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LOGARITHMIC SPIRALS IN 2D PERFECT FLUIDS

by In-Jee Jeong & Ayman R. Said

Abstract. — We study logarithmic spiraling solutions to the 2d incompressible Euler equations
which solve a nonlinear transport system on R/(2πZ). We show that this system is locally
well-posed in Lp, p ⩾ 1, as well as for atomic measures, that is, logarithmic spiral vortex
sheets. For logarithmic spiraling solutions, we make an observation that the local circulation
of the vorticity around the origin is a strictly monotone quantity of time, which allows for
a rather complete characterization of the long-time behavior. We prove global well-posedness
for bounded logarithmic spirals as well as data that admit at most logarithmic singularities.
We are then able to show a dichotomy in the long time behavior, solutions either blow up
(either in finite or infinite time) or completely homogenize. In particular, bounded logarithmic
spirals should converge to constant steady states. For logarithmic spiral sheets, the dichotomy
is shown to be even more drastic, where only finite time blow up or complete homogenization
of the fluid can and does occur.
Résumé (Spirales logarithmiques des fluides parfaits en 2d). — On étudie les spirales loga-
rithmiques solutions des équations d’Euler incompressibles en deux dimensions d’espace qui
résolvent un système de transport non linéaire sur R/(2πZ). On montre que ce système est
localement bien posé dans Lp, p ⩾ 1, ainsi que pour les nappes de tourbillon en spirale logarith-
mique. Pour ces spirales logarithmiques, nous observons que la circulation locale du tourbillon
autour de l’origine est strictement monotone en temps, ce qui permet une caractérisation assez
complète du comportement en temps long. On démontre le caractère bien posé global des spi-
rales logarithmiques bornées ainsi que pour les données qui admettent au plus des singularités
logarithmiques. Nous sommes alors en mesure de montrer une dichotomie dans le comportement
en temps long : les solutions explosent (en temps fini ou infini) ou s’homogénéisent complète-
ment. En particulier, les spirales logarithmiques bornées convergent vers des états stationnaires
constants. Pour les nappes de tourbillon en spirale logarithmique, la dichotomie est encore plus
radicale, où seule l’explosion en temps fini ou l’homogénéisation complète du fluide peuvent se
produire et se produisent effectivement.
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1. Introduction

1.1. Logarithmic spirals. — The vorticity equation for incompressible and inviscid
fluids in R2 is given by

(1.1)
{
∂tω + u · ∇ω = 0,

u = ∇⊥∆−1ω,

where ω(t, ·) : R2 → R and u(t, ·) : R2 → R2 denote the vorticity and velocity of
the fluid, respectively. In this paper, we are concerned with solutions of (1.1) which
are supported on logarithmic spirals; in other words, vorticities ω which are invariant
under the following group of transformations of R2 parametrized by λ > 0

(r, θ) 7→ (λr, θ + β lnλ),

for some nonzero real constant β. Here, (r, θ) denotes the polar coordinates in R2.
Under the above invariance, we can take a periodic function h(t, ·) of one variable
such that

(1.2) ω(t, r, θ) = h(t, θ − β ln r)

holds for all t, r, θ. Then, the two-dimensional PDE (1.1) reduces to the one-
dimensional transport equation in terms of h:

(1.3) ∂th+ 2H∂θh = 0

coupled with the elliptic problem

(1.4) 4H − 4β∂θH + (1 + β2)∂2
θH = h

defined on S = R/(2πZ). To derive (1.3)–(1.4), we take the following ansatz for the
stream function

Ψ(t, r, θ) = r2H(t, θ − β ln r),

and note that the corresponding velocity field u = urer + uθeθ is given by

(1.5)
{
ur(t, r, θ) = −r−1∂θΨ = −r∂θH(t, θ − β ln r),

uθ(t, r, θ) = ∂rΨ = 2rH(t, θ − β ln r)− βr∂θH(t, θ − β ln r),

which gives that u · ∇ω = 2H∂θh. Furthermore, (1.4) follows from ω = ∇ × u =
1
r (∂r(ru

θ)− ∂θu
r) and (1.5). As we shall explain below, the special case β = 0 corre-

sponds to the system for 0-homogeneous vorticity studied in [10, 12]. In this paper,
we shall study dynamical properties of the system (1.3)–(1.4) for β ̸= 0.

