(Uni)rational parametrizations of  g,2 g,4  and  g,6  in low genera
[Paramétrisations (uni)rationelles de g,2 , g,4 et g,6 en petits genres]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1411-1440.

L’espace de modules g,2n paramétrise les revêtements doubles de courbes lisses de genre g ramifiés en 2n points. Nous montrons la (uni)rationalité de g,2 , g,4 et g,6 en petits genres.

The moduli space g,2n parametrizes double covers of smooth curves of genus g ramified at 2n points. We will prove the (uni)rationality of g,2 , g,4 and g,6 in low genera.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.280
Classification : 14H10, 14E08, 14E22, 14J28
Keywords: Prym curves, birational geometry, Nikulin surfaces
Mot clés : Courbes de Prym, géométrie birationnelle, surfaces de Nikulin

Andreas Leopold Knutsen 1 ; Margherita Lelli-Chiesa 2 ; Alessandro Verra 2

1 Department of Mathematics, University of Bergen, Postboks 7800, 5020 Bergen, Norway
2 Dipartimento di Matematica, Università Roma Tre, Largo San Leonardo Murialdo, 00146 Roma, Italy
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__1411_0,
     author = {Andreas Leopold Knutsen and Margherita Lelli-Chiesa and Alessandro Verra},
     title = {(Uni)rational parametrizations of~$\mathcal{R}_{g,2}$,~$\mathcal{R}_{g,4}$~and~$\mathcal{R}_{g,6}$~in~low~genera},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1411--1440},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.280},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.280/}
}
TY  - JOUR
AU  - Andreas Leopold Knutsen
AU  - Margherita Lelli-Chiesa
AU  - Alessandro Verra
TI  - (Uni)rational parametrizations of $\mathcal{R}_{g,2}$, $\mathcal{R}_{g,4}$ and $\mathcal{R}_{g,6}$ in low genera
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 1411
EP  - 1440
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.280/
DO  - 10.5802/jep.280
LA  - en
ID  - JEP_2024__11__1411_0
ER  - 
%0 Journal Article
%A Andreas Leopold Knutsen
%A Margherita Lelli-Chiesa
%A Alessandro Verra
%T (Uni)rational parametrizations of $\mathcal{R}_{g,2}$, $\mathcal{R}_{g,4}$ and $\mathcal{R}_{g,6}$ in low genera
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 1411-1440
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.280/
%R 10.5802/jep.280
%G en
%F JEP_2024__11__1411_0
Andreas Leopold Knutsen; Margherita Lelli-Chiesa; Alessandro Verra. (Uni)rational parametrizations of $\mathcal{R}_{g,2}$, $\mathcal{R}_{g,4}$ and $\mathcal{R}_{g,6}$ in low genera. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1411-1440. doi : 10.5802/jep.280. https://jep.centre-mersenne.org/articles/10.5802/jep.280/

[BDC90] F. Bardelli & A. Del Centina - “The moduli space of genus four double covers of elliptic curves is rational”, Pacific J. Math. 144 (1990) no. 2, p. 219-227 | DOI | Zbl

[BDC99] F. Bardelli & A. Del Centina - “Bielliptic curves of genus three: canonical models and moduli space”, Indag. Math. (N.S.) 10 (1999) no. 2, p. 183-190 | DOI | Zbl

[Bea96] A. Beauville - Complex algebraic surfaces, London Math. Soc. Student Texts, vol. 34, Cambridge University Press, Cambridge, 1996 | DOI

[Bog86] F. A. Bogomolov - “Rationality of the moduli of hyperelliptic curves of arbitrary genus”, in Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., vol. 6, American Mathematical Society, Providence, RI, 1986, p. 17-37 | Zbl

[Bru16] G. Bruns - “ ¯ 15 is of general type”, Algebra Number Theory 10 (2016) no. 9, p. 1949-1964 | DOI | Zbl

[Bud24] A. Bud - “The birational geometry of ¯ g,2 and Prym-canonical divisorial strata”, Selecta Math. (N.S.) 30 (2024) no. 2, article ID 30, 31 pages | DOI | Zbl

[CC93] F. Catanese & C. Ciliberto - “Symmetric products of elliptic curves and surfaces of general type with p g =q=1, J. Algebraic Geom. 2 (1993) no. 3, p. 389-411 | Zbl

[CDC96] G. Casnati & A. Del Centina - “The rationality of the moduli space of bielliptic curves of genus five”, Bull. London Math. Soc. 28 (1996) no. 4, p. 356-362 | DOI | Zbl

[CDC02] G. Casnati & A. Del Centina - “A characterization of bielliptic curves and applications to their moduli spaces”, Ann. Mat. Pura Appl. (4) 181 (2002) no. 2, p. 213-221 | DOI | Zbl

