]). — Assume d ⩾ 1. Let Λ ⊂ Zd, and x ∈ Zd be given.
(1) For any path γ : x→ Λ, one has

Px(Γ = γ, ℓT(Λ) > 0) = pΛ(γ).

(2) Furthermore, conditionally on {Γ = γ, ℓT(Λ) > 0}, the trace of the BRW on Λ

has the same law as the trace of a γ-biased BRW.

The product formula (3.2) defining pΛ implies that Γ satisfies the (strong) Markov
property, in the following sense. Given x ∈ Zd, we define a probability measure Px

Λ on
the set of paths γ : x→ Λ, by

Px
Λ(γ) :=

pΛ(γ)∑
γ′:x→Λ pΛ(γ

′)
,

which is nothing else than the law of Γ, conditionally on the event {ℓT(Λ) > 0}. For
convenience, we also set Px

Λ(γ) = 0, if γ is not a path that goes from x to Λ. Then
we can state the Markov property as follows (we only state a particular case, but the
same would hold for any stopping time).

Corollary 3.4. — Let Λ⊂A⊂Zd, and x∈Zd be given. Let τA := inf{i ⩾ 0 : Γ(i)∈A}.
Then for any path γ : A→ Λ, one has

Px
Λ

(
(Γ(τA), . . . ) = γ | Γ(0), . . . ,Γ(τA)

)
= PΓ(τA)

Λ (γ).

Proof. — It suffices to notice that by (3.2), for any path γ0 : x→ γ(0), writing γ ◦ γ0
for the concatenation of γ0 and γ, one has

Px
Λ

(
(Γ(τA), . . . ) = γ | (Γ(0), . . .,Γ(τA)) = γ0

)
=

pΛ(γ ◦ γ0)∑
γ′:x→Λ pΛ(γ

′)
×

∑
γ′:x→Λ pΛ(γ

′)

pΛ(γ0)
∑

γ′′:γ(0)→Λ pΛ(γ
′′)

=
pΛ(γ) · pΛ(γ0)

pΛ(γ0)
∑

γ′′:γ(0)→Λ pΛ(γ
′′)

= Pγ(0)
Λ (γ). □
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3.3. Hitting Probability Lower Bounds. — Here we derive rough lower bounds for
the hitting probabilities of balls, using a second moment method. The result is as
follows (recall (1.2)):

Lemma 3.5. — There exists a constant c > 0 (only depending on the dimension), such
that for any r ⩾ 1 and x /∈ Br,

Px(|ηr| > 0) ⩾ c ·


rd−4

∥x∥d−2
if d ⩾ 5,

1

∥x∥2 log(1 + ∥x∥/r)
if d = 4.

Remark 3.6. — Note that in dimension five and higher the result follows from
[Zhu16a], which proves as well an upper bound of the same order. We include a short
proof here, for the reader’s convenience. In dimension four, a more precise asymptotic
is proved in [Zhu21] in case r = 1 (see also [Zhu19] for a rough upper bound still in
the case r = 1).

Remark 3.7. — We shall also use this lower bound in dimension four for a biased
BRW. In this case the result follows immediately from the lemma, and the fact that
a biased BRW has a probability bounded from below to have at least one child, from
where starts a fresh usual BRW.

Proof. — Recall that we denote by Hr the hitting time of ∂Br for a standard random
walk. One has, using (2.6) for the last inequality,

Ex

[
|ηr|

]
=

∞∑
n=0

Ex

[∑
|u|=n 1{u ∈ ηr}

]
=

∞∑
n=0

E[Zn] ·Px(Hr = n) = Px(Hr <∞) ≳ (r/∥x∥)d−2.

Now we bound the second moment. Recall that by definition, if u ∈ ηr, then none
of its descendant can be in ηr. Thus summing first over all possible w ∈ T and then
integrating over all possible u ̸= v, with u ∧ v = w (and necessarily both u and v

different from w), gives (recall the notation (2.3))

Ex

[
|ηr|2

]
= Px(Hr <∞) +

∞∑
k=0

Ex

[∑
w∈Zk((∂Br)c)

ξw(ξw − 1)PSw(Hr <∞)2
]

= Px(Hr <∞) + σ2
∞∑
k=0

Ex

[∑
w∈Zk((∂Br)c)

PSw
(Hr <∞)2

]
⩽ Px(Hr <∞) + σ2

∞∑
k=0

Ex

[∑
|w|=k 1{Sw /∈ ∂Br} ·PSw

(Hr <∞)2
]

≲ (r/∥x∥)d−2 + r2(d−2)
∞∑
k=0

Ex

[1{Sk /∈ ∂Br}
∥Sk∥2(d−2)

]

= (r/∥x∥)d−2 + r2(d−2)
∑
z/∈Br

G(z − x)
∥z∥2(d−2)

≲


rd

∥x∥d−2
if d ⩾ 5,

r4

∥x∥2
· log(1 + ∥x∥/r) if d = 4.

J.É.P. — M., 2024, tome 11



Time spent in a ball by a critical branching random walk 1453

The result follows using that by Cauchy-Schwarz inequality,

Px(|ηr| > 0) ⩾
Ex

[
|ηr|

]2
Ex

[
|ηr|2

] . □

The next result holds in any dimension.

Lemma 3.8. — Assume d ⩾ 1. There exists a constant c > 0 (only depending on the
dimension), such that for any r ⩾ 1,

inf
x∈Br

Px(|ηr| > 0) ⩾ c/r2.

Proof. — The proof is similar to the previous lemma. Note first that for any x ∈ Br,

Ex[|ηr|] = Px(Hr <∞) = 1,

and as before,

Ex

[
|ηr|2

]
⩽ 1 + σ2

∞∑
k=0

Px(Hr > k) = 1 + σ2 Ex[Hr] ≲ r2.

The result follows. □

Finally we state a result concerning the first and third moments of |ηr|, when
starting from ∂B2r.

Lemma 3.9. — Assume d ⩾ 1.
(1) For any x ∈ Bc

r, one has Ex

[
|ηr|

]
= Px(Hr < ∞). In particular, when d ⩾ 3,

there exists ε > 0, such that for any r ⩾ 1,

sup
x∈∂B2r

Ex

[
|ηr|

]
⩽ 1− ε.

(2) Assume d ⩾ 4. There exists C > 0, such that for any r ⩾ 1,

sup
x∈∂B2r

Ex

[
|ηr|3

]
⩽ Cr4.

Remark 3.10. — The last point of the lemma can be understood, by considering that
starting from ∂B2r, the probability to hit ∂Br is of order 1/r2, and conditionally on
hitting it, the number of frozen particles |ηr| is typically of order r2. This reasoning
would apply also to all other moments of fixed order, but the third moment will suffice
for our purpose.

Proof. — We start with the first point. The equality Ex

[
|ηr|

]
= Px(Hr < ∞) has

already been seen in the proof of Lemma 3.5. Then the fact that if ∥x∥ ⩾ 2r, this
quantity is bounded from above by some constant smaller than one, in dimension
three and higher, follows from (2.5) and (2.6).

Let us prove the second point now. When we sum over triples, say (u, v, w) ∈ ηr,
we distinguish two cases. Either at least two of them are equal, and we just bound
the corresponding sum by three times the second moment of |ηr|, or the three points
are distinct. In the latter case, we again distinguish between two possible situations:
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either, u∧v = u∧w, or u∧v ̸= u∧w. In both cases, by summing first over (u∧v)∧(u∧w)
yields, for any x ∈ ∂B2r, (recall the notation (2.3)),

(3.3) Ex

[
|ηr|3

]
⩽ 3Ex

[
|ηr|2

]
+

∞∑
k=0

Ex

[∑
u∈Zk((∂Br)c)

ξu(ξu − 1)(ξu − 2)PSu
(Hr <∞)3

]
+

∞∑
k=0

Ex

[∑
u∈Zk((∂Br)c)

ξu(ξu − 1)PSu(Hr <∞) · ESu

[
|ηr|2

]]
.

Next, using (2.6) we get

∞∑
k=0

Ex

[∑
u∈Zk((∂Br)c)

ξu(ξu − 1)(ξu − 2)PSu
(Hr <∞)3

]
⩽ Cr3(d−2)

∞∑
k=0

Ex

[1{Sk /∈ Br}
∥Sk∥3(d−2)

]
⩽ Cr3(d−2)

∑
z/∈Br

G(z − x)
∥z∥3(d−2)

⩽ Cr2.

Finally for the last sum in (3.3), we use the computation from the proof of Lemma 3.5,
in particular the fact that the second moment of |ηr| is O(r2), when starting from
x /∈ Br. This yields the upper bound

Cr2d−2
∞∑
k=0

Ex

[1{Sk /∈ Br}
∥Sk∥2(d−2)

log(1 + ∥Sk∥/r)
]
⩽ Cr2d−2

∑
z/∈Br

G(z − x)
∥z∥2(d−2)

· log(1 + ∥z∥/r)

⩽ Cr4,

concluding the proof of the lemma. □

3.4. Hitting probability upper bounds. — In this section we provide upper bounds
for hitting probabilities of spheres, which are of the same order as the lower bounds
obtained previously.

The first result considers hitting probabilities of a sphere, starting from inside the
ball. The result is not new, in particular it was already proved in [Zhu16a, Prop. 10.3]
under only a first moment hypothesis on the offspring distribution (and mild condition
on the jump distribution of the walk). For completeness, we provide here an alternative
proof, which however requires a finite second moment of the offspring distribution.
We also mention [Kes95] which proves similar results.

Proposition 3.11 ([Zhu16a]). — Assume d ⩾ 1. There exists C > 0, such that for
any r ⩾ 1,

sup
x∈Br/2

Px(|ηr| > 0) ⩽
C

r2
.
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Proof. — Assume without loss of generality that r2 is an integer. We first write for
x ∈ Br/2, using (2.2), that for some constant C > 0,

Px(|ηr| > 0) ⩽
r2∑
k=0

Px(Zk ̸= 0, Zk+1 = 0, |ηr| > 0) + P(Zr2 ̸= 0)

⩽
r2∑
k=0

Px(Zk ̸= 0, Zk+1 = 0, |ηr| > 0) +
C

r2
.