1.2. Main results. — Let us present the main results of this paper, which come in
two categories: well-posedness issues and long-time dynamics.
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Well-posedness of logarithmic vortex. — To begin with, we have local and global exis-
tence and uniqueness of the system (1.3)–(1.4) for h ∈ Lp and L∞, respectively.

Theorem 1.1 (Local well-posedness). — We have the following well-posedness results
for the initial value problem of (1.3)–(1.4): if h0 ∈ Lp(S) for some 1 ⩽ p ⩽ ∞, there
exist T ⩾ c∥h0∥−1

L1 and a unique local solution h belonging to C([0, T );Lp(S)) for
p < ∞ and C∗([0, T );L

∞(S)) for p = ∞, c > 0 is a universal constant. For any p,
the Lp solution blows up at T ∗ if and only if∫ T∗

0

∥h(t, ·)∥L1dt = ∞.

Remark 1.2. — Higher regularity (e.g. Ck,α,W k,p for k ⩾ 0) of h propagates in time
as long as ∥h(t, ·)∥L1 remains bounded.

In the case of bounded, or even logarithmically singular data, we have global reg-
ularity:

Theorem 1.3 (Global well-posedness). — The local solution in Theorem 1.1 is global
in time for initial data h0 ∈

⋂
p<∞ Lp satisfying

(1.6) sup
p⩾1

∥h0∥Lp

p
< +∞.

In particular, L∞ solutions are global in time.

Remark 1.4. — The above can be extended to data satisfying ∥h0∥Lp ≲ p ln(10 + p),
≲ p ln(10 + p) ln(10 + ln(10 + p)), and so on.

Next, we consider the space D(S) of atomic measures on S, i.e. g ∈ D has a
representation g =

∑
j⩾0 Ijδθj with

∑
j⩾0 |Ij | < ∞. Assuming that θj are distinct,

we set ∥g∥D :=
∑

j⩾0 |Ij |. As we shall discuss in more detail later, the following
result gives a well-posedness for h which are atomic measures, which corresponds to
logarithmic vortex sheets in R2.

Theorem 1.5 (Logarithmic vortex sheets). — Let h0∈D(S) satisfy h0=
∑

j⩾0 Ij,0δθj,0 .
Take some compactly supported family of mollifiers φε(θ) = (1/ε)φ(θ/ε). Then, there
exists some T > 0 such that for the sequence of mollified initial data hε

0 := φε ∗h0, the
corresponding unique global solutions {hε(t, ·)}ε>0 converge in the sense of measures to

h(t, ·) =
∑
j⩾0

Ij(t)δθj(t)

for all t ∈ [0, T ). Here, {Ij , θj}j⩾0 is the unique local solution to the ODE system

(1.7)
{
İj(t) = 2∂θH(t, θj(t))Ij(t),

θ̇j(t) = 2H(t, θj(t)),
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658 I.-J. Jeong & A. R. Said

with initial data Ij(0) = Ij,0 and θj(0) = θj,0, where H is the unique Lipschitz solution
to (1.4). Specifically, we have that

H(t, θj(t)) =
∑
ℓ⩾0

Iℓ(t)K(θj(t)− θℓ(t))

and

(1.8) ∂θH(t, θj(t)) =
∑
ℓ⩾0

Iℓ(t)K
′(θj(t)− θℓ(t)), K ′(0) := lim

ε→0

K ′(ε) +K ′(−ε)

2

with K being the fundamental solution to (1.4) given explicitly in (A.2). In this sense,
the time-dependent Dirac measure h(t, ·) is the unique solution to (1.3)–(1.4) with
initial data h0 in [0, T ).