[CJ01] M. L. Catalano-Johnson - “The homogeneous ideals of higher secant varieties”, J. Pure Appl. Algebra 158 (2001) no. 2-3, p. 123-129 | DOI | Zbl

[DLC24] S. D’Evangelista & M. Lelli-Chiesa - “Double covers of curves on Nikulin surfaces”, in Moduli spaces and vector bundles—new trends, Contemp. Math., vol. 803, American Mathematical Society, Providence, RI, 2024, p. 153-170 | DOI | Zbl

[DN89] J.-M. Drezet & M. S. Narasimhan - “Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques”, Invent. Math. 97 (1989) no. 1, p. 53-94 | DOI | Zbl

[Dol96] I. V. Dolgachev - “Mirror symmetry for lattice polarized K3 surfaces”, J. Math. Sci. 81 (1996) no. 3, p. 2599-2630 | DOI | Zbl

[Dol08] I. V. Dolgachev - “Rationality of 2 and 3 , Pure Appl. Math. Q 4 (2008) no. 2, p. 501-508 | DOI | Zbl

[Don84] R. Donagi - “The unirationality of 𝒜 5 , Ann. of Math. (2) 119 (1984) no. 2, p. 269-307 | DOI | Zbl

[FL10] G. Farkas & K. Ludwig - “The Kodaira dimension of the moduli space of Prym varieties”, J. Eur. Math. Soc. (JEMS) 12 (2010) no. 3, p. 755-795 | DOI | Zbl

[FV12] G. Farkas & A. Verra - “Moduli of theta-characteristics via Nikulin surfaces”, Math. Ann. 354 (2012) no. 2, p. 465-496 | DOI | Zbl

[FV16] G. Farkas & A. Verra - “Prym varieties and moduli of polarized Nikulin surfaces”, Adv. Math. 290 (2016), p. 314-328 | DOI | Zbl

[GS08] A. Garbagnati & A. Sarti - “Projective models of K3 surfaces with an even set”, Adv. Geom. 8 (2008) no. 3, p. 413-440 | DOI | Zbl

[ILGS09] E. Izadi, M. Lo Giudice & G. K. Sankaran - “The moduli space of étale double covers of genus 5 curves is unirational”, Pacific J. Math. 239 (2009) no. 1, p. 39-52 | DOI | Zbl

[Kat84] P. I. Katsylo - “Rationality of the moduli spaces of hyperelliptic curves”, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984) no. 4, p. 705-710

[Kat85] P. I. Katsylo - “The rationality of moduli spaces of hyperelliptic curves”, Math. USSR-Izv. 25 (1985) no. 1, p. 45-50 | DOI | Zbl

[KLCV20] A. L. Knutsen, M. Lelli-Chiesa & A. Verra - “Moduli of non-standard Nikulin surfaces in low genus”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 21 (2020), p. 361-384 | Zbl

[KLCV21] A. L. Knutsen, M. Lelli-Chiesa & A. Verra - “Half Nikulin surfaces and moduli of Prym curves”, J. Inst. Math. Jussieu 20 (2021) no. 5, p. 1547-1584 | DOI | Zbl

[MP12] V. O. Marcucci & G. P. Pirola - “Generic Torelli theorem for Prym varieties of ramified coverings”, Compositio Math. 148 (2012) no. 4, p. 1147-1170 | DOI | Zbl

[Mum74] D. Mumford - “Prym varieties. I”, in Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York-London, 1974, p. 325-350 | Zbl

[NO19] J. C. Naranjo & A. Ortega - “Generic injectivity of the Prym map for double ramified coverings”, Trans. Amer. Math. Soc. 371 (2019) no. 5, p. 3627-3646, With an appendix by Alessandro Verra | DOI | Zbl

[NO22] J. C. Naranjo & A. Ortega - “Global Prym-Torelli for double coverings ramified in at least six points”, J. Algebraic Geom. 31 (2022) no. 2, p. 387-396 | DOI | Zbl

[Rie57] B. Riemann - “Theorie der Abel’schen Functionen”, J. reine angew. Math. 54 (1857), p. 115-155 | DOI | Zbl

[Ver84] A. Verra - “A short proof of the unirationality of 𝒜 5 , Nederl. Akad. Wetensch. Indag. Math. 46 (1984) no. 3, p. 339-355 | DOI | Zbl

[Ver08] A. Verra - “On the universal principally polarized abelian variety of dimension 4”, in Curves and abelian varieties, Contemp. Math., vol. 465, American Mathematical Society, Providence, RI, 2008, p. 253-274 | DOI | Zbl

[vGS07] B. van Geemen & A. Sarti - “Nikulin involutions on K3 surfaces”, Math. Z. 255 (2007) no. 4, p. 731-753 | DOI | Zbl

Cité par Sources :