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(UNI)RATIONAL PARAMETRIZATIONS

OF Rg,2, Rg,4 AND Rg,6 IN LOW GENERA

by Andreas Leopold Knutsen, Margherita Lelli-Chiesa
& Alessandro Verra

Abstract. — The moduli space Rg,2n parametrizes double covers of smooth curves of genus g

ramified at 2n points. We will prove the (uni)rationality of Rg,2, Rg,4 and Rg,6 in low genera.

Résumé (Paramétrisations (uni)rationelles de Rg,2, Rg,4 et Rg,6 en petits genres)
L’espace de modules Rg,2n paramétrise les revêtements doubles de courbes lisses de genre g

ramifiés en 2n points. Nous montrons la (uni)rationalité de Rg,2, Rg,4 et Rg,6 en petits genres.
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1. Introduction

The study of finite covers of complex algebraic curves dates back to Riemann
[Rie57], whose proof of the fact that compact Riemann surfaces of genus g ⩾ 2 depend
on 3g−3 parameters relies on the existence of a degree g+1 map from any such surface
to the Riemann sphere. The particular interest in double covers has been ever-growing
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in the last fifty years since Mumford’s algebraic construction of the Prym variety
[Mum74], an abelian variety which is naturally associated to any such cover. The étale
case seized most of the attention mainly because the Prym variety of an étale double
cover is principally polarized. However, in the last decade several mathematicians got
engaged in Prym varieties of ramified double covers [MP12, NO19, NO22], and this
is a good impulse for studying their moduli spaces.

A double cover of curves π : C̃ → C is, by standard theory, equivalent to the datum
of an effective divisor x1+ · · ·+x2n ∈ Sym2n(C) (corresponding to the branch divisor
of π) and of a line bundle η ∈ Pic−n(C) such that η⊗2 ≃ OC(−x1−· · ·−x2n). Double
covers of genus g curves ramified at 2n points are thus parametrized by the following
moduli space

Rg,2n :=
{
(C, x1 + · · ·+ x2n, η) | [C] ∈ Mg, x1, . . . , x2n ∈ C,

η ∈ Pic−n(C), η2 = OC(−x1 − · · · − x2n)
}
.

For g = 0 one recovers the space Hn+2 of hyperelliptic curves of genus n − 1, that
was proved to be rational for any n [Bog86, Kat84, Kat85]. In the case g = 1, the
space R1,2n is birational to the moduli space of bi-elliptic curves of genus n+1, which
is known to be rational for 3 ⩽ g ⩽ 5 [BDC99, BDC90, CDC96] and unirational for
g ⩾ 6 [CDC02].

For g ⩾ 2, only the étale case (that is, n = 0) has been largely investigated:
in this case the moduli space is denoted by Rg and its points parametrize Prym
curves, that is, pairs (C, η), where C is a smooth curve of genus g and η a non-trivial
2-torsion line bundle on it. The moduli space Rg is known to be rational for 2 ⩽ g ⩽ 4

[Dol08, CJ01], unirational for 5 ⩽ g ⩽ 7 [Don84, ILGS09, Ver84, Ver08, FV12, FV16],
and uniruled for g = 8 [FV16]. On the other hand, it is of general type for g ⩾ 13 and
g ̸= 16 [FL10, Bru16].

As soon as g ⩾ 2 and n ⩾ 1, the geometry of Rg,2n becomes almost unexplored.
Only recently, Bud [Bud24] proved the irreducibility of Rg,2n and initiated the study
of its birational geometry when n = 1, obtaining that Rg,2 is of general type for
g ⩾ 16 and uniruled for 3 ⩽ g ⩽ 6. Up to our knowledge, the only further result in
the literature is due to the third named author [NO19] and concerns the rationality
of R2,6. This paper proves the following rationality/unirationality results for Rg,2n in
the cases n = 1, 2, 3 for low values of g:

Theorem 1.1
(a) The moduli space Rg,2 is unirational for 3 ⩽ g ⩽ 5, while possesses a unirational

divisor for g = 6.
(b) The moduli space Rg,4 is unirational for 2 ⩽ g ⩽ 5.
(c) The moduli space Rg,6 is rational for g = 2 and unirational for g = 3.

This is obtained by exhibiting (uni)rational parametrizations of the above moduli
spaces using Nikulin surfaces of non-standard type, but in the case of R6,2.

J.É.P. — M., 2024, tome 11



(Uni)rational parametrizations of Rg,2, Rg,4 and Rg,6 in low genera 1413

A Nikulin surface of genus h ⩾ 2 is a polarized K3 surface (S,H) endowed with an
étale double cover π branched along eight irreducible (−2)-curves N1, . . . , N8, which
are disjoint both pairwise and from H; the line bundle M defining the double cover π
thus satisfies M ∼ N1+ · · ·+N8. A Nikulin surface is called of non-standard type if h
is odd and the lattice generated by H,N1, . . . , N8,M has index 2 in Pic(S). If this
occurs, then H(−M) ∼ R+R′ where |R| and |R′| are base point free linear systems
on S [GS08] such that the restriction of π to the inverse image of a general curve C in
either of them defines a branched cover of C ramified at 2, 4 or 6 points depending on
the congruence of h modulo 4 and on whether C ∈ |R| or C ∈ |R′|. Furthermore, by
varying h, one obtains all possible values for the genus g of C. This fact was exploited
for the first time in [DLC24] to show that, if C̃ → C is a general double cover of a
genus g curve ramified at 2, 4 or 6, then C̃ is Brill-Noether general. For dimensional
reasons, one may hope for a general element of Rg,2n to lie on a Nikulin surface of
non-standard type whenever g ⩽ 6 and n = 1, or g ⩽ 5 and n = 2 and finally for
g ⩽ 4 if n = 3. The proof of Theorem 1.1 consists in verifying this expectation, except
when g = 6 and n = 1, or g = 4 and n = 3. The space Rg,2n is thus dominated by
a projective bundle P over the moduli space of Nikulin surfaces of genus h and non-
standard type, that is denoted by F

N ,ns
h , and one reduces to proving (uni)rationality

of the latter:

Theorem 1.2. — The moduli space F
N ,ns
h is rational for h = 23, 11 and unirational

for h = 21, 19, 17, 15, 13, 9.

We stress that the cases h = 9, 11 had already been established by the same authors
in [KLCV20]. We also recall that the other type of Nikulin surfaces, which are called
standard, were used in [FV12] to provide unirational parametrizations of the Prym
moduli space Rg in low genera. It is unknown whether for high enough values of h

the moduli space F
N ,ns
h and its counterpart in the standard case become of general

type.
In our construction we consider the projective model of a general Nikulin surface of

non-standard type defined by either |R| or |R′| and find in the other linear system |R′|
or |R|, respectively, a reducible curve consisting of some lines and a distinguished
component, which is either a rational or elliptic normal curve. This component is at
the core of our parametrizations.

The paper is organized as follows. In section 2 we recall the definition and main
features of Nikulin surfaces of standard and non-standard type and introduce relevant
moduli maps from some bundles on F

N ,ns
h to the moduli space Rg,2n for n = 1, 2, 3.

Section 3 contains results that relate the space of quadrics in Pn containing either a
rational or an elliptic normal curve. The proofs of Theorems 1.1 and 1.2 is the content
of the remaining sections, each of which contains the results related to F

N ,ns
h for a

specific value of h. Throughout the paper the irreducibility of FN ,ns
h is constantly used;

however, when h ≡ 1 mod 4 the numerical properties of R and R′ are the same and
so there is no way to distinguish among them. We therefore introduce a double cover

J.É.P. — M., 2024, tome 11



1414 A. L. Knutsen, M. Lelli-Chiesa & A. Verra

F̂
N ,ns
h of FN ,ns

h that parametrizes Nikulin surfaces marked with a line bundle having
the numerical properties of R and R′. The irreducibility of F̂N ,ns

h is then established
in the appendix.

Acknowledgements. — The authors thank two referees for a careful reading and their
suggestions.

2. Nikulin surfaces of non-standard type and curves in Rg,2, Rg,4 and Rg,6

We recall some basic definitions and properties.

Definition 2.1. — A primitively polarized Nikulin surface of genus h ⩾ 2 is a triple
(S,M,H) such that (S,H) is a primitively genus h polarized K3 surface and OS(M) ∈
PicS satisfies the following conditions:

(i) N1 + · · ·+N8 ∼ 2M for 8 pairwise disjoint (−2)-curves N1, . . . , N8;
(ii) H ·M = 0.

The Picard group of a Nikulin surface S always contains the rank 8 sublattice of
PicS generated by N1, . . . , N8 and M , which is called Nikulin lattice and is denoted
by N .

Since H ·M = 0, we get a rank 9 sublattice

Λh := Z[H]⊕⊥ N ⊂ PicS.

A Nikulin surface (S,M,H) is said of standard type if the embedding Λh ⊂ PicS

is primitive, and of non-standard type otherwise. By [vGS07, Prop. 2.2], in the non-
standard case the genus h is odd and the embedding Λh ⊂ PicS has index 2. More
precisely (cf. [GS08, Prop. 2.1 & Cor. 2.1]), the surface S carries two line bundles R

and R′ whose class, up to renumbering the curves Ni, can be written as follows:

R ∼ H −N1 −N2

2
, R′ ∼ H −N3 − · · · −N8

2
if h ≡ 3 mod 4;

R ∼ H −N1 −N2 −N3 −N4

2
, R′ ∼ H −N5 −N6 −N7 −N8

2
if h ≡ 1 mod 4.

Setting g := g(R) and g′ := g(R′), we have g = (h + 1)/4 and g′ = (h − 3)/4 in the
former case, while g = g′ = (h− 1)/4 in the latter one.

We denote by F
N ,ns
h the coarse moduli spaces of genus h primitively polarized

Nikulin surfaces of non-standard type, which is irreducible of dimension 11 by
[Dol96, §3].

By [GS08, Prop. 2.1 & Cor. 2.1], a very general (S,M,H) in F
N ,ns
h has Picard

number 9 and

(1) PicS ∼= Z[R]⊕N .

Furthermore, as soon as h ⩾ 5, both R and R′ are globally generated and satisfy
h1(R) = h1(R′) = 0 (cf. [KLCV20, Prop. 2.3(i)]).

Let C ∈ |R| be a smooth irreducible curve and look at the restriction M |C , which
is a line bundle of degree 1 or 2 depending on the congruence of h modulo 4. More

J.É.P. — M., 2024, tome 11



(Uni)rational parametrizations of Rg,2, Rg,4 and Rg,6 in low genera 1415

precisely, setting {xi} := C ∩ Ni, we have M |⊗2
C ≃ OC(x1 + x2) if h ≡ 3 mod 4

and M |⊗2
C ≃ OC(x1 + x2 + x3 + x4) if h ≡ 1 mod 4. In the former case the triple

(C, x1+x2,M
∨|C) thus defines a point of Rg,2, while (C, x1+x2+x3+x4,M

∨|C) ∈ Rg,4

in the latter case. Analogously, any smooth irreducible curve C ′ ∈ |R′| defines either
a point (C ′, x3 + x4 + x5 + x6 + x7 + x8,M

∨|C′) ∈ Rg′,6 if h ≡ 3 mod 4, or a point
(C ′, x5 + x6 + x7 + x8,M

∨|C′) ∈ Rg′,4 otherwise.
We now focus on the case h ≡ 3 mod 4, and denote by Pg (respectively, P′

g′)
the moduli space of 4-tuples (S,M,H,C) where (S,M,H) ∈ F

N ,ns
h and C ∈ |R|

(resp. C ∈ |R′|) is a smooth irreducible curve. There are natural maps

P′
g′

rg′,6

}}

q′g′

!!