Let us briefly comment on the statements: to begin with, the function ∂θH (which
is the derivative of the solution H to (1.4)) is actually not uniformly Lipschitz in
S. However, ∂θH in this case (meaning that h in the right hand side of (1.4) is a
linear combination of Dirac deltas) is infinitely smooth away from the support of
the Dirac deltas, and in particular, one can prove existence and uniqueness of the
solution to (1.7) as long as none of the points θj collide with each other. (The situation
is completely analogous to the case of point vortices evolving in a two-dimensional
domain.)

Furthermore, we emphasize that the above convergence statement does not follow
directly from some norm estimate (the main problem being K /∈ C1(S); this is why
K ′(0) needs to be defined as the limit in (1.8)) but instead one needs to use a crucial
cancellation coming from the fact that the non-continuous part of K ′ is odd. In a
sense, this proof is similar (although simpler) to the proof that the sequence of de-
singularized vortex patch solutions to the 2D Euler equation converges to the solution
of the point vortex system in the singular limit ([24]). In the statement, we could have
regularized each Dirac delta by either a patch or some other L∞ functions as well.

Remark 1.6. — One may extend the above statement to get local existence in the
broader class M := D+ L1.

The following proposition verifies that the solutions to the one-dimensional system
(1.3)–(1.4) obtained in such a class give rise to actual weak solutions to the two-
dimensional Euler equations.

Proposition 1.7. — Let h ∈ C∗([0, T );M(S)) be a weak solution of (1.3) with initial
data h0. Then, (ω, u) defined via (1.2)–(1.5) provides an integral weak solution, in ve-
locity form, to 2D Euler equations (1.1) with initial data ω0. For h ∈ C([0, T );L1(S)),
we get moreover that (ω, u) is a weak solution in vorticity form.

Long time dynamics and singularity formation. — Given the above local well-posedness
results, it is natural to study the long-time dynamics with initial data either in Lp
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or in D. It turns out that there is a monotone quantity for solutions to (1.2)–(1.5),
which is nothing but the local circulation:

(1.9) Γ(R) :=

∫∫
|x|⩽R

ω(t, x)dx =
R2

2

∫
h(t, θ)dθ.

Unless ω is a constant, we have that Γ(R) is strictly decreasing (resp. increasing)
for β > 0 (resp. β < 0), see Lemma 2.3. This is in stark contrast with the case of
0-homogeneous vorticity studied in [9, 12] and one can see from the proof the specific
nature of logarithmic spirals is reflected in the evolution of Γ. As an immediately
corollary, we obtain that the only steady states to (1.2)–(1.5) in M are constants.
This provides the basis for obtaining long time dynamics of solutions.

In the case of bounded data, we can show long-time convergence to a constant
steady state:

Theorem 1.8 (Convergence for bounded data). — For h0 ∈ L∞(S), there exist con-
stants I± = I±(h0) satisfying |I±| ⩽ ∥h0∥L∞ such that the global-in-time solution
h(t, ·) corresponding to h0 satisfies

h(t, ·) −→ I±, t −→ ±∞

in H−a(S) for any a > 0.

Example 1.9. — In the simple case when h0 is the characteristic function of an inter-
val, i.e. h0 = 1J for some J ⊂ S, we have that (I+, I−) = (0, 1) and (I+, I−) = (1, 0),
depending on whether β > 0 or β < 0, respectively. See Figure 1 for an illustration:
for β < 0, if the initial vorticity in R2 is the patch supported in the gray region
(Figure 1, center), then as t → ∞, the support of vorticity occupies the entire R2

(Figure 1, right), while as t → −∞, the vorticity locally decays to 0 (Figure 1, left).

Figure 1. Evolution of the vortex patch supported between two log-
arithmic spirals (gray region).

Theorem 1.10 (Trichotomy for Lp data). — Consider 1 ⩽ p < +∞, h0 ∈ Lp and
h(t, ·) ∈ Lp the unique local solution to (1.3)–(1.4) on a maximal positive interval of
existence (0, T∗) with T∗ ∈ (0,+∞]. Then one of the following three scenarios must
occur.

– Either T∗ = +∞ and there exists I+ ∈ R such that h(t, ·) →
t→∞

I+ in H−a for
a > max (0, 1/p− 1/2),
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– the solution blows up in finite time: T∗ < +∞,
– or the solution blows up in infinite time: lim inft→+∞ ∥h(t, ·)∥Lp = +∞.

