Logarithmic spirals in 2d perfect fluids
[Spirales logarithmiques des fluides parfaits en 2d]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 655-682.

On étudie les spirales logarithmiques solutions des équations d’Euler incompressibles en deux dimensions d’espace qui résolvent un système de transport non linéaire sur /(2π). On montre que ce système est localement bien posé dans L p , p1, ainsi que pour les nappes de tourbillon en spirale logarithmique. Pour ces spirales logarithmiques, nous observons que la circulation locale du tourbillon autour de l’origine est strictement monotone en temps, ce qui permet une caractérisation assez complète du comportement en temps long. On démontre le caractère bien posé global des spirales logarithmiques bornées ainsi que pour les données qui admettent au plus des singularités logarithmiques. Nous sommes alors en mesure de montrer une dichotomie dans le comportement en temps long : les solutions explosent (en temps fini ou infini) ou s’homogénéisent complètement. En particulier, les spirales logarithmiques bornées convergent vers des états stationnaires constants. Pour les nappes de tourbillon en spirale logarithmique, la dichotomie est encore plus radicale, où seule l’explosion en temps fini ou l’homogénéisation complète du fluide peuvent se produire et se produisent effectivement.

We study logarithmic spiraling solutions to the 2d incompressible Euler equations which solve a nonlinear transport system on /(2π). We show that this system is locally well-posed in L p , p1, as well as for atomic measures, that is, logarithmic spiral vortex sheets. For logarithmic spiraling solutions, we make an observation that the local circulation of the vorticity around the origin is a strictly monotone quantity of time, which allows for a rather complete characterization of the long-time behavior. We prove global well-posedness for bounded logarithmic spirals as well as data that admit at most logarithmic singularities. We are then able to show a dichotomy in the long time behavior, solutions either blow up (either in finite or infinite time) or completely homogenize. In particular, bounded logarithmic spirals should converge to constant steady states. For logarithmic spiral sheets, the dichotomy is shown to be even more drastic, where only finite time blow up or complete homogenization of the fluid can and does occur.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.262
Classification : 76B47, 35Q35
Keywords: Logarithmic spirals, perfect fluids, longtime behavior, singularity formation
Mot clés : Spirales logarithmiques, fluide parfait, comportement en temps long, formation de singularités
In-Jee Jeong 1 ; Ayman R. Said 2

1 Department of Mathematical Sciences and RIM, Seoul National University and School of Mathematics, Korea Institute for Advanced Study, Seoul, Republic of Korea
2 Department of Mathematics, Duke University, 120 Science Dr, Durham, NC 27710, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__655_0,
     author = {In-Jee Jeong and Ayman R. Said},
     title = {Logarithmic spirals in $2$d perfect fluids},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {655--682},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.262},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.262/}
}
TY  - JOUR
AU  - In-Jee Jeong
AU  - Ayman R. Said
TI  - Logarithmic spirals in $2$d perfect fluids
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 655
EP  - 682
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.262/
DO  - 10.5802/jep.262
LA  - en
ID  - JEP_2024__11__655_0
ER  - 
%0 Journal Article
%A In-Jee Jeong
%A Ayman R. Said
%T Logarithmic spirals in $2$d perfect fluids
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 655-682
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.262/
%R 10.5802/jep.262
%G en
%F JEP_2024__11__655_0
In-Jee Jeong; Ayman R. Said. Logarithmic spirals in $2$d perfect fluids. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 655-682. doi : 10.5802/jep.262. https://jep.centre-mersenne.org/articles/10.5802/jep.262/

[1] K. Abe - “Existence of homogeneous Euler flows of degree -α[-2,0], Arch. Rational Mech. Anal. 248 (2024) no. 3, article ID 30, 72 pages | DOI | Zbl

[2] R. C. Alexander - “Family of similarity flows with vortex sheets”, Phys. Fluids 14 (1971) no. 2, p. 231-239 | DOI | Zbl

[3] J. Bedrossian & N. Masmoudi - “Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations”, Publ. Math. Inst. Hautes Études Sci. 122 (2015) no. 1, p. 195-300 | DOI | Numdam | Zbl

[4] G. Birkhoff - “Helmholtz and Taylor instability”, in Proc. Sympos. Appl. Math., vol. XIII, American Mathematical Society, Providence, RI, 1962, p. 55-76 | DOI | Zbl

[5] T. Cieślak, P. Kokocki & W. S. Ożański - “Existence of nonsymmetric logarithmic spiral vortex sheet solutions to the 2D Euler equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) (2023), 31 p., online | DOI

[6] T. Cieślak, P. Kokocki & W. S. Ożański - “Linear instability of symmetric logarithmic spiral vortex sheets”, J. Math. Fluid Mech. 26 (2024) no. 2, article ID 21, 27 pages | DOI | Zbl

[7] T. Cieślak, P. Kokocki & W. S. Ożański - “Well-posedness of logarithmic spiral vortex sheets”, J. Differential Equations 389 (2024), p. 508-539 | DOI | Zbl

[8] T. D. Drivas & T. M. Elgindi - “Singularity formation in the incompressible Euler equation in finite and infinite time”, EMS Surv. Math. Sci. 10 (2023) no. 1, p. 1-100 | DOI | Zbl

