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VANISHING VISCOSITY LIMIT FOR

AGGREGATION-DIFFUSION EQUATIONS

by Frédéric Lagoutière, Filippo Santambrogio
& Sébastien Tran Tien

Abstract. — This article is devoted to the convergence analysis of the diffusive approximation
of the measure-valued solutions to the so-called aggregation equation, which is now widely used
to model collective motion of a population directed by an interaction potential. We prove, over
the whole space in any dimension, a uniform-in-time convergence in Wasserstein distance in all
finite-time intervals, in the general framework of Lipschitz continuous potentials, and provide
an O(

√
ε) rate, where ε is the diffusion parameter, when the potential is λ-convex. We give an

extension to some repulsive potentials and prove sharp convergence rates of the steady states
towards the Dirac mass, under some uniform attractiveness assumptions.

Résumé (Limite de viscosité évanescente pour des équations d’agrégation-diffusion)
Cet article est consacré à l’analyse de convergence de l’approximation diffusive des solutions

à valeur mesure de l’équation d’agrégation, largement utilisée pour modéliser le mouvement
collectif d’une population dirigée par un potentiel d’interaction. Nous prouvons, dans l’espace
entier en n’importe quelle dimension d’espace, dans le cadre général des potentiels lipschitziens,
la convergence uniforme en temps sur tout intervalle borné, en distance de Wasserstein, et avec
un ordre de convergence 1/2 lorsque le potentiel est λ-convexe. Nous étendons ces résultats à
certains potentiels répulsifs et prouvons des taux de convergence optimaux des états station-
naires vers la masse de Dirac, sous certaines hypothèses d’attractivité uniforme.
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1. Introduction

This paper addresses the vanishing viscosity limit ε → 0 for the following
aggregation-diffusion problem on the whole space Rd, in any dimension d:

∂tρ
ε +∇ · (a[ρε]ρε) = ε∆ρε,(1.1a)

a[ρε] = −∇W ∗ ρε,(1.1b)
ρε(0, ·) = ρε0,(1.1c)

where ε > 0, W : Rd → R is a given interaction potential and the sequence of initial
data (ρε0)ε>0 belongs to P2(Rd) the set of probability measures with finite second
order moment, and converges as ε goes to 0 towards a given ρini ∈ P2(Rd).

Equation (1.1a)–(1.1b) is often used in population dynamics to describe the collec-
tive motion of a population subject to Brownian diffusion and interacting through the
interaction potential W . The term ∇W ∗ ρε(x) models the combined contribution of
the interaction of a particle located at point x with particles at all other points. These
equations appear in several applications arising from physics and biology to model, for
instance, swarming, chemotaxis, crowd motion, bird flocks, or fish schools, see, e.g.,
[29, 6, 42, 41, 15, 20]. The potential W depends on the model we consider. For exam-
ple, the celebrated parabolic-elliptic Patlak-Keller-Segel model [24, 25] for chemotaxis
with an adequate set of parameters corresponds to the aggregation-diffusion equation
in dimension d = 2 for the logarithmic potential W (x) = 1

2π ln(|x|).
In this work, we assume that the interaction potential W satisfies the following

properties:
(A0) For all x ∈ Rd, W (x) =W (−x) and W (0) = 0,
(A1) W ∈ C1(Rd ∖ {0}),
(A2) W is a∞-Lipschitz continuous, for some constant a∞ ⩾ 0 (nevertheless this

assumption is not done in Section 5).
In addition, some of our results only hold under one of the following supplementary
assumptions:

(A3) W is λ-convex for some λ ⩽ 0, that is, x 7→W (x)− (λ/2)|x|2 is convex,
(A4-p) There exists a constant C > 0 such that, for all x ∈ Rd, ∇W (x) ·x ⩾ C|x|p,

where p ⩾ 1.
Potentials satisfying assumptions (A0)–(A1)–(A2)–(A3) but not differentiable at the
origin are often referred to as pointy [11, 14, 27]. These hypothesis exclude the Patlak-
Keller-Segel system from the analysis above, system in which the singularities are
much more complicate to understand (and can appear also for ε > 0).

Remark 1.1. — Note that assumption (A2) is incompatible with assumption (A4-p)
whenever p > 1, thus when the latter is done, it is done instead of (A2). This is the
reason why we only consider λ ⩽ 0 in (A3), since (A3) with λ > 0 implies (A4-2)
(incompatible with (A2)). Still, when studying well-posedness of inviscid aggregation
equations, the case λ > 0 can be tackled considering compactly supported data for,
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Vanishing viscosity limit for aggregation-diffusion equations 1125

in that case, the support decreases in time (see [14, Th. 2.1] and [9, Rem. 2.14]): as a
consequence only the local behavior of W matters. When ε > 0, it is not clear however
that we can reproduce this argument.

When the potential is pointy, finite time blowup of weak solutions occurs [2, 3] for
the inviscid problem:

∂tρ+∇ · (a[ρ]ρ) = 0,(1.2a)
a[ρ] = −∇W ∗ ρ,(1.2b)

ρ(0, ·) = ρini,(1.2c)

After blowup time, the solutions being possibly singular measures, the product a[ρ]ρ
is no longer well-defined. For λ-convex potentials, the continuation of weak solutions
valued in P2(Rd) has therefore been studied through three different approaches: gra-
dient flow solutions in the Wasserstein space [9], duality solutions à la Bouchut-James
[21, 20] in one dimension of space and Filippov solutions [11, 27]. These notions of
solutions turn out to be equivalent to that of solutions in the sense of distributions
provided the velocity field a[ρ] is replaced by:

(1.3) â[ρ](x) = −
∫
y ̸=x

∇W (x− y)ρ(dy) = −∇̂W ∗ ρ(x),

where ∇̂W is defined as

∇̂W (x) =

{
∇W (x) if x ∈ Rd ∖ {0},
0 if x = 0.

Our objective in this paper is to study the convergence of the viscous solutions
(ρε)ε>0 towards such a weak measure solution to (1.2). When W is λ-convex, these
asymptotics had previously been mentioned in [8], where the authors explain how
to use the techniques for the Γ-convergence of gradient flows developed by Serfaty
in [36]. Our method basically relies on the same arguments which actually do not
require the λ-convexity of the potential but only its Lipschitz continuity – along
with the standard assumptions (A0)–(A1) (for other works with potentials that are
Lipschitz continuous but not λ-convex, called repulsive, see for example [32] and
reference therein). Starting from the so-called Energy Dissipation Equality (EDE)
for the viscous problem (1.1), we prove lower bounds of lower semicontinuity-type
on each term of the EDE. This amounts to verifying the assumptions of [36, Th. 2];
if, in addition, the initial data is well-prepared, then we meet all the hypotheses
of this theorem. However, we deliberately pass to the limit by hand, so as not to
invoke abstract gradient flow arguments. Therefore, our proof is self-contained for the
reader with minimal background regarding optimal transport. In particular, in our
Theorem 3.1 we recover, at the limit ε → 0, the right definition of the velocity field
for (1.2) as defined in (1.3).

We generalize this result in Corollary 3.4 to arbitrary P2(Rd) initial data converg-
ing in Wasserstein distance towards the initial datum ρini of the inviscid problem,
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when W is, in addition, λ-convex. This is done by smoothing out the initial data and
estimating the distance to the modified solutions at time t, which is possible since the
interaction energy is λ-geodesically convex. We then provide a convergence rate based
on the differentiation formula of the Wasserstein distance between two absolutely con-
tinuous curves on the Wasserstein space. Note that, for the Newtonian potential, the
vanishing viscosity limit had been established in [12] in dimension d ⩾ 2 and up to
the time of existence of weak solutions in L1 ∩L∞ but, to the best of our knowledge,
without convergence rates.

This article is structured as follows.
– In Section 2 we recall some useful results and definitions regarding optimal trans-

port and functionals defined over the Wasserstein spaces.
– The main results concerning the convergence as ε tends to 0 for the evolutive

equation are contained in Sections 3 and 4.
– In Section 3, in the framework of Lipschitz potentials, we begin with the

general convergence result of the diffusive solutions (ρε)ε>0 towards a solution
ρ to the inviscid problem (1.2) for well-prepared initial data. We then relax
some of our assumptions on the initial data and focus on λ-convex potentials,
for which we prove that convergence still holds for arbitrary initial data (ρε0)ε>0

converging towards ρini.
– We then prove that convergence occurs at rate O(

√
ε) in Wasserstein dis-

tance. This is done with two different methods. The first relies on differentiating
in time the distance W2 between two smooth solutions and exploits the previ-
ously proved unquantified convergence. The second is based on the convergence
estimates of an upwind-type scheme for the inviscid problem due to the first
author with Delarue and Vauchelet [13, 14].

– Later, in Section 4, we show that convergence (without convergence rate)
still holds, up to an extraction, for repulsive potentials that behave like W (x) =

−|x|. The idea is to estimate, as in the λ-convex case, the distance between
solutions associated with smoothed out initial data and solutions associated
with a fixed initial datum ρini. This is done by differentiating the Wasserstein
distance between solutions and proving appropriate estimates on the aggregation
velocity field using an additional integrability assumption on ∇2W .

– Section 5 is devoted to the study of the stationary problem and, in particular,
we provide higher convergence rates for the viscous steady states towards the unique
steady state of the aggregation equation, that is, up to translations, the Dirac mass,
when the interaction potential satisfies the key assumption (A4-1) but is not necessar-
ily Lipschitz continuous. Under assumption (A4-p) for an arbitrary p ⩾ 1, estimates
are also obtained and proved to be sharp for p = 2.

– We eventually illustrate our convergence results in Section 6 and observe all the
proved convergence rates.

Acknowledgements. — The authors are indebted to Benoît Fabrèges for crucial help
with the numerical code.
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2. Preliminaries

2.1. Notations. — We denote by C(Rd) the space of continuous functions from Rd

to R, and by C0(Rd) (resp. Cb(Rd), Cc(Rd)) the subspace of continuous functions
vanishing at ∞ (resp. of bounded continuous functions, of continuous and compactly
supported functions). We also denote by Mb(Rd) the space of Borel signed measures
with finite total variation, equipped with the weak topology σ(Mb(Rd),C0(Rd)). For
a sequence (ρn)n∈N ∈ Mb(Rd)N and ρ ∈ Mb(Rd), we denote the weak convergence of
(ρn)n∈N towards ρ by ρn ∗−−⇀

n→∞
ρ.

For ρ ∈ Mb(Rd) and r ∈ [0,+∞), we also denote by Mr(ρ) the r-th moment of ρ,
given by Mr(ρ) =

∫
Rd |x|rρ(dx), where | · | is the Euclidean norm. For ρ ∈ Mb(Rd)

and Z a measurable map, we denote by Z#ρ the pushforward measure of ρ by Z,
which satisfies, for any φ ∈ Cb(Rd),∫

φ(x)Z#ρ(dx) =

∫
φ(Z(x)) ρ(dx).

Note that, in the above equality as in the whole article, whenever the integration
domain is not specified, the integrals are considered over the whole space (which
is Rd here). If µ ∈ Mb(Rd) is a positive measure, we also note ρ ≪ µ whenever ρ is
absolutely continuous with respect to µ.

We call P(Rd) the subset of Mb(Rd) of probability measures and we denote, for
p ∈ [1,+∞), Pp(Rd) :=

{
ρ ∈ P(Rd), Mp(ρ) < +∞

}
. For µ, ν ∈ Pp(Rd), we define the

Wasserstein distance of order p between µ and ν by (see [1, 33, 43]):

(2.1) Wp(µ, ν) := inf
γ∈Γ(µ,ν)

{∫∫
|x− y|p γ(dx, dy)

}1/p

,

where Γ(µ, ν) is the set of measures on Rd × Rd with marginals µ and ν, i.e.,

Γ(µ, ν) =
{
γ ∈ Pp(Rd × Rd); ∀ ξ ∈ C0(Rd),

∫
ξ(x)γ(dx, dy) =

∫
ξ(x)µ(dx),∫

ξ(y)γ(dx, dy) =
∫
ξ(y)ν(dy)

}
.

Any measure that realizes the minimum in the definition (2.1) of Wp is called an
optimal plan, and the set of optimal plans is denoted by Γ0(µ, ν). The space Pp(Rd)

equipped with the distance Wp is called Wasserstein space of order p and denoted
Wp(Rd).

We recall that the Wasserstein distance Wp metrizes the weak convergence of mea-
sures in the sense that, for (ρn)n∈N ∈ Pp(Rd)N and ρ ∈ Pp(Rd), Wp(ρn, ρ) −→

n→+∞
0 if

and only if ρn ∗−−⇀
n→+∞

ρ and Mp(ρn) −→
n→+∞

Mp(ρ) (see [43, Th. 7.12]).
We shall also denote the conjugate exponent of p by p′ ∈ [1,+∞] defined by

1/p+1/p′ = 1, with the usual convention 1′ = +∞ and ∞′ = 1. For α ∈ R, the positive
and negative part of α are denoted by α+ := max(0, α) and α− := max(0,−α). With
that convention, both α+ and α− are always nonnegative.

Throughout this paper, we will use the same notation C to denote any positive
constant.
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2.2. Curves and functionals over the Wasserstein space. — Let p ∈ [1,+∞) and
T > 0. We call curve on the metric space Wp(Rd) any continuous function ρ ∈
C([0, T ],Wp(Rd)). We say that ρ is an absolutely continuous curve if there exists
b ∈ L1([0, T ]) such that Wp(ρs, ρt) ⩽

∫ t

s
b(τ)dτ for every 0 ⩽ s < t ⩽ T , and

we denote AC([0, T ],Wp(Rd)) the set of absolutely continuous curves on Wp(Rd).
We also define for t ∈ [0, T ], the metric derivative of ρ at time t as:

|ρ′t| := lim
h→0

Wp(ρt+h, ρt)

h
.

If ρ is a Lipschitz curve on Wp(Rd), then the above limit exists for a.e. t ∈ [0, T ].
Now, up to a reparametrization in time, any absolutely continuous curve can become
Lipschitz continuous and therefore admits a metric derivative for almost every time.

The fundamental property of absolutely continuous curves in Wp(Rd) is the link
with a continuity equation:

Theorem 2.1 ([1, Th. 8.3.1]). — Let p∈(1,+∞) and T >0. Let ρ∈AC([0, T ],Wp(Rd)).
Then, for a.e. t ∈ [0, T ] there exists a vector field vt ∈ Lp(ρt,Rd) such that:

– the continuity equation ∂tρ+∇· (ρv) = 0 is satisfied in the sense of distributions
– for a.e. t ∈ [0, T ], ∥vt∥Lp(ρt) ⩽ |ρ′t|.

Conversely, if we take a curve ρ ∈ C([0, T ],Wp(Rd)) such that, for each t ∈ [0, T ], there
exists a vector field vt ∈ Lp(ρt,Rd) with

∫ T

0
∥vt∥Lp(ρt)dt < +∞ solving the continuity

equation ∂tρ+∇·ρv = 0, then ρ ∈ AC([0, T ],Wp(Rd)) and for a.e. t ∈ [0, T ], we have
|ρ′t| ⩽ ∥vt∥Lp(ρt).

As a consequence, the velocity field v introduced in the first part of the statement
actually satisfies ∥vt∥Lp(ρt) = |ρ′t| for a.e. t ∈ [0, T ].

We now recall the definition of the first variation of a functional defined over
probability measures.

Definition 2.2. — Let F : P(Rd) −→ R ∪ {+∞}. Assume that ρ ∈ P(Rd) is such
that:

∀δ ∈ [0, 1], ∀µ ∈ P(Rd) ∩ L∞
c (Rd), F ((1− δ)ρ+ δµ) < +∞,

then we call first variation of F at ρ, denoted (δF/δρ)(ρ), any measurable function g
such that:

dF (ρ+ δχ)

dδ

∣∣∣
δ=0

=

∫
gdχ,

whenever χ = µ − ρ for some µ ∈ P(Rd) ∩ L∞
c (Rd), where L∞

c (Rd) denotes the set
of compactly supported functions in L∞(Rd). If it exists, the first variation is defined
up to an additive constant.
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We now introduce two functionals that are essential to our study, the interaction
energy W and the entropy U, defined on P(Rd) by:

W(ρ) =
1

2

∫∫
W (x− y)ρ(dx)ρ(dy),

U(ρ) =

{∫
ρ ln(ρ) if ρ≪ Leb,

+∞ otherwise,

where Leb is the Lebesgue measure on Rd. Note that, under assumption (A2), the
interaction energy W(ρ) is finite whenever ρ ∈ P1(Rd). For ε ⩾ 0, we shall also define
the energy functional as F ε = W+ εU. One can easily show that (δW/δρ)(ρ) =W ∗ρ
and (δU/δρ)(ρ) = ln ρ+ 1.

A key point in our proofs will be the lower semicontinuity (l.s.c) of the above
functionals so that minimization arguments apply.

Lemma 2.3
(1) If W is l.s.c. on Rd and bounded from below, then the interaction energy W is

l.s.c. for the weak convergence.
(2) If W is Lipschitz continuous, then the interaction energy W is Lipschitz con-

tinuous for the W1 distance.

Proof. — The first claim is contained in [33, Prop. 7.2].
For the second claim, we will prove

|W(ρ)−W(µ)| ⩽ Lip(W )W1(ρ, µ).

Indeed, we can write W(ρ) = 1
2

∫
(W ∗ ρ)dρ, so that we have

W(ρ)−W(µ) =
1

2

∫
(W ∗ ρ)d(ρ− µ) +

1

2

∫
(W ∗ (µ− ρ))dµ.

We then use ∣∣∣∣∫ (W ∗ ρ)d(ρ− µ)

∣∣∣∣ ⩽ Lip(W ∗ ρ)W1(ρ, µ)

together with Lip(W ∗ ρ) ⩽ Lip(W ), and

|(W ∗ (µ− ρ))(x)| =
∣∣∣∣∫ W (x− y)(ρ− µ)(dy)

∣∣∣∣ ⩽ Lip(W (x− ·))W1(ρ, µ)

together with Lip(W (x− ·)) = Lip(W ). □

The following lemma is proved in [34, Prop. 2.1]. Recall that Mp(ρ) is the p-th
moment of ρ.

Lemma 2.4. — There exists a constant C only depending on d such that the entropy
functional U satisfies U(ρ) ⩾ −C(M1(ρ)

1/2 + 1). Moreover, if (ρn)n ∈ P(Rd) is a
sequence weakly converging towards some ρ ∈ P(Rd) such that M1(ρn) is bounded,
then we have U(ρ) ⩽ lim infn→+∞ U(ρn).