Now fix some k ⩽ r2, and note that conditionally on Zk, the probability for Zk+1 to
be zero is equal to µ(0)Zk . Then by using a first moment bound, and the fact that
for any vertex at generation k, the probability that the BRW reaches ∂Br along the
line of its ancestors is given exactly by the probability for a SRW to reach ∂Br, we
get for some constant c > 0,

Px(Zk ̸= 0, Zk+1 = 0, |ηr| > 0) ⩽ E
[
Zkµ(0)

Zk
]
·Px(Hr ⩽ k)

≲ E
[
Zkµ(0)

Zk
]
· exp(−cr2/k),(3.4)

where the last inequality is well-known, see e.g. [LL10, Prop. 2.1.2]. Letting fk(s) =∑∞
n=0 P(Zk = n)sn, the generating function of Zk, one has

E
[
Zkµ(0)

Zk
]
=

∞∑
n=0

nµ(0)nP(Zk = n) = µ(0)f ′k(µ(0)).

We claim that for some constant C > 0 (depending only on µ), one has

(3.5) f ′k(µ(0)) ⩽
C

k2
.

Indeed, this follows from the results in [AN04]. First, note that it suffices to prove (3.5)
when k is an even integer, since for any s ⩽ 1, and k ⩾ 1, f ′k(s) = f ′(fk−1(s))f

′
k−1(s) ⩽

f ′k−1(s). Now the process (Z2k)k⩾0 is a critical branching process, whose offspring
distribution µ′ satisfies µ′(1) > 0. Hence [AN04, Lem. 2 p. 12] shows that P(Zk = n) ⩽
P(Zk = 1) · πn, for all n ⩾ 1, and some constants (πn)n in [0,∞]. Then [AN04,
Th. 2 p. 13] shows that

∑
n⩾1 nπnµ(0)

n < ∞, and [AN04, Cor. 2 p. 23] gives that
P(Zk = 1) ⩽ C/k2, for some constant C > 0, which altogether proves (3.5). Injecting
this estimate in (3.4) and summing over k concludes the proof of the lemma. □

The second result concerns hitting probabilities of a ball starting from a point
outside it.

Proposition 3.12 ([Zhu16a, Zhu19]). — There exists C > 0, such that for any r ⩾ 1,
and any x /∈ B2r,

Px(|ηr| > 0) ⩽ C ·


rd−4

∥x∥d−2
if d ⩾ 5,

1

∥x∥2 log(∥x∥/r)
if d = 4.
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Proof. — The result in dimensions at least five is given in [Zhu16a], and the proof in
dimension four is identical to the case r = 1, which is done in [Zhu19]. We leave the
details to the reader. □

Remark 3.13. — We shall also need the result of the proposition for an adjoint BRW.
For this, one can use a union bound, by summing over all the children of the root.
Since the expected degree of the root in an adjoint BGW tree is finite, under the
hypothesis that the offspring distribution has finite second moment, the result for the
adjoint BRW follows from Proposition 3.12.

3.5. Proof of Theorem 1.1 for short times. — We deal in this section with t ⩽ r4.

The upper bound. — We use that ℓT(Br) coincides essentially with the total size of
the BGW tree T. Indeed, using (2.2) and Markov’s inequality, yields

P(ℓT(Br) > t) ⩽ P(|T| > t) ⩽ P(Z√
t ̸= 0) + P(1 + Z1 + · · ·+ Z√

t > t)

≲
1√
t
+

1

t
· E[Z1 + · · ·+ Z√

t] ≲
1√
t
,

giving the desired upper bound.

The lower bound. — We divide the proof in two steps. We first show that we can bring
of the order of

√
t particles in Br/2 at a cost of order 1/

√
t, and then we show that

conditionally on this event, the union of the BRWs emanating from these particles
are likely to spend a time t in the ball Br.

Let us start with the first step. Let r0 := t1/4/2. Note that by hypothesis r0 ⩽ r/2.
By Proposition 3.11, one has for some constant C > 0,

P(|ηr0 | > 0) ⩽ C/
√
t,

and since E[|ηr0 |] = 1, we have, for some constant c > 0,

E
[
|ηr0 |

∣∣ |ηr0 | > 0
]
⩾ c
√
t.

Then, by using Paley-Zygmund’s inequality (2.8) (with ε = 1/2), and the second
moment estimates in the proof of Lemma 3.8, we deduce that for some constant
ρ1 > 0,

(3.6) P(|ηr0 | ⩾ ρ1
√
t) ⩾

ρ1√
t
,

concluding the first step.
Now we move to the second step. Let X :=

∑
√
t/4⩽k⩽

√
t Zk. We first claim that

for some c0 > 0 (independent of t and r) we have

(3.7) P
(
X ⩾ c0t

)
⩾

c0√
t
.

Indeed, observe that E[X] ⩾ 1
2

√
t, and thus by Kolmogorov’s estimate (2.2), one has

for some c > 0,
E[X | X ̸= 0] ⩾ ct.
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On the other hand, using (2.1), we get

E[X2] ⩽
√
t ·

∑
√
t/4⩽i⩽

√
t

E[Z2
i ] ⩽ t3/2,

and (3.7) follows using Paley-Zygmund’s inequality (2.8).
Now, define

Y =
∑

√
t/4⩽|u|⩽

√
t

1{Su ∈ Br}.

One has for any z ∈ ∂Br0 ,

Ez[Y | T] =
∑

√
t/4⩽k⩽

√
t

Zk ·Pz(Sk ∈ Br) ⩾ δ ·X,

with
δ := inf

x∈Br

inf
k⩽r2

Px(Sk ∈ Br) > 0.

On the other hand, by definition one has Y ⩽ X, and thus (2.7) gives

Pz(Y ⩾ c0δt/2 | T) · 1{X ⩾ c0t} ⩾
1
4Ez

[
Y | T

]2
Ez

[
Y 2 | T

] · 1{X ⩾ c0t} ⩾
δ2

4
· 1{X ⩾ c0t}.

Note also that by definition Y ⩽ ℓT(Br). Hence, taking expectation on both sides of
the last inequality and plugging (3.7), gives with ρ2 := c0δ

2/4,

(3.8) inf
z∈∂Br0

Pz(ℓT(Br) ⩾ ρ2t) ⩾
ρ2√
t
.

To conclude, notice that, as mentioned at the beginning of the proof, the time spent
in Br is larger than the time spent by the union of the BRWs emanating from the
particles in ηr0 (which by definition are on ∂Br0). Hence, denoting by N a binomial
random variable with number of trials ⌊ρ1

√
t⌋ and probability of success ρ2/

√
t, we get

using (3.6) together with (3.8), for some constant ρ > 0 (independent of t and r),

P(ℓT(Br) ⩾ t) ⩾ P(ℓT(Br) ⩾ t, |ηr0 | ⩾ ρ1
√
t) ⩾ P(N ⩾ 1/ρ2) · P(|ηr0 | ⩾ ρ1

√
t) ⩾

ρ√
t
,

as wanted.
This concludes the proof of Theorem 1.1 in case t ⩽ r4. □

4. Proof of Theorem 1.1 in low dimension

In dimension one, two and three, the proofs are easier, and only require small
moment estimates, which enables us to use the results from [AHJ21]. More precisely,
in dimension one and two both the lower and upper bounds only require estimates
of the first and second moment, and in dimension three we need an additional third
moment. We define for d ∈ {1, 2, 3},

R = (t/rd)1/(4−d), and N = R2.

Recall that one can assume here that t ⩾ r4, in which case it amounts to show that

P(ℓT(Br) > t) = Θ(R−2).
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The proof is based on the following result, which is given by [AHJ21, Lem. 4.3]. For
n ⩾ 0, and x ∈ Zd, write

ℓn(x) =
∑
|u|⩽n

1{Su = x}.

Lemma 4.1 ([AHJ21]). — If µ is critical and has a finite second moment, then

sup
x∈Z2

E[ℓn(x)2] ≲ n.

If additionally µ has a finite third moment, then

sup
x∈Z3

E[ℓn(x)3] ≲
√
n.

As a consequence, writing ℓN (Br) :=
∑

x∈Br
ℓN (x), we getE[ℓN (Br)

2] ≲ r4N if d = 2,

E[ℓN (Br)
3] ≲ r9

√
N if d = 3.

Note also that by linearity, one has when d = 1,

E[ℓN (Br)] ≲ r
√
N.

Therefore, for any d ∈ {1, 2, 3},

P(ℓT(Br) > t) ⩽ P(ZN ̸= 0) + P(ℓN (Br) > t) ⩽
1

N
+

E[ℓN (Br)
d]

td
≲ R−2.

For the lower bounds we use Paley-Zygmund’s inequality (2.8), which we apply
with

X := ℓ2MN (Br)− ℓMN (Br) =

2MN∑
k=MN+1

∑
|u|=k

1{Su ∈ Br},

where M is some well chosen integer to be fixed later. We need the following first
moment bounds: if t ⩾ r4 (equivalently N ⩾ r2),

E[X] =

2MN∑
k=MN+1

E
[ ∑
|u|=k

1{Su ∈ Br}
]

=

2MN∑
k=MN+1

E[Zk] ·P(Sk ∈ Br) =

2MN∑
k=MN+1

P(Sk ∈ Br)

≳


r
√
N if d = 1,

r2 if d = 2,

r3/
√
N if d = 3.

Note also that P(X > 0) ⩽ P(ZMN > 0) ∼ 2/σ2MN . Thus if M is chosen large
enough, in any dimension d ∈ {1, 2, 3}, for t ⩾ r4,

E[X | X > 0] ⩾ t.
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It follows that in dimensions one and two,

P(ℓT(Br) ⩾ t) ⩾ P(X ⩾ t) ≳ R−2.

In dimension three we need to use a third moment asymptotic, due to the presence of
a log term in the second moment. As noticed in [AHJ21, Lem. 4.4], for a nonnegative
random variable with a finite third moment:

P(X ⩾ εE[X | X > 0]) ⩾
(1− ε)3/2E[X]3/2

E[X3]1/2
.

Applying this with X as above, we get as well P(ℓT(Br) > t) ≳ R−2, concluding the
proof of Theorem 1.1 in dimensions one, two and three.

5. Proof of Proposition 1.4

In this section, we deal with the exponential moments of |T(Br)|/r4. It amounts
to show that there are positive constants c and λ0, such that for any λ < λ0, and any
r ⩾ 1,

sup
x∈Br

Ex

[
exp

(
λ|T(Br)|/r4

)]
⩽ exp(cλ/r2).