Pg

qg

}}

rg,2

  

Rg′,6 F
N ,ns
h Rg,2,

where qg and q′g′ are the natural forgetful morphisms, while the map rg,2 sends a point
(S,M,H,C) ∈ Pg to (C, x1 + x2,M

∨|C) ∈ Rg,2, and rg′,6 is defined analogously.
In the case h ≡ 1 mod 4, the line bundles R,R′ ∈ Pic(S) have the same numerical

properties and thus cannot be distinguished. We will therefore consider the moduli
space F̂

N ,ns
h of quadruples (S,M,H,R) such that (S,M,H) ∈ F

N ,ns
h and R is a line

bundle on S such that H−2R is the sum of four of the eight (−2)-curves in the Nikulin
lattice. We will call such quadruples marked non-standard Nikulin surfaces. The for-
getful map F̂

N ,ns
h → F

N ,ns
h realizes F̂N ,ns

h as a double cover of FN ,ns
h , which turns out

to be irreducible (cf. the appendix). As before, the moduli space P̂g parametrizing
5-tuples (S,M,H,R,C), with (S,M,H,R) ∈ F̂

N ,ns
h and C ∈ |R|, admits two natural

maps:

P̂g

q̃g

}}

rg,4

  

F̂
N ,ns
h Rg,4.

The spaces P′
g′ and Pg (respectively, P̂g) are open subsets of a projective bundle over

F
N ,ns
h (resp. F̂N ,ns

h ) and so they are rational/unirational if F
N ,ns
h (resp. F̂N ,ns

h ) is.
Since dimRg,2n = 3g − 3 + 2n, dim F

N,ns
h = 11 and a genus g linear system on a

K3 surface has dimension g, the map rg,2n is expected to be dominant for g ⩽ 6 if
n = 1, for g ⩽ 5 when n = 2 and for g ⩽ 4 if n = 3. In these ranges, one may
obtain rationality/unirationality of Rg,2n by verifying dominance of rg,2n and proving
rationality/unirationality of FN ,ns

h or F̂
N ,ns
h .

In our proofs, the morphisms

φR′ : S −→ S′ ⊂ P(H0(R′)∨) and φR : S −→ S ⊂ P(H0(R)∨)

will play a crucial role. The morphism φR′ contracts the curves Ni such that Ni·R′ = 0

to nodes xi of S′ and maps the remaining Ni to lines. The analogue holds for φR.

J.É.P. — M., 2024, tome 11



1416 A. L. Knutsen, M. Lelli-Chiesa & A. Verra

We stress that the restriction of φR′ (respectively, φR) to any irreducible curve C ∈ |R|
(resp. C ∈ |R′|) is induced by the complete linear system |ωC ⊗M |.

Notation 2.2. — Given any morphism between surfaces whose restriction to a curve D
is an isomorphism, we will denote the image curve still by D.

3. Quadrics containing particular curves

3.1. Quadrics containing a rational normal curve. — Let Γ ⊂ Pn be a degree n

rational normal curve and let Sec Γ ⊂ Pn be its secant variety, which has degree(
n−1
2

)
. We consider the incidence variety

IΓ :=
{
(z, x+ y) ∈ Sec Γ× Sym2 Γ | z ∈ ⟨x, y⟩

}
,

along with the two projections p : IΓ → Sec Γ and q : IΓ → Sym2 Γ. The map p is
birational and contracts the locus

Exc(p) =
{
(x, x+ y) ∈ Sec Γ× Sym2 Γ | x, y ∈ Γ

}
≃ Γ× Γ,

to Γ ⊂ Sec Γ. On the other hand, q gives IΓ the structure of a P1-bundle over Sym2 Γ.
From now on, we identify Sym2(Γ) with P2 by choosing an embedding of Γ as a

conic ∆ ⊂ P2 and identifying a divisor x+ y ∈ Sym2(Γ) = Sym2(∆) with the pole of
the line ⟨x, y⟩ with respect to ∆ if x ̸= y, and with the point x ∈ ∆ if x = y. In this
way, the diagonal of Sym2(Γ) gets identified with ∆, and for any x ∈ Γ the curve
σx := {x+ y ∈ Sym2(Γ) | y ∈ Γ} is identified with the tangent line to ∆ at x.

Let now |IΓ/Pn(2)| denote the space of quadrics containing Γ ⊂ Pn.

Proposition 3.1
(i) There exists an isomorphism

αΓ : |IΓ/Pn(2)| −→ |OP2(n− 2)|

defined by setting αΓ(Q) := q(p−1(Q ∩ Sec Γ)) for any Q ∈ |IΓ/Pn(2)|.
(ii) A quadric Q ∈ |IΓ/Pn(2)| is singular at a point x ∈ Γ if and only if αΓ(Q)

contains σx.

Proof. — We first show that the map αΓ is well-defined. By [CJ01] Sec Γ is not
contained in any quadric. For any Q ∈ |IΓ/Pn(2)|, the intersection Q ∩ Sec Γ is union
of bisecant lines to Γ. Indeed, for any z ∈ (Q∩ Sec Γ)∖Γ there exists x+ y ∈ Sym2 Γ

such that z ∈ ⟨x, y⟩; the quadric Q contains x, y, z and thus the whole line ⟨x, y⟩. This
shows that αΓ(Q) = q(p−1(Q ∩ Sec Γ)) is indeed a curve in Sym2(Γ) = P2. Its degree
is n− 2 because, by degree reasons, Q intersects the rational normal scroll of degree
n − 1 in Pn spanned by a g12 on Γ along Γ and n − 2 bisecant lines. Since |IΓ/Pn(2)|
and |OP2(n − 2)| are projective spaces of the same dimension and αΓ is injective by
construction, it is an isomorphism.

For what concerns (ii), a quadric Q is singular at a point x ∈ Γ if and only if it
contains all the secant lines to Γ passing through x; this is equivalent to requiring
that α(Q) contains σx. □

J.É.P. — M., 2024, tome 11



(Uni)rational parametrizations of Rg,2, Rg,4 and Rg,6 in low genera 1417

3.2. Quadrics containing an elliptic normal curve. — One may perform the
same construction starting with a degree n + 1 normal elliptic curve J ⊂ Pn and
with its secant variety Sec J , which has degree

(
n
2

)
− 1. The incidence variety

IJ ⊂ Sec J × Sym2 J is defined as before and possesses two natural projections, that
we still denote by p and q.

It is useful to recall that Sym2(J) is the only elliptic ruled surface with invariant
e = −1, cf. e.g. [CC93]. The natural P1-bundle structure is given by the Albanese
map π : Sym2 J → J sending x+y to x⊕y, where we let ⊕ (and ⊖) denote the group
operation on J . Let P0 be the neutral element. For each P ∈ J the fiber

fP := π−1(P ) = {x+ y ∈ Sym2(J) | x⊕ y = P}

is the P1 defined by the linear system |P + P0|. We denote the algebraic equivalence
class of the fibers by f . For each P ∈ J , we define the curve σP as the image of the
section J → Sym2(J) mapping Q to P + (Q ⊖ P ). We let σ denote the algebraic
equivalence class of these sections, which are the ones with minimal self-intersection.
We note that the diagonal ∆ satisfies ∆ ≡ 4σ − 2f ≡ −2KSym2(J).

Proposition 3.2
(i) There exists an isomorphism

αJ : |IJ/Pn(2)| −→ |M |, with M ≡ (n− 3)σ + 2f,

defined by setting αJ(Q) := q(p−1(Q ∩ Sec J)) for any Q ∈ |IJ/Pn(2)|.
(ii) A quadric Q ∈ |IJ/Pn(2)| is singular at x ∈ J if and only if αJ(Q) contains σx.

Proof. — For any Q ∈ |IJ/Pn(2)| one shows as in the proof of Proposition 3.1 that
αJ(Q) = q(p−1(Q∩Sec J)) is a curve M ⊂ Sym2(J). By construction, the linear class
of M in Sym2(J) does not depend on Q. In order to compute its numerical class,
we first consider the degree n cone C(J) ⊂ Sec J with vertex P over the projection
from P of J ; for degree reasons C(J) intersects Q along J and n − 1 bisecant lines,
and thus M · σP = n − 1. Similarly, M · f = n − 3 because the intersection of Q

with the rational normal scroll of degree n − 1 in Pn spanned by a g12 on J consists
of the union of J with n− 3 bisecant lines. Hence, M ≡ (n− 3)σ + 2f and h0(M) =

(n2 −n− 2)/2 = h0(IJ/Pn(2)). The map αJ is thus an isomorphism. The proof of (ii)
proceeds as the one of Proposition 3.1. □

4. The case R6,2

In this section we will prove the following theorem.

Theorem 4.1. — The moduli spaces F
N ,ns
23 and P6 are rational and the image of r6,2

is a unirational divisor in R6,2.

Take a general (S,M,H) in F
N ,ns
23 . Then g(R) = 6, g(R′) = 5 and |R′| defines a

morphism
φR′ : S −→ S′ ⊂ P5,

J.É.P. — M., 2024, tome 11



1418 A. L. Knutsen, M. Lelli-Chiesa & A. Verra

that contracts the curves N1, N2 to 2 double points x1, x2 ∈ S′ and maps N3, . . . , N8

to 6 lines in P5.

Lemma 4.2. — The divisor Γ := R − N3 − · · · − N8 is represented by an irreducible
curve satisfying

Γ2 = −2, Γ ·R′ = 5 and Γ ·Ni =

{
1, i = 1, 2,

2, i = 3, . . . , 8.

Furthermore, h0(R−N1 − · · · −N7) = 0.

Proof. — The intersections are easily verified. Since Γ · R′ = 5, the divisor Γ is
effective. As the irreducibility of Γ is an open condition in F

N ,ns
23 , it is enough to

prove it when (1) holds.
Let Γ = D + E be an effective nontrivial decomposition. Write

D ∼ aR+

8∑
i=1

bi
2
Ni

for some integers a, bi with a ⩾ 0 (as D is effective). Then

E ∼ (1− a)R− b1
2
N1 −

b2
2
N2 −

8∑
i=3

(
1 +

bi
2

)
Ni,

which implies a ⩽ 1. Hence, a ∈ {0, 1} and, by symmetry, we may assume a = 0, so
that D ∼

∑8
i=1(bi/2)Ni. It follows that all bi are nonnegative and even. We have thus

proved that in any effective decomposition of Γ, all components but possibly one are
supported on the Nis. Thus we may write Γ ∼

∑8
i=1 γiNi + Γ0, with γi nonnegative

integers and Γ0 effective and irreducible. Then

−2 ⩽ Γ2
0 =

(
Γ−

8∑
i=1

γiNi

)2

= −2− 2

8∑
i=1

γ2
i − 2(γ1 + γ2 + 2γ3 + · · ·+ 2γ8),

implying γi = 0 for all i. The last statement is proved similarly. □

Thus, φR′ maps Γ to a rational normal curve Γ ⊂ P5 that passes through the nodes
x1, x2 ∈ S′ and has N3, . . . , N8 as bisecant lines.