In particular, this means that the entropy is l.s.c. for the Wq distance for all q ⩾ 1.
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In order to obtain convergence of the moments of a weakly converging sequence
of probability measures, we will often make use of the following lemma, which is a
particular case of [1, Prop. 7.1.5], since our assumption implies uniform integrability
of the p-moment:

Lemma 2.5. — Let 1 ⩽ p < +∞ and (ρn)n∈N be a sequence of probability measures in
Pp(Rd). Assume that, for some constant C > 0, we have for all n ∈ N, Mp(ρn) ⩽ C.
Then, there exist a subsequence of (ρn)n∈N converging towards some ρ ∈ Pp(Rd) in Wq

distance for all q ∈ [1, p).

We finally define one last functional that will be useful in our proofs. Let p ∈
(1,+∞). We set Kp =

{
(a, b) ∈ R×Rd | a+(1/p′)|b|p′

⩽ 0
}

and, for (t, x) ∈ R+×Rd,

fp(t, x) =


1

p

|x|p

tp−1
if t > 0,

0 if t = 0, x = 0,

+∞ if t = 0, x ̸= 0.

Then, for X a measurable space and for (ρ,E) ∈ Mb(X) × Mb(X)d, we define the
p-Benamou-Brenier functional by:

Bp(ρ,E) = sup

{∫
adρ+

∫
b · dE ; (a, b) ∈ Cb(X,Kp)

}
.

The Benamou-Brenier functional satisfies the following properties (see [33, Prop. 5.18]):

Lemma 2.6
(i) Bp is convex and l.s.c. on P(X)×M(X)d for the weak convergence,
(ii) If ρ and E are absolutely continuous with respect to a positive measure µ, then

Bp(ρ,E) =
∫
fp(ρ,E)dµ,

(iii) Bp(ρ,E) < +∞ only if E ≪ ρ,
(iv) In that case, if we denote by v the density of E with respect to ρ, that is

E = ρv, then Bp(ρ,E) =
∫
(|v|p/p)dρ.

We also have the following symmetrization lemma, which we will repeatedly use
for V = ∇W :

Lemma 2.7. — Let V be a bounded odd vector field on Rd, ρ ∈ P(Rd) and v a vector
field on Rd such that v · (V ∗ ρ) is integrable with respect to ρ. Then, one has:∫

v(x) · (V ∗ ρ)(x)ρ(dx) = 1

2

∫∫
V (x− y) · (v(x)− v(y))ρ(dx)ρ(dy).

Proof. — Using the fact that V is odd, we can write thanks to the change of variables
x↔ y: ∫∫

V (x− y) · v(x)ρ(dx)ρ(dy) = −
∫∫

V (x− y) · v(y)ρ(dx)ρ(dy).
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Vanishing viscosity limit for aggregation-diffusion equations 1131

Therefore, taking the half sum of the two quantities above:∫
v(x) · (V ∗ ρ)(x)ρ(dx) =

∫∫
V (x− y) · v(x)ρ(dx)ρ(dy)

=
1

2

(∫∫
V (x− y) · v(x)ρ(dx)ρ(dy)−

∫∫
V (x− y) · v(y)ρ(dx)ρ(dy)

)
=

1

2

∫∫
V (x− y) · (v(x)− v(y))ρ(dx)ρ(dy). □

We finish with a computation of the derivative of W along a curve satisfying a
continuity equation:

Lemma 2.8. — Let ρ be a curve on P(Rd) that solves in the weak sense ∂tρ+∇·ρv = 0

with vt ∈ L2(ρt) for a.e. t ∈ [0, T ] and
∫ T

0
∥vt∥2L2(ρt)

dt < +∞. Then:

∀t ∈ [0, T ], W(ρt)−W(ρ0) =

∫ t

0

∫
(∇̂W ∗ ρs) · vsdρs.

Proof. — Let (W δ)δ>0 be an approximation of W such that W δ ∈ C1(Rd), W δ −→
δ→0

W

uniformly on Rd, W δ is even, ∇W δ is bounded by a∞, and ∇W δ −→
δ→0

∇W pointwise
on Rd ∖ {0}.

We necessarily have ∇W δ(0) = 0 for all δ > 0 and therefore ∇W δ −→
δ→0

∇̂W
pointwise on Rd. On the other hand, for δ > 0, since W δ ∈ C1(Rd) and W δ is even,
we have, for t ∈ [0, T ]:

(2.2) 1

2

∫∫
W δ(x− y)ρt(dx)ρt(dy)−

1

2

∫∫
W δ(x− y)ρ0(dx)ρ0(dy)

=

∫ t

0

∫∫
∇W δ(x− y) · vs(x)ρs(dx)ρs(dy)ds.

Now, we can bound the integrand on the right-hand side writing |∇W δ(x−y)·vs(x)| ⩽
a∞|vs|. Noting that we have∫ t

0

∫∫
|vs(x)|ρs(dx)ρs(dy)ds =

∫ t

0

∥vs∥L1(ρs)ds ⩽
√
T
(∫ T

0

∥vs∥2L2(ρs)
ds
)1/2

< +∞,

we can then use Lebesgue’s dominated convergence theorem with respect to the mea-
sure ρs(dx)ρs(dy)ds to get that the right-hand side in equation (2.2) converges to∫ t

0

∫∫
∇̂W (x− y) · vs(x)ρs(dx)ρs(dy)ds,

which is equal to ∫ t

0

∫
(∇̂W ∗ ρs) · vsdρs.

The uniform convergence of W δ towards W ensures convergence of the left-hand side,
which concludes the proof. □
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2.3. Preliminary results. — We recall the following result of existence of a charac-
teristic flow and well-posedness of measure-valued solutions to (1.2):

Theorem 2.9 ([9, Th. 2.12 & 2.13], [11, Th. 2.5 & 2.9]). — Assume W satisfies hypo-
theses (A0)–(A1)–(A2)–(A3) and let ρini be given in P2(Rd). Then, there exists a
unique solution ρ ∈ C([0,+∞),W2(Rd)) satisfying, in the sense of distributions, the
aggregation problem (1.2) where a[ρ] is replaced by â[ρ] as defined in (1.3).

This solution may be represented as the family of pushforward measures (ρt :=

Zρ(t, ·)#ρini)t⩾0 where (Zρ(t, ·))t⩾0 is the unique Filippov characteristic flow asso-
ciated with the one-sided Lipschitz velocity field â[ρ]. Besides, if ρ and µ are the
respective solutions to (1.2) with ρini and µini as initial conditions in P2(Rd), then,
for all t ⩾ 0,

(2.3) W2(ρt, µt) ⩽ e−λtW2(ρ
ini, µini).

In [10], Carrillo, Gómez-Castro, Yao and Zeng proved the following well-posedness
and regularity Theorem for aggregation-diffusion equations with Lipschitz symmetric
potentials. They prove existence and uniqueness through a fixed-point argument and
regularity applying a bootstrap argument in adequate fractional Sobolev spaces. The
solutions they define are mild solutions, which are stronger than our definition of
solutions, which is in the sense of distributions. We recall the definition of the heat
kernel used in the mild formulation:

Gt(x) =
1

(4πt)d/2
e−|x|2/4t.

Theorem 2.10 ([10, Th. 1.1, 2.1 & 2.2]). — Assume that W satisfies assumptions
(A0)–(A1)–(A2). Let ε > 0 and ρε0 ∈ P(Rd).

(1) For all T > 0, there exists a unique solution ρε ∈ C([0, T ],P(Rd)) to the
aggregation-diffusion problem (1.1) in the sense that:

∀t ∈ [0, T ], ρεt = Gεt ∗ ρε0 +
∫ t

0

(
∇Gε(t−s)

)
∗
(
(∇W ∗ ρεs)ρεs

)
ds.

(2) This solution is actually a classical solution that belongs, for all T > 0, to
C((0, T ],W k,p(Rd)) for all k ∈ N and p ∈ [1,+∞] in the general case, and to
C([0, T ],W s,p(Rd)) for all s ⩾ 0 and p ∈ [1,+∞] if we assume that ρε0 ∈W s,p(Rd).

Remark 2.11. — In [10], the authors state the second item of the above Theorem
under the assumption that W ∈ W1,∞(Rd) and assuming that the initial datum
belongs to L1

+(Rd) with total unit mass instead of P(Rd). It seems to us that W ∈ L∞

is only required to obtain sharp decay of the energy functional and that the L1

assumption on ρε0 is only useful to simplify the notations.

In the above theorem, we actually have ρε ∈ C([0,+∞[,W2(Rd)). Indeed, as we
will see in the proof of our Theorem 3.1 (see equation (3.6)), 1

2 -Hölder continuity in
time follows automatically from a uniform bound with respect to t ∈ [0, T ] on M2(ρ

ε
t ).
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This in turn comes from the following computations, where we use, first, integration
by parts, and, second, the symmetrization Lemma 2.7:

d

dt
M2(ρ

ε
t ) =

∫
|x|2∂tρεt =

∫
|x|2∇ ·

(
(∇W ∗ ρεt )ρεt

)
+ ε

∫
|x|2∆ρεt

= −2

∫
x · (∇W ∗ ρεt )dρεt + 2εd,

−2

∫
x · (∇W ∗ ρεt )dρεt = −

∫∫
∇W (x− y) · (x− y)ρεt (dx)ρ

ε
t (dy) ⩽ 2a∞M1(ρ

ε
t )

⩽ 2a∞
√
M2(ρεt ).

We thus get d
dtM2(ρ

ε
t ) ⩽ 2a∞

√
M2(ρεt )+2εd which implies, using a nonlinear Grönwall

lemma, that M2(ρ
ε
t ) is bounded over a finite horizon.

We finish by mentioning the special case of the dimension d = 1, with potentials
of the form W (x) = a|x| for a ∈ R ∖ {0}, for which the vanishing viscosity limit can
be obtained using the correspondence with Burgers’ equation. Indeed, let us set, for
ε ⩾ 0, uε(t, x) = a

(
1 − 2fε(t)

)
, where fε(t) is the cumulative distribution function

of ρεt . One can show that ρε solves (1.1a) if and only if uε solves the viscous Burgers
equation:

(2.4) ∂tu
ε + ∂x

(uε)2

2
= ε∂xxu

ε,

and, similarly, ρ solves the aggregation equation (1.2a) with the correct velocity field
â[ρ] if and only if u solves Burgers’ equation (see [5, 16, 22]). Using the fact that,
in dimension d = 1, we have the representation W1(ρ

ε
t , ρt) = ∥fε(t) − f(t)∥L1(R)

and combining with Kuznetsov’s estimate hereafter for the viscous Burgers equation
(see [26]):

∥uε(t)− u(t)∥L1(R) ⩽ CTV(u0)
√
εt,

where TV denotes the total variation and C is a positive constant, we deduce the
following proposition:

Proposition 2.12. — Assume d = 1 and W (x) = a|x| for some constant a ∈ R∖{0}.
Let ρini ∈ P2(R), set ρε0 = ρini for all ε > 0 and let (ρε)ε>0 be the sequence of weak
solutions to (1.1).

Then, for all T > 0, (ρε)ε>0 converges in W1 distance and uniformly on [0, T ],
towards a solution ρ ∈ C([0, T ],W2(R)) to (1.2) with the velocity field a[ρ] being
replaced by â[ρ] as defined in (1.3). More precisely, we have:

∀t ∈ [0, T ], W1(ρ
ε
t , ρt) ⩽ C

√
εt,

where the constant C > 0 depends on a∞ only.

In the case of one initial Dirac mass ρini = δ0, one can even obtain convergence
of ρε towards ρ at order 1 with respect to ε using simple scaling arguments. The
initial data to the Burgers problem is uini = 1 − 2H0(x), and the solution to the
inviscid Burgers problem is stationary, given by u(t) = uini. One can also show that
there exists a stationary solution to equation (2.4) of the form vε(t, x) = V (x/ε),
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with V (−∞) = 1, V (+∞) = −1 and V ′(±∞ = 0). We then have using a contraction
property of the viscous Burgers equation and the stationarity of vε and u:

∥uε(t)− u(t)∥L1 ⩽ ∥uε(t)− vε(t)∥L1︸ ︷︷ ︸
⩽∥uini−vε(0)∥L1

+ ∥vε(t)− u(t)∥L1︸ ︷︷ ︸
=∥vε(0)−uini∥L1

⩽ 2

∫ ∣∣uini(x/ε)− V (x/ε)
∣∣dx ⩽ 2ε

∫ ∣∣uini − V
∣∣,

which gives W1(ρ
ε
t , ρt) ⩽ Cε with C > 0 independent of time. This result can be

extended to the case of a finite sum of Dirac masses as initial datum, using the
arguments of Teng and Zhang [40] to compare shocks with traveling waves. We also
refer to [37, 38, 39] for generalizations of this result.

3. O(ε1/2) convergence rate when the W is λ-convex

In this section, we assume that W satisfies assumptions (A0)–(A1)–(A2)–(A3).

3.1. Method 1: computing d
dtW

2
2 (ρ

ε
t , ρt). — So as to make integration by parts rigor-

ous, we actually compute d
dtW

2
2 (ρ

ε
t , ρ

δ
t ) for ε, δ > 0 so that ρε and ρδ are regular (see

Theorem 2.10), and then we let δ → 0. We therefore need to know that ρδt converges
in the sense of measures towards ρt.

3.1.1. Convergence in C([0, T ],W1(Rd)) without convergence rate. — Let T > 0 and let
ρε ∈ C([0, T ],W2(Rd)) be the solution to the aggregation-diffusion problem (1.1) on
[0, T ]×Rd, as given by Theorem 2.10. Let us denote vε = −∇W ∗ρε−ε∇ρε/ρε so that
the continuity equation ∂tρ

ε +∇ · ρεvε = 0 is satisfied in the sense of distributions.
We formally have, by definition of the first variation and then by integration by parts:

(3.1) d

dt
F ε(ρεt ) =

∫
δF ε

δρ
(ρεt )∂tρ

ε
t =

∫
∇δF ε

δρ
(ρεt ) · vεt dρεt = −

∫ ∣∣∣∇δF ε

δρ
(ρεt )

∣∣∣2dρεt ,
where, in the last equality, we used the identity (δF ε/δρ)(ρ) =W ∗ ρ+ ε(ln ρ+ 1) to
deduce that vεt is nothing else than −∇(δF ε/δρ)(ρεt ). Proving rigorously (3.1) can be
made using an easy adaptation of Lemma 2.8. Integrating (3.1) over time then yields:

∀t ∈ [0, T ], F ε(ρε0) = F ε(ρεt ) +

∫ t

0

∫ ∣∣∣∇δF ε

δρ
(ρεs)

∣∣∣2dρεsds.
Let us only use this equality as an inequality as it will turn out sufficient for passing
to the limit, and let us write |∇(δF ε/δρ)(ρεs)|2 as the half-sum

1

2

(
|vεs |2 +

∣∣∣∇δF ε

δρ
(ρεs)

∣∣∣2)
so as to recover a link between the velocity v and the functional F at the limit ε→ 0.
This way, we recover the so-called energy dissipation equality (EDE, that we use as
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an inequality in our paper):

(3.2) ∀t ∈ [0, T ], F ε(ρε0) ⩾ F ε(ρεt ) +
1

2

∫ t

0

∫
|vεs |2dρεsds

+
1

2

∫ t

0

∫ ∣∣∣∇δF ε

δρ
(ρεs)

∣∣∣2dρεsds.
Showing a sort of lower semicontinuity, when ε → 0, of each term in (3.2), we will
prove that up to successive extractions, (ρε)ε>0 converges towards a measure ρ that
satisfies a continuity equation and an EDE. Combining both, we will prove that ρ
solves the aggregation problem (1.2). In case the solution to such a Cauchy problem
is unique, the whole sequence (ρε)ε>0 converges towards ρ. This method does not
require the λ-convexity but only the Lipschitz continuity of the potential W .

Theorem 3.1. — Assume W satisfies assumptions (A0)–(A1)–(A2). Let ρini ∈
P2(Rd), and let (ρε)ε>0 be a sequence of weak solutions to (1.1).

Assume that the sequence of initial data (ρε0)ε>0 satisfies the following assumptions:

lim sup
ε→0

F ε(ρε0) ⩽ F (ρini),(3.3a)

lim
ε→0

W2(ρ
ε
0, ρ

ini) = 0.(3.3b)

Then, for all T > 0, (ρε)ε>0 converges up to a subsequence, in W1 distance and
uniformly on [0, T ], towards a solution ρ ∈ C([0, T ],W2(Rd)) to (1.2) with the velocity
field a[ρ] being replaced by â[ρ] as defined in (1.3):

sup
t∈[0,T ]

W1(ρ
ε
t , ρt) −→

ε→0
0.

If the solution to (1.2) is unique, then the whole sequence (ρε)ε>0 converges towards ρ.

Remark 3.2. — Note that assumptions (3.3) are automatically satisfied if the entropy
U(ρε0) is uniformly bounded with respect to ε > 0. In case we take ρε0 = ρini, this
corresponds to ρini having finite entropy.

The following lemma shows that it is possible to construct such a sequence of initial
data:

Lemma 3.3. — Recall that ρini is given in P2(Rd). For all p ⩾ 1 such that ρini ∈ Pp(Rd)

and for all α ∈ (−1, 0), there exists a sequence (µε
0)ε>0 in Pp(Rd) satisfying:

lim inf
ε→0

F ε(µε
0) ⩽ F (ρini),(3.4a)

Wp(µ
ε
0, ρ

ini) ⩽ Ce−εα ,(3.4b)

where the constant C > 0 depends on p but not on ε.

Proof. — Let α ∈ (−1, 0) and let p ⩾ 1 such that ρini ∈ Pp(Rd). Let (rε)ε>0 be a
sequence of positive real numbers to be specified later in the proof. Let η ∈ L1(Rd)

be a nonnegative function supported on B(0, 1), with unit total mass, such that η ln η

J.É.P. — M., 2024, tome 11



1136 F. Lagoutière, F. Santambrogio & S. Tran Tien

and |x|pη(x) are integrable on Rd. We then set ηε(x) = r−d
ε η(x/rε) and µε

0 = ηε ∗ρini.
Because of the compact support of η we have

Mp(η
ε ∗ ρini) ⩽ C(Mp(ρ

ini) +Mp(η
ε)) ⩽ C,

so that, in particular, µε
0 ∈ Pp(Rd) for all ε > 0.

Firstly, let us choose rε so that εU(ηε) goes to 0 as ε→ 0. Since ηε ≪ Leb, we have
U(ηε) =

∫
ηε ln ηε. Therefore, using the change of variables x = rεy, one has:

U(ηε) = r−d
ε

∫
η(x/rε) ln

(
r−d
ε η(x/rε)

)
dx

=

∫
η(y) ln

(
r−d
ε η(y)

)
dy =

∫
η(y) ln η(y)dy − d ln rε.

Based on the above computation, we choose rε = e−hε/ε for some positive sequence
(hε)ε>0 such that limε→0 hε = 0. More precisely, we set hε = εα+1, that is rε = e−εα .