Assume without loss of generality that r2 ∈ N. Recall the notation (2.3) for Zn(Br),
and let Zn(Br) := |Zn(Br)|. Then for 0 ⩽ j < r2, we define

Υj =

∞∑
i=0

Zir2+j(Br).

Note that |T(Br)| =
∑

j<r2 Υj , and by Holder’s inequality

(5.1)
Ex

[
exp(λ|T(Br)|/r4)

]
= Ex

[∏
j<r2

(
exp(λΥj/r

2)
)1/r2]

⩽ sup
j<r2

Ex

[
exp(λΥj/r

2)
]
.

Thus, we need a uniform exponential moment on the family {Υj/r
2}j<r2 . Recall (2.4)

and note that for any x ∈ Br, and k ⩾ 0, Ex[Zk(Br)] ⩽ Px(H2r ⩾ k). Furthermore,
it is well-known that there is ρ < 1, such that

sup
r⩾1

sup
x∈Br

Px(H2r ⩾ r2) ⩽ ρ.

It follows from these last two observations that for any r ⩾ 1,

sup
j<r2

sup
x∈Br

Ex[Zj+r2(Br)] ⩽ sup
x∈Br

Px(H2r ⩾ r2) ⩽ ρ.

Let λ0 be such that the conclusion of Lemma 3.1 holds. Then, using that Zj+r2(Br) ⩽
Zj+r2 , we get for some constant c > 0 (that might change from line to line, and depend
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on λ0), that for any λ ⩽ λ0, any j < r2 and x ∈ Br

Ex

[
exp(λZj+r2(Br)/r

2)
]
⩽ 1 +

ρλ

r2
+ λ2E

[
(Z2

j+r2/r
4) exp(λZj+r2/r

2)
]

⩽ 1 +
ρλ

r2
+ cλ2E

[
exp(λ0Zj+r2/r

2) | Zj+r2 ̸= 0
]
· P(Zj+r2 ̸= 0)

⩽ 1 +
ρλ

r2
+
cλ2

r2
,

where for the last inequality we used (2.2) and Lemma 3.1. We deduce that there
exists (some possibly smaller) λ0, and γ < 1, such that for all λ ∈ [0, λ0], and all
r ⩾ 1,

(5.2) sup
x∈Br

sup
j<r2

Ex

[
exp(λZj+r2(Br)/r

2)
]
⩽ exp((1− γ)λ/r2).

Now for u ∈ T, and n ⩾ 0, we write Zu
n(Br) for the random variable with the same

law as Zn(Br) but translated in the subtree emanating from vertex u. Note that for
i ⩾ 1,

Zir2+j(Br) =
∑

u∈Z(i−1)r2+j(Br)

Zu
r2(Br).

Then (5.2) implies (after successive conditioning) that for λ ⩽ λ0,

(5.3) Ex

[
exp

( λ
r2

∑∞
i=1 Zir2+j(Br)−

(1− γ)λ
r2

∑∞
i=1 Z(i−1)r2+j(Br)

)]
⩽ 1.

The next step is to choose p and q such that q2(1 − γ) = 1 and 1/p + 1/q = 1.
By using (5.3) and applying Holder’s inequality twice, we get that for λ ⩽ λ0/pq,

Ex

[
exp(λ/r2Υj)

]
= Ex

[
exp(λ/r2Zj(Br)) · exp

( λ
r2

∑∞
i=1 Zir2+j(Br)

)]
⩽

(
Ex

[
exp(

pλ

r2
Zj)

])1/p(
Ex

[
exp

(q2(1− γ)λ
r2

Υj

)])1/q2

.

Then (3.1) gives for some constant C > 0, and λ small enough,

Ex

[
exp

( λ
r2

Υj

)]
⩽

(
Ex

[
exp

(pλ
r2
Zj

)])1/γp

⩽ eCλ/r2 .

Now, using (5.1), the result follows. □

6. Proof of Theorem 1.3

First note that as mentioned in the introduction, (1.4) follows from (1.3) and
Lemma 3.8. Indeed, these imply that for some positive constants c and c′, for all
x ∈ Br, and all λ < λ0,

Ex

[
exp(λ|ηr|/r2)

∣∣ ηr ̸= ∅
]
=1 +

Ex

[
exp(λ|ηr|/r2)

]
− 1

Px(|ηr| > 0)

⩽1 + cr2
(
exp(cλ/r2)− 1

)
⩽ 1 + c′λ ⩽ exp(c′λ).

We now move to the proof of (1.3) and (1.5). For n ⩾ 0, we use the notation

Tn(Λ) := {u ∈ T(Λ) : |u| ⩽ n}, and ηnr := {u ∈ ηr : |u| ⩽ n}.
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Recall also the notation (2.3). The main point is to observe that ηnr and Tn(Br) are
linked via some martingale {Mn}n⩾0, defined for n ⩾ 0, by

Mn :=
∑

u∈Zn(Br)

∥Su∥2 +
∑
u∈ηn

r

∥Su∥2 −
(
|Tn(Br)|+ |ηnr |

)
.

The next lemma gathers the results needed about this process.

Lemma 6.1. — The following hold for the process {Mn, n ⩾ 0}:
(1) it is a martingale with respect to the filtration (Fn)n⩾0 defined by Fn =

σ(Tn, {Su}|u|⩽n);
(2) furthermore, it converges almost surely towards

M∞ :=
∑
u∈ηr

∥Su∥2 −
(
|T(Br)|+ |ηr|

)
.

Proof. — The second part of the lemma is immediate since almost surely the tree T

is finite, and thus Zn(Br) = ∅, for all n large enough. So let us prove the first point
now. Set ∇Mn :=Mn+1−Mn, for n ⩾ 0, and for u ∈ T, let N(u) be the set of children
of u. Recall that ξu = |N(u)| by definition. Then note that∑

u∈Zn+1(Br)

∥Su∥2 =
∑

u∈Zn(Br)

∑
v∈N(u)

∥Sv∥2 −
∑

u∈ηn+1
r ∖ηn

r

∥Su∥2,

|Tn+1(Br)| − |Tn(Br)| = |Zn+1(Br)|,∑
u∈Zn(Br)

ξu = |Zn+1(Br)|+ |ηn+1
r | − |ηnr |,

which altogether yield

(6.1) ∇Mn =
∑

u∈Zn(Br)

(
(ξu − 1)∥Su∥2 +

∑
v∈N(u)

(∥Sv∥2 − ∥Su∥2 − 1)
)
.

The result follows since for u ∈ Zn(Br), ξu is independent of Fn, hence of ∥Su∥, and
moreover, since the jump distribution of S is centered and supported on the set of
neighbors of the origin, one has for any v ∈ N(u), by Pythagoras,

Ex

[
∥Sv∥2 | Fn, N(u)

]
= ∥Su∥2 + 1. □

We can now finish the proof of the theorem, by showing (1.3) and (1.5).

Proof of (1.3). — Observe first that when 1 ⩽ r ⩽ 2, the result follows from Propo-
sition 1.4, since ηr ⊂ T(Br+1), for any r ⩾ 1. Hence one can assume now that r ⩾ 2.
By definition, one has ∑

u∈ηr

∥Su∥2 ⩾ r2|ηr|.

Thus in view of Proposition 1.4 and Lemma 6.1, it just amounts to show that M∞/r
4

has some finite exponential moment. To see this, first recall that by assumption the
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offspring distribution has some finite exponential moment. Therefore, for any u ∈ T,
and λ small enough,

E
[
exp(λ(ξu − 1)/r2)

]
⩽ 1 + cλ2/r4 ⩽ exp(cλ2/r4),

for some constant c > 0. Likewise, if X has distribution θ, then for any z ∈ Br,
by Cauchy-Schwarz,∣∣∥z +X∥2 − ∥z∥2 − 1

∣∣ ⩽ 2r and E
[
∥z +X∥2

]
= ∥z∥2 + 1.

Therefore, there exists c > 0, such that for every λ ⩽ 1,

E
[
exp

(
λ · ∥z +X∥2 − ∥z∥2 − 1

r4
)]

⩽ 1 + cλ2/r6 ⩽ exp(cλ2/r6).

It follows, using (6.1) and bounding ∥Su∥2 by r2 in this formula, that for any n ⩾ 0,
and λ small enough, for some constant c > 0,

Ex

[
exp

(
λ
∇Mn

r4

) ∣∣∣ Fn

]
⩽ exp

(
cλ2
|Zn(Br)|

r4

)
.

We deduce by successive conditioning, that for any n ⩾ 1,

Ex

[
exp

( λ
r4

(Mn −M0)− cλ2
∑n−1

k=0

|Zk(Br)|
r4

)]
⩽ 1.

Note also that by definition for any x ∈ Br, under Px,

M0 = (∥x∥2 − 1) ⩽ r2, and
∑
k⩾0

|Zk(Br)| ⩽ |T(Br)|.

Hence, using Cauchy-Schwarz and Fatou’s lemma, we obtain the existence of some
positive constants c and λ0, such that for any λ ∈ [0, λ0], any r ⩾ 1, and any x ∈ Br,

Ex

[
exp

(
λM∞/r

4
)]

⩽ lim inf
n→∞

Ex

[
exp

(
λMn/r

4
)]

⩽ Ex

[
exp

( λ
r2

+ cλ2
|T(Br)|
r4

)]
.

Then (1.3) follows from Proposition 1.4. □

Proof of (1.5). — Note that for any x ∈ Br, Ex

[
|ηr|

]
= Px(Hr <∞) = 1. Therefore,

by expanding the exponential, we find using Proposition 3.11 and (1.3) at the third
line, that for any x ∈ Br/2,

Ex

[
exp(λ|ηr|/r2)

]
⩽ 1 +

λ

r2
+
λ2

r4
Ex

[
|ηr|2 exp(λ|ηr|/r2)

]
= 1 +

λ

r2
+
λ2

r4
Ex

[
|ηr|2 exp(λ|ηr|/r2)

∣∣∣ ηr ̸= ∅
]
· Px(|ηr| > 0)

⩽ 1 +
λ

r2
+ c

λ2

r2
Ex

[
exp(λ0|ηr|/r2)

∣∣∣ ηr ̸= ∅
]
⩽ 1 +

λ

r2
+ c

λ2

r2

⩽ exp
(λ+ cλ2

r2

)
,

where λ0 is the constant appearing in the statement of (1.3), and c is another constant
that might change from line to line (and depend on λ0). □
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7. Proof of Theorem 1.5

Proof of (1.6). — We assume here that d ⩾ 5. Let r ⩾ 1 be given and x satisfying
∥x∥ ⩾ 2r. We recall that ηr,R = ηr ∩ T(BR). We also define ηur,R, for u ∈ T, as the
random variable with the same law as ηr,R, but in the subtree emanating from u, and
similarly for other variables with an additional upper script u.