Since R′ is not trigonal by [DLC24, Prop. 5.6], the surface S′ ⊂ P5 is the base locus
of a net Σ of quadrics by [Bea96, Ex. VIII.22(11)]. By projecting S′ from the node x1,
we obtain a projective model S† of S in P4. Proceeding as in [DLC24, Prop. 5.6], one
can easily check that R′ − N1 is not hyperelliptic and thus S† is the intersection of
a cubic and a unique quadric Q′

1. The cone over Q′
1 with vertex in x1 is a quadric

Q1 ⊂ P5 containing S′, that is, Q1 ∈ Σ. Analogously, one proves the existence of a
unique quadric Q2 ∈ Σ singular at the point x2. We may thus write

S′ = Q1 ∩Q2 ∩Q3,

where Q3 ∈ Σ is smooth. Since Q1, Q2, Q3 contain Γ, Proposition 3.1 provides three
plane cubics αΓ(Qi) such that αΓ(Q1) = σx1

+ c1 and αΓ(Q2) = σx2
+ c2 for some
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conics c1, c2 ⊂ P2. The six bisecant lines N3, . . . , N8 to Γ are contained in Q1, Q2, Q3

and thus define 6 points

n3, . . . , n8 ∈ αΓ(Q1) ∩ αΓ(Q2) ∩ αΓ(Q3) ⊂ Sym2(Γ) = P2.

Since for any j such that 3 ⩽ j ⩽ 8 we have Nj ·N1 = Nj ·N2 = 0 on S, neither σx1

nor σx2
passes through the points nj . Therefore, n3, . . . , n8 ∈ c1 ∩ c2, and this implies

c1 ∩ αΓ(Q3) = {n3, . . . , n8} and c2 = c1, unless possibly when c1 and c2 are both
reducible and share a common line ℓ passing through 5 of the ni (without loss of gen-
erality, n3, . . . , n7). However, if this were the case, there would exist a 2-dimensional
family of quadrics Qt in P5 containing Γ+N3 + · · ·+N7 and singular at x1, x2 (that
correspond to the plane curves σx1

+ℓ+ℓt for a varying line ℓt). Any such Qt different
from the uniquely determined Q1 would cut out on S′ a divisor whose strict transform
in S would lie in the linear system

|2R′ − Γ− 2N1 − 2N2 −N3 − · · · −N7| = |R−N1 − · · · −N7|,

which is empty by Lemma 4.2. We thus conclude that c1 is irreducible and c2 = c1.
Vice versa, using the notation of Section 3.1 we prove the following:

Proposition 4.3. — Let Q1, Q2, Q3 ⊂ P5 be quadrics containing a fixed rational nor-
mal curve Γ ⊂ P5. Assume that αΓ(Q1) = σx1 + c, αΓ(Q2) = σx2 + c, αΓ(Q3) = e,
where c ∈ |OP2(2)| and e ∈ |OP2(3)| intersect at 6 distinct general points, and x1 ̸= x2.
Then for general such Q1, Q2, Q3 the following hold:

(i) The minimal desingularization S of S′ := Q1 ∩Q2 ∩Q3 ⊂ P5 is a non-standard
Nikulin surface of genus 23.

(ii) By varying x1, x2 ∈ Γ, c ∈ |OP2(2)| and e ∈ |OP2(3)|, one obtains all Nikulin
surfaces in a dense open subset of FN ,ns

23 .

Proof. — In the case where the points x1, x2 ∈ Γ and n3, . . . , n8 ∈ P2 arise starting
from a Nikulin surface, there exists a unique quadric in P5 singular at x1 and contain-
ing Γ, N3, . . . , N8 because the plane conic c through n3, . . . , n8 is unique; the same
holds for x2. This ensures that the projective model of a general Nikulin surface as
above is limit of complete intersections as in (i) where x1, x2 ∈ Γ and n3, . . . , n8 ∈ P2

are chosen generically.
A surface S′ as in (i) has trivial canonical bundle and two double points at x1

and x2. By generality (as this holds true when S′ is the projective model of a Nikulin
surface), S′ has no further singularity. Denoting by ν : S → S′ the minimal desingular-
ization, the surface S is a K3 surface and the curves N1 = ν−1(x1) and N2 = ν−1(x2)

are (−2)-curves. Since Q1, Q2, Q3 all contain the 6 bisecant lines to Γ corresponding
to the 6 intersection points c ∩ e, the surface S′ contains 6 bisecant lines to Γ, whose
inverse images on S we call N3, . . . , N8. By construction, the eight (−2)-curves Ni on S

are all disjoint. We set R′ := ν∗OS′(1), and observe that the divisor 2R′−
∑8

i=1 Ni−2Γ
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has self intersection 0 and degree 0 with respect to R′, and is thus trivial. As a con-
sequence, we obtain that

8∑
i=1

Ni = 2R′ − 2Γ

is 2-divisible in Pic(S). Setting M := (N1+ · · ·+N8)/2, R := ν∗OS′(Γ+N3+ · · ·+N8)

and H := R+R′ +M , one verifies that (S,M,H) ∈ F
N ,ns
23 , thus obtaining (i).

We perform a parameter count to prove (ii). The choice of c ∈ |OP2(2)| and of
σx1

, σx2
depends on 5+2=7 parameters. For any such triple c, σx1

, σx2
, let Z(c, x1+x2)

be the Schubert variety of all nets in |OP2(3)| = P9 containing the 1-dimensional space
spanned by σx1 +c and σx2 +c. Then Z(c, x1+x2) is a projective space of dimension 7

and we arrive at 7+7 = 14 parameters. Two nets Σ,Σ′ of quadrics containing Γ define
the same surface S′ up to projectivities as soon as they differ by an automorphism
of P5 fixing Γ, that is, by an automorphism of Γ itself. Since Aut(Γ) ≃ PGL(2), this
brings the number of parameters down to 11, as wanted. □

Proof of Theorem 4.1. — Let U ⊂ |OP2(2)| ×Sym2(Γ) be the open subset parametriz-
ing pairs (c, x1 +x2) such that c intersects transversally the diagonal ∆, σx1

and σx2
.

Set
Z :=

{
(Σ, c, x1 + x2) | (c, x1 + x2) ∈ U, Σ ∈ Z(c, x1 + x2)

}
,

where Z(c, x1+x2) is the Schubert variety defined in the previous proof. The forgetful
map π : Z → U gives Z the structure of a P7-bundle over U . Let G be the subgroup
of PGL(3) fixing the plane conic ∆ ⊂ P2. Then G is naturally isomorphic to PGL(2)

and acts linearly on Z and on U in the natural way: for every f ∈ G, we have
f(Σ, c, x1 + x2) = (f∗(Σ), f(c), f(x1) + f(x2)) where f∗ : |OP2(3)| → |OP2(3)| is the
induced map. The moduli space FN ,ns

23 is then birational to the quotient Z/G. We want
to show that Z/G is a P7-bundle over U/G. By Kempf’s descent lemma [DN89],
it is enough to check that for every o = (c, x1 + x2) ∈ U the stabilizer of π−1(o)

in G is trivial: this is true because the conic c intersects ∆ in 4 distinct points and
there are no non-trivial automorphisms of P1 mapping a set of 4 general points to
itself. The rationality of FN ,ns

23 thus follows as soon as we show that U/G is rational.
The quotient (|OP2(2)| × Sym2(Γ))/G is birational to a P1-bundle over the quotient(
Sym4(∆)× Sym2(∆)

)
/Aut(∆), where ∆ ≃ P1. For a general

(w1 + w2 + w3 + w4, w5 + w6) ∈ Sym4(P1)× Sym2(P1)

the double cover of P1 ramified at the 6 points w1, . . . , w6 is a genus 2 curve D.
Denoting by yi ∈ D the inverse image of wi, it is straightforward to check that
OD(y5 − y6) ∈ Pic0(D)[2], that is, the pair (D,OD(y5 − y6)) lies in R2. Two elements
(w1 + w2 + w3 + w4, w5 + w6) and (w′

1 + w′
2 + w′

3 + w′
4, w

′
5 + w′

6) define the same
Prym curve in R2 if and only if they are obtained one from the other acting with an
automorphism of P1. By a parameter count, a general point of R2 is obtained with
this construction and thus the quotient

(
Sym4(∆)× Sym2(∆)

)
/Aut(∆) is birational
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to R2, which is rational [Dol96]. This implies the rationality of U/G and thus of the
moduli spaces F

N ,ns
23 and P6.

In order to prove that the image of map r6,2 : P6 → R6,2 is a unirational divisor,
it is enough to show that a general fiber of r6,2 is 1-dimensional. Take a general
(S,M,H,C) ∈ P6 and let (C, x1 + x2,M

∨|C) be its image in R6,2.
We claim that the space |IC/P5(2)| of quadrics containing

C ⊂ P5 = P(H0(ωC ⊗M)∨)

is three-dimensional. Indeed, this follows from the short exact sequence
0 −→ IC/P5(2) −→ OP5(2) −→ OC(2) −→ 0

once we show that the restriction map r : H0(OP5(2)) → H0(OC(2)) is surjec-
tive. To prove the latter, we note that r is the composition of the restriction map
H0(OP5(2)) → H0(OS′(2)), which is surjective as S′ is a complete intersection, and
the restriction map H0(OS′(2)) → H0(OC(2)). The latter equals the restriction map
H0(OS(2R

′)) → H0(OC(2)), which has cokernel
H1(OS(2R

′ −R)) = H1(OS(Γ +N1 +N2)) = H1(OS(−(Γ +N1 +N2))
∨;

this is zero since Γ +N1 +N2 is connected. Thus, the claim is proved.
Since the linear system |IC/P5(2)| cuts out a curve on S′ whose inverse image on S

lies in |2R′ − R| = |Γ +N1 +N2|, which has only one member, we see that the base
locus of |IC/P5(2)| is C ∪ Γ. Since S′ = Q1 ∩Q2 ∩Q3 with Q1 and Q2 singular at the
double points x1 and x2 respectively, the base locus of a general net of quadrics in
|IC/P5(2)| containing the 1-dimensional space generated by Q1 and Q2 is the 2-nodal
model in P5 of a Nikulin surface in F

N ,ns
23 . We have a P1 of such nets and they are

not projectively equivalent because there is no projectivity of P5 fixing C and Γ. This
proves that the fiber of r6,2 over (C, x1 + x2,M

∨|C) is 1-dimensional. □

5. The case R5,4

In this section we will prove the following theorem.

Theorem 5.1. — The moduli spaces F̂
N ,ns
21 , FN ,ns

21 and P̂5 are unirational and r5,4 is
dominant. In particular, the moduli space R5,4 is unirational, too.

Take a general (S,M,H,R) in F̂
N ,ns
21 . We have g(R) = g(R′) = 5, and |R′| defines

a morphism
φR′ : S −→ S′ ⊂ P5,

that contracts the curves N1, . . . , N4 to 4 double points x1, . . . , x4 ∈ S′ and maps
N5, . . . , N8 to 4 lines in P5. Arguing as in the proof of Lemma 4.2, one proves the
following:

Lemma 5.2. — The divisor J := R−N5 − · · · −N8 is effective, with

J2 = 0, J ·R′ = 6 and J ·Ni =

{
1, i = 1, . . . , 4,

2, i = 5, . . . , 8,

and all members of |J | are irreducible. In particular, h0(J −Ni) = 0 for i = 1, . . . , 8.
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It follows that |J | is a base point free elliptic pencil and that φR′ maps any fixed
smooth J in its linear system to an elliptic normal curve J ⊂ P5 passing through
the nodes x1, . . . x4 ∈ S′ and having N5, . . . , N8 as bisecant lines. As in the previous
section, one shows that S′ is the base locus of a net Σ of quadrics containing J and
for every i such that 1 ⩽ i ⩽ 4 the net Σ contains a unique quadric Qi singular
at xi. We show that there is no further quadric in P5 that is singular at xi and
contains Γ, N5, . . . , N8. Indeed, such a quadric would cut out a divisor on S′ whose
strict transform on S would lie in

(2) |2R′ − J − 2Ni −N5 − · · · −N8| = |J + (N1 +N2 +N3 +N4 −Ni)−Ni|.