Now, using the convexity and the invariance under translation of U, we have
U(ηε ∗ ρini) ⩽ U(ηε), and therefore F ε(µε

0) ⩽ W(µε
0) + εU(ηε). Since W is continu-

ous on W1(Rd) thanks to Lemma 2.3, we just need the convergence µε
0 → ρini in

W1(Rd) in order to have W(µε
0) → W(ρini) and hence

lim
ε→0

W(µε
0) + εU(ηε) = W(ρini) = F (ρini).

Then, (3.4a) will immediately follow.
We now use

W p
p (µ

ε
0, ρ

ini) =W p
p (η

ε ∗ ρini, δ0 ∗ ρini) ⩽W p
p (η

ε, δ0) =Mp(η
ε) −→ 0,

where the last limit is justified by Mp(η
ε) = rpεMp(η) = Ce−pεα . This proves (3.4b)

since α < 0, and in turn (3.4a). □

Relaxing assumption (3.3a) can only be done under additional assumptions on
the potential. In the case W satisfies assumption (A3), replacing the original initial
data ρε0 by a smoothed out initial data µε

0 that verifies assumptions (3.3) and using
the λ-convexity of the potential to estimate the distance between ρε and the new se-
quence of viscous solutions µε, we obtain as a byproduct of Theorem 3.1 the following
corollary:

Corollary 3.4. — Assume W satisfies assumptions (A0)–(A1)–(A2)–(A3). Let ρini ∈
P2(Rd), and let (ρε)ε>0 be the sequence of weak solutions to (1.1). Assume that the
sequence of initial data (ρε0)ε>0 converges in W2(Rd) to ρini as ε→ 0.

Then, for all T > 0, the whole sequence (ρε)ε>0 converges in W1 distance, uniformly
on [0, T ], towards the unique solution ρ ∈ C([0, T ],W2(Rd)) of (1.2) with the velocity
field a[ρ] being replaced with â[ρ] as defined in (1.3): supt∈[0,T ]W1(ρ

ε
t , ρt) → 0.

Proof of Theorem 3.1. — First of all, let us extract from (ρε)ε>0 a converging subse-
quence. For ε > 0, recall that the continuity equation ∂tρε +∇ · ρεvε = 0 is satisfied.
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Moreover, let us rewrite equation (3.2) using the identity

∇δF ε

δρ
(ρ) = ∇W ∗ ρ+ ε

∇ρ
ρ

and split it into three terms:

(3.5)

∀t ∈ [0, T ], F ε(ρε0) ⩾ F ε(ρεt ) +
1

2

∫ t

0

∫
|vεs |2dρεsds

+
1

2

∫ t

0

∫ ∣∣∣∇W ∗ ρεs + ε
∇ρεs
ρεs

∣∣∣2dρεsds
= Dε

1 +Dε
2 +Dε

3,

where Dε
1, Dε

2, Dε
3 are the 3 terms in the above right-hand side, in the same order. Note

that, ifM2(ρ
ε
t ) is uniformly bounded, thenDε

1 is uniformly bounded from below thanks
to the estimate in Lemma 2.4. In that case, using the fact that Dε

3 is nonnegative and
the fact that F ε(ρε0) is bounded from above thanks to assumption (3.3a) on the initial
data, we can deduce that

∫ T

0

∫
|vεs |2dρεsds ⩽ C for some constant C > 0 independent

of ε and t. In particular, for all t ∈ [0, T ], vεt ∈ L2(ρεt ) and
∫ T

0

∫
|vεs |2dρεsds < +∞.

Using Theorem 2.1, we obtain that ρε ∈ AC([0, T ],W2(Rd)) and that its metric
derivative exists and is bounded by the L2 norm of vεs : |(ρε)′s| ⩽ ∥vεs∥L2(ρε

s)
for all

s ∈ [0, T ]. We deduce the following bound, that is uniform with respect to ε, by
integration over time: ∫ T

0

|(ρε)′s|2ds ⩽ C.

Then, using a Cauchy-Schwarz inequality, we get:

(3.6)
∀0 ⩽ s ⩽ t ⩽ T, W2(ρ

ε
t , ρ

ε
s) ⩽

∫ t

s

|(ρε)′τ |dτ

⩽

(∫ t

s

|(ρε)′τ |2dτ
)1/2√

t− s ⩽
√
C(t− s),

which gives equicontinuity of (ρε)ε>0 in W2 distance (and therefore in W1 distance).
If we still assume that M2(ρ

ε
t ) is uniformly bounded, then the set {ρεt , ε > 0} is

relatively compact in W1(Rd) in virtue of Lemma 2.5. We can therefore apply Ascoli-
Arzelà theorem in the space C([0, T ],W1(Rd)) to extract from (ρε)ε>0 a subsequence
converging in W1(Rd), uniformly in t ∈ [0, T ], towards some ρ ∈ C([0, T ],W1(Rd)).
We still denote this subsequence (ρε)ε>0. Moreover, the l.s.c. of the W2 distance along
with the weak convergence ρεt

∗−−⇀
ε→0

ρt for all t ∈ [0, T ] allows to pass to the lim infε→0

in (3.6) to show that ρ ∈ C([0, T ],W2(Rd)). The limit ρ is actually 1/2-Hölder in time
and satisfies the same estimate as ρε:

∀0 ⩽ s ⩽ t ⩽ T, W2(ρt, ρs) ⩽
√
C(t− s).
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Let us come back to the boundedness of M2(ρ
ε
t ). This bound can actually be obtained

from inequality (3.5). Indeed, from (3.5) and assumption (3.3a), we get, since Dε
3 ⩾ 0:

(3.7) F ε(ρεt ) +
1

2

∫ t

0

∫
|vεs |2dρεsds ⩽ C.

Let us show that the second term controls M2(ρ
ε
t ) if t ∈ [0, T ]. Differentiating M2(ρ

ε
t )

in time and integrating by parts, we have:

d

dt
M2(ρ

ε
t ) = 2

∫
x · vεt (x)ρεt (dx) ⩽ 2M2(ρ

ε
t )

1/2

(∫
|vεt |2dρεt

)1/2

,

using Cauchy-Schwarz inequality. Applying a Grönwall lemma, this implies, for all
t ∈ [0, T ],

M2(ρ
ε
t )

1/2 ⩽M2(ρ
ε
0)

1/2 +

∫ t

0

(∫
|vεs |2dρεs

)1/2

ds

⩽M2(ρ
ε
0)

1/2 +
√
T

(∫ t

0

∫
|vεs |2dρεsds

)1/2

,

where we used Jensen’s inequality with respect to the measure ds/t. Finally, we get:∫ t

0

∫
|vεs |2dρεs ⩾

1

T

(
M2(ρ

ε
t )−M2(ρ

ε
0)
)
.

Plugging this inequality into (3.7) and using the estimate in Lemma 2.4 one obtains:

−a∞M2(ρ
ε
t )

1/2 − ε(M2(ρ
ε
t )

1/4 + C) +
1

2T

(
M2(ρ

ε
t )−M2(ρ

ε
0)
)
⩽ C,

which provides a uniform bound on M2(ρ
ε
t ) for t ∈ [0, T ].

The point is now, for every t ∈ [0, T ], to show l.s.c. of each term Dε
i , i = 1, 2, 3,

with respect to the W1 convergence of (ρεt )ε>0 towards ρt that we just proved.

Dealing with Dε
1 = F ε(ρεt ). — Using Lemma 2.3, we see that the W1-convergence

of (ρεt )ε>0 towards ρt ensures that limε→0 W(ρεt ) = W(ρt). Besides, thanks to
Lemma 2.4, we have for the entropy lim infε→0 U(ρ

ε
t ) ⩾ U(ρt), and we deduce in turn

lim infε→0 εU(ρ
ε
t ) ⩾ 0. Therefore:

lim inf
ε→0

F ε(ρεt ) ⩾ F (ρt).

Dealing with Dε
2 = 1

2

∫ t

0

∫
|vεs |2dρεsds. — For ε > 0, letting Eε = ρεvε, a Cauchy-

Schwarz inequality shows that the total variation of Eε is uniformly bounded with
respect to ε > 0:

|Eε|([0, t]× Rd) =

∫ t

0

∫
|vεs |dρεsds ⩽

√
t

(∫ t

0

∫
|vεs |2dρεsds

)1/2

⩽
√
CT,

Thus, up to another extraction, we can assume that

Eε ∗
−−⇀
ε→0

E
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for some E ∈ Mb([0, t] × Rd)d. Now, since ρε and Eε are absolutely continuous with
respect to the Lebesgue measure on [0, t] × Rd as long as ε > 0, Lemma 2.6 ensures
that Dε

2 rewrites as follows:

Dε
2 =

∫ t

0

∫
f2(ρ

ε
s, E

ε
s)dxds = B2(ρ

ε, Eε).

Then the lower semicontinuity of B2 on Mb([0, t]× Rd)×Mb([0, t]× Rd)d yields:

lim inf
ε→0

Dε
2 ⩾ B2(ρ,E),

which, in turn, implies that B2(ρ,E) is finite and therefore gives the existence of a
vector-valued density v verifying E = ρv. Using Lemma 2.6 (iv), the above inequality
rewrites:

lim inf
ε→0

Dε
2 ⩾

1

2

∫ t

0

∫
|vs|2dρsds.

In addition, this transformation also allows to pass to the limit in the continuity
equation ∂tρ

ε + ∇ · Eε = 0, which is now linear. Indeed, letting ε → 0 in the weak
formulation, one easily gets ∂tρ + ∇ · (ρv) = 0. This shows that the limit density ρ

is still a solution to a continuity equation, and the link between the velocity field v

and the functional F will be made thorough when passing to the limit ε → 0 in the
EDE (3.2).

Dealing with Dε
3 = 1

2

∫ t

0

∫ ∣∣∇W ∗ ρεs + ε∇ρεs/ρεs
∣∣2dρεsds. — As it is standard when

dealing with terms belonging to L2(ρεs), we set

Gε = (∇W ∗ ρε)ρε + ε
∇ρε

ρε
ρε,

so that Dε
3 = B2(ρ

ε, Gε).
We deduce from (3.5) that Dε

3 is uniformly bounded with respect to ε, which implies
that Gε is uniformly bounded in Mb([0, t]×Rd)d. Therefore, up to another extraction,
we can assume that Gε ∗−−⇀

ε→0
G for some G ∈ Mb([0, t] × Rd)d. Since W is Lipschitz,

we have ∫ t

0

∫ ∣∣∇W ∗ ρεs
∣∣dρεsds ⩽ a∞t,

thus (∇W ∗ ρε)ρε is uniformly bounded too in Mb([0, t]× Rd)d.
As a consequence, the difference ε(∇ρε/ρε)ρε is also uniformly bounded in

Mb([0, t]× Rd)d. Now, its limit when ε→ 0 is 0 in the sense of distributions. Indeed,
for ξ ∈ C∞

c (Rd),

⟨ε∇ρε, ξ⟩ = −ε
∫ t

0

∫
∇ξdρε,

which can be bounded, for instance, by εt∥∇ξ∥L∞ and therefore goes to 0 as ε → 0.
We deduce that ε(∇ρε/ρε)ρε actually converges in the sense of measures towards 0,
hence the limit, in the sense of measures, of Gε is that of (∇W ∗ ρε)ρε.
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Limit in the sense of measures of (∇W ∗ ρε)ρε. — Let ξ ∈ C0([0, t] × Rd) and let us
consider the duality bracket ⟨(∇W ∗ ρε)ρε, ξ⟩ as ε goes to 0. That quantity equals,
using Lemma 2.7 applied to the even vector field ∇W :

(3.8)
∫ t

0

∫∫
∇W (x− y) · ξ(s, x)ρεs(dx)ρεs(dy)ds

=
1

2

∫ t

0

∫∫
∇W (x− y) · (ξ(s, x)− ξ(s, y)) ρεs(dx)ρ

ε
s(dy)ds.

Now, since W is Lipschitz, ∇W is bounded, therefore the map

(s, x, y) 7−→ ∇W (x− y) ·
(
ξ(s, x)− ξ(s, y)

)
is continuous and the weak convergence ρε⊗ρε ∗−−⇀

ε→0
ρ⊗ρ (which is equivalent to narrow

convergence since we deal with probability measures) allows to pass to the limit ε→ 0

in the above quantity to obtain:

(3.9) lim
ε→0

∫ t

0

∫∫
∇W (x− y) · ξ(s, x)ρεs(dx)ρεs(dy)ds

=
1

2

∫ t

0

∫∫
∇W (x− y) · (ξ(s, x)− ξ(s, y)) ρs(dx)ρs(dy)ds.

Note that, until now, the value of ∇W (0) does not matter. Actually, all the integrals
when ε > 0 hold with respect to to the Lebesgue measure and therefore the diagonal
{x = y} can be avoided. We therefore only need ∇W (z) = −∇W (−z) for nonzero z
to apply Lemma 2.7, and this do not impose any value to ∇W (0).

Now, to come back to some duality bracket tested against ξ, one needs to unsym-
metrize the resulting expression by writing:

(3.10)

1

2

∫ t

0

∫∫
∇W (x− y) · (ξ(s, x)− ξ(s, y)) ρs(dx)ρs(dy)ds

=
1

2

∫ t

0

∫∫
∇̂W (x− y) · ξ(s, x)ρs(dx)ρs(dy)ds

− 1

2

∫ t

0

∫∫
∇̂W (x− y) · ξ(s, y)ρs(dx)ρs(dy)ds

=
1

2

∫ t

0

∫∫
∇̂W (x− y) · ξ(s, x)ρs(dx)ρs(dy)ds

+
1

2

∫ t

0

∫∫
∇̂W (x− y) · ξ(s, x)ρs(dx)ρs(dy)ds

=

∫ t

0

∫∫
∇̂W (x− y) · ξ(s, x)ρs(dx)ρs(dy)ds,

where we used the fact that ∇̂W (z) = −∇̂W (−z) for all z ∈ Rd, which now imposes
∇̂W (0) = 0.

Remark 3.5. — These computations could hold against a test function ξ that is only
Lipschitz on [0, t] × Rd provided ∇W (z) ⩽ C/|z|1−β for some β > 0. Indeed, the
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map (s, x, y) 7→ ∇W (x − y) · (ξ(s, x)− ξ(s, y)) would be continuous on the diagonal
and hence everywhere on [0, t] × (Rd)2. This could provide a way to deal with the
non Lipschitz potentials W (x) = |x|β for 0 < β < 1, that are more singular than the
Lipschitz potentials but are still less singular than the logarithmic potential. However,
extra difficulties arise for the limit analysis when W is not Lipschitz.

We finally get that G = (∇̂W ∗ ρ)ρ and therefore

B2(ρ,G) =
1

2

∫ t

0

∫
|∇̂W ∗ ρs|2dρsds.

Using the l.s.c. of B2 we finally get:

lim inf
ε→0

Dε
3 ⩾

∫ t

0

∫
|∇̂W ∗ ρs|2dρsds.

Passing to the lim infε→0 to recover a limit EDE. — We can now pass to the lim infε→0

in (3.2) using the assumption (3.3a) for the left-hand side to get the following EDE
(which, once again is written as an inequality):

(3.11) F (ρini) ⩾ F (ρt) +
1

2

∫ t

0

∫
|vs|2dρsds+

1

2

∫ t

0

∫ ∣∣∇̂W ∗ ρs
∣∣2dρsds.

Recall that ρ still solves the continuity equation ∂tρ + ∇ · ρv = 0 in the sense of
distributions. Identifying the velocity v is made through Lemma 2.8 which gives:

∀t ∈ [0, T ], F (ρt)− F (ρ0) =

∫ t

0

∫
(∇̂W ∗ ρs) · vsdρs.

Since (ρε0)ε>0 converges to both ρ0 and ρini in W1(Rd), we have ρ0 = ρini. Plugging
the above identity into (3.11) then yields:

1

2

∫ t

0

∫ ∣∣∣vs + ∇̂W ∗ ρs
∣∣∣2dρsds ⩽ 0,

so that v = −∇̂W ∗ ρ = â[ρ] almost everywhere. We deduce that ρ solves the aggre-
gation equation (1.2) in the sense of distributions with the correct velocity field â[ρ],
which concludes the proof. Incidentally, the identity v = −∇̂W ∗ ρ confirms that the
limit EDE (3.11) is actually an equality. □

Proof of Corollary 3.4. — We now come back to the case of arbitrary initial data ρε0
i.e., we do not assume anymore that assumptions (3.3) hold. However, we still assume
that W2(ρ

ε
0, ρ

ini) −→
ε→0

0 and in addition, we now assume W to be λ-convex.
Let (µε

0)ε>0 be a sequence of smoothed out initial data for which W2(µ
ε
0, ρ

ini) −→
ε→0

0

and the assumptions (3.3) hold on (µε
0)ε>0. We denote by µε a solution to (1.1) for

the modified initial data µε
0. Applying Theorem 3.1, we know that µε converges in

C([0, T ],W1(Rd)) towards ρ solution to (1.2) as ε → 0, up to a subsequence. But
since W satisfies the assumptions of Theorem 2.9, such a solution is unique and we
deduce that the whole sequence (µε)ε>0 converges towards ρ.
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It remains to show that W2(ρ
ε
t , µ

ε
t ) goes to 0 as ε→ 0 by estimating this quantity

thanks to the λ-convexity of W , which is encapsulated in the following lemma.

Lemma 3.6. — Assume W satisfies assumptions (A0)–(A1)–(A2)–(A3). Let ρ, µ ∈
P2(Rd) and denote (φ,ψ) a pair of Kantorovitch potentials from ρ to µ for the qua-
dratic cost c(x, y) = 1

2 |x − y|2. In addition, we assume that ρ or µ is an absolutely
continuous measure. Then,∫

∇φ · a[ρ]dρ+
∫

∇ψ · a[µ]dµ ⩽ −λW 2
2 (ρ, µ).

Remark 3.7
(1) In particular, we recover the last estimate in Theorem 2.9: if

ρ, µ ∈ ACloc([0,+∞),W2(Rd))

are solution to (1.2) with initial data ρini, µini ∈ P2(Rd) and if ρt or µt is an absolutely
continuous measure, the following inequality holds:

(3.12) d

dt
W 2

2 (ρt, µt) ⩽ −2λW 2
2 (ρt, µt).

Indeed, this is a direct consequence of Lemma 3.6 and of the following computation
(see [33, Th. 5.25] or [1, Th. 8.4.7])

(3.13) d

dt

1

2
W 2

2 (ρt, µt) =

∫
∇φt · vtdρt +

∫
∇ψt · wtdµt,

whenever ρ, µ satisfy the continuity equations ∂tρ + ∇ · ρv = 0, ∂tµ + ∇ · µw = 0.
Inequality (3.12) then yields the aforementioned estimate using a Grönwall lemma:

(3.14) W2(ρt, µt) ⩽ e−λtW2(ρ
ini, µini).

Relaxing the assumptions that either ρt or µt is an absolutely continuous measure
can be done replacing ρt by ρεt for instance, and passing to the limit ε → 0 in the
resulting estimate, thanks to Corollary 3.4.