Let i0 be the smallest integer such that ∥x∥ ⩽ r2i0 . Define R0 = r2i0 , Zr,0 = |ηr,R0
|.

Let also for i ⩾ 1,

(7.1) Ri := 2iR0, and Zr,i :=
∑

u∈ηRi−1

|ηur,Ri
|.

Then by definition, under Px,
|ηr| ⩽

∑
i⩾0

Zr,i.

Thus, by monotone convergence, one has for any λ ⩾ 0, r ⩾ 1, and ∥x∥ ⩾ 2r

(7.2) Ex

[
exp

(
λ|ηr|/r2

)]
= lim

I→∞
Ex

[
exp

(
λ

∑I
i=0 Zr,i

r2

)]
.

Furthermore, if for i ⩾ 0, we let Gi denote the sigma-field generated by the BRW frozen
on ∂BRi , then on one hand, Zr,j is Gi-measurable, for all j ⩽ i, and conditionally on
Gi−1, Zr,i is a sum of |ηRi−1 | independent random variables. It remains now to bound
their exponential moment.

Proposition 7.1. — Assume d ⩾ 5. For r ⩾ 1, R ⩾ r, and λ ⩾ 0, let

φr,R(λ) := sup
R⩽∥x∥⩽2R

Ex

[
exp

(
λ|ηr,2R|/r2

)]
.

There exist positive constants c, r0 and λ0, such that for all r ⩾ r0, R ⩾ r, and
λ ∈ [0, λ0],

φr,R(λ) ⩽ exp
(
cλ/R2

)
.

We postpone the proof of this proposition to the end of this section, and continue
the proof of (1.6). Note that the proposition implies with our previous notation,
assuming r ⩾ r0 and λ ⩽ λ0,

Ex

[
exp

(
λZr,0/r

2
)]

⩽ exp
(
cλ/∥x∥2

)
.

Furthermore, by combining Proposition 7.1 with Theorem 1.3, we deduce that for all
i ⩾ 1, almost surely

Ex

[
exp

(
λ
Zr,i

r2
− cλ

|ηRi−1
|

R2
i−1

) ∣∣ Gi−1

]
⩽ 1.

It follows by induction that for any I ⩾ 1, and λ ⩽ λ0,

Ex

[
exp

(
λ
∑I

i=1

Zr,i

r2
− cλ

∑I−1
i=0

|ηRi
|

R2
i

) ∣∣ G0

]
⩽ 1.
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Using next Cauchy-Schwarz inequality, we get that for any I ⩾ 1, and λ ⩽ λ0/2,

Ex

[
exp

(
λ
∑I

i=0

Zr,i

r2

)]
⩽ exp

(
cλ/∥x∥2

)
· Ex

[
exp

(
2cλ

∑I−1
i=0

|ηRi |
R2

i

)]1/2
.

Now in order to compute the exponential moment in the right-hand side, we use
Theorem 1.3. Indeed, note that for any i ⩾ 1,

ηRi+1
=

⋃
u∈ηRi

ηuRi+1
.

Since as we condition on ηRi the subtrees emanating from the vertices in ηRi are
independent, (1.5) shows that for λ small enough, for any i ⩾ 0,

Ex

[
exp

(
λ|ηRi+1

|/R2
i+1

) ∣∣∣ ηRi

]
⩽ exp

(
2λ|ηRi

|/R2
i+1

)
= exp

(
λ|ηRi

|/2R2
i

)
.

Since R0 ⩾ ∥x∥, it follows by induction, that for any I ⩾ 1, and all λ small enough,

Ex

[
exp

(
λ

I−1∑
i=0

|ηRi
|

R2
i

)]
⩽ exp

(2λ(1 + · · ·+ 2−I)

∥x∥2
)
⩽ exp(4λ/∥x∥2).

Together with (7.2), this concludes the proof of (1.6).
Then the proofs of (1.7) and (1.8) follow exactly as for the corresponding estimates,

respectively (1.4) and (1.5), from Theorem 1.3. For (1.8), it suffices to use in addition
the first point of Lemma 3.9. □

Proof of Proposition 7.1. — For this we need two preliminary results, Lemmas 7.2
and 7.3 below. We note that the first one holds in fact in any dimension d ⩾ 3, and
will be used also for the case d = 4, in the next section. Recall two handy notation:
if r < R, we write

ηr,R = ηr ∩ T(BR), and ηR,r = ηR ∩ T((∂Br)
c).

In other words, ηR,r is the set of particles which freeze on ∂BR before reaching ∂Br.

Lemma 7.2. — Assume d ⩾ 3. Define for r ⩾ 1, and λ > 0,

φr(λ) := sup
r⩽∥x∥⩽2r

Ex

[
exp

(
λ|ηr,2r|/r2

)]
.

There exist positive constants c and λ0 (only depending on the dimension), such that
for any r ⩾ 1, and 0 ⩽ λ ⩽ λ0,

φr(λ) ⩽ exp
(
cλ/r2

)
.

Proof. — Consider the process {M̃n}n⩾0 defined for n ⩾ 0 by

M̃n :=
∑

u∈Zn(B2r\∂Br)

G(Su) +
∑

u∈ηr,2r

|u|⩽n

G(Su) +
∑

u∈η2r,r

|u|⩽n

G(Su).

Note that for each n ⩾ 0, one has

∇M̃n := M̃n+1 − M̃n =
∑

u∈Zn(B2r\∂Br)

{
(ξu − 1)G(Su) +

∑
v∈N(u)

(G(Sv)−G(Su))
}
,
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where we recall that N(u) denotes the set of children of u. Therefore, since G is
harmonic on Zd ∖ {0}, this process is a martingale with respect to the filtration
{Fn}n⩾0, as defined in Lemma 6.1. Moreover, as n → ∞, it converges almost surely
toward M̃∞ given by

M̃∞ =
∑

u∈ηr,2r

G(Su) +
∑

u∈η2r,r

G(Su).

Letting G(r) := infx∈∂Br G(x), we thus have M̃∞ ⩾ G(r)|ηr,2r|. By Fatou’s lemma,
this yields

(7.3) φr(λ) ⩽ lim inf
n→∞

sup
r⩽∥x∥⩽2r

Ex

[
exp

( λM̃n

r2G(r)

)]
.

Now, as in the proof of (1.3) one has for some constant c > 0, for any n ⩾ 0, and
any λ small enough,

Ex

[
exp

(λ(M̃n − M̃0)

r2G(r)
− cλ2|Tn(B2r)|

r4

)]
⩽ 1,

from which we infer using Cauchy-Schwarz and the fact that under Px, M̃0 = G(x),

Ex

[
exp

( λM̃n

r2G(r)

)]
⩽ Ex

[
exp

(2cλ2|Tn(B2r)|
r4

)]1/2
· exp

( λG(x)
r2G(r)

)
.

Thus the lemma follows from Proposition 1.4 and (2.5), together with (7.3). □

We can now state the following result, which will be our main building block in
the proof of Proposition 7.1.

Lemma 7.3. — Assume d ⩾ 5. There exist positive constants r0 ⩾ 1 and λ0, such that
for any r ⩾ r0, and λ ∈ [0, λ0],

sup
x∈∂B2r

Ex

[
exp

(λ|ηr,4r|
r2

+
λ|η4r,r|
16r2

)]
⩽ exp

(
λ/4r2

)
.

Proof. — We note that for any x ∈ ∂B2r,

Ex

[
exp

(
λ|ηr,4r|/r2

)]
⩽ 1 +

λEx

[
|ηr,4r|

]
r2

+
λ2

r4
Ex

[
|ηr,4r|2 exp

(
λ|ηr,4r|/r2

)]
.

Now, similarly as in Lemma 3.9, one has

Ex

[
|ηr,4r|

]
= Px(Hr < H4r) ⩽

G(x)−G(4r)
G(r)−G(4r)

,

with G(s) = infz∈∂Bs G(z), for s ⩾ 1. Therefore, using (2.5), we deduce that for r
large enough,

sup
x∈∂B2r

Ex

[
|ηr,4r|

]
⩽

1

8
.

Using next Proposition 3.12, and (the proof of) Lemma 7.2 we deduce, as for the
proof of (1.5), that for λ small enough,

sup
x∈∂B2r

Ex

[
|ηr,4r|2 exp

(
λ|ηr,4r|/r2

)]
⩽ cr2,
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for some constant c > 0. It follows that for λ small enough, and r large enough,

sup
x∈∂B2r

Ex

[
exp

(
λ|ηr,4r|/r2

)]
⩽ exp

(
λ/6r2

)
.

The same argument leads to

sup
x∈∂B2r

Ex

[
exp

(
λ|η4r,r|/16r2

)]
⩽ exp

(
λ/16r2

)
,

and the lemma follows by using Cauchy-Schwarz inequality, since 1/6 + 1/16 ⩽ 1/4.
□

Proof of Proposition 7.1. — Assume r ⩾ r0, with r0 given by Lemma 7.3, and for
i ⩾ 0, set Ri = r2i. Let also

φr,i(λ) := sup
x∈∂BRi

Ex

[
exp

(λ|ηr,Ri+1
|

r2
+
λ|ηRi+1,r|
R2

i+1

)]
.

We will prove by induction that, for all r ⩾ r0, and all λ ∈ [0, λ0], with λ0 as in
Lemma 7.3, one has for all i ⩾ 0,

(7.4) φr,i(λ) ⩽ exp
(
λ/R2

i

)
.

