Commensurators of normal subgroups of lattices
[Commensurateurs de sous-groupes normaux de réseaux]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1099-1122.

Nous étudions une question de Greenberg-Shalom concernant l’arithméticité des sous-groupes discrets des groupes de Lie semi-simples avec des commensurateurs denses. Nous répondons positivement à cette question pour les sous-groupes normaux des réseaux. Ceci généralise un résultat du second auteur et de T. Koberda pour certains sous-groupes normaux de réseaux arithmétiques dans SO(n,1) et SU(n,1).

We study a question of Greenberg-Shalom concerning arithmeticity of discrete subgroups of semisimple Lie groups with dense commensurators. We answer this question positively for normal subgroups of lattices. This generalizes a result of the second author and T. Koberda for certain normal subgroups of arithmetic lattices in SO(n,1) and SU(n,1).

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.274
Classification : 22E40, 20A05, 20G15
Keywords: Discrete subgroups of Lie groups, commensurated subgroups, locally compact groups
Mot clés : Sous-groupes discrets de groupes de Lie, sous-groupes commensurables, groupes localement compacts

David Fisher 1 ; Mahan Mj 2 ; Wouter van Limbeek 3

1 Department of Mathematics, Rice University, 6100 Main St MS 136, Houston, TX 77005, USA
2 School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai, Maharashtra 400005, India
3 Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607-7045, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__1099_0,
     author = {David Fisher and Mahan Mj and Wouter van Limbeek},
     title = {Commensurators of normal subgroups of lattices},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1099--1122},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.274},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.274/}
}
TY  - JOUR
AU  - David Fisher
AU  - Mahan Mj
AU  - Wouter van Limbeek
TI  - Commensurators of normal subgroups of lattices
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 1099
EP  - 1122
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.274/
DO  - 10.5802/jep.274
LA  - en
ID  - JEP_2024__11__1099_0
ER  - 
%0 Journal Article
%A David Fisher
%A Mahan Mj
%A Wouter van Limbeek
%T Commensurators of normal subgroups of lattices
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 1099-1122
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.274/
%R 10.5802/jep.274
%G en
%F JEP_2024__11__1099_0
David Fisher; Mahan Mj; Wouter van Limbeek. Commensurators of normal subgroups of lattices. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1099-1122. doi : 10.5802/jep.274. https://jep.centre-mersenne.org/articles/10.5802/jep.274/

[Abe74] H. Abels - “Specker-Kompaktifizierungen von lokal kompakten topologischen Gruppen”, Math. Z. 135 (1973/74), p. 325-361 | DOI | Zbl

[BFMvL] N. Brody, D. Fisher, M. Mj & W. van Limbeek - “Irreducible subgroups of products, a question of Shalom, and implications”, in preparation

[BM96] M. Burger & S. Mozes - “ CAT (-1)-spaces, divergence groups and their commensurators”, J. Amer. Math. Soc. 9 (1996) no. 1, p. 57-93 | DOI | Zbl

[BT73] A. Borel & J. Tits - “Homomorphismes “abstraits” de groupes algébriques simples”, Ann. of Math. (2) 97 (1973), p. 499-571 | DOI | Zbl

[CdlH16] Y. Cornulier & P. de la Harpe - Metric geometry of locally compact groups, EMS Tracts in Math., vol. 25, European Mathematical Society (EMS), Zürich, 2016 | DOI

[CS14] D. Creutz & Y. Shalom - “A normal subgroup theorem for commensurators of lattices”, Groups Geom. Dyn. 8 (2014) no. 3, p. 789-810 | DOI | Zbl

[CW74] W. Casselman & D. Wigner - “Continuous cohomology and a conjecture of Serre’s”, Invent. Math. 25 (1974), p. 199-211 | DOI | Zbl

[FLSS18] D. Fisher, M. Larsen, R. Spatzier & M. Stover - “Character varieties and actions on products of trees”, Israel J. Math. 225 (2018) no. 2, p. 889-907 | DOI | Zbl

[Gre74] L. Greenberg - “Commensurable groups of Moebius transformations”, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) (Ann. of Math. Studies) 79, Princeton Univ. Press, Princeton, NJ (1974), p. 227-237 | Zbl