In the case of Dirac initial data, we can provide a simple criterion which guarantees
finite time singularity formation. When there is no singularity formation in finite time,
the solution must decay to 0.

Theorem 1.11 (Singularity for Dirac measure data). — If the initial data h0 =∑N−1
j=0 Ij,0δθj is nonzero and satisfies

β

N−1∑
j=0

Ij,0 ⩽ 0,

then the corresponding solution blows up in finite time; β
∑N−1

j=0 Ij(t) → −∞ as
t → T ∗ for some T ∗ < ∞.

Furthermore, there is no finite time singularity formation if and only if the solution
satisfies β

∑N−1
j=0 Ij(t) ⩾ 0 for all t and β

∑N−1
j=0 Ij(t) → 0 as t → +∞. This happens

in particular when βIj,0 > 0 for all j.

Remark 1.12. — Finite time singularity formation for logarithmic vortex sheets could
seem paradoxical, in view of global well-posedness of bounded logarithmic vortex
solutions and the convergence statement of Theorem 1.8. Singularity for the sheets
can be interpreted as a form of strong instability for patches: initial data h0 given by
the characteristic function on an interval of length 0 < ε ≪ 1 will grow to become
length O(1) after an O(1) time which is independent of ε.

1.3. Background material. — To put the consideration of logarithmic spiral vortic-
ities and our main results into context, let us discuss various relevant topics for the
incompressible Euler equations.

Vortex sheets supported on logarithmic spirals. — Spiraling behavior of fluid flows
are quite frequently observed in turbulent jets and mixing layers at relatively large
Reynolds number. While such vortex spirals are usually modeled by algebraic spirals
in the applied literature, it seems that Prandtl in 1922 was the first one to suggest
the possibility that logarithmic curves could be the profiles for such structures [26].
We refer to the interesting work [14] in which the authors inspect a variety of spiral
flows observed in experiments and conclude that in many cases a logarithmic curve
gives a better fit than an algebraic one. It turns out that, the case of one atom
(j = 1) in Theorem 1.5 exactly corresponds to the spiral suggested by Prandtl,
up to a translation in time. Similarly, for j ⩾ 2 with j-fold rotational symmetry,
the logarithmic spiral vortex sheets obtained by Theorem 1.5 are simply the ones
introduced later by Alexander [2]. Indeed, these special solutions introduced by
Prandtl and Alexander could be characterized by logarithmic vortex sheet solutions
satisfying an additional self-similarity with respect to time: ω(t, x) = t−1ω̂(x) for
some ω̂ (see the formulas and discussion in Appendix B). It was a highly non-trivial
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task to verify that such formulas give rise to actual weak solutions to the Euler
equations (see for instance Saffman [29, §8.3], Kambe [20], and Pullin [27]), especially
if one tries to apply the classical Birkhoff–Rott formulation [4, 28].

The mathematical proof of this was done in Elling–Gnann in the m-fold symmetric
case with m ⩾ 3 [13], using special cancellation which is directly related with the well-
posedness theory of 2d Euler under m-fold symmetry which we shall explain below.
Without any symmetry hypothesis, the proof was done very recently by Cieślak–
Kokocki–Ożański in [7]. The same authors proved the existence of (a variety of) non-
symmetric self similar logarithmic vortex spirals in [5]. A very nice review of the
literature on logarithmic spirals and technical difficulties in treating those are given
in [7, 5]. On the other hand, [13] contains many numerical computations which exhibit
various bifurcation phenomena of non-symmetric spirals. The PDE approach proposed
in this paper gives a unified framework in which all of the previous considerations, see
Proposition 1.7 and Appendix B, can be treated in a much simpler fashion. Which
from a mathematical point of view seems like the correct lens from which one should
look upon logarithmic spirals for 2d perfect fluid.