We claim that this implies the proposition. Indeed, let R ⩾ r ⩾ r0 be given and
assume that Ri ⩽ R < Ri+1, for some i ⩾ 0. Let also x be such that R ⩽ ∥x∥ ⩽ 2R.
If R ⩽ ∥x∥ ⩽ Ri+1, then under Px,

|ηr,2R| ⩽
∑

u∈ηRi,Ri+1

|ηur,Ri+1
|+

∑
u∈ηRi+1,r

|ηur,Ri+2
|,

showing that the desired result follows indeed from (7.4), Lemma 7.2, and (1.3).
On the other hand, if Ri+1 ⩽ ∥x∥ ⩽ 2R, then under Px,

|ηr,2R| ⩽
∑

u∈ηRi+1,Ri+2

|ηur,Ri+2
|+

∑
u∈ηRi+2,r

|ηur,Ri+3
|,

from which the result follows as well.
Thus it only amounts to prove (7.4), which we now show by induction on i ⩾ 0.

Note that when i = 0, the result is immediate by definition, and when i = 1, the
result is given by Lemma 7.3.

Assume next that it holds up to some integer i ⩾ 1, and let us prove it for i + 1.
For x ∈ ∂BRi+1

, we define inductively four sequences {ζjk}k⩾0, for j ∈ {0, 1, 2, 3},
of vertices of T as follows. Let ζ20 := {∅} be the root of T. Next, we can first define
for any k ⩾ 0,

ζ1k =
⋃

u∈ζ2
k

ηuRi,Ri+2
, and ζ2k+1 =

⋃
u∈ζ1

k

ηuRi+1,r.

Then we let
ζ0k :=

⋃
u∈ζ1

k

ηur,Ri+1
, and ζ3k =

⋃
u∈ζ2

k

ηuRi+2,Ri
.

In particular under Px, with x ∈ ∂BRi+1
, one has for any k ⩾ 0,

(7.5) Su ∈ ∂BRi+j−1
, if u ∈ ζjk, for j ∈ {1, 2, 3}, and Su ∈ ∂Br, if u ∈ ζ0k .
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See Figure 1 below where an illustration of {ζ0k} is drawn. Moreover,

ηr,Ri+2 =
∞⋃
k=0

ζ0k , and ηRi+2,r =
∞⋃
k=0

ζ3k .

Indeed, concerning the first equality, note that any particle reaching ∂Br, before
hitting ∂BRi+2

, will make a number of excursions between ∂BRi
and ∂BRi+1

back
and forth, before at some point reaching ∂BRi

, and then ∂Br without hitting ∂BRi+1
,

and a similar argument leads to the second equality.

 

Figure 1. Waves

By monotone convergence, we deduce that

φr,i+1(λ) ⩽ lim
n→∞

sup
x∈∂BRi+1

Ex

[
exp

(λ∑n
k=0 |ζ0k |
r2

+
λ
∑n

k=0 |ζ3k |
R2

i+2

)]
.

For k ⩾ 0, we let Gk be the sigma-field generated by the tree T cut at vertices
in ζ1k ∪ ζ3k , together with the positions of the BRW at the vertices on this subtree.
We also let Hk be the sigma-field generated by the tree cut at vertices in ζ2k , together
with the positions of the BRW on the corresponding subtree.

The induction hypothesis implies that almost surely, one has

Ex

[
exp

(
λ|ζ0n|/r2

) ∣∣ Gn

]
⩽ exp

(
λ|ζ1n|/R2

i

)
.

Then Lemma 7.3 ensures, that for 0 ⩽ λ ⩽ λ0, and r ⩾ r0, almost surely (recall (7.5)),

Ex

[
exp

(λ|ζ1n|
R2

i

+
λ|ζ3n|
R2

i+2

) ∣∣ Hn

]
⩽ exp

(
λ|ζ2n|/R2

i+1

)
.

Applying again the induction hypothesis, we get that almost surely,

Ex

[
exp

(λ|ζ0n−1|
r2

+
λ|ζ2n|
R2

i+1

) ∣∣ Gn−1

]
⩽ exp

(
λ|ζ1n−1|/R2

i

)
.
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Then an elementary induction shows that for all n ⩾ 1,

Ex

[
exp

(λ∑n
k=0 |ζ0k |
r2

+
λ
∑n

k=0 |ζ3k |
R2

i+2

)]
⩽ exp

(
λ/R2

i+1

)
,

proving (7.4) for i+ 1, which concludes the proof of Proposition 7.1. □

8. Proof of Theorem 1.6

The proof is similar to the proof of Theorem 1.5, but one has to be slightly more
careful. The main difference comes from the following modified version of Proposi-
tion 7.1.

Proposition 8.1. — Assume d = 4. There exist positive constants c, r0 and λ0, such
that for any r ⩾ r0, R ⩾ r, and λ ∈ [0, λ0],

sup
R⩽∥z∥⩽2R

Ez

[
exp

(
λ
|ηr,2R|

r2 log(R/r)

)]
⩽ exp

( cλ

R2 log(R/r)

)
.

Once this proposition is established, the end of the proof of Theorem 1.6 is almost
the same as in dimension five and higher. Indeed, let us postpone the proof of Propo-
sition 8.1 for a moment, and conclude the proof of Theorem 1.6 first.

Proof of Theorem 1.6. — Let r ⩾ r0, with r0 as in Proposition 8.1, and R ⩾ 2r be
given, and let also x be such that 2r ⩽ ∥x∥ ⩽ R. Let i0 be the smallest integer, such
that ∥x∥ ⩽ r2i0 , and let I be the smallest integer such that R ⩽ r2i0+I . Recall the
definition (7.1) of Ri and Zr,i, and notice that

|ηr,R| ⩽
I∑

i=0

Zr,i.

Moreover, as in the proof of Theorem 1.5, on one hand Proposition 8.1 shows that
(with the same constant c as in its statement),

Ex

[
exp

( λ

r2 log(R/r)

∑I
i=0Zr,i

)]
⩽ exp

( cλ

∥x∥2 log(R/r)

)
· Ex

[
exp

( 2cλ

log(R/r)
·
∑I−1

i=0

|ηRi
|

R2
i

)]1/2
,

and on the other hand, using (1.5), we get by induction

Ex

[
exp

( 2cλ

log(R/r)
·
∑I−1

i=0

|ηRi |
R2

i

)]
⩽ exp

( 8cλ

∥x∥2 log(R/r)

)
,

which concludes the proof of (1.9). The proof of (1.10) follows exactly as for the
corresponding statement in Theorem 1.3, namely (1.4). Indeed, using a similar argu-
ment as in the proof of Lemma 3.5, one can see that uniformly over R ⩾ 4r, one has
infx∈∂B2r

P(ηr,R ̸= ∅) ⩾ c/r2, for some constant c > 0. Finally concerning the proof
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of (1.11), one can argue as follows. First using the first point of Lemma 3.9, one has
for some constant ε > 0,

Ex

[
exp

( λ|ηr,R|
r2 log(R/r)

)]
⩽ 1 +

(1− ε)λ
r2 log(R/r)

+
λ2

r4 log(R/r)2
Ex

[
|ηr,R|2 exp

( 2λ|ηr,R|
r2 log(R/r)

)]
.

Then, using Proposition 3.12 and Hölder’s inequality at the third line, and (1.10) and
the second point of Lemma 3.9 at the last one, we get

Ex

[
exp

( λ|ηr,R|
r2 log(R/r)

)]
⩽ 1 +

(1− ε)λ
r2 log(R/r)

+
λ2

r4 log(R/r)2
Ex

[
|ηr,R|2 exp

( λ|ηr,R|
r2 log(R/r)

) ∣∣∣ ηr,R ̸= ∅
]
· Px(|ηr,R| > 0)

⩽ 1 +
(1− ε)λ

r2 log(R/r)

+
cλ2

r4+2/3 log(R/r)2
Ex

[
|ηr|3

]2/3
· Ex

[
exp

( 3λ|ηr,R|
r2 log(R/r)

) ∣∣∣ ηr,R ̸= ∅
]1/3

⩽ 1 +
(1− ε)λ

r2 log(R/r)
+

cλ2

r2 log(R/r)2
⩽ exp

( (1− ε′)λ
r2 log(R/r)

)
,

for some constant ε′ ∈ (0, 1), proving well (1.11). This concludes the proof of Theo-
rem 1.6. □

It remains now to prove Proposition 8.1, which requires some more care than for
the proof of Proposition 7.1. In particular one needs first an improved version of
Lemma 7.3.

Lemma 8.2. — Assume d = 4. There exists positive constants c and λ0, such that for
any λ, λ′ ∈ [0, λ0], and any r ⩾ 1,

sup
x∈∂B2r

Ex

[
exp

(
λ
|ηr,4r|
r2

+ λ′
|η4r,r|
4r2

)]
⩽ exp

(λ(1 + c/r + cλ) + λ′(1 + c/r + cλ′)

5r2

)
.

Proof. — The proof is similar to the proof of Lemma 7.3. First we write for any
x ∈ ∂B2r,

Ex

[
exp

(
λ|ηr,4r|/r2

)]
⩽ 1 +

λEx

[
|ηr,4r|

]
r2

+
λ2

r4
Ex

[
|ηr,4r|2 exp

(
λ|ηr,4r|/r2

)]
,

and

Ex

[
|ηr,4r|

]
= Px(Hr < H4r) ⩽

G(x)−G(4r)
G(r)−G(4r)

,
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with G(s) = infz∈∂Bs
G(z), for s ⩾ 1. Using (2.5), we deduce that in dimension four,

for some constant c > 0,

sup
x∈∂B2r

Ex

[
|ηr,4r|

]
⩽

1

5
(1 + c/r).

We conclude as in the proof of Lemma 7.3 that for λ small enough,

sup
x∈∂B2r

Ex

[
exp

(
λ|ηr,4r|/r2

)]
⩽ exp

(λ(1 + c/r + cλ)

5r2

)
.

The same argument leads to

sup
x∈∂B2r

Ex

[
exp

(
λ′|η4r,r|/4r2

)]
⩽ exp

(λ′(1 + c/r + cλ′)

5r2

)
,

and the lemma follows using Cauchy-Schwarz inequality. □

Proof of Proposition 8.1. — Given r > 0, let Ri = r2i, for i ⩾ 1. We will prove the
existence of positive constants c, r0, and λ1 > 0, such that for all r ⩾ r0, λ ∈ [0, λ1],
and i ⩾ 1,

(8.1) sup
x∈∂BRi

Ex

[
exp

(
λ|ηr,Ri+1

|/ir2
)]

⩽ exp
(
cλ/iR2

i

)
.

