[Limite de viscosité évanescente pour des équations d’agrégation-diffusion]
Cet article est consacré à l’analyse de convergence de l’approximation diffusive des solutions à valeur mesure de l’équation d’agrégation, largement utilisée pour modéliser le mouvement collectif d’une population dirigée par un potentiel d’interaction. Nous prouvons, dans l’espace entier en n’importe quelle dimension d’espace, dans le cadre général des potentiels lipschitziens, la convergence uniforme en temps sur tout intervalle borné, en distance de Wasserstein, et avec un ordre de convergence lorsque le potentiel est -convexe. Nous étendons ces résultats à certains potentiels répulsifs et prouvons des taux de convergence optimaux des états stationnaires vers la masse de Dirac, sous certaines hypothèses d’attractivité uniforme.
This article is devoted to the convergence analysis of the diffusive approximation of the measure-valued solutions to the so-called aggregation equation, which is now widely used to model collective motion of a population directed by an interaction potential. We prove, over the whole space in any dimension, a uniform-in-time convergence in Wasserstein distance in all finite-time intervals, in the general framework of Lipschitz continuous potentials, and provide an rate, where is the diffusion parameter, when the potential is -convex. We give an extension to some repulsive potentials and prove sharp convergence rates of the steady states towards the Dirac mass, under some uniform attractiveness assumptions.
Accepté le :
Publié le :
Keywords: Aggregation-diffusion equations, asymptotic analysis, numerical analysis, Wasserstein distance
Mot clés : Équations d’agrégation-diffusion, analyse asymptotique, analyse numérique, distance de Wasserstein
Frédéric Lagoutière 1 ; Filippo Santambrogio 1 ; Sébastien Tran Tien 1
@article{JEP_2024__11__1123_0, author = {Fr\'ed\'eric Lagouti\`ere and Filippo Santambrogio and S\'ebastien Tran Tien}, title = {Vanishing viscosity limit for aggregation-diffusion equations}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1123--1179}, publisher = {\'Ecole polytechnique}, volume = {11}, year = {2024}, doi = {10.5802/jep.275}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.275/} }
TY - JOUR AU - Frédéric Lagoutière AU - Filippo Santambrogio AU - Sébastien Tran Tien TI - Vanishing viscosity limit for aggregation-diffusion equations JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 1123 EP - 1179 VL - 11 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.275/ DO - 10.5802/jep.275 LA - en ID - JEP_2024__11__1123_0 ER -
%0 Journal Article %A Frédéric Lagoutière %A Filippo Santambrogio %A Sébastien Tran Tien %T Vanishing viscosity limit for aggregation-diffusion equations %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 1123-1179 %V 11 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.275/ %R 10.5802/jep.275 %G en %F JEP_2024__11__1123_0
Frédéric Lagoutière; Filippo Santambrogio; Sébastien Tran Tien. Vanishing viscosity limit for aggregation-diffusion equations. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1123-1179. doi : 10.5802/jep.275. https://jep.centre-mersenne.org/articles/10.5802/jep.275/
[1] - Gradient flows: in metric spaces and in the space of probability measures, Lectures in Math. ETH Zürich, Birkhäuser Basel, 2008
[2] - “Finite-time blow-up of -weak solutions of an aggregation equation”, Commun. Math. Sci. 8 (2010) no. 1, p. 45-65 | DOI | Zbl
[3] - “Blow-up in multidimensional aggregation equations with mildly singular interaction kernels”, Nonlinearity 22 (2009) no. 3, p. 683-710 | DOI | Zbl
[4] - “Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations”, J. Funct. Anal. 263 (2012) no. 8, p. 2430-2457 | DOI | Zbl
[5] - “Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D”, ESAIM Control Optim. Calc. Var. 21 (2015) no. 2, p. 414-441 | DOI | Zbl
[6] - “On an aggregation model with long and short range interactions”, Nonlinear Anal.: Real World Appl. 8 (2007) no. 3, p. 939-958 | DOI | Zbl
[7] - “The five gradients inequality for non quadratic costs”, Comptes Rendus Mathématique 361 (2023), p. 715-721 | DOI | Zbl
[8] - “Aggregation-diffusion equations: dynamics, asymptotics, and singular limits”, in Active particles. Vol. 2. Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 2019, p. 65-108 | Zbl
[9] - “Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations”, Duke Math. J. 156 (2011) no. 2, p. 229-271 | DOI | Zbl
[10] - “Asymptotic simplification of aggregation-diffusion equations towards the heat kernel”, Arch. Rational Mech. Anal. 247 (2023) no. 1, article ID 11, 45 pages | DOI | Zbl
[11] - “The Filippov characteristic flow for the aggregation equation with mildly singular potentials”, J. Differential Equations 260 (2016) no. 1, p. 304-338 | DOI | Zbl