(2) Another way of proving Lemma 3.6 can be found in [35, Lem. 4.12].

Proof. — Assume ρ is an absolutely continuous measure. Then, there exists an op-
timal map from ρ to µ for the cost c(x, y) = 1

2 |x − y|2, which we denote T . Since
∇ψ ◦ T = −∇φ, using µ = T#ρ yields:∫

∇φ · a[ρ]dρ+
∫

∇ψ · a[µ]dµ =

∫
∇φ · (a[ρ]− a[µ] ◦ T )dρ

= −
∫∫

∇φ(x) · ∇W (x− y)ρ(dy)ρ(dx)

+

∫∫
∇φ(x) · ∇W (T (x)− y)µ(dy)ρ(dx)

= −
∫∫

∇φ(x) ·
(
∇W (x− y)−∇W

(
T (x)− T (y)

))
ρ(dy)ρ(dx),
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where we used once more µ = T#ρ. Symmetrizing the above integral as in Lemma 2.7,
since ∇W is odd, and using ∇φ = id − T , we get:∫

∇φ · a[ρ]dρ+
∫

∇ψ · a[µ]dµ

= −1

2

∫∫ (
∇φ(x)−∇φ(y)

)
·
(
∇W (x− y)−∇W

(
T (x)− T (y)

))
ρ(dy)ρ(dx)

= −1

2

∫∫ (
x− y −

(
T (x)− T (y)

))
·
(
∇W (x− y)−∇W

(
T (x)− T (y)

))
ρ(dy)ρ(dx)

⩽ −λ
2

∫∫
|x− T (x)− (y − T (y))|2ρ(dy)ρ(dx),

where we used the λ-convexity of W . We then expand the square to obtain:∫∫
|x− T (x)− (y − T (y))|2ρ(dy)ρ(dx)

= 2

∫
|x− T (x)|2ρ(dx)− 2

(∫∫ (
x− T (x)

)
ρ(dx)

)2

⩽ 2W 2
2 (ρ, µ),

which concludes the proof, as we assumed in (A3) that λ ⩽ 0. □

We now come back to the proof of Corollary 3.4. Denoting (φε
t , ψ

ε
t ) a pair of

Kantorovitch potentials from ρεt to µε
t , and using Lemma 3.6 along with equation

(3.13), we get:
d

dt

1

2
W 2

2 (ρ
ε
t , µ

ε
t ) ⩽ −λW 2

2 (ρ
ε
t , µ

ε
t )− ε

∫
(∇φε

t · ∇ρεt +∇ψε
t · ∇µε

t ).

The last term above being nonpositive (see [33, Exer. 66] for instance), we obtain, using
a Grönwall lemma, that W2(ρ

ε
t , µ

ε
t ) ⩽ e−λtW2(ρ

ε
0, µ

ε
0). We then write, for t ∈ [0, T ],

W1(ρ
ε
t , ρt) ⩽W1(ρ

ε
t , µ

ε
t ) +W1(µ

ε
t , ρt) ⩽ e−λTW2(ρ

ε
0, µ

ε
0) + sup

s∈[0,T ]

W1(µ
ε
s, ρs),

where we used the fact that W1 ⩽ W2. Since both sequences (ρε0)ε>0 and (µε
0)ε>0

converge in W2(Rd) to the same limit, W2(ρ
ε
0, µ

ε
0) goes to 0 as ε → 0. Moreover,

(µε)ε>0 converges to ρ in W1 distance uniformly in [0, T ]. These two facts along with
the above inequality show that (ρε)ε>0 also converges to ρ in C([0, T ],W1(Rd)), which
ends the proof of the corollary. □

3.1.2. Convergence rate under the λ-convexity assumption. — We are now in position
to prove the following theorem:

Theorem 3.8. — Assume W satisfies assumptions (A0)–(A1)–(A2)–(A3). Let ρini ∈
P2(Rd), and let (ρε)ε>0 be the sequence of weak solutions to (1.1). Here, we assume
that (ρε0)ε>0 is an arbitrary sequence in P2(Rd).

Denoting ρ ∈ C([0,+∞),W2(Rd)) the unique solution of (1.2) with a[ρ] being repla-
ced by â[ρ] as defined in (1.3), we have the following estimate:

(3.15) ∀t > 0, W2(ρ
ε
t , ρt) ⩽ e−λtW2(ρ

ε
0, ρ

ini) +

√
1− e−2λt

λ

√
dε.
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Please note that in the above estimate λ ⩽ 0. If λ < 0, 1−e−2λt and λ are negative
numbers so the ratio is positive and for λ = 0 the expression should be extended by
continuity.

Remark 3.9. — In dimension d = 1 with the Newtonian potential W (x) = |x|, the
correspondence with Burgers’ equation stated in Proposition 2.12, gives convergence
at rate

√
εt in W1 distance. Due to W being 0-convex, our estimate leads to the same

estimate but in W2 distance, since taking λ = 0 in (3.15) gives W2(ρ
ε
t , ρt) ⩽

√
2dεt

for any t > 0.
If assumption (A4-p) is satisfied for some p ⩾ 1 instead of assumption (A3) and

if ρε0 = δ0 for all ε > 0, one can also obtain the exact same estimate using a direct
computation. Indeed, in that case, ρt = δ0 for all t ⩾ 0 and we have, using integration
by parts and Lemma 2.7:

d

dt
W 2

2 (ρ
ε
t , δ0) =

d

dt

∫
|x|2ρεt (dx)

= −
∫∫

∇W (x− y) · (x− y)ρεt (dx)ρ
ε
t (dy) + 2ε

∫
ρεt (dx)

⩽ −C
∫∫

|x− y|pρεt (dx)ρεt (dy) + 2εd, using assumption (A4-p),

⩽ 2εd.

Hence W2(ρ
ε
t , δ0) ⩽

√
2dεt for all t ⩾ 0.

Proof. — Take a sequence of initial data (µε
0)ε>0 converging in W2(Rd) to ρini as

ε → 0 and denote (µε)ε>0 the sequence of solutions to (1.1) with such initial data.
Let ε > 0. For all δ > 0, using Lemma 3.6 along with equation (3.13), we have,
denoting (φt, ψt) a pair of Kantorovitch potentials for the quadratic cost from ρεt
to ρδt and integrating by parts:

d

dt

1

2
W 2

2 (ρ
ε
t , µ

δ
t ) ⩽ −λW 2

2 (ρ
ε
t , µ

δ
t )− ε

∫
∇φt · ∇ρεt − δ

∫
∇ψt · ∇µδ

t

⩽ −λW 2
2 (ρ

ε
t , µ

δ
t ) + ε

∫
∆φt ρ

ε
t + δ

∫
∆ψt µ

δ
t .

The map x 7→ φt(x)− |x|2/2 being concave, ∇2φt ⩽ Id, hence ∆φt ⩽ d and the same
holds for ψt. Therefore:

d

dt
W 2

2 (ρ
ε
t , µ

δ
t ) ⩽ −2λW 2

2 (ρ
ε
t , µ

δ
t ) + 2(ε+ δ)d,

which gives the result after using a Grönwall lemma and passing to the limit δ → 0

thanks to Corollary 3.4. □

3.2. Method 2: using a numerical scheme. — We now turn to a different proof of
the previous result. This alternate proof will also allow to illustrate the results and
the behavior of solutions with numerical results. Our main idea is to let, for a fixed
ε > 0, ρε∆x be a suitable numerical approximation of the viscous solution ρε to the
problem (1.1) with fixed initial data ρε0 = ρini, and then use the formalism of [14] to
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estimate the distance from this discretized solution to the solution ρ to the aggregation
problem (1.2) in terms of ε:

∀n ∈ N, W2(ρ
ε,n
∆x, ρtn) ⩽ C(tn)

√
∆x+ ε,

under suitable stability conditions for the numerical scheme, and where ∆t > 0 is
the time step, tn = n∆t and ∆x > 0 denotes the maximal space step. Proving the
convergence of the scheme with fixed ε beforehand using compactness arguments and
a Lax-Wendroff-type theorem, then letting ∆x→ 0, we shall deduce:

∀t > 0, W2(ρ
ε
t , ρt) ⩽ C(t)

√
ε,

where we shall specify the constant C(t). Note that our method also allows to deal
with the case of arbitrary P2(Rd) initial data ρε0 as in Theorem 3.8, but we choose to
present it with initial data not depending on ε for the sake of clarity.

Let us be more specific. We consider a Cartesian mesh of Rd where the space step
in the ith direction is denoted by ∆xi > 0. The nodes of the mesh are denoted by
xJ = (J1∆x1, . . . , Jd∆xd) for any J = (J1, . . . , Jd) ∈ Zd, and the cell centered on xJ
is denoted by CJ := [(J1 − 1

2 )∆x1, (J1 +
1
2 )∆x1]× · · · × [(Jd − 1

2 )∆xd, (Jd +
1
2 )∆xd].

We also denote by ei the ith vector of the canonical basis of Rd. We initialize our
discretization with:

(3.16) ρ0J :=

∫
CJ

ρini(dx) ⩾ 0, J ∈ Zd,

and we consider an upwind type discretization for the aggregative part [13, 27, 14]
and an explicit discretization for the diffusive part. It writes, for n ∈ N,

ρn+1
J = ρnJ −

d∑
i=1

∆t

∆xi

(
(ai

n
J)

+ρnJ − (ai
n
J+ei)

−ρnJ+ei − (ai
n
J−ei)

+ρnJ−ei + (ai
n
J)

−ρnJ

)
(3.17)

+ ε

d∑
i=1

∆t

∆x2i

(
ρnJ+ei − 2ρnJ + ρnJ−ei

)
,

where the discrete velocity is defined by:

(3.18) ai
n
J := −

∑
K∈Zd

ρnK DiW
K
J , where DiW

K
J := ∂̂xi

W (xJ − xK).

Note that, for the sake of simplicity, we drop, in this section, the superscripts ε when
it comes to the discrete unknowns (ρnJ)J∈Zd,n∈N but these unknowns always solve
numerical schemes for the aggregation equation with viscosity ε > 0.

Since W is even, we also have DiW
K
J = −DiW

J
K for all J,K ∈ Zd and i = 1, . . . , d.

Using a symmetrization argument as in the continuous setting, we deduce the discrete
equivalent of Lemma 2.7:

Lemma 3.10. — Denote, for J,K ∈ Zd, DWK
J = (D1W

K
j , . . . , DdW

K
J ) and when-

ever (vJ)J∈Zd is a discrete vector field on the mesh, vJ = (v1J , . . . , vdJ) ∈ Rd. For
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any (vJ)J∈Zd , we have:

∀i = 1, . . . , d,
∑
J∈Zd

viJ ai
n
J ρ

n
J =

1

2

∑
J∈Zd

∑
K∈Zd

DiW
K
J (viJ − viK) ρnJ ρ

n
K ,

and therefore: ∑
J∈Zd

vJ · anJ ρnJ =
1

2

∑
J∈Zd

∑
K∈Zd

DWK
J · (vJ − vK) ρnJ ρ

n
K .

Proof. — Using the definition of the macroscopic velocity and the fact that DiW
K
J =

−DiW
J
K , we have:∑

J∈Zd

viJ ai
n
J ρ

n
J = −

∑
J∈Zd

∑
K∈Zd

DiW
K
J viJ ρ

n
J ρ

n
K =

∑
J∈Zd

∑
K∈Zd

DiW
J
K viJ ρ

n
J ρ

n
K

=
∑
J∈Zd

∑
K∈Zd

DiW
K
J viK ρnJ ρ

n
K ,

thanks to exchanging K and J in the latter sum. Taking the half sum of the first sum
and the latter, we obtain:∑

J∈Zd

viJ ai
n
J ρ

n
J =

1

2

∑
J∈Zd

∑
K∈Zd

DiW
K
J (viJ − viK) ρnJ ρ

n
K .

Summing over i = 1, . . . , d concludes the proof. □

It is also natural to consider, instead of the explicit discretization of the Laplacian,
an implicit discretization:

ρn+1
J = ρnJ −

d∑
i=1

∆t

∆xi

(
(ai

n
J)

+ρnJ − (ai
n
J+ei)

−ρnJ+ei − (ai
n
J−ei)

+ρnJ−ei + (ai
n
J)

−ρnJ

)
(3.19)

+ ε

d∑
i=1

∆t

∆x2i

(
ρn+1
J+ei

− 2ρn+1
J + ρn+1

J−ei

)
,

However, for the sake of simplicity, we only provide the proof of our convergence
estimate for the explicit scheme (3.17), although our method would also works for the
implicit discretization (3.19) but the computations are a bit more involved. Naturally,
both schemes are asymptotic-preserving in the limit ε → 0 since they degenerate
towards the upwind-type scheme of [14] when ε goes to 0.

One could also consider the θ-scheme, for θ ∈ [0, 1], defined by:

ρn+1
J = ρnJ −

d∑
i=1

∆t

∆xi

(
(ai

n
J)

+ρnJ − (ai
n
J+ei)

−ρnJ+ei − (ai
n
J−ei)

+ρnJ−ei + (ai
n
J)

−ρnJ

)
+ ε(1− θ)

d∑
i=1

∆t

∆x2i

(
ρnJ+ei − 2ρnJ + ρnJ−ei

)
(3.20)

+ εθ

d∑
i=1

∆t

∆x2i

(
ρn+1
J+ei

− 2ρn+1
J + ρn+1

J−ei

)
.
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The point of defining such a scheme comes from the fact that, for the heat equation
∂tρ = ε∆ρ, under a parabolic CFL condition

ε

d∑
i=1

∆t

∆x2i
⩽

1

2(1− 2θ)

if θ ∈ [0, 1/2) and unconditionally if θ ∈ [1/2, 1], the θ-scheme is known to be conver-
gent in L2 norm at rate O(∆t+∆x2). Moreover, for θ = 1/2, one obtains the so-called
Crank-Nicolson scheme, which is convergent at rate O(∆t2+∆x2). However, the con-
vergence order of the θ-scheme (3.20) for the aggregation-diffusion equation (1.1a)
will anyway be limited by the order of the upwind scheme. Also, the positivity of the
density can only be guaranteed if the more restrictive parabolic CFL condition

a∞

d∑
i=1

∆t

∆xi
+ 2ε(1− θ)

d∑
i=1

∆t

∆x2i
⩽ 1

holds. Preserving a hyperbolic CFL condition thus imposes taking θ = 1, which
corresponds to the implicit scheme (3.19).

Proposition 3.11. — Assume W satisfies assumptions (A0)–(A1)–(A2)–(A3) and let
ρ ∈ C([0,+∞),W2(Rd)) be the unique measure solution to the aggregation equa-
tion (1.2) with initial data ρini ∈ P2(Rd) as given by Theorem 2.9. Assume in addition
that the following strict CFL condition holds:

(3.21)
d∑

i=1

(
a∞

∆t

∆xi
+ 2ε

∆t

∆x2i

)
<

1

2
.

Denote also the reconstruction:

ρε,n∆x :=
∑
J∈Zd

ρnJδxJ
, n ∈ N,

where (ρnJ)J∈Zd,n∈N is defined through the explicit discretization (3.16)–(3.17)–(3.18).
Then, there exists a constant C > 0, depending only on a∞ and d, such that, for all
n ∈ N∗,

(3.22) W2(ρtn , ρ
ε,n
∆x) ⩽ C

√
1− e−4λtn

λ

√
∆x+ ε+ e−2λtn∆x.

Remark 3.12. — In estimate (3.22), the
√
∆x+ ε term corresponds to the error

induced by the scheme (3.17) and the ∆x term corresponds to the finite volume
discretization of the initial data (3.16). As in [14], one can also improve the prefactor
in the exponentials to get the slightly better estimate:

W2(ρtn , ρ
ε,n
∆x) ⩽ C

√
1− e−2λtn

λ

√
∆x+ ε+ e−λtn∆x,

which is similar to the estimates of the continuous setting, for instance (2.3), when ∆t

is small.
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In the above proposition as in the whole paper, we do as if our discrete reconstruc-
tions (ρε∆x)∆x>0 depended only on ∆x. Rigorously speaking, they also depend on ∆t,
but under the CFL condition (3.21) ∆t goes to 0 as ∆x goes to 0. Setting ∆t to be
an adequate function of ∆x, we can therefore consider (ρε∆x)∆x>0 as sequence labeled
by ∆x only.

Theorem 3.13. — Assume W satisfies assumptions (A0)–(A1)–(A2)–(A3). Let ρ ∈
C([0,+∞),W2(Rd)) be the unique measure solution to the aggregation equation (1.2)
with initial data ρini ∈ P2(Rd) as given by Theorem 2.9 and let (ρε)ε>0 be the sequence
of weak solutions to (1.1) with initial data ρε0 = ρini.

Then, there exists a constant C > 0, depending only on a∞ and d, such that, for
all t > 0 the following estimate holds:

(3.23) W2(ρ
ε
t , ρt) ⩽ C

√
1− e−4λt

λ

√
ε.

Remark 3.14. — The estimate above is slightly worse than the estimate (3.15) that
we obtain using gradient flow arguments. Although, as in the previous remark, the
exponential factor can be improved to e−2λt with a bit more technical computations,
we do not manage to obtain the same constant C =

√
d. Nevertheless the important

fact is that the dependence with respect to ε is the same in both proofs. The advantage
of the numerical proof is that it confirms the convergence of the numerical scheme
and its asymptotic preserving property.

3.2.1. Properties of the scheme

Lemma 3.15. — As in the continuous setting, our discretization (3.17) preserves
(1) total mass:

(3.24) ∀n ∈ N,
∑
J∈Zd

ρnJ = 1;

(2) positivity of the density and the bound on the velocity field:

∀(n, J) ∈ N× Zd, ∀i = 1, . . . , d, ρnJ ⩾ 0, |ainJ | ⩽ a∞,

under the CFL condition:

(3.25)
d∑

i=1

(
a∞

∆t

∆xi
+ 2ε

∆t

∆x2i

)
⩽ 1;

(3) the center of mass:

∀n ∈ N∗, ρε,n∆x ∈ P1(Rd) and
∑
J∈Zd

xJρ
n
J =

∑
J∈Zd

xJρ
0
J .