Note that exactly as in the proof of Proposition 7.1, the desired result would follow.
Now consider the functions ψr,i, defined for λ, λ′ ⩾ 0 by

ψr,i(λ, λ
′) := sup

x∈∂BRi

Ex

[
exp

(λ|ηr,Ri+1 |
ir2

+
λ′|ηRi+1,r|

iR2
i

)]
.

We claim that there exist positive constants r0, κ and λ1 ⩽ 1, such that for all r ⩾ r0,
all i ⩾ 1, and all λ, λ′ ∈ [0, λ1],

(8.2) ψr,i(λ, λ
′) ⩽ exp

(αi(λ+ λ′) · λ+ βi(λ+ λ′) · λ′

iR2
i

)
,

writing for t ⩾ 0,

αi(t) :=

i∏
j=1

(
1 +

κ

Rj
+
κt

i

)
, and βi(t) = 1 +

κ

Ri
+
κt

i
.

Note that once κ is fixed, one has supi αi(1) < ∞, hence taking λ′ = 0 in (8.2)
gives (8.1), and thus concludes the proof of the proposition.

We prove (8.2) by induction, and start by fixing the constants κ, r0 and λ1. For
this define for i ⩾ 0, with c the constant appearing in Lemma 8.2,

ρi := 1 +
c

Ri
+

10c(λ+ λ′)

i+ 1
, and νi := 1 +

κ

Ri
+
κ(λ+ λ′)

i+ 1
.

Then fix κ and r0 large enough, and λ1 ⩽ 1 small enough, such that for all r ⩾ r0,
and all λ, λ′ ∈ [0, λ1],

(8.3) ρ0 ⩽ 5/3, ν0 ⩽ 2, sup
i
αi(2λ1) ⩽ 2, λ1 ⩽

λ0
10
,
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where λ0 is the constant given by Lemma 8.2, and

(8.4) 5ρi
5− ρiνi

⩽
5

4
·
(
1 +

κ

Ri+1
+
κ(λ+ λ′)

i+ 1

)
.

To be more precise, one may first choose κ = 100c, and then take r0 large enough,
and λ1 small enough so that (8.3) and (8.4) are satisfied, for all r ⩾ r0, i ⩾ 0 and
λ, λ′ ∈ [0, λ1]. Now (8.2) for i = 1 is given by Lemma 8.2, at least provided c ⩽ κ/2,
which we can always assume. Assume next that (8.2) holds for some i ⩾ 1, and let us
prove it for i+1. Define {ζjk}k⩾0, for j ∈ {0, 1, 2, 3}, as well as {Gk}k⩾0 and {Hk}k⩾0,
as in the proof of Proposition 7.1. Recall that by monotone convergence, one has

ψr,i+1(λ, λ
′) ⩽ lim

n→∞
sup

x∈∂BRi+1

Ex

[
exp

(λ∑n
k=0 |ζ0k |

(i+ 1)r2
+
λ′

∑n
k=0 |ζ3k |

(i+ 1)R2
i+1

)]
.

The induction hypothesis implies that almost surely,

Ex

[
exp

( λ|ζ0n|
(i+ 1)r2

) ∣∣∣ Gn

]
⩽ exp

( α̃iλ|ζ1n|
(i+ 1)R2

i

)
, with α̃i := αi

( i(λ+ λ′)

i+ 1

)
.

Note in particular that (supi α̃i)λ ⩽ 2λ ⩽ λ0, by (8.3). Hence, an application of
Lemma 8.2 yields that almost surely

Ex

[
exp

( α̃iλ|ζ1n|
(i+ 1)R2

i

+
λ′|ζ3n|

(i+ 1)R2
i+1

) ∣∣∣ Hn

]
⩽ exp

(ρi(α̃iλ+ λ′)|ζ2n|
5(i+ 1)R2

i

)
.

Observe next that by (8.3), one has
ρi
5
(α̃iλ+ λ′) ⩽ λ1.

Thus applying again the induction hypothesis, we get that almost surely,

Ex

[
exp

( λ|ζ0n−1|
(i+ 1)r2

+
ρi(α̃iλ+ λ′)|ζ2n|

5(i+ 1)R2
i

) ∣∣∣ Gn−1

]
⩽ exp

({
α̃iλ(1 + ρiνi/5) +

ρiνiλ
′

5

}
·
|ζ1n−1|

(i+ 1)R2
i

)
.

Now, one has by (8.3) again

α̃i(1 + ρiνi/5)λ+
ρiνi
5
λ′ ⩽

(
2(1 + 4/5) + 4/5

)
λ1 ⩽ 10 · λ1 ⩽ λ0.

Hence one may apply Lemma 8.2, which gives (note the factor 10 appearing in the
definition of ρi),

Ex

[
exp

({
α̃iλ(1 + ρiνi/5) +

ρiνiλ
′

5

}
·
|ζ1n−1|

(i+ 1)R2
i

+
λ′|ζ3n−1|

(i+ 1)R2
i+1

) ∣∣∣ Gn−1

]
⩽ exp

(
(α̃iλ+ λ′) · (1 + ρiνi/5) ·

ρi|ζ2n|
5(i+ 1)R2

i

)
.

Then an elementary induction shows that for all n ⩾ 1,

Ex

[
exp

(λ∑n
k=0 |ζ0k |

(i+ 1)r2
+
λ′

∑n
k=0 |ζ3k |

(i+ 1)R2
i+1

)]
⩽ exp

(4ρi
5
· α̃iλ+ λ′

(i+ 1)R2
i+1

·
∑n

k=0(ρiνi/5)
k
)
.
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To conclude, note that by (8.4),

ρi

∞∑
k=0

(ρiνi/5)
k =

5ρi
5− ρiνi

⩽
5

4
·
(
1 +

κ

Ri+1
+
κ(λ+ λ′)

i+ 1

)
=

5

4
βi+1(λ+ λ′).

Finally notice that α̃iβi+1(λ + λ′) = αi+1(λ + λ′), thereby finishing the proof of the
induction step for (8.2). This concludes the proof of Proposition 8.1. □

9. Proof of Theorem 1.1: upper bounds in d ⩾ 4

The proof in dimension four is slightly different from the higher dimensional case,
but first one needs to strengthen the result of Proposition 1.4 as follows. Recall that
we denote by T(Br) the time spent in the ball Br by a BRW, for which we freeze the
particles reaching the boundary of the ball, see (1.1).

Proposition 9.1. — Assume d ⩾ 1. There exist positive constants c and C, such that
for all r ⩾ 1, and all t ⩾ r4,

sup
x∈Br

Px(|T(Br)| > t) ⩽
C

r2
exp(−ct/r4).

Proof. — Given u ∈ T, and Λ ⊂ Zd, we call Tu(Λ) the random variable with
the same law as T(Λ) shifted in the subtree emanating from u. Recall also that
Tn = {u ∈ T : |u| ⩽ n}, and assume without loss of generality that r2 is an integer.
One has
(9.1) Px(|T(Br)| > t) ⩽ Px

(∑
|u|=r2 |T

u(Br)| ⩾ t/2
)
+ P

(
|Tr2 | > t/2

)
.

For the first term on the right-hand side we use first Proposition 1.4 and Chebyshev’s
exponential inequality, which give for any λ small enough,

Px

(∑
|u|=r2 |T

u(Br)| ⩾ t/2
)
⩽ e−λt/2r4 · E

[
exp

(
cλZr2/r

2
) ∣∣∣ Zr2 ̸= 0

]
· P(Zr2 ̸= 0).

Then Lemma 3.1 and (2.2) yield for some constant C > 0,

Px

(∑
|u|=r2 |T

u(Br)| ⩾ t/2
)
⩽
C

r2
exp(−λt/2r4).

Concerning now the second term on the right-hand side of (9.1), we use a similar idea.
Let I be the smallest integer, such that r2 ⩽ 2I . Using this time both Lemmas 3.1
and 3.2 shows that for some λ small enough, and positive constants c, and C,

P
(
|Tr2 | > t/2

)
⩽

I−1∑
i=0

P
(∑2i+1

k=2iZk > 2i−I−1t
)

⩽
I−1∑
i=0

exp
(
− λ2i−I−1t/22i

)
· E

[
exp

(
cλZ2i/2

i
) ∣∣∣ Z2i ̸= 0

]
· P(Z2i ̸= 0)

⩽
C

r2

I−1∑
i=0

2I−i exp
(
− λ2I−it/8r4

)
⩽
C

r2
exp(−λt/8r4),

using t ⩾ r4, for the last inequality. This concludes the proof of the proposition. □
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We can now finish the proof of the upper bounds in Theorem 1.1 in dimensions
four and higher.

Assume first that d ⩾ 5. Note that it suffices to prove the result for r large enough.
In particular we assume now that r ⩾ r0, with r0 given by Theorem 1.5. Define two
sequences {ζjk}k⩾0, for j = 1, 2, by ζ10 = {∅} is the root of the tree, and for k ⩾ 0,

ζ2k :=
⋃

u∈ζ1
k

ηu2r, and ζ1k+1 :=
⋃

u∈ζ2
k

ηur .

Let also for k ⩾ 0,
Lk(Br) :=

∑
u∈ζ1

k

|Tu(B2r)|,

with the notation from the proof of the previous proposition. Then by definition, one
has

ℓT(Br) ⩽
∑
k⩾0

Lk(Br).

Therefore by Proposition 3.11, for any λ > 0,

P
(
ℓT(Br) > t

)
⩽ P

(
|T(B2r)| > t/2

)
+
C

r2
exp(−λt/2r4) · E

[
exp

( λ
r4

∑
k⩾1Lk(Br)

) ∣∣∣ |ηr| > 0
]
.

The first term on the right-hand side is handled by Proposition 9.1. Hence only the last
expectation is at stake, and it just amounts to show that it is bounded. By monotone
convergence one has

E
[
exp

( λ
r4

∑
k⩾1Lk(Br)

) ∣∣∣ |ηr| > 0
]
= lim

n→∞
E
[
exp

( λ
r4

∑n
k=1Lk(Br)

) ∣∣∣ |ηr| > 0
]
.