However, this linear system is empty. Indeed, since its intersection with Nj is −1 for
j ∈ {1, 2, 3, 4} ∖ {i}, if (2) were nonempty then J −Ni would be linearly equivalent
to a nontrivial effective divisor, contradicting Lemma 5.2.

Proposition 5.3. — Fix an elliptic normal curve J ⊂ P5. Take 3 general points
x1, x2, x3 ∈ J and 4 general lines N5, . . . , N8 bisecant to J . Then the following hold:

(i) For each i such that 1 ⩽ i ⩽ 3, there exists a unique quadric Qi ⊂ P5 that is
singular at xi and contains N5, . . . , N8, J .

(ii) For Q1, Q2, Q3 as in (i), the minimal desingularization S of the complete inter-
section S′ := Q1∩Q2∩Q3 ⊂ P5 is a marked non-standard Nikulin surface of genus 21.

(iii) By varying x1, x2, x3 ∈ J and n5, . . . , n8 ∈ Sym2 J , one obtains all members
in a dense open subset of F̂N ,ns

21 .

Proof. — By the above discussion, (i) holds when x1, x2, x3 and N5, . . . , N8 are nodes
and lines on the projective model of a general Nikulin surface, which is thus limit of
general complete intersections as in (ii). By generality, (i) holds for general choices of
x1, x2, x3 ∈ J and n5, . . . , n8 ∈ Sym2 J as well.

A surface S′ as in (ii) has trivial canonical bundle, contains the lines N5, . . . , N8

and has 3 double points at x1, x2, x3. By generality, S′ has at most 4 double points
as this occurs when one starts with a Nikulin surface. We define N1, N2, N3 as the
exceptional divisors of the minimal desingularization ν : S → S′ over the point
x1, x2, x3, respectively. We now show that S′ has automatically a fourth double point.
We set R′ := ν∗OS′(1) and consider the following divisor on S:

N4 := 2R′ − 2J −N1 −N2 −N3 −N5 −N6 −N7 −N8.

It is straightforward to check that N2
4 = −2 and N4 · J = 1, so that N4 is effective

by Riemann-Roch and Serre duality. Moreover, N4 ·R′ = 0, whence N4 is contracted
to a fourth singular point x4 of S′, which is a double point if N4 is irreducible.
By construction Ni · Nj = 0 for i ̸= j and

∑
Ni ∼ 2M , with M := R′ − J . Setting

R := ν∗OS′(J +N5 + · · ·+N8) and H := R+R′ +M , it is easy to check that, if N4

is irreducible, then (S,M,H,R) ∈ F̂
N ,ns
21 . If N4 were not irreducible, then the Picard

group of S would have rank > 9; whence, by standard theory of K3 surfaces, the
obtained family of K3 surfaces would have dimension < 20 − 9 = 11. Thus, (i) will
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follow once we show that this construction provides an 11-dimensional family of K3
surfaces.

By (i), our construction depends on 3 + 8 = 11 parameters, corresponding to the
choice of x1, x2, x3 ∈ J and n5, . . . , n8 ∈ Sym2 J . Since there are no projectivities of
P5 fixing an elliptic normal curve and the automorphism group of any K3 surface is
discrete, we obtain an 11-dimensional family of K3 surfaces, thus proving (ii) and (iii).

□

Proof of Theorem 5.1. — By Proposition 5.3, a general (S,M,H,R) ∈ F̂
N ,ns
21 is ob-

tained as the minimal desingularization of the intersection S′ of 3 quadrics Q1, Q2, Q3

in P5 containing a fixed elliptic normal curve J ⊂ P5 and 4 bisecant lines N5, . . . , N8

to it and such that each Qi is singular at one point xi ∈ J ; note that the line bundle
R′ = H −M −R is the one giving the map to S′ ⊂ P5.

To obtain the unirationality of F̂N ,ns
21 , FN ,ns

21 , P̂5, we recall that the strict transform
of J defines an elliptic pencil |J | on S, that contains singular fibers. By Proposition 5.2
all members of |J | are irreducible. Thus |J | contains an irreducible rational curve J0,
which is mapped isomorphically by φR′ to a curve passing simply through the 4 double
points x1, . . . , x4 ∈ S′ and having N5, . . . , N8 as bisecant lines.

Since J0 ∈ |J | and (2) is not effective, the quadrics Q1, Q2, Q3 (and thus S′) can
be recovered from the datum of x1 + x2 + x3 ∈ Sym3(J0) and n5, . . . , n8 ∈ Sym2(J0).
By upper semicontinuity, having fixed the embedding J0 ⊂ P5, there is only one
quadric in P5 singular at a general point of J0 and containing J0 and 4 general bisecant
lines to J0. Furthermore, starting from 3 general points on J0 and 4 general bisecant
lines to J0, one obtains as in the proof of Proposition 5.3 a non-standard Nikulin
surface by desingularizing the intersection of the uniquely determined 3 quadrics.
In other words, there is a finite (corresponding to the choice of 3 out of 4 lines and
of J0 ∈ |J |) dominant map Sym3 J0 × Sym4(Sym2 J0) → F̂

N ,ns
21 (as there was for J

by Proposition 5.3); since the domain is rational, this implies the unirationality of
F̂
N ,ns
21 , FN ,ns

21 and P̂5.
We now show that r5,4 : P̂5 → R5,4 is birational, thus obtaining the unirationality

of R5,4. Take a general (S,M,H,R,C) ∈ P̂5 and let (C, x1 + x2 + x3 + x4,M
∨|C)

be its image in R5,4. We need to show that S′ is the only surface that contains
C ⊂ P(H0(ωC ⊗M)∨) = P5 and 4 lines and can be written as the base locus of a net
of quadrics supporting a quadric singular at xi ∈ C for every i such that 1 ⩽ i ⩽ 4.
It is then enough to specialize C to a curve J + N5 + · · · + N8 ∈ |R| and apply
Proposition 5.3(ii). □

6. The case R5,2

In this section we will prove the following theorem.

Theorem 6.1. — The moduli spaces F
N ,ns
19 and P5 are unirational. The map r5,2 is

dominant; in particular the moduli space R5,2 is unirational.
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Take a general (S,M,H) in F
N ,ns
19 , so that g(R) = 5 and g(R′) = 4. The morphism

φR′ : S −→ S′ ⊂ P4

contracts the curves N1, N2 to 2 double points x1, x2 ∈ S′ and maps N3, . . . , N8 to
6 lines in P4.

Lemma 6.2. — The divisor Γ := R−N3−· · ·−N7 on S is represented by an irreducible
curve satisfying

Γ2 = −2, Γ ·R′ = 4 and Γ ·Ni =


1, i = 1, 2,

2, i = 3, 4, 5, 6, 7,

0, 8.

Moreover,

h0(3R′ − 2(N1 +N2)) = 21, h0(S,OS(3R
′ − 2(N1 +N2)− Γ)) = 12

h0(S,OS((3R
′ − 2(N1 +N2)− Γ− (N3 + · · ·+N7)) = 2.and

Proof. — The proof of the first statement is similar to the proof of Lemma 5.2. In the
same way one proves that the divisor Γ′ := R′ −N1 −N2 −N8 is represented by an
irreducible (−2)-curve satisfying Γ′ · Γ = 2, and that

Γ + Γ′ ∼ 3R′ − 2(N1 +N2)− Γ− (N3 + · · ·+N7).

One can use this to show that the divisors in the last statement are all big and nef,
and thus compute their cohomology. □

As a consequence, Γ is mapped by φR′ to a rational normal quartic Γ ⊂ P4 passing
through the nodes x1, x2 ∈ S′. The 5 lines N3, N4, N5, N6, N7 are bisecant to Γ,
whereas the line N8 is disjoint from Γ.

As R′ is not hyperelliptic by [DLC24, Prop. 5.6], the surface S′ ⊂ P4 is the complete
intersection of a quadric and a cubic.

Lemma 6.3. — The surface S′ is contained in precisely a web of cubics singular at
x1, x2 and in a unique quadric.

Proof. — The projective normality of S′ ⊂ P4 directly implies the uniqueness of the
quadric Q containing it. Since S′ has only two nodes at x1, x2, the quadric Q is
necessarily smooth if we prove the existence of a cubic containing S′ and singular at
x1, x2.

Setting n := x1 + x2, the linear system |I2n/P4(3))| of cubics singular at n has
dimension at least 24, while the linear system |3R′−2(N1+N2)| on S has dimension 20

by Lemma 6.2; therefore, the linear system Σ of cubics singular at n and containing S′

is at least a web. The quadric Q containing S′ is thus smooth and the restriction of Σ
to Q is contained in P(H0(IS′/Q(3)))

∼= P(H0(OQ)), which is a point. The restriction
map rQ : Σ Σ|Q is the projection from the sublinear system of Σ consisting of
cubics that contain Q. Any such cubic splits as Q∪H, where H is a hyperplane such
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that Q∪H is singular at x1, x2; as Q is smooth, this forces H to pass through x1, x2

so that H moves in a net. We conclude that dimΣ = 3. □

The following result will be used to prove the unirationality of F
N ,ns
19 and the

dominance of r5,2.

Proposition 6.4. — Let Γ ⊂ P4 be a fixed rational normal curve. Take 2 general points
x1, x2 ∈ Γ and 5 general secant lines N3, N4, N5, N6, N7 to Γ. Then the following hold:

(i) There exists a unique quadric Q ⊂ P4 and a 5-dimensional linear system of
cubics Y ⊂ P4 such that both Q and Y contain Γ +N3 + · · ·+N7 and Y is singular
at x1, x2.

(ii) For general Q and Y as in (i), the minimal desingularization S of the complete
intersection S′ := Q ∩ Y ⊂ P4 is a non-standard Nikulin surface of genus 19.

(iii) By varying x1, x2 ∈ Γ and n3, . . . , n7 ∈ Sym2 Γ, one obtains all Nikulin sur-
faces in a dense open subset of FN ,ns

19 .

Proof. — The existence of a unique quadric Q follows from Proposition 3.1.
Setting n := x1+x2, we have h0(I2n/P4(3)) ⩾ 25 and thus the kernel of the restriction

map

(3) ρ : H0(I2n/P4(3)) −→ H0(OΓ(3)(−2(x1 + x2)) ∼= H0(OP1(8)) ∼= C9

has dimension ⩾ 16. The space of cubics Y as in the statement is the projectivization
of the kernel of

(4) r : Ker ρ −→ H0(
⊕7

i=3 ONi(3− 2)) ∼= H0(OP1(1))⊕5 ∼= C10,

and thus has projective dimension ⩾ 5. By semicontinuity, to prove (i) it is enough
to show that equality holds when x1, x2 and N3, N4, N5, N6, N7 are the nodes and
lines of the projective model S′ of a Nikulin surface as above. In this case the map r

factors as:

(5) r : Ker ρ
rS′−−−→ (Ker ρ) |S′

r′−−→ H0(OP1(1))⊕5 ∼= C10,

with S′ as in (ii). Since dim(Ker ρ) ⩾ 16, dimKer rS′ = 4 by Lemma 6.3 and
dim (Ker ρ) |S′ ⩽ h0(S,OS(3R

′ − 2(N1 + N2) − Γ) = 12 by Lemma 6.2, we must
have dim(Ker ρ) = 16 and

(Ker ρ) |S′
∼= H0(S,OS(3R

′ − 2(N1 +N2)− Γ) ∼= C12.