[12] - “The aggregation equation with Newtonian potential: the vanishing viscosity limit”, J. Math. Anal. Appl. 453 (2017) no. 2, p. 841-893 | DOI | Zbl
[13] - “Convergence order of upwind type schemes for transport equations with discontinuous coefficients”, J. Math. Pures Appl. (9) 108 (2017) no. 6, p. 918-951 | DOI | Zbl
[14] - “Convergence analysis of upwind type schemes for the aggregation equation with pointy potential”, Ann. H. Lebesgue 3 (2020), p. 217-260 | DOI | Numdam | Zbl
[15] - “Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms”, J. Math. Biol. 51 (2005) no. 6, p. 595-615 | DOI | Zbl
[16] - “Relaxation limit of the aggregation equation with pointy potential”, Axioms 10 (2021) no. 2, p. 108 | DOI
[17] - Differential equations with discontinuous righthand sides, Math. and its Appl. (Soviet Series), vol. 18, Kluwer Academic Publishers Group, Dordrecht, 1988 | DOI
[18] - “POT: Python Optimal Transport”, J. Mach. Learn. Res. 22 (2021) no. 78, p. 1-8
[19] - “Ulteriori proprietà di alcune classi di funzioni in più variabili”, Ricerche Mat. 8 (1959), p. 24-51 | Zbl
[20] - “Chemotaxis: from kinetic equations to aggregate dynamics”, NoDEA Nonlinear Differential Equations Appl. 20 (2013) no. 1, p. 101-127 | DOI | Zbl
[21] - “Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations”, Discrete Contin. Dynam. Systems. Ser. A 36 (2016) no. 3, p. 1355-1382
[22] - “One-dimensional aggregation equation after blow up: existence, uniqueness and numerical simulation”, Netw. Heterog. Media 11 (2016) no. 1, p. 163-180 | DOI | Zbl
[23] - “Uniqueness and characterization of local minimizers for the interaction energy with mildly repulsive potentials”, Calc. Var. Partial Differential Equations 60 (2021) no. 1, article ID 15, 17 pages | DOI
[24] - “Model for chemotaxis”, J. Theoret. Biol. 30 (1971) no. 2, p. 225-234 | DOI | Zbl
[25] - “Traveling bands of chemotactic bacteria: a theoretical analysis”, J. Theoret. Biol. 30 (1971) no. 2, p. 235-248 | DOI
[26] - “Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation”, U.S.S.R. Comput. Math. and Math. Phys. 16 (1976) no. 6, p. 105-119 | DOI
[27] - “Analysis and simulation of nonlinear and nonlocal transport equations”, in Innovative algorithms and analysis, Springer INdAM Ser., vol. 16, Springer, Cham, 2017, p. 265-288 | DOI | Zbl
[28] - Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Math., Cambridge University Press, Cambridge, 2002 | DOI
[29] - “An interacting particle system modelling aggregation behavior: from individuals to populations”, J. Math. Biol. 50 (2005) no. 1, p. 49-66 | DOI | Zbl
[30] - “On elliptic partial differential equations”, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 13 (1959) no. 2, p. 115-162 | Numdam | Zbl
[31] - “Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients”, Comm. Partial Differential Equations 22 (1997) no. 1, p. 225-267 | DOI
[32] - “Nonlocal interaction equations: stationary states and stability analysis”, Differential Integral Equations 25 (2012) no. 5-6, p. 417-440 | Zbl
[33] - Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progress in Nonlinear Differential Equations and their Appl., vol. 87, Birkhäuser/Springer, Cham, 2015 | DOI
[34] - “Dealing with moment measures via entropy and optimal transport”, J. Funct. Anal. 271 (2016) no. 2, p. 418-436 | DOI | Zbl
[35] - “{Euclidean, metric, and Wasserstein} gradient flows: an overview”, Bull. Math. Sci. 7 (2017) no. 1, p. 87-154 | DOI | Zbl
[36] - “Gamma-convergence of gradient flows on Hilbert and metric spaces and applications”, Discrete Contin. Dynam. Systems 31 (2011) no. 4, p. 1427-1451 | DOI | Zbl
[37] - “Error estimates of approximate solutions for nonlinear scalar conservation laws”, in Hyperbolic problems: theory, numerics, applications (H. Freistühler & G. Warnecke, eds.), ISNM International Series of Numerical Math., Birkhäuser, Basel, 2001, p. 873-882
[38] - “Viscosity methods for piecewise smooth solutions to scalar conservation laws”, Math. Comput. 66 (1997) no. 218, p. 495-526 | DOI | Zbl
[39] - “First-order -convergence for relaxation approximations to conservation laws”, Comm. Pure Appl. Math. 51 (1998) no. 8, p. 857-895 | DOI | Zbl
[40] - “Optimal -rate of convergence for the viscosity method and monotone scheme to piecewise constant solutions with shocks”, SIAM J. Math. Anal. 34 (1997) no. 3, p. 959-978 | DOI | Zbl
[41] - “Swarming patterns in a two-dimensional kinematic model for biological groups”, SIAM J. Appl. Math. 65 (2004) no. 1, p. 152-174 | DOI | Zbl
[42] - “A Nonlocal continuum model for biological aggregation”, Bull. Math. Biol. 68 (2006) no. 7, p. 1601-1623 | DOI | Zbl
[43] - Topics in optimal transportation, Graduate Studies in Math., vol. 58, American Mathematical Society, Providence, RI, 2003 | DOI
Cité par Sources :