Note also that if Gn denotes the sigma-field generated by the BGW tree cut at vertices
in ζ1n, together with the positions of the BRW on this subtree, then by Proposition 1.4,
almost surely for all λ small enough,

E
[
exp

(λLn(Br)

r4

) ∣∣∣ Gn

]
⩽ exp

(cλ|ζ1n|
r2

)
,

for some constant c > 0. It follows that for any n ⩾ 0,

E
[
exp

( λ
r4

∑n
k=1Lk(Br)−

cλ

r2
∑n

k=1|ζ
1
k |
) ∣∣∣ |ηr| > 0

]
⩽ 1.

Hence by Cauchy-Schwarz, it just amounts to show that for λ small enough, the
sequence {un(λ)}n⩾1 defined by

un(λ) := E
[
exp

(cλ
r2

∑n
k=1|ζ

1
k |
) ∣∣∣ |ηr| > 0

]
,

is bounded. By combining (1.5) and (1.8), we get that for λ small enough, and some
ε > 0, one has for any k ⩾ 2, almost surely

E
[
exp

( λ
r2
|ζ1k |

) ∣∣∣ Gk−1

]
⩽ exp

( (1− ε)λ
r2

|ζ1k−1|
)
,
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and using also (1.4), we get for some constant c′ > 0,

E
[
exp

( λ
r2
|ζ11 |

) ∣∣∣ |ηr| > 0
]
⩽ exp(c′λ).

We deduce that for any n ⩾ 1, and λ small, that {un(λ)}n⩾1 is bounded through

un(λ) ⩽ exp
(
c′λ

∑n
k=0(1− ε)k) ⩽ exp(c′λ/ε),

This concludes the proof of the upper bound in Theorem 1.1, in case d ⩾ 5.
In the case when d = 4, the proof follows a similar pattern, but we need to consider

a truncated deposition process on Br. Instead of {ζjk}k⩾0, set ζ̃10 = {∅}, and with
R = r2I , and I :=

√
t/r4, we define for k ⩾ 0,

ζ̃2k :=
⋃

u∈ζ̃1
k

ηu2r, and ζ̃1k+1 :=
⋃

u∈ζ̃2
k

ηur,R.

Then we define similarly for k ⩾ 0,

Lk(Br) :=
∑
u∈ζ̃1

k

|Tu(B2r)|,

and Chebyshev’s inequality reads

P
(
ℓT(Br) > t

)
⩽ P

(
|T(B2r)| > t/2

)
+ P(|ηR| > 0)

+
C

r2
e−λt/2Ir4 · E

[
exp

( λ

Ir4
∑

k⩾1Lk(Br)
) ∣∣∣ |ηr| > 0

]
.

The second term is O(1/R2) by Proposition 3.11, and the other terms are handled
exactly as in higher dimension, using the estimates from Theorem 1.6, instead as from
Theorem 1.5. □

10. Proof of Theorem 1.1: lower bounds in d ⩾ 4

We start with the case of dimension five and higher, and consider the subtle case
of dimension four separately.

10.1. Dimension five and higher. — Assume d ⩾ 5, and recall that we may also
assume here that t ⩾ r4. The strategy we will use is to ask the BRW to reach ∂Br

(at a cost of order 1/r2), and then make order t/r4 excursions (or waves) between ∂Br

and ∂Br/2, at a cost of order exp(−Θ(t/r4)).
More precisely, the proof relies on the following lemma, which holds in fact in any

dimension (recall (1.2)).

Lemma 10.1. — Assume d ⩾ 1. There exists a constant c > 0, such that for any r ⩾ 1,

inf
x∈Br/2∪∂B2r

Px(|ηr| ⩾ cr2) ⩾ c/r2.

Proof. — Let
ηr := {u ∈ ηr : r2 ⩽ |u| ⩽ 2r2}.
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Note that uniformly over x ∈ Br/2 ∪ ∂B2r,

Ex[|ηr|] =
2r2∑

n=r2

E[Zn] ·Px(Hr = n) = Px(r
2 ⩽ Hr ⩽ 2r2) ≳ 1,

and using a similar computation as in Section 3.3,

Ex

[
|ηr|2

]
= Ex[|ηr|]+σ2

r2−1∑
k=0

Ex

[
1{Hr > k}·PSk

(
r2−k ⩽ Hr ⩽ 2r2−k

)2]
⩽ 1+σ2r2.

Now by (2.2),
Px(|ηr| > 0) ⩽ P(Zr2 ̸= 0) ≲ 1/r2.

Therefore,
Ex

[
|ηr| | |ηr| > 0

]
≳ r2,

and Paley-Zygmund’s inequality (2.8) gives, for some constant c > 0,

Px

(
|ηr| > cr2

)
≳ 1/r2.

Since ηr ⊂ ηr, this proves the lemma. □

Consequently, if we start with order r2 particles on ∂Br, then with probability of
order 1, there will be order r2 particles reaching ∂Br/2. Repeating this argument we
see that with probability at least Θ(1/r2) · exp(−Θ(t/r4)), the BRW will make at
least Θ(t/r4) waves between ∂Br and ∂Br/2, with an implicit constant as large as
wanted. The expected time spent on Br by each of these waves is of order r4, simply
because for any starting point on ∂Br/2, the expected time spent on Br by the BRW
killed on ∂Br is of order r2. Since all the waves are independent of each other (at least
conditionally on the positions of the frozen particles), we shall deduce that the total
time spent on Br will exceed t.

On a formal level now, we define {ζ1k}k⩾0, {ζ1,1k }k⩾0 and {ζ2k}k⩾0 inductively by
ζ1,10 = ζ10 = {∅} (the root of the tree), and then for k ⩾ 0,

ζ2k =
⋃

u∈ζ1,1
k

ηur , ζ1k+1 =
⋃

u∈ζ2
k

ηur/2,

and for ζ1,1k+1 we take any subset (chosen arbitrarily, for instance uniformly at random)
of ζ1k+1 with ⌈|ζ1k+1|/2⌉ points. We also let ζ1,2k := ζ1k ∖ ζ1,1k , for k ⩾ 0. Next, set
N := ⌈Ct/r4⌉, with C > 0 some large constant to be fixed later, and define further
for k ⩾ 1,

Lk(Br) :=
∑

u∈ζ1,2
k

|Tu(Br)|,

with the notation from the proof of Proposition 9.1. The reason why we partition the
sets ζ1k into two parts, is that we want to keep, for each k ⩾ 1, some independence
between ζ2k and Lk(Br), conditionally on ζ1k . Now, note that

(10.1) ℓT(Br) ⩾
N∑

k=1

Lk(Br).
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For k ⩾ 1, define Gk as the sigma-field generated by tree cut at vertices in ζ1k , together
with the choice of ζ1,1k and the positions of the BRW on the vertices of this subtree.
Let also Ek := {|ζ1,1k | ⩾ cr2}, with c chosen such that

(10.2) ρ := min
(
P(E1), inf

k⩾2
P(Ek | Ek−1)

)
> 0.

Note that the existence of c is guaranteed by Lemma 10.1. Observe also that Ek ∈ Gk,
for any k ⩾ 1. Remember next that for some constant c′ > 0, one has for all r ⩾ 1,

inf
x∈∂Br/2

Ex

[
|T(Br)|

]
= inf

x∈∂Br/2

Ex[Hr] ⩾ c′r2.

As a consequence, for any k ⩾ 1, almost surely,

E
[
Lk(Br) | Gk] ⩾ c′r2|ζ1,2k |.

On the other hand,

sup
x∈Br

Ex

[
|T(Br)|

]
= sup

x∈Br

Ex[Hr] = O(r2),

which entails that for some constant K > 0, for any x ∈ Br,

Ex

[
|T(Br)|2

]
⩽ Ex

[
|T(Br)|

]
+

∞∑
k=0

Ex

[∑
u∈T(Br)
|u|=k

ξu(ξu − 1)
(
sup
z∈Br

Ez

[
|T(Br)|

])2]
⩽ Kr6.

As a consequence, one has for any k ⩾ 0,

E
[
Lk(Br)

2 | Gk

]
⩽ Kr6|ζ1,2k |.

Using then Paley-Zygmund’s inequality (2.7) we get

(10.3) P(Fk | Gk)1Ek
⩾
cc′2

4K
1Ek

, with Fk :=
{
Lk(Br) ⩾

cc′r4

2

}
.

Note now that on the event

ẼN :=
N⋂

k=1

Ek ∩ Fk,

by (10.1) one has ℓT(Br) ⩾ Ncc′r4/2, which is larger than t, provided the constant C
in the definition of N is chosen large enough. Moreover, for each k ⩾ 0, conditionally
on Gk, Ek+1 and Fk are independent. Therefore by (10.2) and (10.3), one has also by
induction

P(ẼN ) ⩾ κN ,

with κ = ρcc′2/4K, concluding the proof of the lower bound in dimension five and
higher. □

10.2. Dimension Four. — We assume in this section that d = 4 and t ⩾ r4. Since
our scenario producing a lower bound is new, we first present heuristics, followed by
the formal proof.
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Heuristics. — Our strategy for producing a local time t in Br is very much different
than the scenario presented in d ⩾ 5. Recall two facts specific to dimension four,
when the BRW starts from ∂BR, with R > r: (i) first Theorem 1.6 shows that ηr,2R is
typically of order r2 · log(R/r), which is much larger than the corresponding number
in d ⩾ 5; (ii) the probability of {T(Br) ̸= ∅} is smaller (by a factor log) than the
corresponding probability in d ⩾ 5, and is of order R−2 · log−1(R/r). With these two
facts in mind, let us start with the heuristics and set up notation. Set I = 2⌊C

√
t/r4⌋,

with C > 0 some large constant to be fixed later. Then for i ⩽ I, let Ri := r2i, and

Si := {z ∈ Zd : Ri−1 ⩽ ∥z∥ ⩽ Ri}.