Proof. — The first item comes from summing equation (3.17) over J ∈ Zd. Moreover,
using the following rewriting of ρn+1

J as a positive combination of ρJ and ρJ±ei ,
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i = 1, . . . , d:

ρn+1
J = ρnJ

[
1−

d∑
i=1

( ∆t

∆xi
|ainJ |+

2ε∆t

∆x2i

)]
+

d∑
i=1

ρnJ+ei

( ∆t

∆xi
(ai

n
J+ei)

− +
ε∆t

∆x2i

)

+

d∑
i=1

ρnJ−ei

( ∆t

∆xi
(ai

n
J−ei)

+ +
ε∆t

∆x2i

)
,

it is classical to prove the second item by induction on n ∈ N, under the CFL condi-
tion (3.25) under which ρn+1

J is a convex combination of the ρnK , see [28] for example.
Let us now focus on the third item. One has∑
J∈Zd

|xJ |ρn+1
J

=
∑
J∈Zd

|xJ |
[
ρnJ −

d∑
i=1

∆t

∆xi

(
(ai

n
J)

+ρnJ − (ai
n
J+ei)

−ρnJ+ei − (ai
n
J−ei)

+ρnJ−ei +(ai
n
J)

−ρnJ

)
ε

d∑
i=1

∆t

∆x2i

(
ρnJ+ei − 2ρnJ + ρnJ−ei

)]
,

thus∑
J∈Zd

|xJ |ρn+1
J ⩽

∑
J∈Zd

|xJ |ρnJ
(
1 +

d∑
i=1

(a∞
∆t

∆xi
+ 2ε

∆t

∆x2i
)
)

+

d∑
i=1

∑
J∈Zd

|xJ+ei |ρnJ+ei

(
a∞

∆t

∆xi
+ ε

∆t

∆x2i

)
+

d∑
i=1

∑
J∈Zd

∆xiρ
n
J+ei

(
a∞

∆t

∆xi
+ ε

∆t

∆x2i

)
+

d∑
i=1

∑
J∈Zd

|xJ−ei |ρnJ−ei

(
a∞

∆t

∆xi
+ ε

∆t

∆x2i

)
+

d∑
i=1

∑
J∈Zd

∆xiρ
n
J−ei

(
a∞

∆t

∆xi
+ ε

∆t

∆x2i

)
,

which shows by induction that ρε,n∆x ∈ P1(Rd) if ρε,0∆x ∈ P1(Rd). Now more precisely,
using the discretization (3.17) together with a discrete integration by parts, we have:∑
J∈Zd

xJρ
n+1
J

=
∑
J∈Zd

xJρ
n
J −

d∑
i=1

∆t

∆xi

∑
J∈Zd

(
(ai

n
J)

+ ρnJ
(
xJ − xJ+ei

)
− (ai

n
J)

− ρnJ
(
xJ−ei − xJ

))
+ ε

d∑
i=1

∆t

∆x2i

∑
J∈Zd

(
xJ−ei − xJ

)
(ρnJ+ei − ρnJ).

By definition of xJ , we have xJ−ei − xJ = −∆xi. Hence, we deduce:∑
J∈Zd

xJρ
n+1
J =

∑
J∈Zd

xJρ
n
J +∆t

d∑
i=1

∑
J∈Zd

ai
n
J ρ

n
J − ε

d∑
i=1

∆t

∆xi

∑
J∈Zd

(ρnJ+ei − ρnJ)

=
∑
J∈Zd

xJρ
n
J +∆t

d∑
i=1

∑
J∈Zd

ai
n
J ρ

n
J .
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Applying the symmetrization Lemma 3.10 to the constant vector field given by vJ =

(1, . . . , 1) ∈ Rd for all J ∈ Zd, we have
∑

J∈Zd ai
n
J ρ

n
J = 0 for all i = 1, . . . , d, hence

the result. □

The following lemma ensures that M2(ρ
ε,n
∆x) remains bounded over finite time. It

turns out necessary for the proof of convergence of the scheme by compactness, in
order to extract a converging subsequence.

Lemma 3.16 (Bound on the second moment). — For all n ∈ N∗, the following estimate
holds:

Mn
2,∆x :=

∑
J∈Zd

|xJ |2ρnJ ⩽ e−4λtn
(
M0

2,∆x + a∞t
n

d∑
i=1

∆xi + 2dεtn
)
.

Proof. — Using (3.17) and a discrete integration by parts, one can write:∑
J∈Zd

|xJ |2ρn+1
J =

∑
J∈Zd

|xJ |2ρnJ

−
d∑

i=1

∆t

∆xi

∑
J∈Zd

[
(ai

n
J)

+ ρnJ
(
|xJ |2 − |xJ+ei |2

)
− (ai

n
J)

− ρnJ
(
|xJ−ei |2 − |xJ |2

)]
+ ε

d∑
i=1

∆t

∆xi

∑
J∈Zd

(
|xJ−ei |2 − |xJ |2

)(
ρJ+ei − ρJ

)
.

By definition of xJ ,
|xJ |2 − |xJ+ei |2 = −2Ji ∆x

2
i −∆x2i and |xJ−ei |2 − |xJ |2 = −2Ji ∆x

2
i +∆x2i .

Therefore, we get:∑
J∈Zd

|xJ |2ρn+1
J =

∑
J∈Zd

|xJ |2ρnJ + 2∆t

d∑
i=1

∑
J∈Zd

Ji∆xi ai
n
J ρ

n
J +∆t

d∑
i=1

∆xi
∑
J∈Zd

ρnJ |ainJ |

+ ε∆t

d∑
i=1

∑
J∈Zd

(−2Ji + 1)∆xi(ρJ+ei − ρJ).

As a consequence of Lemma 3.15, we have |ainJ | ⩽ a∞. Using, in addition, the mass
conservation, we deduce that the penultimate term is bounded by a∞∆t

∑d
i=1 ∆xi.

As for the last term, another integration by parts shows that the last term equals
2dε∆t. Finally, Lemma 3.10 applied to the discrete vector field given by vJ = xJ
yields:

2∆t

d∑
i=1

∑
J∈Zd

Ji∆xi ai
n
J ρ

n
J = 2∆t

∑
J∈Zd

xJ · anj ρnJ = −∆t
∑

J,K∈Zd

DWK
J · (xJ − xK)ρnJρ

n
K

⩽ −λ∆t
∑

J,K∈Zd

|xJ − xK |2ρnJρnK

⩽ −4λ∆t
∑
J∈Zd

|xJ |2ρnJ ,
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where we used the λ-convexity of W and the inequality |xJ −xK |2 ⩽ 2(|xJ |2+ |xK |2)
along with the fact that λ is nonpositive. We obtain

∑
J∈Zd

|xJ |2ρn+1
J ⩽ (1− 4λ∆t)

∑
J∈Zd

|xJ |2ρnJ + a∞∆t

d∑
i=1

∆xi + 2dε∆t.

We conclude the proof using a discrete version of Grönwall’s lemma. □

3.2.2. Proof of Proposition 3.11. — Before going through the proof of Proposition
3.11, let us introduce, for J ∈ Zd and y ∈ Rd the following coefficients:

(3.26) αJ(y)

=



1−
d∑

i=1

( |⟨y − xJ , ei⟩|
∆xi

− 2ε∆t

∆x2i

)
when y ∈ CJ ,

1

∆xi

(
⟨y − xJ−ei , ei⟩

)+
+
ε∆t

∆x2i
when y ∈ CJ−ei , for i = 1, . . . , d,

1

∆xi

(
⟨y − xJ+ei , ei⟩

)−
+
ε∆t

∆x2i
when y ∈ CJ+ei , for i = 1, . . . , d,

0 otherwise.

It then holds that, for any J, L ∈ Zd,

αJ

(
xL +∆tanL

)

=



1−
d∑

i=1

(
|ainJ |

∆t

∆xi
− 2ε∆t

∆x2i

)
when L = J,

∆t

∆xi

(
ai

n
J−ei

)+
+
ε∆t

∆x2i
when L = J − ei, for i = 1, . . . , d,

∆t

∆xi

(
ai

n
J+ei

)−
+
ε∆t

∆x2i
when L = J + ei, for i = 1, . . . , d,

0 otherwise,

so that we have the key identity:

∀ J ∈ Zd, ρn+1
J =

∑
L∈Zd

ρnLαJ

(
xL +∆tanL

)
,

Lemma 3.17. — For any y ∈ Rd, we have∑
L∈Zd

αL(y) = 1 and
∑
L∈Zd

xLαL(y) = y.
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Proof. — Let J ∈ Zd such that y ∈ CJ . To prove the first claim, we just use the
definition of αL(y):

∑
L∈Zd

αL(y) = αJ(y) +

d∑
i=1

(
αJ+ei(y) + αJ−ei(y)

)
= 1−

d∑
i=1

( |⟨y − xL, ei⟩|
∆xi

− 2ε∆t

∆x2i

)
+

d∑
i=1

1

∆xi

((
⟨y − xJ , ei⟩

)+
+

(
⟨y − xJ , ei⟩

)−)
+ 2

d∑
i=1

ε∆t

∆x2i
= 1.

As for the preservation of the barycenter, we once again using the definition of the
coefficients αL(y):∑

L∈Zd

xLαL(y) = xJαJ(y) +

d∑
i=1

xJ+eiαJ+ei(y) +

d∑
i=1

xJ−eiαJ−ei(y)

= xJ

[
1−

d∑
i=1

( |⟨y − xJ , ei⟩|
∆xi

− 2ε∆t

∆x2i

)]
+

d∑
i=1

xJ

( 1

∆xi

(
⟨y − xJ , ei⟩

)+
+
ε∆t

∆x2i

)
+

d∑
i=1

xJ

( 1

∆xi

(
⟨y − xJ , ei⟩

)−
+
ε∆t

∆x2i

)
= xJ

[
1 +

d∑
i=1

(
−|⟨y − xJ , ei⟩|

∆xi
+

1

∆xi

(
⟨y − xJ , ei⟩

)+
+

1

∆xi

(
⟨y − xJ , ei⟩

)−)]

+

d∑
i=1

ei

((
⟨y − xJ , ei⟩

)+ −
(
⟨y − xJ , ei⟩

)−)
= xJ +

d∑
i=1

⟨y − xJ , ei⟩ei = y. □

We now turn to the proof of Proposition 3.11. For n ∈ N∗, we denote Dn :=

W2

(
ρtn , ρ

ε,n
∆x

)
. The point is, roughly speaking, to obtain an estimate of the type

D2
n+1 ⩽ D2

n + C∆t(∆t + ∆x + ε) and then use a discrete Grönwall lemma to ob-
tain estimate (3.22).

Let γ be an optimal transport plan between ρtn and ρε,n∆x, so that

D2
n =

∫∫
|x− y|2γ(dx, dy).

We also let an∆x be any continuous reconstruction of the discrete velocity defined in
(3.18), for instance piecewise affine, such that an∆x(xJ) = anJ for all J ∈ Zd.

To construct an adequate coupling γ′ ∈ Γ
(
ρtn+1 , ρε,n+1

∆x

)
, recall that Theorem 2.9

gives ρtn+1 = Z(tn+1, tn, ·)#ρtn , where Z is the Filippov characteristic flow associated
to â[ρ] given by Theorem 2.9, except that here the second variable of Z denotes the
time of the Cauchy data (which is the third variable) whereas in Theorem 2.9 it was
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omitted as it was 0. If the discrete measure ρε,n+1
∆x was a pushforward measure of

ρε,n∆x, we would also define γ′ as a pushforward of γ, but it is not the case in general
as we are dealing with atomic measures. Instead, if we denote by ν the kernel on
(Rd,B(Rd)) given by:

∀(y,B) ∈ Rd ×B(Rd), ν(y,B) =
∑
J∈Zd

αJ(y +∆tan∆x
(y))δxJ

(B),

we have the kernel representation:

∀B ∈ B(Rd), ρε,n+1
∆x (B) =

∫
ν(y,B)ρε,n∆x(dy).

The pushforward ρtn+1 = Z(tn+1, tn, ·)#ρtn can also be seen as a kernel representa-
tion. Indeed, setting µ(x,A) = δZ(tn+1,tn,x)(A) for (x,A) ∈ Rd ×B(Rd), we have:

∀A ∈ B(Rd), ρtn+1(A) =

∫
1A(Z(t

n+1, tn, x))ρtn(dx)

=

∫
δZ(tn+1,tn,x)(A)ρtn(dx) =

∫
µ(x,A)ρtn(dx).

We now define the product kernel K on
(
Rd × Rd

)
×B

(
Rd × Rd

)
by:

K
(
(x, y), A×B

)
= µ(x,A)ν(y,B) = δZ(tn+1,tn,x)(A)

∑
L∈Zd

αL

(
y +∆tan∆x(y)

)
δxL

(B)

and then set γ′(A × B) =
∫∫

Rd×Rd K
(
(x, y), A × B

)
γ(dx, dy). Equivalently, for any

θ ∈ Cb(Rd × Rd), we have:∫∫
θ(x, y)γ′(dx, dy) =

∫ ∫ ∫ ∫
θ(x′, y′)µ(x, dx′)ν(y, dy′)γ(dx, dy)

=

∫∫ [ ∑
L∈Zd

θ
(
Z(tn+1; tn, x), xL

)
αL

(
y +∆tan∆x(y)

)]
γ(dx, dy).

One can show as in [14] that the marginals of γ′ are ρtn+1 and ρε,n+1
∆x . In particular,

we have:

D2
n+1 ⩽

∫∫
|x− y|2γ′(dx, dy).

Using the definition of γ′, we get:

(3.27) D2
n+1 ⩽

∫∫ ∑
L∈Zd

∣∣Z(tn+1; tn, x)− xL
∣∣2αL

(
y +∆tan∆x(y)

)
γ(dx, dy).

Writing

Z(tn+1; tn, x)− xL = Z(tn+1; tn, x)− (y +∆tan∆x(y))−
(
xL − (y +∆tan∆x(y))

)
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and expanding the square, we obtain:

(3.28)
∑
L∈Zd

∣∣Z(tn+1; tn, x)− xL
∣∣2αL

(
y +∆tan∆x(y)

)
=

∣∣Z(tn+1; tn, x)− y −∆tan∆x(y)
∣∣2 + ∑

L∈Zd

∣∣xL − y −∆tan∆x(y)
∣∣2αL

(
y +∆tan∆x(y)

)
− 2

(
Z(tn+1; tn, x)− y −∆tan∆x(y)

)
·
( ∑

L∈Zd

(
xL − y −∆tan∆x(y)

)
αL

(
y +∆tan∆x(y)

)
.

Now, the last term in scalar product vanishes as we have, using Lemma 3.17,∑
L∈Zd

(
xL − y −∆tan∆x(y)

)
αL

(
y +∆tan∆x(y)

)
= y +∆tan∆x(y)−

(
y +∆tan∆x(y)

)
= 0.

Plugging (3.28) into (3.27), we therefore deduce, using the fact that ρε,n∆x is the second
marginal of γ:

(3.29) D2
n+1 ⩽

∫∫ ∣∣Z(tn+1; tn, x)− y −∆tan∆x(y)
∣∣2γ(dx, dy)

+

∫ ∑
L∈Zd

∣∣xL − y −∆tan∆x(y)
∣∣2αL

(
y +∆tan∆x(y)

)
ρε,n∆x(dy),

Let us deal with the last term in the above inequality. We have
ρε,n∆x(y) =

∑
J∈Zd

ρnJδxJ
(y),

therefore∑
L∈Zd

∫ ∣∣xL − y −∆tan∆x(y)
∣∣2αL

(
y +∆tan∆x(y)

)
ρε,n∆x(dy)

=
∑
J∈Zd

∑
L∈Zd

∣∣xL − xJ −∆tanJ
∣∣2αL

(
xJ +∆tanJ

)
ρnJ .

Moreover, using the definition of αL in (3.26), we compute:∑
L∈Zd

∣∣xL − xJ −∆tanJ
∣∣2αL

(
xJ +∆tanJ

)
= ∆t2|anJ |2

(
1−

d∑
i=1

∆t

∆xi
|ainJ | −

d∑
i=1

2ε∆t

∆x2i

)

+

d∑
i=1

[∣∣∆xiei−∆tanJ
∣∣2( ∆t

∆xi
(ai

n
J)

++
ε∆t

∆x2i

)
+
∣∣∆xiei+∆tanJ

∣∣2( ∆t

∆xi
(ai

n
J)

−+
ε∆t

∆x2i

)]
⩽ C∆t(∆t+∆x+ ε),

where we used, for the last inequality, the CFL condition (3.21) and the fact that
the velocity anJ is uniformly bounded. Multiplying by ρnJ , summing over J ∈ Zd, and
injecting into (3.29) yields:

(3.30) D2
n+1 ⩽

∫∫ ∣∣Z(tn+1; tn, x)− y −∆tan∆x(y)
∣∣2γ(dx, dy) + C∆t(∆t+∆x+ ε).

Dealing with the first term amounts to estimating the distance between the ex-
act characteristics Z(tn+1; tn, x) and the forward Euler discretization y +∆tan∆x(y).
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To this end, we write, on the one hand, using the definition of the Filippov charac-
teristics [17, 31]:

Z(tn+1; tn, x) = x+

∫ tn+1

tn
âρ
(
s, Z(s; tn, x)

)
ds

= x−
∫ tn+1

tn

∫
∇̂W

(
Z(s; tn, x)− Z(s; tn, ξ)

)
ρtn(dξ)ds.

On the other hand, we have, whenever y is a node of the mesh,

y +∆tan∆x(y) = y −∆t

∫
∇̂W (y − ζ)ρn∆x(dζ

)
.

Thus, still for y a node of the mesh, we have:∣∣Z(tn+1; tn, x)− y −∆tan∆x(y)
∣∣2 ⩽ |x− y|2

− 2

∫ tn+1

tn

∫∫
(x− y) ·

(
∇̂W

(
Z(s; tn, x)− Z(s; tn, ξ)

)
− ∇̂W (y − ζ)

)
ρtn(dξ)ρ

ε,n
∆x(dζ)

+ C∆t2.

Since γ ∈ Γ(ρtn , ρ
ε,n
∆x) and since the above integral can be decoupled using the linearity

of the scalar product, we also have:∫∫
(x− y)·

(
∇̂W

(
Z(s; tn, x)− Z(s; tn, ξ)

)
− ∇̂W (y − ζ)

)
ρtn(dξ)ρ

ε,n
∆x(dζ)

=

∫∫
(x− y) ·

(
∇̂W

(
Z(s; tn, x)− Z(s; tn, ξ)

)
− ∇̂W (y − ζ)

)
γ(dξ, dζ).

Injecting into (3.30), we get:

D2
n+1 ⩽ D2

n + C∆t(∆t+∆x+ ε)

−2

∫ tn+1

tn

∫ ∫ ∫ ∫ (
x−y

)
·
(
∇̂W

(
Z(s; tn, x)−Z(s; tn, ξ)

)
−∇̂W (y−ζ)

)
γ(dξ, dζ)γ(dx, dy).

Decomposing x− y = x− Z(s; tn, x) + Z(s; tn, x)− y and using the fact that
|Z(s; tn, x)− x| ⩽ a∞|s− tn|, we get:

D2
n+1 ⩽ D2

n + C∆t(∆t+∆x+ ε)− 2

∫ tn+1

tn

∫ ∫ ∫ ∫ (
Z(s; tn, x)− y

)
·(

∇̂W
(
Z(s; tn, x)− Z(s; tn, ξ)

)
− ∇̂W (y − ζ)

)
γ(dξ, dζ)γ(dx, dy).