In particular, r′ can be identified with the restriction map

C12 ∼= H0(S,OS(3R
′ − 2(N1 +N2)− Γ) −→ H0(ON3∪···∪N7

(1)) ∼= C10

on S, so that

Ker r′ ∼= H0(OS(3R
′ − 2(N1 +N2)− Γ− (N3 + · · ·+N7))) = C2,

again by Lemma 6.2. This yields the surjectivity of both r′ and r. Consequently,
dimKer r = 6, which finishes the proof of (i).

We stress that, having proved (i) also in the case where the point and the lines
are nodes and lines (possibly in special position) on the projective model of a Nikulin
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surface, the family of surfaces as in (ii) obtained by varying x1, x2 ∈ Γ and n3, . . . , n7 ∈
Sym2 Γ always contains the projective model of a Nikulin surface. Thus a surface
S′ := Q∩ Y ⊂ P4 as in (ii) has trivial canonical bundle and 2 ordinary double points
at x1, x2, while by generality it is smooth elsewhere. Let ν : S → S′ be its minimal
desingularization and N1, N2 be the exceptional divisors. We set R′ := ν∗OS′(1) and
define N8 := 2Γ−2R′+N1+· · ·+N7. One easily verifies that N2

8 = −2 and N8 ·Ni = 0

for i ⩽ 7. Moreover, setting M := R′+N8−Γ, one has N1+ · · ·+N8 ∼ 2M . Defining
R := Γ + N3 + · · · + N7 and H := R′ + R + M , it comes straightforward that
(S,M,H) ∈ F

N ,ns
19 , as soon as N8 is irreducible. As in the proof of of Proposition 5.3,

(ii) will follow as soon as we show that the constructed K3 surfaces move in a family
of dimension ⩾ 11. Our construction depends on

dimSym2(Γ) + dimSym5(Sym2 Γ) + 5− 3 + dimAut(Γ) = 11

parameters, where the term +5 follows from (i) and the term −3 from Lemma 6.3.
This concludes the proof of both (ii) and (iii). □

Proof of Theorem 6.1. — We proceed as in the proof of Theorem 4.1, fixing a plane
conic ∆ in order to identify Sym2(Γ) ∼= P2. We thus consider Hilb5(P2)×Hilb2(P1) as a
parameter space for pairs (l, n), where l is a set of five unordered bisecant lines to Γ and
n is a set of two unordered points on Γ. Over an open set of it we have a P5-bundle M
whose fiber over a point (l, n) is the P5 of cubics Y containing Γ∪ l and singular at n

(by Proposition 6.4(i)). The group PGL(2) ⊂ PGL(3) of projectivities of P2 fixing ∆

acts an all the spaces Hilb5(P2), Hilb2(P1) ∼= P2 and M. Furthermore, denoting by
U ⊂ Hilb5(P2) the open subset parametrizing 5-tuple of points in general position,
the stabilizer of any point l ∈ U in PGL(2) is trivial. Therefore, Kempf’s descent
lemma implies that PU := U ×Hilb2(P1) → U descends to a P2-bundle PU // PGL(2)

on U/PGL(2) and, similarly, the restriction MU of M to PU descends to a P5-bundle
MU //PGL(2) → PU //PGL(2). Hence, MU is rational as soon as U/PGL(2) is. This is
proved by looking at the natural projection U/PGL(2) → U/PGL(3) and observing
that U/PGL(3) is a rational surface by Castelnuovo’s theorem and

PGL(3)/PGL(2) ≃ |OP2(2)| ≃ P5.

We have thus proved that MU is rational of dimension 2 + 5 + 2 + 5 = 14. By con-
struction, it admits a natural dominant map τ : MU → F̃, where F̃ is a 6 : 1 cover
of FN ,ns

19 corresponding to the selection of one out of N3, . . . , N8 to define the class
of Γ. A general fiber of τ is isomorphic to P3 by Lemma 6.3. Hence, F̃ is stably rational
and F

N ,ns
19 , P5 are unirational. The unirationality of R5,2 follows once we show that

the map r5,2 : P5 → R5,2 is dominant, or equivalently, that a general fiber of it has
dimension 2. Take a general (S,M,H,C) ∈ P5. By Lemma 6.3 the projective model
S′ ⊂ P(H0(S,R)∨) = P4 of S contains 6 lines and is the complete intersection of a
uniquely determined quadric and a cubic (moving in a web) singular at x1, x2 ∈ C.
Therefore, it is enough to show that C ⊂ P(H0(C,ωC ⊗M)∨) = P4 is contained in a
unique quadric and in a 5-dimensional linear system of cubics singular at x1, x2 such
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that the intersection Y ∩Q contains 6 lines. To show this we specialize C to the curve
Γ +N3 + · · ·+N7 ∈ |R| and apply Proposition 6.4(i). □

Remark 6.5. — Unirationality of F̃ yields unirationality of P′
4, as well. However,

dominance of r4,6 (which would imply unirationality of R4,6) remains an open problem.

7. The case R4,4

The aim of this section is to prove the following theorem.

Theorem 7.1. — The moduli spaces F̂
N ,ns
17 , FN ,ns

17 and P̂4 are unirational and r4,4 is
dominant. In particular, the moduli space R4,4 is unirational, too.

Take a general (S,M,H,R) in F̂
N ,ns
17 , so that g(R) = g(R′) = 4. The morphism

φR′ : S −→ S′ ⊂ P4

contracts the curves N1, . . . , N4 to 4 double points x1, . . . , x4 ∈ S′ and maps the curves
N5, . . . , N8 to 4 lines in P4.

Lemma 7.2. — The divisor Γ := R−N5−· · ·−N8 on S is represented by an irreducible
curve satisfying

Γ2 = −2, Γ ·R′ = 4 and Γ ·Ni =

{
1, i = 1, 2, 3, 4,

2, i = 5, 6, 7, 8.

Moreover, we have

h0(OS(R
′ −N1 − · · · −N4)) = 1,(6)

h0(OS(2R
′ − Γ− (N5 + · · ·+N8)) = 1,(7)

h0(OS(3R
′ − 2(N1 + · · ·+N4)) = 13,(8)

h0(OS(3R
′ − 2(N1 + · · ·+N4)− Γ)) = 8, and(9)

h0(OS(3R
′ − 2(N1 + · · ·+N4)− Γ− (N5 + · · ·+N8)) = 1.(10)

Proof. — The first statement is proved as in Lemma 6.2. One similarly proves that
the divisor Γ′ := R′−N1− · · ·−N4 on S is represented by an irreducible (−2)-curve,
proving (6). It is easy to check that 2R′ − Γ− (N5 + · · ·+N8) ∼ Γ +N1 + · · ·+N4

and equality (7) thus follows.
One easily verifies that the divisor in (10) is linearly equivalent to Γ + Γ′, and

Γ ·Γ′ = 0, proving (10). This can also be used to prove that the divisors in (8) and (9)
are big and nef and thus compute their cohomology. □

As a consequence, Γ is mapped by φR′ isomorphically to a rational normal quartic
Γ ⊂ P4 that passes through the nodes x1, x2, x3, x4 ∈ S′, and has N5, N6, N7, N8 as
bisecant lines.

As in the previous section, the surface S′ ⊂ P4 is the complete intersection of a
quadric and a cubic and we will now show that the cubic can be chosen to be singular
at the nodes of S′.
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Lemma 7.3. — The surface S′ is contained in precisely a pencil of cubics singular
at x1, x2, x3, x4 and in a unique quadric. Furthermore, there exist precisely a pencil
of quadrics Q ⊂ P4 and a net of cubics Y ⊂ P4 such that both Q and Y contain
Γ +N5 + · · ·+N8 and Y is singular at x1, x2, x3, x4.

Proof. — As in the proof of Lemma 6.3, there is a unique quadric Q containing
S′ ⊂ P4 and this is necessarily smooth if there is a cubic containing S′ and singular
at x1, . . . , x4.

We denote by n := x1 + x2 + x3 + x4 the set of four nodes of S′. In particular, the
linear system |I2n/P4(3))| of cubics singular at n has dimension at least 14. Any such
cubic either contains S′ or cuts out on S′ a divisor whose strict transform in S lies
in the linear system |3R′ − 2(N1 + N2 + N3 + N4)|, which has dimension 12 by (8).
Hence, the linear system Σ of cubics singular at n and containing S′ is at least a
pencil. In particular, the quadric Q containing S′ is smooth and Σ|Q is a point. As in
the proof of Lemma 6.3, one concludes that dimΣ = 1 (and thus dim |I2n/P4(3))| = 14)
by considering the projection rQ : Σ Σ|Q, whose center consists of a unique point
determined by the only reducible cubic Q ∪H with H being the hyperplane through
x1, x2, x3, x4, since, by (6), the points x1, x2, x3, x4 do not lie in a plane. This finishes
the proof of the first assertion.

Similarly, one proves that the linear system of quadrics in P4 containing Γ+N5 +

· · · + N8 is a pencil, by noting that any such quadric different from Q intersects S′

along a divisor whose strict transform on S lies in the linear system
|2R′ − Γ− (N5 + · · ·+N8)|,

which has dimension zero by (7). The fact that the linear system of cubics contain-
ing Γ +N5 + · · · +N8 and singular at x1, x2, x3, x4 is 2-dimensional likewise follows
from (10) and the first assertion. □

Proposition 7.4. — Let Γ ⊂ P4 be a fixed rational normal curve. Take 4 general
points x1, x2, x3, x4 ∈ Γ and 4 general bisecant lines N5, N6, N7, N8 to Γ. Then the
following hold:

(i) There exist precisely a pencil of quadrics Q ⊂ P4 and a net of cubics Y ⊂ P4

such that both Q and Y contain Γ+N5+N6+N7+N8 and Y is singular at x1, x2, x3, x4.
(ii) For general Q and Y as in (i), the minimal desingularization S of the complete

intersection S′ := Q ∩ Y is a marked non-standard Nikulin surface of genus 17.
(iii) By varying x1, x2, x3, x4 ∈ Γ and n5, . . . , n8 ∈ Sym2 Γ, one obtains all mem-

bers in a dense open subset of F̂N ,ns
17 .

Proof. — The existence of precisely a pencil of quadrics Q follows from Proposi-
tion 3.1.

We set n := x1 + x2 + x3 + x4 and observe that h0(I2n/P4(3)) = 15 by generality.
Restricting first to Γ and then to N5 + N6 + N7 + N8 (via maps ρ and r analogous
to the maps (3) and (4) in the proof of Proposition 6.4), one shows the existence of a
family of cubics Y as in (i) of dimension ⩾ 2. Equality holds, since it holds for nodes
and lines (possibly in special position) as in Lemma 7.3. This proves (i), as well as
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the fact that a surface S′ := Q ∩ Y ⊂ P4 as in (ii) specializes to a projective model
of a Nikulin surface, and has therefore trivial canonical bundle and 4 ordinary double
points at x1, x2, x3, x4, while being smooth elsewhere. Let ν : S → S′ be its minimal
desingularization and N1, . . . , N4 be the exceptional divisors. Define R′ := ν∗OS′(1)

and R := OS(Γ+N5 + · · ·+N8). Exactly as in the proof of Proposition 4.3, one may
show that the sum N1 + · · ·+N8 is 2-divisible and set M := (N1 + · · ·+N8)/2 and
H := R+R′ +M , so that the 4-tuple (S,M,H,R) ∈ F̂

N ,ns
17 . This proves (ii).

