[Commensurateurs de sous-groupes normaux de réseaux]
Nous étudions une question de Greenberg-Shalom concernant l’arithméticité des sous-groupes discrets des groupes de Lie semi-simples avec des commensurateurs denses. Nous répondons positivement à cette question pour les sous-groupes normaux des réseaux. Ceci généralise un résultat du second auteur et de T. Koberda pour certains sous-groupes normaux de réseaux arithmétiques dans et .
We study a question of Greenberg-Shalom concerning arithmeticity of discrete subgroups of semisimple Lie groups with dense commensurators. We answer this question positively for normal subgroups of lattices. This generalizes a result of the second author and T. Koberda for certain normal subgroups of arithmetic lattices in and .
Accepté le :
Publié le :
Keywords: Discrete subgroups of Lie groups, commensurated subgroups, locally compact groups
Mot clés : Sous-groupes discrets de groupes de Lie, sous-groupes commensurables, groupes localement compacts
David Fisher 1 ; Mahan Mj 2 ; Wouter van Limbeek 3
@article{JEP_2024__11__1099_0, author = {David Fisher and Mahan Mj and Wouter van Limbeek}, title = {Commensurators of normal subgroups of lattices}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1099--1122}, publisher = {\'Ecole polytechnique}, volume = {11}, year = {2024}, doi = {10.5802/jep.274}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.274/} }
TY - JOUR AU - David Fisher AU - Mahan Mj AU - Wouter van Limbeek TI - Commensurators of normal subgroups of lattices JO - Journal de l’École polytechnique — Mathématiques PY - 2024 SP - 1099 EP - 1122 VL - 11 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.274/ DO - 10.5802/jep.274 LA - en ID - JEP_2024__11__1099_0 ER -
%0 Journal Article %A David Fisher %A Mahan Mj %A Wouter van Limbeek %T Commensurators of normal subgroups of lattices %J Journal de l’École polytechnique — Mathématiques %D 2024 %P 1099-1122 %V 11 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.274/ %R 10.5802/jep.274 %G en %F JEP_2024__11__1099_0
David Fisher; Mahan Mj; Wouter van Limbeek. Commensurators of normal subgroups of lattices. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 1099-1122. doi : 10.5802/jep.274. https://jep.centre-mersenne.org/articles/10.5802/jep.274/
[Abe74] - “Specker-Kompaktifizierungen von lokal kompakten topologischen Gruppen”, Math. Z. 135 (1973/74), p. 325-361 | DOI | Zbl
[BFMvL] - “Irreducible subgroups of products, a question of Shalom, and implications”, in preparation
[BM96] - “(-)-spaces, divergence groups and their commensurators”, J. Amer. Math. Soc. 9 (1996) no. 1, p. 57-93 | DOI | Zbl
[BT73] - “Homomorphismes “abstraits” de groupes algébriques simples”, Ann. of Math. (2) 97 (1973), p. 499-571 | DOI | Zbl
[CdlH16] - Metric geometry of locally compact groups, EMS Tracts in Math., vol. 25, European Mathematical Society (EMS), Zürich, 2016 | DOI
[CS14] - “A normal subgroup theorem for commensurators of lattices”, Groups Geom. Dyn. 8 (2014) no. 3, p. 789-810 | DOI | Zbl
[CW74] - “Continuous cohomology and a conjecture of Serre’s”, Invent. Math. 25 (1974), p. 199-211 | DOI | Zbl
[FLSS18] - “Character varieties and actions on products of trees”, Israel J. Math. 225 (2018) no. 2, p. 889-907 | DOI | Zbl
[Gre74] - “Commensurable groups of Moebius transformations”, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) (Ann. of Math. Studies) 79, Princeton Univ. Press, Princeton, NJ (1974), p. 227-237 | Zbl
[Hu52] - “Cohomology theory in topological groups”, Michigan Math. J. 1 (1952), p. 11-59 | Zbl
[KK22] - “Non-freeness of groups generated by two parabolic elements with small rational parameters”, Michigan Math. J. 71 (2022) no. 4, p. 809-833 | DOI | Zbl
[KM21] - “Commutators, commensurators, and ”, J. Topology 14 (2021) no. 3, p. 861-876 | DOI | Zbl
[KM24] - “Commensurators of thin normal subgroups and abelian quotients”, Algebraic Geom. Topol. 24 (2024) no. 4, p. 2149-2170 | DOI | Zbl
[LLR11] - “Commensurators of finitely generated nonfree Kleinian groups”, Algebraic Geom. Topol. 11 (2011) no. 1, p. 605-624 | DOI | Zbl
[LU69] - “Groups generated by two parabolic linear fractional transformations”, Canad. J. Math. 21 (1969), p. 1388-1403 | DOI | Zbl
[Lub89] - “Trees and discrete subgroups of Lie groups over local fields”, Bull. Amer. Math. Soc. (N.S.) 20 (1989) no. 1, p. 27-30 | DOI | Zbl
[LZ01] - “Arithmetic structure of fundamental groups and actions of semisimple Lie groups”, Topology 40 (2001) no. 4, p. 851-869 | DOI | Zbl
[Mar91] - Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. (3), vol. 17, Springer-Verlag, Berlin, 1991
[Mj11] - “On discreteness of commensurators”, Geom. Topol. 15 (2011) no. 1, p. 331-350 | DOI | Zbl
[Mon01] - Continuous bounded cohomology of locally compact groups, Lect. Notes in Math., vol. 1758, Springer-Verlag, Berlin, 2001 | DOI
[Pla69a] - “The problem of strong approximation and the Kneser-Tits hypothesis for algebraic groups”, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), p. 1211-1219
[Pla69b] - “The problem of strong approximation and the Kneser-Tits hypothesis for algebraic groups”, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), p. 1211-1219
[PR94] - Algebraic groups and number theory, Pure and Applied Math., vol. 139, Academic Press, Inc., Boston, MA, 1994
[Pra77] - “Strong approximation for semi-simple groups over function fields”, Ann. of Math. (2) 105 (1977) no. 3, p. 553-572 | DOI
[Pra82] - “Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits”, Bull. Soc. math. France 110 (1982) no. 2, p. 197-202 | DOI | Numdam | Zbl
[Rag89] - “Discrete subgroups of algebraic groups over local fields of positive characteristics”, Proc. Indian Acad. Sci. Math. Sci. 99 (1989) no. 2, p. 127-146 | DOI | Zbl
[SW13] - “Commensurated subgroups of arithmetic groups, totally disconnected groups and adelic rigidity”, Geom. Funct. Anal. 23 (2013) no. 5, p. 1631-1683 | DOI | Zbl
[Tit64] - “Algebraic and abstract simple groups”, Ann. of Math. (2) 80 (1964), p. 313-329 | DOI | Zbl
[Ven87] - “Zariski dense subgroups of arithmetic groups”, J. Algebra 108 (1987) no. 2, p. 325-339 | DOI | Zbl
[Ven88] - “On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic”, Invent. Math. 92 (1988) no. 2, p. 255-306 | DOI | Zbl
[Wig73] - “Algebraic cohomology of topological groups”, Trans. Amer. Math. Soc. 178 (1973), p. 83-93 | DOI | Zbl
Cité par Sources :