Using the fact that W is even to symmetrize the last term as in Lemma 2.7, we obtain:

D2
n+1 ⩽ D2

n + C∆t(∆t+∆x+ ε)

−
∫ tn+1

tn

∫ ∫ ∫ ∫ (
Z(s; tn, x)− Z(s; tn, ξ)− y + ζ

)
·(

∇̂W
(
Z(s; tn, x)− Z(s; tn, ξ)

)
− ∇̂W (y − ζ)

)
γ(dξ, dζ)γ(dx, dy).
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The λ-convexity of W then yields:

D2
n+1 ⩽ D2

n + C∆t(∆t+∆x+ ε)

− λ

∫ tn+1

tn

∫ ∫ ∫ ∫ ∣∣Z(s; tn, x)− y − Z(s; tn, ξ) + ζ
∣∣2 γ(dξ, dζ)γ(dx, dy).

Expanding the last term gives:

(3.31) D2
n+1 ⩽ D2

n + C∆t(∆t+∆x+ ε)− 2λ

∫ tn+1

tn

∫∫ ∣∣Z(s; tn, x)− y
∣∣2 γ(dx, dy)

+ 2λ

∫ tn+1

tn

∣∣∣∣∫∫ (
Z(s; tn, x)− y

)
γ(dx, dy)

∣∣∣∣2.
Now, since λ ⩽ 0, the last term above is nonpositive. It remains to estimate the
penultimate term. Writing:∣∣Z(s; tn, x)− y

∣∣ ⩽ ∣∣Z(s; tn, x)− x
∣∣+ ∣∣x− y

∣∣ ⩽ a∞
∣∣s− tn

∣∣+ ∣∣x− y
∣∣,

we deduce:∣∣Z(s; tn, x)− y
∣∣2 ⩽ 2

(
a2∞

∣∣s− tn
∣∣2 + ∣∣x− y

∣∣2) ⩽ 2a2∞∆t2 + 2
∣∣x− y

∣∣2
whenever s ∈ [tn, tn+1]. Integrating in space with respect to γ(dx, dy) and integrating
over s ∈ [tn, tn+1], we obtain:

−2λ

∫ tn+1

tn

∫∫ ∣∣Z(s; tn, x)− y
∣∣2 γ(dx, dy) ⩽ −4λa2∞∆t3 − 4λ∆tD2

n.

Together with (3.31), this yields:

D2
n+1 ⩽ (1− 4λ∆t)D2

n + C∆t(∆t+∆x+ ε).

Using a discrete Grönwall lemma, we finally get:

D2
n ⩽ e−4λtnD2

0 + C
1− e−4λtn

4λ
(∆t+∆x+ ε).

Now, one can easily prove that D2
0 = W 2

2 (ρ
ini, ρ0∆x) ⩽

√
d
2 ∆x2 (see [13]). This, along

with the CFL condition (3.21), which implies that ∆t ⩽ C∆x, gives the desired result.

3.2.3. Proof of Theorem 3.8. — We are now in position to prove Theorem 3.8 using
estimate (3.22) and passing to the limit ∆x→ 0. To do so, we must verify that, for a
given ε > 0, the approximate solutions given by the numerical scheme (3.17)–(3.16)
converge, say uniformly in time (over a finite horizon) and weakly, in the sense of
measures, in space, towards the solution ρε to the aggregation-diffusion problem (1.1)
with initial datum ρini, as ∆x→ 0. In all this section, ε is a fixed positive real number.

Let T > 0 and let N ∈ N be such that N∆t = T where ∆t satisfies the CFL
condition. We consider the following piecewise affine reconstruction in time, defined
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for t ∈ [0, T ] by

ρε∆x,t :=

N∑
n=0

( tn+1 − t

∆t
ρε,n∆x +

t− tn

∆t
ρε,n+1
∆x

)
1[tn,tn+1[(t),(3.32a)

ρε,n∆x :=
∑
J∈Zd

ρnJδxJ
, n = 0, . . . , N,(3.32b)

where, once again, (ρnJ)
n=0,...,N
J∈Zd is given by the explicit discretization (3.17)–(3.16)

(it actually depends on ε but we drop this dependence for convenience). Lemmas
3.15 and 3.16 show that, for all n ∈ {0, . . . , N}, ρε,n∆x ∈ P2(Rd), hence (ρε∆x)∆x>0 is a
collection, indexed by ∆x, of curves in C([0, T ],W1(Rd)) (they are actually curves on
W2(Rd) but compactness arguments require to work in a smaller space).

Outline of the proof. — We begin with assuming that ρini ∈ L2(Rd). Then, from
(ρε∆x)∆x>0, we shall extract a subsequence, that we still denote (ρε∆x)∆x>0, converging
in the C([0, T ],Mb(Rd)) topology towards a limit ρ ∈ C([0, T ],W2(Rd)). To do so,
we apply the Ascoli-Arzelà theorem: the relative compactness assumption follows
quite directly from the uniform bound on M2(ρ

ε,n
∆x) that we proved in Lemma 3.16;

the equicontinuity assumption, however, is more involved and requires discrete H1

estimates (Lemma 3.18) in order to control the diffusive term. Then, using classical
discrete integration by parts, we show that ρ solves the aggregation-diffusion initial
value problem, the solution of which is unique, hence the whole sequence actually
converges. Passing to the limit ∆x → 0 in estimate (3.22) will give us the desired
estimate (3.23) for L2(Rd) initial datum, and it will only remain to use a regularization
argument to conclude in the case of arbitrary P2(Rd) initial datum.

Lemma 3.18. — For all m ∈ {0, . . . , N}, we have:

∆t

m−1∑
n=0

∑
J∈Zd

d∑
i=1

∣∣∣ρnJ+ei
− ρnJ

∆xi

∣∣∣2 ⩽ C(a∞, d, ε, T )
∑
J∈Zd

(
ρ0J

)2
2

,

with
C(a∞, d, ε, T ) =

1

2ε

(
1 +

8dTa2∞
ε

∑
J∈Zd

exp
(4(1 + d)Ta2∞

ε

))
.

Proof. — The idea is to perform a discrete version of the following rationale. If ρε
solves (1.1) with L2(Rd) initial data, we have:

d

dt

∫
(ρεt )

2

2
= −

∫
∇ρεt · (∇W ∗ ρεt )ρεt − ε

∫
|∇ρεt |2.

First, using an adequate Young inequality on the first term along with the fact that
∇W is bounded allows to absorb the |∇ρεt |2 term into the last one, getting:

d

dt

∫
(ρεt )

2

2
⩽ −ε

2

∫
|∇ρεt |2 +

a2∞
ε

∫
(ρεt )

2

2
⩽
a2∞
ε

∫
(ρεt )

2

2
.

A Grönwall lemma then ensures that
∫
(ρεt )

2/2 remains bounded over finite time,
where the bound depends on ε, but ε is fixed. Second, plugging back this bound
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into the above estimate gives a bound on
∫ T

0
|∇ρεt |2H1(Rd)dt. Let us reproduce these

computations in the discrete setting.

Step 1: bound on
∑

J∈Zd

(
ρnJ

)2
/2. — For the sake of compactness, let us note

Fn
J+ei/2

= (ai
n
J)

+ρnJ − (ai
n
J+ei)

−ρnJ+ei .

Using twice the definition of the explicit scheme (3.17), we have:

∑
J∈Zd

(
ρn+1
J

)2 − (ρnJ)
2

2
=

∑
J∈Zd

ρn+1
J + ρnJ

2

(
ρn+1
J − ρnJ

)
=

∑
J∈Zd

ρn+1
J + ρnJ

2

(
−

d∑
i=1

∆t

∆xi
(Fn

J+ei/2
−Fn

J−ei/2
)+ ε

d∑
i=1

∆t

∆x2i
(ρnJ+ei − 2ρnJ + ρnJ−ei)

)

= −
∑
J∈Zd

d∑
i=1

∆t

∆xi

(
Fn
J+ei/2

− Fn
J−ei/2

)
ρnJ + ε

∑
J∈Zd

d∑
i=1

∆t

∆x2i

(
ρnJ+ei − 2ρnJ + ρnJ−ei

)
ρnJ

+
1

2

∑
J∈Zd

(
−

d∑
i=1

∆t

∆xi

(
Fn
J+ei/2

− Fn
J−ei/2

)
+ ε

d∑
i=1

∆t

∆x2i

(
ρnJ+ei − 2ρnJ + ρnJ−ei

))2

:= Sn
1 + Sn

2 .

Performing discrete integrations by parts and using Young’s inequality

|ab| ⩽ a2

2ε
+
εb2

2

with a = Fn
J+ei/2

and b = (ρnJ+ei
− ρnJ)/∆xi, we can estimate Sn

1 as follows:

Sn
1 =

∑
J∈Zd

d∑
i=1

∆t

∆xi
Fn
J+ei/2

(ρnJ+ei − ρnJ)− ε
∑
J∈Zd

d∑
i=1

∆t

∆x2i
|ρnJ+ei − ρnJ |2

⩽
∑
J∈Zd

d∑
i=1

∆t
((Fn

J+ei/2

)2
2ε

+
ε

2

∣∣∣ρnJ+ei
− ρnJ

∆xi

∣∣∣2)− ε
∑
J∈Zd

d∑
i=1

∆t

∆x2i
|ρnJ+ei − ρnJ |2

⩽
∑
J∈Zd

d∑
i=1

∆t

(
Fn
J+ei/2

)2
2ε

− ε

2

∑
J∈Zd

d∑
i=1

∆t

∆x2i
|ρnJ+ei − ρnJ |2.

As for Sn
2 , straightforward computations and the repeated use of (a± b)2 ⩽ 2a2+2b2

lead to:

Sn
2 ⩽

d∑
i=1

4d∆t2

∆x2i

∑
J∈Zd

(
Fn
J+ei/2

)2
+

d∑
i=1

4d
( ε∆t
∆x2i

)2 ∑
J∈Zd

|ρnJ+ei − ρnJ |2.

Using the fact that:(
Fn
J+ei/2

)2
⩽

(
a∞ρ

n
J + a∞ρ

n
J+ei

)2
⩽ 2a2∞

((
ρnJ

)2
+ (ρnJ+ei)

2
)
,
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we deduce that
∑

J∈Zd

(
Fn
J+ei/2

)2
⩽ 4a2∞

∑
J∈Zd(ρnJ)

2. Transferring in both estimates
we found on Sn

1 and Sn
2 , and summing both, we obtain:

(3.33)
∑
J∈Zd

(ρn+1
J )2 − (ρnJ)

2

2
⩽

(
4d∆ta2∞

ε
+

d∑
i=1

32da2∞∆t2

∆x2i

) ∑
J∈Zd

(ρnJ)
2

2

+

d∑
i=1

(
− ε∆t

2∆x2i
+ 4d

( ε∆t
∆x2i

)2) ∑
J∈Zd

|ρnJ+ei − ρnJ |2.

Under the Courant-Friedrichs-Lewy (CFL) condition

εd
∆t

∆x2i
⩽

1

8
for any i,

the last term in the above estimate is nonpositive, thus we get

∑
J∈Zd

(ρn+1
J )2 − (ρnJ)

2

2
⩽

4d∆ta2∞
ε

(
1 +

d∑
i=1

8ε∆t

∆x2i

) ∑
J∈Zd

(ρnJ)
2

2

⩽
4d∆ta2∞

ε

(
1 +

1

d

) ∑
J∈Zd

(ρnJ)
2

2
=

4∆ta2∞
ε

(1 + d)
∑
J∈Zd

(ρnJ)
2

2
.

Using a discrete Grönwall lemma, we deduce the following bound on the discrete L2

norm of ρε,n∆x: ∑
J∈Zd

(ρnJ)
2

2
⩽ exp

(4(1 + d)tna2∞
ε

) ∑
J∈Zd

(ρ0J)
2

2
.

Step 2: discrete H1 bound. — Assume a stricter CFL condition: there exists δ such
that

(3.34) εd
∆t

∆x2i
⩽ δ <

1

8
for any i.

Then, for any i,

4d
( ε∆t
∆x2i

)2

− ε∆t

2∆x2i
=

ε∆t

2∆x2i

(
8d
ε∆t

∆x2i
− 1

)
⩽
δ

d
(8δ − 1) < 0.

Thus, thanks to 3.33,

d∑
i=1

∑
J∈Zd

|ρnJ+ei − ρnJ |2

⩽
d

δ(1− 8δ)

((4d∆ta2∞
ε

+

d∑
i=1

32da2∞∆t2

∆x2i

) ∑
J∈Zd

(ρnJ)
2

2
−

∑
J∈Zd

(ρn+1
J )2 − (ρnJ)

2

2

)

⩽
d

δ(1− 8δ)

((4d∆ta2∞
ε

+

d∑
i=1

4a2∞∆t

ε

) ∑
J∈Zd

(ρnJ)
2

2
−

∑
J∈Zd

(ρn+1
J )2 − (ρnJ)

2

2

)
,
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which implies, thanks to the L2 estimate,

d∑
i=1

∑
J∈Zd

|ρnJ+ei − ρnJ |2 ⩽
d

δ(1− 8δ)

(
8d∆ta2∞

ε
exp

(4(1 + d)tna2∞
ε

) ∑
J∈Zd

(ρ0J)
2

2

−
∑
J∈Zd

(ρn+1
J )2 − (ρnJ)

2

2

)
.

Summing over n = 0, . . . ,m− 1 yields

m−1∑
n=0

d∑
i=1

∑
J∈Zd

|ρnJ+ei − ρnJ |2 ⩽
d

δ(1− 8δ)

(
8dTa2∞

ε
exp

(4(1 + d)Ta2∞
ε

) ∑
J∈Zd

(ρ0J)
2

2

−
∑
J∈Zd

(ρmJ )2

2
+

∑
J∈Zd

(ρ0J)
2

2

)
.

Finally

m−1∑
n=0

d∑
i=1

∑
J∈Zd

|ρnJ+ei − ρnJ |2

⩽
d

δ(1− 8δ)

(
1 +

8dTa2∞
ε

∑
J∈Zd

exp
(4(1 + d)Ta2∞

ε

)) ∑
J∈Zd

(ρ0J)
2

2
.

This is the desired result choosing δ = 1/16. □

We now resume the proof of Theorem 3.13. From now on, we always assume con-
dition (3.34) to hold.

Step 1: Ascoli-Arzelà theorem. — Let us denote, for K ⊂ Rd any compact set, LipK :=

Cc(K) ∩W 1,∞(Rd) the space of Lipschitz continuous functions supported in K and
∥ · ∥Lip the Lipschitz semi-norm. We then introduce the pseudo-distance defined in
duality with ∥·∥Lip by:

∀µ, ν ∈ P1(Rd), W1,K(µ, ν) := sup
ϕ∈LipK

∥ϕ∥Lip⩽1

∫
ϕd(µ− ν).

For 0 ⩽ s < t ⩽ T , we have, thanks to the Cauchy-Schwarz inequality:

(3.35) W1,K

(
ρε∆x,t, ρ

ε
∆x,s

)
=

∫ t

s

∣∣(ρε∆x,τ )
′∣∣dτ ⩽

√
t− s

√∫ t

s

∣∣(ρε∆x,τ )
′
∣∣2dτ.

Here, the metric derivative is the one associated to the pseudo-distance W1,K . Since we
chose ρε∆x to be the piecewise affine reconstruction of the ρε,n∆x for n = 0, . . . N , we have,
for τ ∈ [tn, tn+1[, |(ρε∆x,τ )

′| = 1
∆tW1,K(ρε,n∆x, ρ

ε,n+1
∆x ). Indeed, ρε∆x is a constant-speed

geodesic in W1(K) from ρε,n∆x to ρε,n+1
∆x (recall (3.32a) and the fact that linear in-

terpolations are geodesic for the W1 distance, which is a norm), hence its length on
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[tn, tn+1[ equals ∆t
∣∣(ρε∆x,τ )

′
∣∣ by definition and W1,K(ρε,n∆x, ρ

ε,n+1
∆x ) by the Benamou-

Brenier formula. Therefore:

(3.36)
∫ t

s

∣∣(ρε∆x,τ )
′∣∣2dτ ⩽

∫ T

0

∣∣(ρε∆x,τ )
′∣∣2dτ

=

N−1∑
k=0

∫ tn+1

tn

∣∣(ρε∆x,τ )
′∣∣2dτ =

N−1∑
k=0

W 2
1,K(ρε,n∆x, ρ

ε,n+1
∆x )

∆t
.

Now, let ϕ ∈ LipK such that ∥ϕ∥Lip ⩽ 1. We have, denoting ϕJ = ϕ(xJ) and using
the definition of the scheme (3.17) along with discrete integrations by parts in space:∫

ϕd
(
ρε,n+1
∆x − ρε,n∆x

)
=

∑
J∈Zd

ϕJ
(
ρn+1
J − ρnJ

)
=

∑
J∈Zd

d∑
i=1

∆t

∆xi
Fn
J+ei/2

(ϕJ+ei − ϕJ)− ε
∑
J∈Zd

d∑
i=1

∆t

∆x2i

(
ρnJ+ei − ρnJ

)
(ϕJ+ei − ϕJ)

⩽ 2da∞∆t+ ε∆t
∑
J∈Zd

d∑
i=1

∣∣∣ρnJ+ei
− ρnJ

∆xi

∣∣∣.
Taking the supremum over ϕ and using (a+ b)2 ⩽ 2a2 + 2b2, we get:

W 2
1,K(ρε,n∆x, ρ

ε,n+1
∆x ) ⩽ 8d2a2∞∆t2 + 2ε2∆t2

( ∑
J∈Zd

d∑
i=1

∣∣∣ρnJ+ei
− ρnJ

∆xi

∣∣∣)2

⩽ 8d2a2∞∆t2 + 2ε2∆t2
dLeb(K)∏d

i=1 ∆xi

∑
J∈Zd

d∑
i=1

∣∣∣ρnJ+ei
− ρnJ

∆xi

∣∣∣2,
where we used a discrete Cauchy-Schwarz inequality so as to use the discrete H1

estimate we proved in Lemma 3.18: indeed, summing for n = 0, . . . , N−1 and plugging
into (3.36), we obtain, using the aforementioned Lemma:

(3.37)

∫ t

s

∣∣(ρε∆x,τ )
′∣∣2dτ ⩽ 8d2a2∞T + 2dε2

Leb(K)∏d
i=1 ∆xi

∆t

N−1∑
n=0

∑
J∈Zd

d∑
i=1

∣∣∣ρnJ+ei
− ρnJ

∆xi

∣∣∣2
⩽ C(a∞, d, ε, T,K)

(
1 +

1∏d
i=1 ∆xi

∑
J∈Zd

(ρ0J)
2
)
.