Long-time dynamics for Euler. — The global well-posedness of smooth enough solu-
tions to (1.1) is now a well established fact. The long time behavior picture of such
solutions is far from being complete. Indeed (1.1) is a non local, non linear transport
equation modeling a perfect fluid. Both physical and numerical experiments suggest
that most solutions relax in infinite time to simpler dynamics, i.e they experience a
major contraction in phase space. This can be summarized by the following informal
conjecture (see [32] and [30] respectively, [12] and also the review articles [8, 21])
regarding the long time behavior of solutions to the 2d Euler equation:

Conjecture 1.13
(1) As t → ±∞, generic solutions experience loss of compactness.
(2) The (weak) limit set of generic solutions consists only of solutions lying on

compact orbits.

The only rigorous (and important) proofs of those conjectures are in the perturba-
tive regimes around special steady states in the ground breaking work of Bedrossian
and Masmoudi [3] and later extensions by Ionescu and Jia [18, 19] and Masmoudi
and Zhao [25]. The only exception to this is the recent work [12] where the conjecture
is proved in full generality and in particular away from equilibrium but only for the
subset of scale invariant m-fold symmetric (m ⩾ 4) solutions.

The results in this paper can thus be put in the larger picture of the long time
behaviour of perfect fluids as follows. We give a rigorous construction of a special
class of weak solutions of the Euler equation that is invariant under the flow, the class
of logarithmic spirals solutions first introduced in [11], in Theorems 1.1, 1.3, 1.5 and
Proposition 1.7. Moreover we rigorously prove Conjecture 1.13 in this setting in full
generality and again away from equilibrium in Theorems 1.8, 1.10 and 1.11.
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Regarding the study of logarithmic spiral vortex sheets, our formulation based
on (1.2) not only gives a very efficient way of accessing their dynamics, but also
realize the vortex sheet evolution as the well-defined limit of more smooth objects,
namely vorticities whose level sets are logarithmic spirals. The latter solutions can be
completely smooth except at the origin. Furthermore, we emphasize that the spirals
of Prandtl and Alexander are simply very specific solutions to the ODE system (1.7)
that we have obtained in this work, and this general approach provides a framework
for studying the asymptotic stability of self-similar singularity formation. To illustrate
this, we recover some recent results from [13, 7, 5] on existence and bifurcation of
self-similar logarithmic spiral vortex sheets using our formulation in Section 4.

Symmetries and well-posedness of 2D Euler. — An unfortunate fact about non-trivial
logarithmic spirals solutions is that they cannot decay at spatial infinity which means
they fail to belong to the standard well-posedness class for vorticity for 2d Euler
L1(R2)∩L∞(R2) given by Yudovich theory [34]. Indeed the space of L1∩L∞ vorticity
is stable under the flow of Euler and defines through the Biot–Savart law a log-
Lipschitz velocity u that in turn defines by the standard Osgood theory for ODEs a
unique flow map

d

dt
Φ(t, x) = u (t,Φ(t, x)) and Φ(0, x) = x.

A key observation from [10] is that one can use the following discrete symmetry,
which is preserved by the Euler flow, to drop the L1 constraint on the vorticity. For
m ∈ N a function ω : R2 → R is said to be m-fold symmetric if ω(Omx) = ω(x),
for all x ∈ R2, where Om ∈ SO(2) is the matrix corresponding to a counterclockwise
rotation by angle 2π/m. Indeed in [10] it is shown that for ω ∈ L∞

m (R2) with m ⩾ 3

then ω defines through the Biot–Savart law a log-Lipschitz velocity u. Thus m-fold
bounded symmetric logarithmic spirals are stable subset of solutions of a uniqueness
class of solutions for the 2d Euler equations for which the spiraling motion induces an
arrow of time and a strong relaxation mechanism in infinite time towards a completely
homogenized fluid, Theorem 1.8.

Under the m-fold symmetric assumption with m ⩾ 3, the logarithmic spiraling
dynamics can be realized as the dynamics at the origin of some compactly supported,
finite energy solution solutions of the 2d Euler equation on R2 by the cut-off proce-
dure given in the proof of Corollary 3.14 of [10]. Indeed, if h0 ∈ W 1,∞(S) is m-fold
symmetric then for any ω2D

0 ∈ C0,1
m

(
R2

)
, there exists a unique global in time solution

to the two dimensional Euler equation ω ∈ C̊0,1 such that

ω2D(t) = ω(t)− h(t) ∈ C0,1
(
R2

)
for all time,

and h is the solution of (1.3)–(1.4) with initial data h0. We note that ω2D
0 can be

chosen in such a fashion that ω0 is compactly supported.