[9] T. M. Elgindi & I.-J. Jeong - “Ill-posedness for the incompressible Euler equations in critical Sobolev spaces”, Ann. PDE 3 (2017) no. 1, article ID 7 | DOI | Zbl

[10] T. M. Elgindi & I.-J. Jeong - “Symmetries and critical phenomena in fluids”, Comm. Pure Appl. Math. 73 (2020) no. 2, p. 257-316 | DOI | Zbl

[11] T. M. Elgindi & I.-J. Jeong - On singular vortex patches I: Well-posedness issues, Mem. Amer. Math. Soc., vol. 283, no. 1400, American Mathematical Society, Providence, RI, 2023

[12] T. M. Elgindi, R. Murray & A. Said - “On the long-time behavior of scale-invariant solutions to the 2D Euler equation and applications”, 2022 | arXiv

[13] V. Elling & M. Gnann - “Variety of unsymmetric multibranched logarithmic vortex spirals”, European J. Appl. Math. 30 (2019) no. 1, p. 23-38 | DOI | Zbl

[14] R. M. Everson & K. R. Sreenivasan - “Accumulation rates of spiral-like structures in fluid flows”, Proc. Roy. Soc. Ser. A 437 (1992) no. 1900, p. 391-401 | DOI

[15] J. Guillod & P. Wittwer - “Asymptotic behaviour of solutions to the stationary Navier-Stokes equations in two-dimensional exterior domains with zero velocity at infinity”, Math. Models Methods Appl. Sci. 25 (2015) no. 2, p. 229-253 | DOI | Zbl

[16] J. Guillod & P. Wittwer - “Generalized scale-invariant solutions to the two-dimensional stationary Navier-Stokes equations”, SIAM J. Math. Anal. 47 (2015) no. 1, p. 955-968 | DOI | Zbl

[17] G. Hamel - “Spiralförmige Bewegungen zäher Flüssigkeiten”, Jahresber. Deutsch. Math.-Verein. 25 (1916), p. 34-60 | Zbl

[18] A. Ionescu & H. Jia - “Axi-symmetrization near point vortex solutions for the 2D Euler equation”, Comm. Pure Appl. Math. 75 (2022) no. 4, p. 818-891 | DOI | Zbl

[19] A. Ionescu & H. Jia - “Nonlinear inviscid damping near monotonic shear flows”, Acta Math. 230 (2023) no. 2, p. 321-399 | DOI | Zbl

[20] T. Kambe - “Spiral vortex solution of Birkhoff-Rott equation”, Phys. D 37 (1989) no. 1, p. 463-473 | DOI | Zbl

[21] B. Khesin, G. Misiołek & A. Shnirelman - “Geometric hydrodynamics in open problems”, Arch. Rational Mech. Anal. 247 (2023) no. 2, article ID 15, 43 pages | DOI | Zbl

[22] L. Landau - “A new exact solution of Navier-Stokes equations”, C. R. (Doklady) Acad. Sci. URSS (N.S.) 43 (1944), p. 286-288 | Zbl

[23] A. J. Majda & A. L. Bertozzi - Vorticity and incompressible flow, Cambridge Texts in Applied Math., vol. 27, Cambridge University Press, Cambridge, 2002

[24] C. Marchioro & M. Pulvirenti - Mathematical theory of incompressible nonviscous fluids, Applied Math. Sciences, vol. 96, Springer-Verlag, New York, 1994 | DOI

[25] N. Masmoudi & W. Zhao - “Nonlinear inviscid damping for a class of monotone shear flows in a finite channel”, Ann. of Math. (2) 199 (2024) no. 3, p. 1093-1175 | DOI

[26] L. Prandtl - “Über die Entstehung von Wirbeln in der idealen Flüssigkeit, mit Anwendung auf die Tragflügeltheorie und andere Aufgaben”, Vorträge aus dem Gebiete der Hydro- und Aerodynamik (Innsbruck) (1922), p. 18-33

[27] D. I. Pullin - “Vortex tubes, spirals, and large-eddy simulation of turbulence”, in Tubes, sheets and singularities in fluid dynamics (Zakopane, 2001), Fluid Mech. Appl., vol. 71, Kluwer Acad. Publ., Dordrecht, 2002, p. 171-180 | DOI | Zbl

[28] N. Rott - “Diffraction of a weak shock with vortex generation”, J. Fluid Mech. 1 (1956) no. 1, p. 111–128 | DOI | Zbl

[29] P. G. Saffman - Vortex dynamics, Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, 1993 | DOI

[30] A. Shnirelman - “On the long time behavior of fluid flows”, Procedia IUTAM 7 (2013), p. 151-160 | DOI

[31] E. M. Stein & R. Shakarchi - Princeton lectures in analysis, Princeton University Press, Princeton, NJ, 2003

[32] V. Šverák - “Course notes”, 2011

[33] V. Šverák - “On Landau’s solutions of the Navier-Stokes equations”, J. Math. Sci. (New York) 179 (2011) no. 1, p. 208-228 | DOI | Zbl

[34] V. I. Yudovich - “Non-stationary flows of an ideal incompressible fluid”, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), p. 1032-1066

Cité par Sources :