Now, since we assumed that ρini ∈ L2(Rd), the term (1/
∏d

i=1 ∆xi)
∑

J∈Zd(ρ0J)
2 is

bounded with respect to ∆x. Indeed, a Cauchy-Schwarz inequality along with our
initialization of the scheme (3.16) yield:

∑
J∈Zd

(ρ0J)
2 =

∑
J∈Zd

(∫
CJ

ρini
)2

⩽
∑
J∈Zd

Leb(CJ)

∫
CJ

(ρini)2 =
( d∏
i=1

∆xi

) ∑
J∈Zd

∫
CJ

(ρini)2 =
( d∏
i=1

∆xi

)
∥ρini∥L2 .
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Transferring into (3.37), we obtain a bound on
∫ t

s

∣∣(ρε∆x,τ )
′
∣∣2dτ that is uniform with

respect to s, t and ∆x. Combining with (3.35), we deduce that (ρε∆x)∆x>0 is equi-
1
2 -Hölder and in particular, equicontinuous in C([0, T ], (LipK)′). Lemma 3.16 ensures,
in addition, that M2

(
ρε∆x,t

)
is uniformly bounded with respect to t ∈ [0, T ] and

∆x > 0. Using Lemma 2.5, we deduce that (ρε∆x,t)∆x>0 lies in a relatively compact set
for all t ∈ [0, T ] and ∆x > 0. We can therefore apply the Ascoli-Arzelà theorem along
with a diagonal extraction to extract a subsequence, that we still denote (ρε∆x)∆x>0,
converging in C([0, T ],W1(Rd)).

Step 2: ρε solves (1.1). — Using discrete integrations by parts as in [11, 27], we can
prove that ρε∆x satisfies the following approximate weak form of (1.1), for any ϕ ∈
C([0, T [×Rd):

(3.38)
∫ T

0

∫
∂tϕ(t, x)ρ

ε
∆x,t(dx)dt

+

∫ t

0

∫
â[ρε∆x,t] · ∇ϕ(t, x)ρε∆x,t(dx)dt+

∫
ϕ(0, x)ρini(dx)

= ε

∫ T

0

∫
∆ϕ(t, x)ρε∆x,t(dx) +O(∆x) +O(∆t).

Passing to the limit ∆x → 0 in (3.38) is straightforward for the linear terms since
ρε∆x,t

∗−−⇀
∆x→0

ρεt uniformly in time. For the nonlinear term, this convergence also ensures

that ρε∆x,t⊗ρε∆x,t
∗−−⇀

∆x→0
ρεt ⊗ρεt . Then, passing to the limit is done using a symmetriza-

tion argument as in equations (3.8)–(3.9)–(3.10) using the fact that W is Lipschitz
and even.

We deduce that ρε solves in the sense of distributions the aggregation-diffusion
problem (1.1) with initial datum ρε0 = ρini. Since such a solution is unique (see The-
orem 2.10), we deduce that actually the whole initial sequence (ρε∆x)∆x>0 converges
towards ρε.

Step 3: passing to the limit in (3.22) and relaxing the assumption ρini ∈ L2(Rd)

Now, let t > 0 and let n ∈ {0, . . . , N} such that t ∈ [tn, tn+1[. Estimate (3.22)
gives:

W2(ρt, ρ
ε
∆x,t) ⩽ C

√
1− e−4λt

λ

√
∆x+ ε+ e−2λt∆x.

Passing to the limit ∆x→ 0 in the above estimate using the semicontinuity of W2 then
gives the desired estimate (3.23), hence proving Theorem 3.13 in case of L2(Rd) initial
datum. The general case can be obtained by approximation, using Assumption (A3)
which guarantees stability of the solutions for both ε = 0 and ε > 0. This ends the
proof of Theorem 3.13.

Remark 3.19. — As a byproduct of this proof, we obtain uniform in time conver-
gence in the W1 distance in space of the numerical scheme (3.17)–(3.16) towards
the C([0, T ],W2(Rd)) distributional solution to the aggregation-diffusion initial value
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problem, in case of L2(Rd) initial datum, and under a 1/6-CFL condition. In fact,
we expect this convergence result to hold for arbitrary P2(Rd) initial datum and under
the standard CFL condition:

d∑
i=1

(
a∞

∆t

∆xi
+ 2ε

∆t

∆x2i

)
⩽

1

6
.

4. Convergence for repulsive potentials such that
∆W ⩽ 0 and ∇2W ∈ Lp0(Rd)

For any Lipschitz potential satisfying assumptions (A0)–(A1)–(A2), Theorem 3.1
guarantees the convergence of ρε towards a solution ρ to the aggregation equation up
to a subsequence if the initial data satisfies the assumptions (3.3). Then, Corollary 3.4
extended this result to arbitrary initial data by an approximation procedure, and using
λ-convexity to estimate the distance between two solutions. The goal of this section is
to proceed similarly in the case of repulsive potentials, typically W (x) = −|x|, where
λ-convexity will be replaced by some integrability of the Hessian. More precisely,
we focus on initial data equal to ρini, for which we only assume finiteness of moments.

The outline of the proof is the same as that of Corollary 3.4. However, we can no
more use the λ-convexity of W but, using the additional assumption ∇2W ∈ Lp0(Rd)

for a suitable p0, we still manage to estimate the distance between ρεt and a sequence of
viscous solutions associated with smoothed out initial data. More precisely, we obtain
the following result:

Theorem 4.1. — Let W be an interaction potential satisfying assumptions (A0)–(A1)–
(A2) along with the additional assumption:

(A5) ∆W ⩽ 0 and ∇2W ∈ Lp0(Rd) for some p0 > max(d/2, 1),
and let ρini be an initial datum belonging to ∈ P2(Rd). Denote (ρε)ε>0 the sequence
of weak solutions to (1.1) where the initial data is set to ρε0 := ρini for all ε > 0.

Then, for all T > 0, the sequence (ρε)ε>0 converges in C([0, T ],W1(Rd)), up to an
extraction, towards a solution ρ ∈ C([0, T ],W2(Rd)) to equation (1.2) with the velocity
field a[ρ] being replaced by â[ρ] as defined in (1.3).

If, in addition, ρini ∈ Lp′
0(Rd)∩Lp0/(p0−p)(Rd), then there exists a unique solution

in C([0, T ],W2(Rd)) ∩ L∞([0, T ], Lp′
0(Rd) ∩ Lp0/(p0−p)(Rd)) to (1.2) and actually the

whole sequence (ρε)ε>0 converges.

Remark 4.2
(1) For W (x) = −|x|, this result cannot be applied in dimension d = 1, since

∇2W = −δ0 is not integrable. When d > 1, we have

∇2W (x) =
(x/|x|)⊗ (x/|x|)− Id

|x|
∼ 1

|x|
,

hence ∇2W ∈ Lp0 if and only if p0 < d (up to cutting off the potential at infinity)
and therefore we can find p0 ∈ (d/2, d) so as to apply our result.
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(2) In dimension d = 1, for W (x) = −|x|, Proposition 2.12 shows that the whole
sequence (ρε)ε>0 converges in C([0, T ],W1(R)) towards a solution to the aggregation
equation that can be obtained as the derivative of the entropy solution to a Burgers-
type equation since entropy solutions and viscosity solutions coincide for scalar con-
servation laws.

(3) As a byproduct of our result, one obtains existence of a solution in

C([0, T ],W2(Rd))

to the aggregation problem (1.2) for potentials satisfying (A0)–(A1)–(A2)–(A5).

Proof. — Let T > 0. As in the proof of Corollary 3.4, for ε > 0, we introduce
µε ∈ C([0, T ],W2(Rd)) solution to (1.1) with smoothed out initial data µε

0, that we
now assume to satisfy assumptions (3.4) for some α ∈ (−1, 0). In particular, (µε

0)ε>0

satisfies assumptions (3.3) and Theorem 3.1 applies to (µε)ε>0 and guarantees con-
vergence of a subsequence, in C([0, T ],W1(Rd)), towards a solution to the aggregation
equation (1.2). As for Corollary 3.4, the key ingredient is now to prove that the
distance Wp(ρ

ε
t , µ

ε
t ) goes to 0 as ε→ 0, for some p > 1 that will be specified later.

For the sake of clarity, let us drop the superscripts ε for the remaining of this
section.

Denoting (φt, ψt) a pair of Kantorovitch potentials from ρt to µt for the cost
1
p |x− y|p, we can formally write (see [33, Th. 5.24] or [1, Th. 8.4.7])

1

p

d

dt
W p

p (ρt, µt) =

∫
∇φt · a[ρt]dρt +

∫
∇ψt · a[µt]dµt

− ε

∫ (
∇φt · ∇ρt +∇ψt · ∇µt

)
dx.

The last term above is nonnegative thanks to the so-called five (actually four) gra-
dients inequality proved in [7] for the Wp case with p > 1. Actually, [7] proves the
inequality in a compact setting and a full treatment of this last term would require a
suitable approximation procedure. Yet, the inequality we need, i.e.,

1

p

d

dt
W p

p (ρt, µt) ⩽
∫

∇φt · a[ρt]dρt +
∫

∇ψt · a[µt]dµt

can also be justified in many different ways, for instance by the stochastic interpre-
tation of ρt and µt as laws of the solutions of suitable SDE where the choice of a
common Brownian motion would allow to get rid of the term coming from diffusion
(see, for instance, [4]); since the diffusion effect of the Laplacian in the equation could
also be handled using convolution with the heat kernel, another possible way to prove
the same inequality would be to approximate the solutions by a splitting method,
alternating convolutions (which decrease the Wp distance) and transport (which lets
the other term appear).

We thus get, using a triangle inequality along with the fact that

∇φt(x) = |x− Tt(x)|p−1( ̂x− Tt(x)) = −∇ψt(x),
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where Tt is the optimal transport map from ρt to µt (which exists since ρt ≪ Leb

whenever ε > 0):

1

p

d

dt
W p

p (ρt, µt) ⩽ |I1|+ |I2|,(4.1a)

I1 =

∫
|x− Tt(x)|p−1( ̂x− Tt(x)) · (a[ρt](x)− a[ρt] ◦ Tt(x))ρt(dx),(4.1b)

I2 =

∫
|x− Tt(x)|p−1( ̂x− Tt(x)) · (a[ρt] ◦ Tt(x)− a[µt] ◦ Tt(x))ρt(dx).(4.1c)

To estimate I1, we use the following bound on the Lipschitz constant of a[ρt]:

Lip(a[ρt]) = ∥∇2W ∗ ρt∥L∞ ⩽ ∥∇2W∥Lp0∥ρt∥Lp′0
.

We deduce:

|I1| ⩽ Lip(a[ρt])

∫
|x− Tt(x)|pρt(dx) ⩽ ∥∇2W∥Lp0∥ρt∥Lp′0

W p
p (ρt, µt).

To estimate I2, we first apply a Hölder inequality with respect to the measure ρt(dx)
and with the exponents (p′, p). We get, since p′(p− 1) = p:

(4.2) |I2| ⩽
(∫

|x−Tt(x)|pρt(dx)
)1/p′(∫ ∣∣a[ρt]◦Tt(x)−a[µt]◦Tt(x)

∣∣pρt(dx))1/p

.

We recognize that the first factor equals W p−1
p (ρt, µt) since p/p′ = p − 1. Let us

deal with the second one. We consider νs := ((1− s)id + sTt)# ρt the constant-speed
geodesic from ρt to µt. Note that this curve implicitly depends on t. We also denote
by bs ∈ Lp(νs) the velocity field associated with ν ∈ AC([0, 1],Wp(Rd)), as given by
Theorem 2.1. We have as a consequence of the Benamou-Brenier formula ∂sνs +∇ ·
(bsνs) = 0 and ∥bs∥Lp(νs) = |(νs)′| = Wp(ρt, µt) for a.e. s ∈ [0, 1]. Therefore, for any
y ∈ Rd, one has:

a[ρt](y)− a[µt](y) = −
∫

∇W (y − z)(ρt(z)− µt(z))dz

= −
∫ 1

0

∫
∇W (y − z)∂sνs(z)dzds

=

∫ 1

0

∫
∇W (y − z)∇ · (bs(z)νs(z))dzds

=

∫ 1

0

∫
∇2W (y − z)bs(z)νs(dz)ds,

so that the inequality (4.2) rewrites:

|I2| ⩽W p−1
p (ρt, µt)

(∫ ∣∣∣∣ ∫ 1

0

ds

∫
∇2W (Tt(x)− z)bs(z)νs(dz)ds

∣∣∣∣pρt(dx))1/p

.
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Besides, using a Jensen inequality with respect to the measure νs(dz)ds for the convex
function | · |p, we have:∫ ∣∣∣∣ ∫ 1

0

ds

∫
∇2W (Tt(x)− z)bs(z)νs(dz)ds

∣∣∣∣pρt(dx) ⩽∫ ∫ 1

0

∫
|∇2W (Tt(x)− z)|p|bs(z)|pνs(dz)dsρt(dx)

⩽
∫ 1

0

∫
|bs(z)|p

∫
|∇2W (Tt(x)− z)|pρt(dx)νs(dz)ds.

Now, since µt = Tt#ρt, we have
∫
|∇2W (Tt(x)−z)|pρt(dx) =

∫
|∇2W (y−z)|pµt(y)dy.

Applying a Hölder inequality with respect to dy and the exponents (q, q′), where we
will specify q right afterward, we get:∫

|∇2W (y − z)|pdµ(y) ⩽
(∫

|∇2W (y − z)|pq
′
dy

)1/q′(∫
|µt(y)|qdy

)1/q

= ∥∇2W∥p
Lpq′∥µt∥Lq .

We therefore have to take q such that pq′ = p0, so that ∥∇2W∥Lpq′ remains finite.
This requires that we choose p such that p ⩽ p0, which imposes p0 > 1 since we also
needed p > 1. We also need to choose p such that ρini ∈ Pp, which means p ⩽ 2. Using∫ 1

0

∫
|bs(z)|pνs(dz)ds =W p

p (ρt, µt), we finally obtain:

|I2| ⩽ ∥∇2W∥Lp0 ∥µt∥1/pLq W
p
p (ρt, µt), for q = p0

p0 − p
,

where the value of q is computed so that we have q′ = p0/p. We therefore have the
following Grönwall inequality on W p

p (ρt, µt):

(4.3) 1

p

d

dt
W p

p (ρt, µt) ⩽ ∥∇2W∥Lp0

(
∥ρt∥Lp′0

+ ∥µt∥1/pLq

)
W p

p (ρt, µt).

Now, we need a bound on ∥ρt∥Lr . The following lemma implies that, if the interaction
potential W satisfies ∆W ⩽ 0, then the bound on ρt is not worse than the one we
would obtain if ρ solved the sole heat equation and does not depend on the initial
datum.

Lemma 4.3. — Let p ∈ (1,+∞), ε > 0 and let ρ solve the following Fokker-Planck
equation on the whole space Rd:

(4.4) ∂tρ+∇ · (ρ∇V ) = ε∆ρ,

where the potential V might depend on ρ and satisfies ∆V ⩾ 0. Assume that ρt is
smooth for any t > 0, and that is has unit total mass. Then one has:

∥ρt∥Lp ⩽ C(εt)−d/2p′
,

for a positive constant C = C(p, d) depending on p only and not on the initial
datum ρ0.
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Proof. — In the following, C(p) stands for any positive constant depending only on
p. For t > 0, testing equation (4.4) against ρp−1

t and integrating by parts yields:
d

dt

1

p

∫
ρpt = −p− 1

p

∫
ρpt∆V − 4ε

p− 1

p2

∫
|∇ρp/2t |2 ⩽ −4ε

p− 1

p2

∫
|∇ρp/2t |2,

since ∆V ⩾ 0. Using the following Gagliardo-Nirenberg-Sobolev inequality [19, 30]:∫
ρp+2/d ⩽ C(p)

∫
|∇ρp/2t |2,

and interpolating the Lp norm between the L1 and Lp+ 2
d norms, we deduce that

yt :=
∫
ρpt verifies the following nonlinear Grönwall inequality:

y′ − εC(p)y1+2/d(p−1) ⩽ 0.

Integrating this inequality on [s, t] for 0 < s < t, we get:

y
−2/d(p−1)
t ⩾ y−2/d(p−1)

s + εC(p) ⩾ εC(p),

and therefore ∥ρt∥Lp = y
1/p
t ⩽ C(p)(εt)−d(p−1)/2 = (εt)−d/2p′ . This is the bound

one would obtain using a Lp × L1 convolution inequality if ρ solved the sole heat
equation on the whole space, that is, if we had ρt = Gεt ∗ ρ0 where Gt denotes the
heat kernel. □

Using Lemma 4.3 with the potential V = −W ∗ ρ which has a positive Laplacian
under the assumption ∆W ⩽ 0, we get ∥ρt∥Lp′0

+ ∥µt∥1/pLq ⩽ C(d, p0)(εt)
−d/2p0 which,

in turn, yields the Grönwall inequality:
d

dt
W p

p (ρt, µt) ⩽ C(εt)−d/2p0W p
p (ρt, µt),

where C is a positive constant that depends on p, p0 and ∥∇2W∥Lp0 only. We deduce:

W p
p (ρt, µt) ⩽W p

p (ρ0, µ0)e
∫ t
0
C(ετ)−d/2p0dτ ,

provided p0 > d/2 so that τ−d/2p0 is integrable on (0, t]. Under this assumption,
using Lemma 3.3 along with the fact that ρ0 = ρini, we get, for some constant C > 0

depending on d, p, p0 and ∥∇2W∥Lp0 only:

∀t ∈ [0, T ], W p
p (ρt, µt) ⩽ Ce−C(εα−ε−d/2p0 )eCt1−d/2p0

⩽ Ce−C(εα+ε−d/2p0 )eCT 1−d/2p0
,

which goes to 0 uniformly in t ∈ [0, T ], as ε → 0, provided α < −d/2p0. Since
−d/2p0 > −1, it is possible make such a choice while guaranteeing α ∈ (−1, 0).
To finish, we conclude the proof as in that of Corollary 3.4.

Now, note that ∆W ⩽ 0 ensures that any Lp norm of solutions to (1.2) is nonin-
creasing in time. Therefore, when the initial datum belong to Lp′

0(Rd)∩Lp0/(p0−p)(Rd),
estimate (4.3) still holds for ε = 0 between any two solutions to (1.2) and gives unique-
ness of the solution among the class of

C
(
[0, T ],W2(Rd)

)
∩ L∞(

[0, T ], Lp′
0(Rd) ∩ Lp0/(p0−p)(Rd)

)
solutions. □
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5. Higher convergence rate for steady states under assumptions
(A0)–(A1)–(A4-p)

In this section, we compare stationary solutions to the aggregation-diffusion equa-
tion (1.1a) for a given ε > 0 with stationary solutions to the aggregation equa-
tion (1.2). We discard, in this section, the assumptions of λ-convexity and Lipschitz
continuity on W but still assume that assumptions (A0) and (A1) hold. In addition,
we require the potential to satisfy assumption (A4-p), that is, to be at least as at-
tractive as |x|p, for some p ∈ [1,∞). These stationary solutions are in many cases
long-time limits of the corresponding evolving solutions, but we will not insist on
these aspects that are usually studied by λ-convexity techniques, and we discarded
such an assumption in this section.