Dynamics of 0-homogeneous vorticity. — The special case β = 0 corresponds to the
system for 0-homogeneous vorticity studied in [10, 12]. A first major difference between
between the β = 0 and β ̸= 0 cases is that for β = 0 it is necessary to assume
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m-fold (m ⩾ 3) symmetry on vorticity in order to ensure the well posedness of (1.4).
Within symmetry, the same techniques used here can be used to extend the local
well-posedness results for bounded m-fold symmetric scale invariant solutions in [10]
and get analogous results to Theorems 1.1, 1.3 and 1.5. In [12], with the help of
a monotone quantity quantifying the number of particles exiting the origin, it was
possible to show that BV m-fold (m ⩾ 4) symmetric data relax in infinite time to
states with finitely many jumps. This entropy found in [12] is much weaker than the
monotonicity of the local circulation (1.9) exhibited here; indeed for β = 0, (1.9) is
conserved in time. This weaker entropy thus leaves the room for steady states that
are not identically constant and cannot handle data that is not in the closure of BV

in L∞, let alone in Lp or D(S).
Finally, on any finite time interval where both the m-fold symmetric m ⩾ 3 so-

lutions of the 0-homogeneous equations, (1.3) with β = 0, h0(t) and the logarithmic
spiraling equations hβ(t) start from the same initial data h0(0) = hβ(0) = h0 ∈ Lp,
1 ⩽ p < +∞ then hβ(t) → h0(t) in Lp when β goes to 0. For h0 ∈ L∞ we get
convergence in the weak topology and for h0 ∈ D(S) we get convergence in the sense
of measures. Indeed this follows from the observation that the kernel Km

β associated
to (1.4) converges in W 1,∞ to Km when β goes to 0, which in turn follows from
the Cauchy–Lipschitz theorem with parameters applied to Km

β −Km and the obser-
vation from Remark A.2 that Km

β (0) and Km
β

′(0) converge to Km(0) and Km′(0),
respectively.

One may consider the class of α-homogeneous vorticities for α ∈ R, which satisfies
ω(λx) = λαω(x) for all λ > 0. Existence and nonexistence results (depending on the
range of α) are given in [1].

Remark 1.14. — We would like to clarify the difference of the logarithmic spiral
solutions considered here with such solutions for the 2d incompressible Navier–Stokes
equations (see for instance [16, 15, 33, 17, 22]). In the latter case, the ansatz for the
vorticity is given by (see equation (6) of [16])

ω(r, θ) = λ2ω(λr, θ + β lnλ),

using our notation. Note that the factor λ2 reflects the only allowed self-similar scal-
ing of the Navier–Stokes equations; the velocity and vorticity decays with rate r−1

and r−2 at infinity, respectively. In the paper [16], Guillod and Wittwer classified
steady solutions to the 2d Navier–Stokes equations in R2\{0} satisfying the above
symmetry. Among others, these solutions demonstrate the complicated nature of the
set of steady states of the 2d Navier–Stokes equations; we refer the interested readers
to the discussion in [16].

1.4. Further questions. — Many interesting problems remain open for logarithmic
vortex spirals. One problem is to consider the inviscid limit of Navier–Stokes solutions
towards logarithmic spiral vortex sheets and prove convergence. Furthermore, it is an
important problem to understand stability of the logarithmic vortex spirals within
2d Euler equations. This was already considered in a recent work [6], where it was
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proved that at least for a specific class of initial perturbations, the perturbation grows
only polynomial in time and not exponential. This issue certainly deserves further
investigations.