Our first requirement will be for the BRW to reach distance RI , and even more that
|ηRI
| be of order R2

I . Lemma 10.1 ensures that this has probability Θ(1/R2
I), which is

the expected cost. Next, by Lemma 3.5 (or the second point (ii) recalled above), with
probability Θ(1/I), one of the BRWs emanating from one of the vertices in ηRI

will
reach ∂Br/2. Furthermore, conditionally on this event, we know by Proposition 3.3
that one spine reaches ∂Br/2, and brings there of the order of r2 · I walks, in virtue of
the point (i) recalled above. Since from any of the vertices of the spine start indepen-
dent BRWs, and since, as we will show, the spine typically spends a time of order R2

I

in the shell SI , we deduce that at least one of the BRWs starting from the spine in
this shell will reach as well ∂Br/2, with probability Θ(1/I) again. Conditionally on
this, one has now two spines crossing the shell SI−1. The probability that one of the
BRWs starting from one of these two spines in SI−1 reaches ∂Br/2 is thus of order
twice Θ( 1

I−1 ). Then by repeating this argument in all the shells SI , . . . , SI/2, one can
make sure that I/2 spines reach ∂Br/2, at a total cost of only (1/R2

I) · exp(−Θ(I)),
which is still affordable. To conclude we know that the spines typically come with
order r2(I/2 + · · ·+ I) ⩾ r2I2/4 walks on ∂Br/2. Since each of them leads afterward
to a mean local time order r2 in Br, this concludes the heuristics. We show in Fig-
ure 2 the many spines originating from successive shells: the green spine gives birth
to orange critical trees producing an orange spine which in turn gives birth to purple
trees producing a purple spine, and so on and so forth.

Proof. — The formal proof follows very much the picture we just presented. Define
the event E0 := {|ηRI

| ⩾ cR2
I}, with c as in Lemma 10.1. Let

E1 :=
{∑

u∈ηRI
|ηur/2| > 0

}
.

Conditionally on E1, we know by Proposition 3.3 that there exists a path (or spine),
which we denote by Γ1 = (Γ1(i), 0 ⩽ i ⩽ |Γ1|), emanating from one of the points in
{Su, u ∈ ηRI

}, and going up to ∂Br/2. For 1 ⩽ j ⩽ I, and a path γ, we let

τj = τj(γ) := inf
{
k ⩾ 0 : γ(k) ∈ ∂Sj

}
.

We then define E2 as the event that one of the biased BRWs starting from the points in
the path {Γ1(i), 0 ⩽ i < τI−1}, hits ∂Br/2. Applying Proposition 3.3 again, it means
that on the event E1 ∩ E2 there exists a second spine Γ2 emanating from one of
the (neighbors of the) points in {Γ1(i), 0 ⩽ i < τI−1}, going up to ∂Br/2. We can
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Figure 2. The Many Spines.

thus define E3 as the event that one of the biased BRWs starting from the points in
{Γ1(i), τI−1 ⩽ i < τI−2} ∪ {Γ2(i), 0 ⩽ i < τI−2}, hits ∂Br/2. Continuing like this in
all the shells SI , . . . , SI/2, we define inductively for each i = 1, . . . , I/2, an event Ei,
such that on E1 ∩ · · · ∩ Ei, there are i spines Γ1, . . . ,Γi, starting respectively from a
point in ∂BRI

, ∂SI , . . . , ∂SI−i+2, and going up to ∂Br/2. We claim that there exists
a constant ρ > 0, such that for each i ⩽ I/2,

(10.4) P(Ei+1 | E1 ∩ · · · ∩ Ei) ⩾
ρi

I
.

Indeed, recall that by Corollary 3.4 the spines satisfy the strong Markov property.
Therefore, for any i,

P(Ei+1 | E1 ∩ · · · ∩ Ei) ⩾ 1−
(
1− inf

x∈∂BRI−i+1

ri(x)
)i

,

where for any x ∈ ∂BRI−i+1
, we denote by ri(x) the probability that on a path Γ

starting from x, and sampled according to the measure Px
∂Br/2

, one of the biased BRW
starting from the points in {Γ(k), k ⩽ τI−i}, hits ∂Br/2. Since for any z ∈ SI−i+1

the probability to hit ∂Br/2 is of order I−1 · R−2
I−i (recall that we assume i ⩽ I/2),

by Lemma 3.5 (which holds as well for a biased BRW, see Remark 3.7), one has for
some constant c > 0, and any α > 0

ri(x) ⩾
{
1−

(
1− c/IR2

I−i

)αR2
I−i

}
· Px

∂Br/2

(
ℓΓ(SI−i+1) > αR2

I−i

)
,

where for j ⩾ 2, we write ℓγ(Sj) for the time spent on Sj by a path γ, before its
hitting time of BRj−1

. Thus, to conclude the proof of (10.4), it suffices to show that
for some α > 0, one has for any j ⩾ 2, and any x ∈ ∂BRj ,

(10.5) Px
∂Br/2

(
ℓΓ(Sj) > αR2

j

)
⩾ α.
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Set now Λ := ∂Br/2 to simplify notation. One has by definition of Px
Λ, and using

also (3.2),

Px
Λ

(
ℓΓ(Sj) ⩽ αR2

j

)
=

∑
y∈∂BRj−1

(∑
γ1:x→y 1{ℓγ(Sj) ⩽ αR2

j}pΛ(γ1)
)
·
(∑

γ2:y→Λ pΛ(γ2)
)∑

y∈∂BRj−1

(∑
γ1:x→y pΛ(γ1)

)
·
(∑

γ2:y→Λ pΛ(γ2)
)

=

∑
y∈∂BRj−1

(∑
γ1:x→y 1{ℓγ1

(Sj) ⩽ αR2
j}pΛ(γ1)

)
· Py(|ηr/2| > 0)∑

y∈∂BRj−1

(∑
γ1:x→y pΛ(γ1)

)
· Py(|ηr/2| > 0)

⩽ C

∑
y∈∂BRj−1

∑
γ1:x→y 1{ℓγ1

(Sj) ⩽ αR2
j}pΛ(γ1)∑

y∈∂BRj−1

∑
γ1:x→y pΛ(γ1)

,

for some constant C > 0, using Lemma 3.5 and Proposition 3.12 for the last inequality.
By (3.2), one has∑

y∈∂BRj−1

∑
γ1:x→y

ℓγ1 (Sj)⩽αR2
j

pΛ(γ1) ⩽
∑

y∈∂BRj−1

Px

(
ℓS(Sj) ⩽ αR2

j , Sτj−1
= y

)
= Px

(
ℓS(Sj) ⩽ αR2

j , τj−1 <∞
)
,

while using also Remark 3.13, we get that for some constant c > 0,∑
y∈∂BRj−1

∑
γ1:x→y

pΛ(γ1) ⩾
∑

y∈∂BRj−1

∑
γ1:x→y
|γ1|⩽R2

j

pΛ(γ1) ⩾ cPx

(
τj−1(S) ⩽ R2

j ) ⩾ c2.

Now for any ε > 0, one can find α small enough, such that

Px

(
ℓS(Sj) ⩽ αR2

j , τj−1 <∞
)
⩽ Px

(
ℓS(Sj) ⩽ αR2

j

)
⩽ ε.

Altogether this proves (10.5), and thus also (10.4). Using also Lemma 10.1, it follows
that for some positive constants c and κ,

P(E0 ∩ · · · ∩ EI/2) ⩾ exp(−κI)× P(E0) ⩾
c

R2
I

exp(−κI).

We observe finally that on the event in the probability above, the number of particles
which hit ∂Br/2 dominates the sum of I/2 independent random variables X1, . . . , XI/2

distributed as |ηr/2|, under the conditional law Pz(· | |ηr/2| > 0), for some z ∈ ∂BRI/2
.

However, for any such starting point z, one has using the computation made in the
proof of Lemma 3.5, together with Proposition 3.12,

Ez

[
|ηr/2| | |ηr/2| > 0

]
≳ Ir2, and Ez

[
|ηr/2|2 | |ηr/2| > 0

]
≲ r4I2.

Thus Paley-Zygmund’s inequality (2.7) (applied to the law of X1+ · · ·+XI/2) gives
the existence of α > 0, such that

P
(
X1 + · · ·+XI/2 ⩾ αI2r2

)
⩾ α.

In other words, we just have proved that

P
(∑

u∈ηRI
|ηur/2| ⩾ αr2I2

)
⩾

c

r2
exp(−κ′I),
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for some positive constants c and κ′. The proof is now almost finished. To conclude,
note that

inf
x∈Br/2

Ex

[
|T(Br)|

]
= inf

x∈Br/2

Ex[Hr] ≳ r2,

and by definition,
ℓT(Br) ⩾

∑
u∈ηRI

∑
v∈ηu

r/2

|Tv(Br)|.

Thus by an application of the weak law of large numbers, and by taking the constant C
in the definition of I large enough, we deduce

P(ℓT(Br) > t) ⩾
c

r2
exp(−κ′I),

for some (possibly different) positive constants c and κ′. This concludes the proof of
the lower bound in Theorem 1.1, in dimension four. □

References
[AHJ21] O. Angel, T. Hutchcroft & A. Járai – “On the tail of the branching random walk local

time”, Probab. Theory Related Fields 180 (2021), no. 1-2, p. 467–494.
[ASS23] A. Asselah, B. Schapira & P. Sousi – “Local times and capacity for transient branching

random walks”, 2023, arXiv:2303.17572.
[AN04] K. B. Athreya & P. E. Ney – Branching processes, Dover Publications, Inc., Mineola, NY,

2004, Reprint of the 1972 original.
[BH22] T. Bai & Y. Hu – “Capacity of the range of branching random walks in low dimensions”,

Trudy Mat. Inst. Steklov. 316 (2022), p. 32–46.
[BH23] , “Convergence in law for the capacity of the range of a critical branching random

walk”, Ann. Appl. Probab. 33 (2023), no. 6A, p. 4964–4994.
[BW22] T. Bai & Y. Wan – “Capacity of the range of tree-indexed random walk”, Ann. Appl.

Probab. 32 (2022), no. 3, p. 1557–1589.
[BC12] I. Benjamini & N. Curien – “Recurrence of the Zd-valued infinite snake via unimodularity”,

Electron. Comm. Probab. 17 (2012), article no. 1 (10 pages).
[BHJ23] N. Berestycki, T. Hutchcroft & A. Jego – “Thick points of 4D critical branching Brownian

motion”, 2023, arXiv:2312.00711.
[DKLT22] T. Duquesne, R. Khanfir, S. Lin & N. Torri – “Scaling limits of tree-valued branching

random walks”, Electron. J. Probab. 27 (2022), article no. 16 (54 pages).
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