Note that this assumption along with (A0) implies W (x) ⩾ C|x|p/p for all x ∈ Rd.
If, in addition, W satisfies assumption (A1) then W is l.s.c. on Rd and this implies
that W is l.s.c. for the weak convergence thanks to Lemma 2.3.

Also, without loss of generality, we only consider measures with 0 center of mass,
that is, measures ρ ∈ P(Rd) verifying:∫

xρ(dx) = 0.

We define steady states for the aggregation-diffusion equation in the spirit of [23]:

Definition 5.1. — Let ε ⩾ 0. A steady state for the aggregation-diffusion equation
(1.1a) is a probability measure ρ ∈ P1(Rd) such that:

if ε = 0, ∇̂W ∗ ρ = 0, on supp(ρ),

and, if ε > 0: ∇W ∗ ρ+ ε
∇ρ
ρ

= 0 on Rd,

ρ > 0 on Rd.

One can prove that this definition is equivalent to that of stationary solutions,
in the sense of distributions, to equation (1.1). Besides, if ε > 0, one can show that
a distributional solution to the elliptic problem −∇ · (∇W ∗ ρ)ρ = ε∆ρ is necessarily
regular and positive on Rd (see Theorem 2.10).

The following lemma justifies why we compare steady states for the aggregation
equation to the Dirac mass.

Lemma 5.2. — Under assumptions (A0)–(A1)–(A4-p) for p ⩾ 1, the unique steady
state for the aggregation equation (1.2a) is, up to a translation, the Dirac mass δ0.

Proof. — Let ρ be a steady state for (1.2) and assume that ρ is centered. Since
∇̂W ∗ ρ = 0 on the support of ρ, testing against ρx and using Lemma 2.7 with the
odd vector field ∇̂W yields:∫∫

∇̂W (x− y) · (x− y)ρ(dx)ρ(dy) = 0.
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Under assumption (A4-p), we therefore have
∫∫

|x− y|pρ(dx)ρ(dy) = 0. In particular
ρ⊗ ρ is concentrated on the diagonal. Now, if ρ is not a Dirac mass, then there exists
disjoint Borel sets A and B with ρ(A) > 0 and ρ(B) > 0. Then we have, since A×B

is disjoint from the diagonal

0 = ρ⊗ ρ(A×B) = ρ(A)ρ(B) > 0,

and this contradiction concludes the proof. □

Note that the Dirac mass is actually the only minimizer of the interaction energy W

under these assumptions. Conversely, Proposition 7.20 in [33] ensures that minimizers
of the energy F ε are actually steady states. This provides a way to prove existence of
steady states for (1.1a) when ε > 0.

5.1. Existence of minimizers of F ε for ε > 0

Proposition 5.3. — Assume that W satisfies assumptions (A0)–(A1)–(A4-p) for
some p ⩾ 1 and let ε ⩾ 0 be fixed. The functional F ε = W+ εU admits a minimizer
over P(Rd) that actually has finite p-th order moment.

Remark 5.4. — We were not able to prove uniqueness of the minimizer under such
assumptions on W but it is likely to hold. Moreover, numerical illustrations will show
that, if we remove assumption (A4-p), multiple steady states can coexist even though
ε > 0 (in case ε = 0, it is easy to build explicit counterexamples).

To prove this proposition, we will use that under assumptions (A0) and (A4-p),
controlling W(ρ) gives control on

∫∫
|x − y|pρ(dx)ρ(dy), and this latter quantity is

equivalent to Mp(ρ) whenever ρ is centered, thanks to the following lemma:

Lemma 5.5. — Let p ∈ [1,∞) and ρ ∈ Pp(Rd). Assume that the center of mass of ρ
is 0. Then:

Mp(ρ) ⩽
∫∫

|x− y|pρ(dx)ρ(dy) ⩽ 2p−1Mp(ρ).

Proof. — Let u(x) =
∫
|x−y|pρ(dy). Since p ⩾ 1, u is a convex function and therefore,

using a Jensen inequality, we get:

Mp(ρ) = u(0) = u
(∫

xρ(dx)
)
⩽

∫
u(x)ρ(dx).

In other terms, Mp(ρ) ⩽
∫∫

|x − y|pρ(dx)ρ(dy). The upper bound comes from the
inequality |x− y|p ⩽ 2p−1(|x|p + |y|p). □

Proof. — Let (ρn)n∈N be a sequence of probability measures that minimize F ε.
We can assume that these measures are centered because F ε is invariant under
translation. Up to an extraction, we can assume that (ρn)n∈N converges weakly
towards some ρ ∈ Mb(Rd). To ensure that ρ ∈ P(Rd), we need to prove tightness of
(ρn)n∈N. To do so, let us find a bound on Mp(ρn).
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Since (ρn)n∈N is a minimizing sequence, F ε(ρn) = W(ρn)+εU(ρn) is bounded from
above by some constant that we still denote C > 0. Moreover, using assumption (A0)
and (A4-p) and Lemma 5.5, since ρn is centered, we have:

W(ρn) ⩾
C

2p

∫∫
|x− y|pρn(dx)ρn(dy) ⩾

C

2p
Mp(ρn).

In order to get a lower bound involving Mp(ρn) on the entropy term, recall that,
using a Legendre transform, y ln y + ez−1 ⩾ yz for all y ⩾ 0 and z ∈ R. Setting, for
x ∈ Rd, y = ρn(x) and z = −|x|αp for some exponent α > 0 to be specified later, and
integrating over x ∈ Rd, we get:∫

ρn ln ρn ⩾ −
∫

(|x|p)αρn(dx) +
∫
e−|x|αp−1dx.

Choosing α ∈ (0, 1) so that x 7→ |x|α is concave, and using a Jensen inequality,
we deduce U(ρn) ⩾ −Mp(ρn)

α + C(p, α), where C(p, α) depends on α and p only.
Finally, we obtain:

C

2p
Mp(ρn)− εMp(ρn)

α + εC(p, α) ⩽ C,

which implies, since α < 1, that Mp(ρn) is uniformly bounded with respect to n.
On the one hand, this implies that (ρn)n∈N is tight, hence ρ ∈ P(Rd). Since Mp

is l.s.c. on P(Rd) and ρn
∗−−⇀

n→+∞
ρ, we also get ρ ∈ Pp(Rd). On the other hand, the

uniform bound on Mp(ρn) along with Lemma 2.5 ensures that ρn is compact in Wq

and hence we obtain Mq(ρn) −→
n→+∞

Mq(ρ) for any q ∈ (0, p). Lemma 2.4 then gives
U(ρ) ⩽ lim infn→+∞ U(ρn), and, since W is l.s.c. for the weak convergence, we get
F ε(ρ) ⩽ lim infn→+∞ F ε(ρn). This proves that ρ minimizes F ε since (ρn)n∈N is a
minimizing sequence. □

5.2. O(ε) convergence rate in Wp for potentials such that ∇W (x) · x ⩾ C|x|
In this section, we focus on assumption (A4-1) under which the potential is “really

pointy” and the aggregation compensates the diffusion so that convergence occurs at
rate O(ε):

Theorem 5.6. — Assume that W satisfies assumptions (A0)–(A1)–(A4-1). There ex-
ists a constant C > 0 depending on d, such that for any ε > 0 and ρε steady state for
(1.1a) which center of mass is 0, the following estimate holds:

(5.1) W1(ρ
ε, δ0) ⩽ Cε.

Proof of Theorem 5.6. — Let ε > 0 and let ρε be a steady state for (1.1), that is:

(5.2) ∇W ∗ ρε + ε
∇ρε

ρε
= 0.

Testing the above equation against ρεx we obtain:∫
ρεx · ∇W ∗ ρεdx+ ε

∫
x · ∇ρεdx = 0.
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Integrating by parts and using Lemma 2.7 with the odd vector field ∇W yields:
1

2

∫∫
∇W (x− y) · (x− y)ρε(dx)ρε(dy) = εd.

The desired result then follows from assumption (A4-1) and Lemma 5.5 with p = 1,
since W1(ρ

ε, δ0) =M1(ρ
ε). □

Note that, from equation (5.2), one has ρε = C(ε)e−W∗ρε/ε. The value of the
constant C(ε) can be computed by imposing a total mass 1, so that we get ρε =

e−W∗ρε/ε/
∫
e−W∗ρε/ε. Using this equality along with estimate (5.1), we obtain a

bound in Wp distance for p ∈ [1,∞) provided W is also Lipschitz continuous:

Theorem 5.7. — Assume that W satisfies assumptions (A0)–(A1)–(A2)–(A4-1). For
any p ∈ [1,∞) there exists a constant C > 0 such that for any ε > 0 and ρε steady
state for (1.1a) which center of mass is 0, the following estimate holds:

Wp(ρ
ε, δ0) ⩽ Cε.

Remark 5.8. — At least in dimension one, this result is optimal. Indeed, we can
take for W the Newtonian potential W (x) = |x|, for which, using the correspondence
with Burgers’ equation, ρε can be written as ρε(x) = (1/ε)ρ(x/ε), where ρ(x) =

(1− tanh2 (x/2))/4, and a scaling argument then gives W p
p (ρ

ε, δ0) = εpMp(ρ).

Proof. — Since

ρε =
e−W∗ρε/ε∫
e−W∗ρε/ε

,

we have:

W p
p (ρ

ε, δ0) =

∫
|x|pe−W∗ρε(x)/εdx∫

e−W∗ρε/ε
,

Now, since W is Lipschitz continuous, one has

|W ∗ ρε −W ∗ δ0| ⩽ a∞ sup
Lip(φ)⩽1

∫
φd(ρε − δ0) = a∞W1(ρ

ε, δ0) ⩽ Cε,

because of Theorem 5.6. Thus, −W ∗ ρε ⩽ Cε−W and therefore:∫
|x|pe−W∗ρε(x)/εdx ⩽ C

∫
|x|pe−W (x)/εdx ⩽ Cεp+d

∫
|y|pe−W (εy)/εdy,

using the change of variables x = εy. Recall that Assumption (A4-1) ensures W (x) ⩾
C|x| for all x ∈ Rd. This allows us to bound

∫
|y|pe−W (εy)/εdy uniformly with respect

to ε.
On the other hand, since W is a∞-Lipschitz continuous, we have

W (x) ⩽ a∞|x|+W (0) = a∞|x|.

Integrating with respect to ρε(dx), we deduce that W ∗ρε(0) ⩽ a∞W1(ρ
ε, δ0). Besides,

W ∗ ρε is also a∞-Lipschitz continuous. Hence,

W ∗ ρε(x) ⩽W ∗ ρε(0) + a∞|x| ⩽ a∞W1(ρ
ε, δ0) + a∞|x| ⩽ Cε+ a∞|x|,
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thanks again to estimate (5.1). After another rescaling, we deduce:∫
e−W∗ρε/ε ⩾ Cεd,

thus getting W p
p (ρ

ε, δ0) ⩽ Cεp+d/εd = Cεp, which concludes the proof. □

5.3. O(ε1/p) convergence rate in Wp for potentials such that ∇W (x) · x ⩾ C|x|p

Assume W satisfies assumptions (A0), (A1) and (A4-p) for some p ∈ [1,∞). Under
this assumption, a straightforward adaptation of the proof of Theorem 5.6 provides
an estimate on Wp(ρ

ε, δ0):

Theorem 5.9. — Assume that W satisfies assumptions (A0)–(A1)–(A4-p) for some
p ∈ [1,∞). There exists a constant C > 0 such that for any ε > 0 and ρε steady state
for (1.1a) which is centered, the following estimate holds:

(5.3) Wp(ρ
ε, δ0) ⩽ Cε1/p.

Remark 5.10. — It is possible to prove optimality of this rate for p = 2. Let us
consider the quadratic potential W (x) = |x|2, that satisfies assumption (A4-2). Recall
that ρε = e−W∗ρε/ε/

∫
e−W∗ρε/ε. Expanding W (x−y) = |x−y|2 and using both facts

that the total mass of ρ is 1 and that ρε is centered, one has:

e−W∗ρε/ε = exp

{
−1

ε

(∫
|x|2ρε(y)dy − 2x ·

∫
yρε(y)dy +

∫
|y|2ρε(y)dy

)}
= e−|x|2/εe−W 2

2 (ρ
ε,δ0)/ε.

Hence, ρε(x) = e−|x|2/ε/
∫
e−|x|2/εdx, which in turn yields:

W 2
2 (ρ

ε, δ0) =

∫
|x|2e−|x|2/εdx∫
e−|x|2/εdx

.

A change of variables in both integrals then gives W 2
2 (ρ

ε, δ0) = Cε. Note the estimate
W p

p (ρ
ε, δ0) = Cεp/2 can be proved in the same way, but is not relevant in the context

of Theorem 5.9.

6. Numerical illustrations

This sections aims to illustrate our convergence results both in the evolutive case
and in the stationary case. The implementation of the schemes has been done in
Python and the code is available at github.com/strantien/aggregation. Tests are con-
ducted on [−1, 1], with 2J + 1 cells, and the velocity field is always discretized by
(3.18). Wasserstein distances between two arbitrary probability measures are com-
puted using the POT package (see [18]).
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Figure 1. Order 1/2 convergence in W2 distance of ρεT towards ρT
for ρini(x) = 2

√
5/π e−20x2 , W (x) = |x|2.

6.1. Evolutive solutions. — We begin with the convergence rate in Wasserstein
distance of the viscous solutions ρε associated with a fixed initial datum ρini (not
depending on ε). In this subsection ρε∆x is computed using the implicit discretization
(3.19), for which the CFL condition is less restrictive than the parabolic CFL condition
of the explicit scheme. We also implemented no-flux boundary conditions so as to
preserve total mass. This condition is a discretization of

(ε∂xρ− â[ρ]ρ)(t,−1) = (ε∂xρ− â[ρ]ρ)(t, 1) = 0.

Namely, (3.19) is used for j = 2, . . . , 2J and the system is closed with (here we omit
the index i as the space dimension is 1, and we recall that θ = 1)

ρn+1
1 = ρn1 − ∆t

∆x

(
(an1 )

+ρn1 − (an2 )
−ρn2

)
+ ε

∆t

∆x2
(ρn+1

2 − ρn+1
1 ),

and a similar equation for j = 2J +1. Since in some cases we do not have explicitly a
reference solution for the inviscid equation (ε = 0), the convergence rate with respect
to ε is estimated taking ∆x small enough so that ρε∆x approximates ρε, and computing
Wp(ρ

εi+1

∆x,T , ρ
εi
∆x,T ): this quantity is called “error” in the y axis on Figures 1, 2 and 3.

Actually in the case of Figure 1 the velocity field has the form −∇W ∗ ρ(x) = −x,
which would allow for the computation of the reference solution; yet in order to use
the same tools based on the POT package (more suitable for atomic measures) we do
not exploit this property.

In Theorems 3.8 and 3.13, when W satisfies assumptions (A0)–(A1)–(A2)–(A3),
we proved convergence at rate O(ε1/2) in W2 distance, which is what we recover
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Figure 2. Order 1 convergence in W1 distance of ρεT towards ρT for
ρini(x) = 2

√
5/π e−20x2 , W (x) = |x|.

when W is smooth, as shows Figure 1. In practice, for this test case, we observe
O(ε1/2) convergence rate in Wp distance for any p ∈ [1,+∞[. However, in case W has
a Lipschitz discontinuity at the origin (Figure 2) we observe convergence at order 1

in W1 distance. This is the superconvergence phenomenon investigated by Tang, Teng
and Zhang [38, 40] in the framework of scalar conservation laws. In terms of aggre-
gation, the interpretation is that, when W is singular, the concentration is strong
enough to compensate part of the diffusion. In other Wp distances, convergence seems
to occur at order 1 when ε is not too small, and then degenerates quite clearly towards
order 1/p for any p ∈ [1,+∞[ (see Figure 3 for p = 3). Note that, in every case, the
convergence order is robust with respect to the test case (be it for smooth or singular
initial data, e.g. Dirac masses).

6.2. Steady states. — In order to simulate the steady states for ε > 0, recall that
they are characterized, over the whole space, by the following equation:

(6.1) ρε =
e−W∗ρε/ε∫
e−W∗ρε/ε

.

We therefore use a fixed-point method on the map sending ρ into e−W∗ρ/ε/
∫
e−W∗ρ/ε

in order to solve Equation (6.1). Fixed point algorithm is stopped as soon as the Wp

distance between two iterations is below some tolerance. Numerically, we observe that
this method turns two symmetric Gaussian bumps almost immediately (after the first
iteration) into a centered Gaussian whenever W is attractive and Lipschitz.
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Figure 3. Order 1/3 convergence in W3 distance, for small ε, of ρεT
towards ρT for ρini(x) = 2

√
5/π e−20x2 , W (x) = |x|.

Figure 4. Order of convergence in W1 distance of ρε towards δ0, for
the non-Lipschitz potential W (x) =

√
|x| + |x|. The initial density

for the fixed point algorithm is the centered Gaussian 2
√
5/π e−20x2 .
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We first investigate the convergence rate towards the Dirac mass, for centered
steady states. The error is estimated computing the integral

∫
|x|pρ(dx) =W p

p (ρ, δ0).
When W satisfies assumptions (A0)–(A1)–(A4-1), we proved O(ε) convergence rate
in W1 distance, which we do recover in Table 1 for W (x) = |x|. We also explore the
case when W verifies (A0)–(A1)–(A4-1) but is not Lipschitz continuous, which is the
case of W (x) =

√
|x|+ |x|. For this potential, we obtain, in Figure 4 convergence at

order 1.82264413 which is slightly less than 2, in W1 distance. This can be linked to the
fact that W satisfies a sort of assumption (A4-1/2) when |x| ⩽ 1. Under assumptions
(A0)–(A1)–(A2)–(A4-3), we observe convergence at rate 1/3 in W3 distance as we
proved in (5.3), as shows Figure 5.

Figure 5. O(ε1/3) convergence in W3 distance of ρε towards δ0,
W (x) = |x|3. The initial density for the fixed point algorithm is
the centered Gaussian 2

√
5/π e−20x2 .

More generally, under assumptions (A0)–(A1)–(A2)–(A4-p), convergence at rate
1/p seems to occur in any Wq distance, q ∈ [1,+∞[, which is what we proved in for
p = 1 or for p = q. To illustrate this latter case, we compute the convergence order
in Wp distance for W (x) = |x|p, which seems indeed to be 1/p, see Table 1 (when
p = 1, since the potential is pointy, one has to refine the mesh so as to observe proper
convergence at order 1).
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Table 1. Convergence order ≃ 1/p of ρε towards δ0 for W (x) = |x|p,
tol = 10−6, εi = 2−i, i = 4, . . . , 16, initial density 2

√
5/π e−20x2

p Order J

1 1.00205259 50000
2 0.49999997 2000
3 0.33333333 2000
4 0.25000000 2000
5 0.20000000 2000
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