[Hu52] S. Hu - “Cohomology theory in topological groups”, Michigan Math. J. 1 (1952), p. 11-59 | Zbl

[KK22] S.-H. Kim & T. Koberda - “Non-freeness of groups generated by two parabolic elements with small rational parameters”, Michigan Math. J. 71 (2022) no. 4, p. 809-833 | DOI | Zbl

[KM21] T. Koberda & M. Mj - “Commutators, commensurators, and PSL 2 (), J. Topology 14 (2021) no. 3, p. 861-876 | DOI | Zbl

[KM24] T. Koberda & M. Mj - “Commensurators of thin normal subgroups and abelian quotients”, Algebraic Geom. Topol. 24 (2024) no. 4, p. 2149-2170 | DOI | Zbl

[LLR11] C. Leininger, D. Long & A. Reid - “Commensurators of finitely generated nonfree Kleinian groups”, Algebraic Geom. Topol. 11 (2011) no. 1, p. 605-624 | DOI | Zbl

[LU69] R. C. Lyndon & J. L. Ullman - “Groups generated by two parabolic linear fractional transformations”, Canad. J. Math. 21 (1969), p. 1388-1403 | DOI | Zbl

[Lub89] A. Lubotzky - “Trees and discrete subgroups of Lie groups over local fields”, Bull. Amer. Math. Soc. (N.S.) 20 (1989) no. 1, p. 27-30 | DOI | Zbl

[LZ01] A. Lubotzky & R. Zimmer - “Arithmetic structure of fundamental groups and actions of semisimple Lie groups”, Topology 40 (2001) no. 4, p. 851-869 | DOI | Zbl

[Mar91] G. Margulis - Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. (3), vol. 17, Springer-Verlag, Berlin, 1991

[Mj11] M. Mj - “On discreteness of commensurators”, Geom. Topol. 15 (2011) no. 1, p. 331-350 | DOI | Zbl

[Mon01] N. Monod - Continuous bounded cohomology of locally compact groups, Lect. Notes in Math., vol. 1758, Springer-Verlag, Berlin, 2001 | DOI

[Pla69a] V. P. Platonov - “The problem of strong approximation and the Kneser-Tits hypothesis for algebraic groups”, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), p. 1211-1219

[Pla69b] V. P. Platonov - “The problem of strong approximation and the Kneser-Tits hypothesis for algebraic groups”, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), p. 1211-1219

[PR94] V. P. Platonov & A. Rapinchuk - Algebraic groups and number theory, Pure and Applied Math., vol. 139, Academic Press, Inc., Boston, MA, 1994

[Pra77] G. Prasad - “Strong approximation for semi-simple groups over function fields”, Ann. of Math. (2) 105 (1977) no. 3, p. 553-572 | DOI

[Pra82] G. Prasad - “Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits”, Bull. Soc. math. France 110 (1982) no. 2, p. 197-202 | DOI | Numdam | Zbl

[Rag89] M. S. Raghunathan - “Discrete subgroups of algebraic groups over local fields of positive characteristics”, Proc. Indian Acad. Sci. Math. Sci. 99 (1989) no. 2, p. 127-146 | DOI | Zbl

[SW13] Y. Shalom & G. Willis - “Commensurated subgroups of arithmetic groups, totally disconnected groups and adelic rigidity”, Geom. Funct. Anal. 23 (2013) no. 5, p. 1631-1683 | DOI | Zbl

[Tit64] J. Tits - “Algebraic and abstract simple groups”, Ann. of Math. (2) 80 (1964), p. 313-329 | DOI | Zbl

[Ven87] T. N. Venkataramana - “Zariski dense subgroups of arithmetic groups”, J. Algebra 108 (1987) no. 2, p. 325-339 | DOI | Zbl

[Ven88] T. N. Venkataramana - “On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic”, Invent. Math. 92 (1988) no. 2, p. 255-306 | DOI | Zbl

[Wig73] D. Wigner - “Algebraic cohomology of topological groups”, Trans. Amer. Math. Soc. 178 (1973), p. 83-93 | DOI | Zbl

Cité par Sources :