Point (iii) follows from Lemma 7.3. □

Proof of Theorem 7.1. — Fix a rational normal curve Γ ⊂ P4. We proceed as in the
proof of Theorem 6.1 and identify Hilb4(P2) × Hilb4(P1) with the parameter space
for pairs (l, n), where l is a set of four unordered bisecant lines to Γ and n is a set
of four unordered points on Γ. Over an open set of Hilb4(P2) × Hilb4(P1) we have
a P2-bundle M whose fiber over a point (l, n) is the net (by Proposition 7.4(i)) of
cubics Y containing Γ ∪ l and singular at n. Finally, on M we have the P1-bundle O
whose fiber over a point (n, l, Y ) ∈ M is the pencil (by Proposition 7.4(i)) of quadrics
containing Γ ∪ l.

We have a natural action of PGL(2) on all our parameter spaces and we will
now show that O // PGL(2) is rational. Denoting by U ⊂ Hilb4(P2) the open
subset parametrizing 4-tuples of points in general position and applying Kempf’s
descent lemma several times as in the proof of Theorem 6.1, one reduces to showing
that U/PGL(2) is rational. This holds true because U/PGL(3) is a point and
PGL(3)/PGL(2) ≃ P5.

By Proposition 7.4(iii), the 12-dimensional rational quotient O // PGL(2) admits
a dominant rational map O // PGL(2) F̂

N ,ns
17 , whose fiber over a general point

(S,M,H,R) ∈ F̂
N ,ns
17 is the pencil (by Lemma 7.3) of cubics containing the projec-

tive model S′ ⊂ P4 of S and singular at its nodes. As a consequence, the moduli
space F̂

N ,ns
17 is stably rational and the same holds true for the space P̂4. The space

F
N ,ns
17 is therefore unirational. To obtain the unirationality of R4,4, it is thus enough

to show that r4,4 is dominant. Equivalently, we need to check that for a general
(S,M,H,R,C) ∈ P̂4, the fiber of r4,4 over the point (C, x1+x2+x3+x4,M

∨|C) ∈ Rg,4

is 2-dimensional. By Lemma 7.3 the projective model S′ ⊂ P(H0(S,R′)∨) = P4 of S is
the complete intersection of a uniquely determined quadric and a cubic (moving in a
pencil) singular at x1, x2, x3, x4. It is thus enough to prove the existence of precisely a
pencil of quadrics Q ⊂ P4 and a net of cubics Y ⊂ P4 with Y singular at x1, x2, x3, x4

such that both Q and Y contain C ⊂ P(H0(C,ωC ⊗M)∨) = P4 and 4 lines. To check
this, specialize C to the curve Γ+N5+ · · ·+N8 ⊂ S′ and apply Proposition 7.4(i). □

8. The cases R4,2 and R3,6

We will prove the following theorem in this section:

Theorem 8.1. — The moduli spaces F
N ,ns
15 , P4 and P′

3 are unirational, and the maps
r4,2, r′3,6 are both dominant. In particular, the moduli spaces R4,2 and R3,6 are uni-
rational.

J.É.P. — M., 2024, tome 11



1430 A. L. Knutsen, M. Lelli-Chiesa & A. Verra

For a general (S,M,H) ∈ F
N ,ns
15 , the polarizations R and R′ have genus g = 4 and

g′ = 3, respectively. In particular, the image of the morphism

φR′ : S −→ S′ ⊂ P3

is a quartic S′ containing 6 lines N3, . . . , N8 and having two double points x1, x2

arising from the contraction of N1, N2. We consider the divisor

Γ := R−N3 −N4 −N5 −N6;

as before one proves that it is represented by an irreducible (−2)-curve. Since Γ·R′ = 3,
the image of Γ under φR′ is a twisted cubic. It is trivial to check that Γ passes through
the nodes x1, x2 and is disjoint from the lines N7, N8, while the lines N3, N4, N5, N6

are bisecant to Γ.

Proposition 8.2. — Let Γ ⊂ P3 be a fixed twisted cubic. Take two general points
x1, x2 ∈ Γ, four general bisecant lines N3, N4, N5, N6 to Γ and a general line N7 ⊂ P3

disjoint from Γ, N3, N4, N5, N6. Then the following hold:
(i) There exists a unique quartic S′ ⊂ P3 containing Γ, N3, N4, N5, N6, N7 and

singular at x1, x2.
(ii) The minimal desingularization S of a quartic S′ ⊂ P3 as in (i) is a non-

standard Nikulin surface of genus 15.
(iii) By varying x1, x2 ∈ Γ, n3, . . . , n6 ∈ Sym2 Γ and N7 ∈ G(1, 3), one obtains all

Nikulin surfaces in a dense open subset of FN ,ns
15 .

Proof. — Setting n := x1+x2, we observe that h0(I2n/P3(4)) = 27 and thus the kernel
of the restriction map

(11) ρ : H0(I2n/P3(4)) −→ H0(OΓ(4)(−2(x1 + x2)) ∼= H0(OP1(8)) ∼= C9

has dimension ⩾ 18. We consider the restriction map to N3 +N4 +N5 +N6 +N7

(12) r : Ker ρ −→ H0(
⊕6

i=3 ONi
(4− 2)⊕ ON7

(4)) ∼= C17,

whose kernel has dimension ⩾ 1. The quartics S′ ⊂ P3 as in (i) are parametrized by
P(Ker r) and this proves the existence part in (i). To obtain uniqueness, by semicon-
tinuity it is enough to specialize to the case where x1, x2 and N3, N4, N5, N6, N7 are
nodes and lines on the projective model S′ of a Nikulin surface S and use the fact
that the line bundle

4R′−Γ−N3−N4−N5−N6−N7− 2N1− 2N2 ∼ 3R− 2N3− · · ·− 2N6− 3N7− 2N8

is not effective (which can be proved using similar techniques as above). This also
implies that general quartics as in (i) can be specialized to projective models of general
Nikulin surfaces.

We now turn to point (ii). Being a quartic, S′ has trivial canonical bundle and
by generality (as this holds true when x1, x2, N3, N4, N5, N6, N7 lie the projective
model of a Nikulin surface) its only singularities are 2 nodes at x1, x2 whose inverse
images under the desingularization map ν : S → S′ are two (−2)-curves N1, N2.
Set R′ := ν∗OS′(1) and N8 := 2Γ − 2R′ + N1 + · · · + N6 − N7. As in the proof
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of Proposition 5.3, one shows that N8 is an effective divisor satisfying N2
8 = −2

and N8 · Nj = 0 for j ̸= 8, and the sum
∑8

i=1 Ni is 2-divisible in Pic(S). Setting
M := (N1 + · · ·N8)/2, R := ν∗OS(Γ+N3 + · · ·+N6) and H := R+R′ +M , in order
to prove (ii) it only remains to verify that N8 is irreducible. Again as in the proof of
of Proposition 5.3, this automatically follows if one shows that the constructed K3
surfaces move in a family of dimension ⩾ 11.

By (i) the family of K3 surfaces we have constructed depends on

dim
(
Sym2(Γ)×Hilb4(P2)×G(1, 3)

)
)− dimPGL(2) = 14− 3 = 11

parameters, where we have used the correspondence between bisecant lines to Γ and
points in P2 and the fact that projectivities of P3 fixing Γ (which are parametrized
by PGL(2)) map a quartic S′ to a projectively equivalent surface. This implies
points (ii), (iii). □

Proof of Theorem 8.1. — We fix a twisted cubic Γ ⊂ P3 and identify Sym2(Γ) ≃ P2,
so that the product Hilb4(P2) × Hilb2(P1) × G(1, 3) parametrizes triples (l, n, ℓ7),
where l is a set of 4 bisecant lines to Γ, n is a set of 2 unordered point on Γ, and ℓ7
is a line in P3. The group PGL(2) ⊂ PGL(3) of projectivities fixing Γ acts on this
parameter space and by Proposition 8.2 the quotient

Hilb4(P2)×Hilb2(P1)×G(1, 3) // PGL(2)

is birational to a cover F̃ of degree
(
6
4

)
·
(
2
1

)
= 30 (corresponding to the choices of 4 out

of 6 lines and of 1 out of the remaining 2 lines) of FN ,ns
15 . Let U ⊂ Hilb4(P2) be the open

subset parametrizing 4-tuple of points in general position so that U/PGL(2) ≃ P5.
By applying Kempf’s descent lemma several times as in the proof of Theorem 7.1,
we obtain that F̃ is rational and thus the unirationality of FN ,ns

15 and P4.
To prove that r4,2 is dominant, we need to show that, given a general

(S,M,H,C)∈P4,

the curve C ⊂ P(H0(ωC⊗M)∨) = P3 is contained in at most a 5-dimensional family of
quartics that are singular at the points x1, x2 ∈ C and contain 6 lines. We specialize C

to the curve Γ+N3+ · · ·+N6 ∈ |R| and consider the maps (11) and (12) in the proof
of Proposition 8.2. Let

r′ : Ker ρ −→ H0
(⊕6

i=3 ONi
(2)

) ∼= C12,

be the composition of (12) with the natural projection to H0(
⊕6

i=3 ONi
(2)). As the

unicity statement in Proposition 8.2(i) implies both that Ker ρ is 18-dimensional and
that r is surjective, we conclude that r′ is surjective as well and that P(Ker r′) = P5.
Since the latter space parametrizes quartics containing Γ+N3+ · · ·+N6 and singular
at x1, x2, we conclude that r4,2 is dominant and R4,2 is unirational.

In order to study r′3,6, we map a general (S,M,H) ∈ F
N ,ns
15 to P4 by

φR : S −→ S ⊂ P4,
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so that the image S has 6 nodes x3, . . . , x8, contains 2 lines N1, N2, and is the com-
plete intersection of a quadric Q and a cubic Y . Since a general curve in |R| is not
hyperelliptic by [DLC24, Prop. 5.6], the quadric Q has to be smooth. Let q(z) = 0 and
f(z) = 0 be the equations defining Q and Y , respectively. By possibly replacing Y

with a cubic of equation f(z)+ ℓ(z)q(z) = 0 for some linear form ℓ(z), we can assume
that Q and Y are everywhere transverse. As a consequence, Y has to be singular at
the 6 nodes of S. The dominance of r′3,6 follows once we show that, for a general
C ′ ∈ |R′|, the curve C ′ ⊂ P(H0(ωC′ ⊗ M)∨) = P4 is contained in a 2-dimensional
family of complete intersections Qt ∩ Yt of a quadric and a cubic containing 2 lines
and such that Yt is singular at the 6 marked points x3, . . . , x8 ∈ C ′. The curve C ′ is
contained in a unique cubic (that thus coincides with Y ) passing through x3, . . . , x8.
Indeed, any such cubic different from Y would cut out on S a divisor whose strict
transform in S lies in the linear system |3R − R′ − N3 − · · · − N8|, which is empty.
Analogously, since |2R−R′| is a pencil, C ′ is contained in a net of quadrics. In con-
clusion, C ′ is contained in a 2-dimensional family of complete intersections Qt ∩Yt as
above, and this proves both the dominance of r′3,6 and the unirationality of R3,6. □

9. The case R3,4

This section aims to prove the following result:

Theorem 9.1. — The moduli spaces F̂
N ,ns
13 , F

N ,ns
13 and P̂3 are unirational, and the

map r3,4 is dominant. In particular, the moduli space R3,4 is unirational.

Take a general (S,M,H) ∈ F
N ,ns
13 , so that g(R) = g(R′) = 3. The morphism

φR′ : S −→ S′ ⊂ P3

maps S onto a quartic S′ containing 4 lines N5, . . . , N8 and having 4 nodes x1, . . . , x4

at the points where the curves N1, . . . , N4 are contracted. The divisor

Γ := R−N5 −N6 −N7

is an irreducible (−2)-curve on S, which is sent by φR′ to a twisted cubic passing
through x1, . . . , x4; the lines N5, N6, N7 are bisecant to Γ, while N8 is disjoint from it.

Proposition 9.2. — Let Γ ⊂ P3 be a fixed twisted cubic. Take 4 general points
x1, . . . , x4 ∈ Γ and 3 general bisecant lines N5, N6, N7 to Γ. Then the following hold:

(i) There exists a 4-dimensional family of quartics S′ ⊂ P3 containing the curves
Γ, N5, N6, N7 and being singular at x1, . . . , x4.

(ii) The minimal desingularization S of a quartic S′ ⊂ P3 as in (i) is a marked
non-standard Nikulin surface of genus 13.

(iii) By varying x1, . . . , x4 ∈ Γ and n5, n6, n7 ∈ Sym2 Γ, one obtains all members
of a dense open subset of F̂N ,ns

13 .

Proof. — Set n := x1+· · ·+x4. By restricting H0(I2n/P3(4)) first to Γ and then further
to N5+N6+N7 as in the proof of Proposition 8.2, one proves the existence of a family F

of quartics S′ as in (i) of dimension t ⩾ 4, which implies (i) if we show that t = 4. This
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is proved by specialization to nodes and lines on the projective model of a Nikulin
surface S, where the equality dim |4R′−Γ−N5−N6−N7−2N1−2N2−2N3−2N4| = 3

(which can be proved with the same techniques used several times above) implies the
statement. Again as in the proof of Proposition 8.2, one shows that the minimal
desingularization S of a quartic S′ ⊂ P3 in the family F is a non-standard Nikulin
surface of genus 13. Hence (ii) holds and, by varying x1, . . . , x4 ∈ Γ and n5, n6, n7 ∈
Sym2 Γ and modding out by the automorphisms of Γ, one obtains a family of Nikulin
surfaces of dimension 7 + 4 = 11, thus yielding (iii). □

Proof of Theorem 9.1. — As in the proof of Theorem 8.1, we fix a twisted cubic Γ ⊂ P3

and identify Hilb3(P2) × Hilb4(P1) with the parameter space for pairs (l, n) with l a
set of 3 bisecant lines to Γ and n a set of 4 unordered point on Γ. By Proposition 9.2
the quotient Hilb3(P2) × Hilb4(P1) // PGL(2) is birational to a cover F̃ of degree 4

(corresponding to the choices of 3 out of 4 lines) of F̂N ,ns
13 . Again as in the proof of

Theorem 7.1 one applies Kempf’s descent lemma to conclude that F̃ is rational, so
that F̂

N ,ns
13 , FN ,ns

13 and P̂3 are unirational.
It remains to show that r3,4 is dominant, or equivalently, that for a general element

(S,M,H,C) ∈ P̂3, the curve C ⊂ P(H0(ωC ⊗ M)∨) = P3 is contained in a
4-dimensional family of quartics that are singular at the points x1, . . . , x4 ∈ C and
contain 4 lines. It is then enough to specialize C to Γ + N5 + N6 + N7 ∈ |R| and
apply Proposition 9.2(i). □

10. The cases R3,2 and R2,6

We will prove the following result:

Theorem 10.1. — The moduli spaces F
N ,ns
11 , P3 and P′

2 are rational, and the maps
r3,2, r′2,6 are both dominant. In particular, the moduli spaces R3,2 and R2,6 unirational.

We stress that R2,6 is already known to be rational (cf. [NO19]); however, our
construction only implies its unirationality.

The rationality of FN ,ns
11 has already been proved in [KLCV20, Th. 1.2]. However,

in order to prove the dominance of the moduli maps we will provide alternative
parametrizations of FN ,ns

11 . We start with the case of r′2,6 because of its similarity to
the previous section. Indeed, we consider the morphism

φR : S −→ S ⊂ P3,

whose image S is a quartic containing 2 lines N1, N2 and having 6 double points
x3, . . . , x8 arising from the contraction of N3, . . . , N8. The divisor

Γ := R′ −N1 −N2,

is represented by an irreducible (−2)-curve satisfying Γ · R = 3, so that the image
of Γ under φR is a twisted cubic passing through x3, . . . , x8 and bisecant to the lines
N1, N2.
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Proposition 10.2. — Fix a twisted cubic Γ ⊂ P3. Take 6 general points x3, . . . , x8 ∈ Γ

and 2 general bisecant lines N1, N2 to Γ. Then the following hold:
(i) There exists a 4-dimensional family of quartics S ⊂ P3 containing Γ, N1, N2

and singular at x3, . . . , x8.
(ii) The minimal desingularization S of a quartic S ⊂ P3 as in (i) is a non-standard

Nikulin surface of genus 11.
(iii) By varying x3, . . . , x8 ∈ Γ, n1, n2 ∈ Sym2 Γ, one obtains all Nikulin surfaces

in a dense open subset of FN ,ns
11 .

Proof. — Set n := x3+· · ·+x8. Again as in the proof of Proposition 8.2, by restricting
H0(I2n/P3(4)) first to Γ and then further to N1 + · · · + N4, one proves the existence
of a family F of quartics S as in (i) of dimension t ⩾ 3 and we will show that t = 4.
We specialize to nodes and lines on the projective model of a Nikulin surface S. In this
case the strict transform in S of the restriction to S of any quartic in F ∖ {S} is a
divisor in the linear system
(13) |4R− Γ−N1 −N2 − 2N3 − · · · − 2N8| = |R′ + 2Γ|.

One sees that Γ is a base divisor of (13) and that R′ + Γ is nef with (R′ + Γ)2 = 4,
whence this linear system has dimension 3. Hence t = 4 in this case. Let ZN ⊂
Sym2(P2)× Sym6(Γ) denote the subscheme parametrizing nodes and lines on projec-
tive models of Nikulin surfaces. We have

dimZN + 4− dimAut(Γ) = dimF
N ,ns
11 = 11;

hence ZN is dense in Sym2(P2)× Sym6(Γ), yielding (i), (ii), (iii). □

Proof of Theorem 10.1. — The rationality of FN ,ns
11 , P3 and P′

2 follows from [KLCV20,
Th. 1.2] and can be alternatively obtained from Proposition 10.2(iii).

In order to prove that r′2,6 is dominant, it is enough to show that for a general
(S,M,H,C ′) ∈ F

N ,ns
11

there exists a curve C ′ ∈ |R′| such that (C ′, N3 + · · ·+N8|C ,M∨|C) is contained in a
4-dimensional family of Nikulin surfaces. It is then enough to choose C ′ := Γ+N1+N2

and apply Proposition 10.2(ii).
For what concerns r3,2, we need to show that its fiber containing a general

(S,M,H,C) ∈ P3 is 6-dimensional, or equivalently, that the family of Nikulin
surfaces containing (C,N1 + N2|C ,M∨|C) has dimension 6. We use the rational
parametrization of F

N ,ns
11 provided in [KLCV20, §5]. Let γ ⊂ P3 be a fixed twisted

cubic and denote by p : T → P3 the blow-up of P3 along γ and by Pγ = p−1(γ) the
exceptional divisor. The pair (p∗OP3(1), p∗OP3(2)−Pγ) provides an embedding of the
threefold T in P2×P3 so that T = (P2×P3)∩P9 ⊂ P11 and ωT ≃ OT (−1,−2), where
P2 × P3 ⊂ P11 is the Segre embedding. Denoting by p′ : T → P2 the first projection,
the intersection of the exceptional divisor Pγ with Pℓ := p′−1(ℓ), where ℓ ⊂ P2 is any
line, is a smooth rational curve Γℓ ⊂ T . By [KLCV20, Lem. 5.3], every non-standard
Nikulin surface S of genus 11 can be realized as an element of |IΓℓ/T (1, 2)| for some ℓ,
so that OS(1, 0) ≃ R′, OS(0, 1) ≃ R and Γℓ + N1 + N2 ∈ |R′|. Let(S,M,H,C) ∈ P3
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be general and consider the embedding S ⊂ T ⊂ P2×P3 restricting to the embedding
C ⊂ P2 × P2 defined by the linear systems (|ωC ⊗ η∨|, |ωC |) where η∨ = M |C . The
line ℓ ⊂ P2 for which Γℓ is contained in S is the image under p′ of the marked points
x1, x2 ∈ C. The ideal sequence of C ∪ Γℓ ⊂ S ⊂ T twisted by OT (1, 2) is

0 −→ OT −→ IC∪Γℓ/T (1, 2) −→ IC∪Γℓ/S(1, 2) −→ 0.

We compute that IC∪Γℓ/S(1, 2) ≃ R+N1 +N2 and N1, N2 are its base components.
As a consequence, h0(S, IC∪Γℓ/S(1, 2)) = h0(S,R) = 4 and h0(T, IC∪Γℓ/T (1, 2)) = 5.
Having fixed C ⊂ T , all Nikulin surfaces containing the embedded curve C also
contain the curve Γℓ and thus move in a family of dimension 4. In order to compute
the dimension of the fiber of r3,2 over the point (C, x1 + x2, η) ∈ R3,2, it remains to
bound the dimension of the family E of all possible embeddings of C in T so that
the line bundle p∗OT (2)− Pγ restricts to ωC ⊗ η∨ and p∗OT (1) restricts to ωC . Any
such embedding factors as C ⊂ Y ⊂ T , where Y ∈ |OT (0, 1)| is a Del Pezzo surface
of degree 6 and p′|Y : Y → P2 is the blow-up of P2 at the 3 nodes y1, y2, y3 of the
plane quintic p′(C) ⊂ P2. Setting ℓ := OY (1, 0) and denoting by E1, E2, E3 ⊂ Y

the exceptional divisors, it turns out that OY (0, 1) ≃ 2ℓ − E1 − E2 − E3. Up to the
action of Aut(T ) = Aut(γ), we may assume that Y ⊂ T is fixed and we reduce
to control the possible embeddings C ⊂ Y satisfying C ∼ 5ℓ − 2E1 − 2E2 − 2E3

and ℓ|C ≃ ωC ⊗ η∨. Any two such embeddings differ by an automorphism of Y , or
equivalently, by an automorphism of P2 fixing y1, y2, y3. We conclude that dimE = 2

and thus r−1
3,2(C, x1 + x2, η

∨) has dimension 6, as wanted. □

11. The case R2,4

This section aims to prove the following result:

Theorem 11.1. — The moduli spaces F̂
N ,ns
9 and P̂2 are rational, FN ,ns

9 is unirational,
and the map r2,4 is dominant. In particular, the moduli space R2,4 is unirational.

The unirationality of F
N ,ns
9 was proved in [KLCV20, Th. 1.2]. More precisely,

in [KLCV20, Th. 4.5] the rationality of a space parametrizing quadruples
(S,M,H,N1 + · · ·+N4)

with (S,M,H) ∈ F
N ,ns
9 and N1 + · · ·+N4 a suitable subset of the eight (−2)-curves

in the Nikulin lattice was proved; one easily sees that this space is birational to F̂
N ,ns
9 .

Thus, the rationality of F̂N ,ns
9 , whence of P̂2, is known. It remains to show that r2,4

is dominant.

Proof of Theorem 11.1. — To prove dominance, we show that the fiber of r2,4 contain-
ing a general (S,M,H,C) ∈ P̂2 has dimension 6, or equivalently, the family of marked
non-standard Nikulin surfaces of genus 9 containing (C,N1 + · · ·+N4|C ,M∨|C) has
dimension 6. A Nikulin surface S as above carries two divisors

γ := R−N5 −N6, γ′ := R−N7 −N8,

which are irreducible (−2)-curves such that γ + γ′ ∼ H − N1 − · · · − N8 =: F is an
elliptic pencil. We may thus specialize C to the curve γ + N5 + N6 ∈ |R| marked
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with the points x1, . . . , x4 ∈ γ, which are the intersection points with N1, . . . , N4.
We denote γ + N5 + N6 by X = X1 ∪x5,x′

5
P1 ∪x6,x′

6
P1 if we consider it as an

abstract pointed semistable curve of genus 2: the component X1 ≃ P1 denotes the
rational curve whose class is γ and is marked with the four points x1, . . . , x4 as well as
with two pairs of points x5, x

′
5 and x6, x

′
6 where two copies of P1 (called exceptional

components in the sequel) are attached. Let F be the family of marked non-standard
Nikulin surfaces containing the pointed curve X in such a way that X1 ∈ |R−N5−N6|,
{x5, x

′
5} = X1 ∩N5, {x6, x

′
6} = X1 ∩N6 and {xi} = X1 ∩Ni for 1 ⩽ i ⩽ 4. To show

that F has dimension 6, we exploit the construction provided in [KLCV20, §4].
Let T := (P2×P2)∩P7 ⊂ P8 be a fixed Del Pezzo threefold and denote by p′ and p

the two projections; by [KLCV20, Prop. 4.3], a general genus 9 Nikulin surface S

of non-standard type lives inside of T as a divisor of type (2, 2) containing four
vertical lines N1, . . . , N4 and four horizontal lines N5, . . . , N8, so that OS(1, 0) ≃ R′,
OS(0, 1) ≃ R. Since the lines N1, . . . , N4 ⊂ P8 span P7, up to the action of Aut(T )

(which consists of the automorphisms of P2×P2 fixing P7) we may assume N1, . . . , N4

to be fixed. The choice of N5, . . . , N8 is then equivalent to the choice of the four points
n5, . . . , n8 ∈ P2 such that ni = p(Ni) for 5 ⩽ i ⩽ 8, or equivalently, of the four lines
ℓi := p′(Ni) ⊂ P2.

First of all, we show that the starting embedding γ+N5+N6 ⊂ T is the only pos-
sible embedding of X in T such that p′ maps X1 to a plane conic and the exceptional
components to two lines, while p′ contracts the exceptional components and sends X1

to a line. Setting ni = p′(Ni) ∈ P2 for 1 ⩽ i ⩽ 4 (these points are fixed by construc-
tion), there is a unique plane conic c through n1, . . . , n4 such that (c, n1 + · · · + n4)

is isomorphic to (X1, x1 + · · · + x4) as a pointed curve. Hence, for any embedding
X ⊂ T as above, we get p′(X) = c + ℓ5 + ℓ6, where ℓ5, ℓ6 are the lines intersecting c

at the points x5, x
′
5 and x6, x

′
6, respectively. Since the lines ℓ5, ℓ6 uniquely deter-

mine two horizontal lines in T , in any embedding X ⊂ T as above the exceptional
components coincide with two fixed N5, N6. As a consequence, p(X) coincides with
the line r through n5, n6. In conclusion, both p′(X) and p(X) are fixed and thus
X = (p′(X)× p(X)) ∩ T ⊂ T is unique.

The family F thus coincides with the family of marked non-standard Nikulin sur-
faces containing the embedded curve γ+N5+N6 ⊂ T . If N7, N8 ⊂ T are two general
horizontal lines, one may easily check that dim |Iγ+N1+···+N8/T (2,2)|| = 2 by using the
short exact sequence

0 −→ OT −→ Iγ+N1+···+N8/T (2, 2) −→ Iγ+N1+···+N8/S(2, 2) −→ 0

and the fact that Iγ+N1+···+N8/S(2, 2) ≃ F + γ′ has γ′ as base component. Hence the
natural map F → Sym2(P2), which sends (S,M,H) to (N7, N8), has 2-dimensional
fibers; this yields dimF = 6, as wanted. □

Appendix. Irreducibility of F̂
N ,ns
h

The forgetful double cover F̂
N ,ns
h → F

N ,ns
h is unramified except possibly over

the proper closed locus (FN ,ns
h )aut parametrizing nonstandard Nikulin surfaces S
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possessing an automorphism exchanging R and R′. In particular, F̂
N ,ns
h is smooth

except possibly over (FN ,ns
h )aut.

We will prove:

Proposition A.1. — The moduli space F̂
N ,ns
h is irreducible for h ⩾ 9.

To prove the proposition it will be enough to exhibit a deformation of some
(S,M,H) ∈ F

N ,ns
h ∖ (FN ,ns

h )aut carrying R to R′.
We recall the smooth partial compactification F

N ,ns

h of F
N ,ns
h constructed in

[KLCV21, Cor. 5.9] obtained by adding a smooth divisor parametrizing reducible
surfaces as we now explain. (All details can be found in [KLCV21, §5].)

Set h = 4k+5, with k ⩾ 1. Choose a smooth elliptic curve A, a general x ∈ A and
L1, L2 ∈ Pic2(A) such that

(14) L2
1
∼= L2

2.

Then L1 and L2 provide an embedding A ⊂ P1 ×P1 such that x uniquely determines
a quadrilateral of lines N1 + N2 + N3 + N4 in P1 × P1, where N1, N2 and N3, N4

respectively are in |OP1×P1(1, 0)| and |OP1×P1(0, 1)|, with N1 ̸= N2 and N3 ̸= N4.
Denote the four singular points of the quadrilateral by

eij := Ni ∩Nj , 1 ⩽ i ⩽ 2, 3 ⩽ j ⩽ 4.

N3

N1

N4

N2

x = e14

e13

e24

e23

Let X4 be the blowing up of e14, e24, e23, e13 and denote by Eij := σ−1(eij) the
four exceptional curves on X4. By abuse of notation, we still denote the strict trans-
form of Nj on X4 by Nj . These are four disjoint smooth, rational curves of self-
intersection −2.

N3

N1

N4

N2

E14

E13

E24

E23

We make the same construction starting from the same A but a (possibly) different
point x′ = e′14 ∈ A satisfying

(15) ke14 ∼ ke′14 on A
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and L′
1, L

′
2 ∈ Pic2(A) such that

(16) L′2
1
∼= L′2

2,

thus obtaining another surface X ′
4. We use the notation e′ij , N ′

i and E′
ij for the objects

analogous to eij , Ni and Eij . Now choose other 8 points u1, . . . , u4, u
′
1, . . . , u

′
4 on A

satisfying:
u1 + u2 + u3 + u4 + u′

1 + u′
2 + u′

3 + u′
4 ∈ |L⊗2

1 ⊗ L⊗2
2 |

and denote by X (respectively, X ′) the blow up of X4 (resp. X ′
4) at u1, . . . , u4

(resp. u′
1, . . . , u

′
4). By abuse of notation, we denote the strict transform on X (or X ′)

of a divisor on X4 (or X ′
4) still by the same name. The surface S := X⊔AX ′ obtained

by gluing X and X ′ transversally along A is a flat limit of K3 surfaces. One easily
verifies (cf. [KLCV21, Lem. 5.1]) that the divisors

∆ := (k + 1)N1 +N2 +N3 + (k + 1)N4 + (2k + 1)E14 + E13 + E24 + E23

on X and

∆′ := (k + 1)N ′
1 +N ′

2 +N ′
3 + (k + 1)N ′

4 + (2k + 1)E′
14 + E′

13 + E′
24 + E′

23

on X ′ glue to form a Cartier divisor H on S (cf. [KLCV21, (35)]).
One shows that S also carries the line bundle

M :=
1

2
(N1 + · · ·+N4 +N ′

1 + · · ·+N ′
4)

and two line bundles R and R′ defined as follows

(17) R :=
1

2
(H −N1 −N2 −N ′

1 −N ′
2) , R′ :=

1

2
(H −N3 −N4 −N ′

3 −N ′
4)

if k is even, and

(18) R :=
1

2
(H −N1 −N3 −N ′

1 −N ′
3) , R′ :=

1

2
(H −N2 −N4 −N ′

2 −N ′
4)

if k is odd (cf. [KLCV21, p. 26]).
As proved in [KLCV21, Cor. 5.9 & Prop. 5.4], triples (S,M,H) as above form a

boundary divisor of a partial compactification F
N ,ns

h of FN ,ns
h . Indeed, the construc-

tion of S depends on 10 parameters: one for the choice of A, one each for the choices
of x, L1 and L′

1 (which determine the choices of x′, L2 and L′
2 in finitely many ways),

minus one for the automorphisms of A, and then plus seven for |L⊗2
1 ⊗ L⊗2

2 | ∼= P7.
While constructing S, we have also made a finite number of choices due to the rela-
tions (14)–(16); different choices correspond to different components of the obtained
boundary divisor. We will henceforth consider a component D where the relation

(19) L1 ⊗ L∨
2 ≃ L′

1 ⊗ L′∨
2

holds. One may easily check that a general member of D has no automorphisms.
To prove the proposition, we will show that for a general (S,M,H) ∈ D the pair
((S,M,H), R) can be deformed in ((S,M,H), R′) remaining inside of D.
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Proof of Proposition A.1. — In the case k even, we may act on Pic2(A) × Pic2(A)

with Pic0(A) as η · (A1,A2) := (A1 ⊗ η,A2 ⊗ η). Since L⊗2
1 ≃ L⊗2

2 , the pairs (L1, L2)

and (L2, L1) are in the same orbit. This provides a one-parameter family of defor-
mations of X parametrized by Pic0(A) so that two fibers of the family are X itself
but (N1, N2) and (N3, N4) are exchanged. Analogously, one obtains a one-parameter
family of deformations of X ′ that plays the same game. By gluing, one obtains a
two-parameter family of surfaces in D so that two fibers of the family are the same
(S,M,H) but the divisors R and R′ in (17) switch roles.

In the case k odd, we may act on A× A with A by z · (y1, y2) := (y1 ⊕ z, y2 ⊕ z),
where the symbol ⊕ is the group operation on A. Since e14 ⊖ e23 is 2-torsion, the
pairs (e14, e23) and (e23, e14) lie in the same orbit. This provides a one-parameter
family of deformations of X parametrized by A so that two fibers of the family are X

itself but e1,4 and e2,3 are exchanged; as consequence, (N1, N3) and (N2, N4) are also
exchanged. Since (15) remains valid if we translate both e1,4 and e′1,4 by the same
point, we can compatibly deform X ′ thus obtaining a one-parameter deformation of
S = X ∪ X ′. Relation (19) yields e′14 ⊖ e′23 = e14 ⊖ e23, which guarantees that the
same translation interchanging e1,4 and e2,3 also swaps e′1,4 and e′2,3. We have thus
obtained a one-parameter family of surfaces in D with two fibers both isomorphic to
(S,M,H) but such that R and R′ in (18) have switched roles. This concludes the
proof of the proposition. □
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