1.5. Organization of the paper. — The rest of the paper is organized as follows.
In Section 2, we obtain some simple properties of the kernel of the elliptic prob-
lem (1.4). Then, the main well-posedness results are proved in Section 3. Section 4
contains results pertaining to the long time dynamics of solutions, as well as some
case studies of Dirac deltas. In particular, we recover the existence and bifurcation
of symmetric and non-symmetric self similar logarithmic spiral vortex sheets. The
explicit form of the kernel is given in the appendix.
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2. Preliminaries

2.1. Properties of the kernel. — In this section, we deal with the elliptic equa-
tion (1.4). For any h ∈ Lp with p ⩾ 1, the unique solution H ∈ W 2,p is given by the
convolution H = K ∗ h, where the kernel K is defined by the unique solution to the
ODE

4K − 4βK ′ + (1 + β2)K ′′ = 0, 0 < θ < 2π,

K(0) = K(2π), K ′(2π)−K ′(0) := lim
ε→0

K ′(2π − ε)−K ′(ε) =
1

1 + β2
.

(2.1)

In the appendix, we derive the explicit form of the kernel based on Fourier series.
We record a few simple properties of K below.

Lemma 2.1. — We have the formula

(2.2)
∫
(K ′(θ))2dθ +

∫
4

1 + β2
K2(θ)dθ =

1

1 + β2
K(0).

Proof. — We start with∫
K ′(θ)K ′(θ)dθ = lim

ε→0

∫
|θ|>ε

K ′(θ)K ′(θ)dθ

= − lim
ε→0

∫
|θ|>ε

K ′′(θ)K(θ)dθ + lim
ε→0

(K ′(ε)K(ε)−K ′(−ε)K(−ε)).
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We note that
lim
ε→0

(K ′(ε)K(ε)−K ′(−ε)K(−ε)) =
1

1 + β2
K(0).

Next,

lim
ε→0

∫
|θ|>ε

K ′′(θ)K(θ)dθ = lim
ε→0

∫
|θ|>ε

1

1 + β2
(−4K(θ) + 4βK ′(θ))K(θ)dθ

= lim
ε→0

∫
|θ|>ε

− 4

1 + β2
K2(θ) +

2β

1 + β2
∂θ(K

2(θ))dθ

=

∫
− 4

1 + β2
K2(θ)dθ.

This gives (2.2). □

Lemma 2.2. — We have
(2.3) K ′(0) = −4β

∫
(K ′(θ))2dθ.

For any 0 ̸= α ∈ S,

(2.4) (K ′(α) +K ′(−α)) = −4β

∫
K ′(θ) (K ′(θ + α) +K ′(θ − α)) dθ.

Proof. — We multiply both sides of (2.1) by K ′ in the region |θ| > ε to obtain∫
|θ|>ε

KK ′dθ − 4β

∫
|θ|>ε

(K ′)2dθ + (1 + β2)

∫
|θ|>ε

K ′′K ′dθ = 0.

Using that ∫
|θ|>ε

KK ′dθ =
1

2

(
K2(ε)−K2(−ε)

)
−→ 0

and∫
|θ|>ε

K ′′K ′dθ =
1

2

(
(K ′)2(ε)− (K ′)2(−ε)

)
=

1

1 + β2

K ′(ε) +K ′(−ε)

2
−→ 1

1 + β2
K ′(0)

as ε → 0, we conclude (2.3). The proof of (2.4) is similar. We multiply both sides of
(2.1) by K ′(θ + α) +K ′(θ − α) and integrate in the region

A := S\({|θ − α| < ε} ∪ {|θ + α| < ε}).

Then∫
A

K(θ)(K ′(θ + α) +K ′(θ − α))dθ = −
∫
A

K ′(θ)(K(θ + α) +K(θ − α))dθ +O(ε),

which shows that
2

∫
A

K(θ)(K ′(θ + α) +K ′(θ − α))dθ = O(ε).

Similarly, as ε → 0, it can be shown using integration by parts that

(1 + β2)

∫
A

K ′′(θ)(K ′(θ + α) +K ′(θ − α))dθ −→ K ′(α) +K ′(−α).

This finishes the proof. □
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2.2. Monotonicity

Lemma 2.3. — Any Lp solution to (1.3) satisfies

(2.5) d

dt

∫
hdθ = −8β

∫
(H ′)2dθ.

For h =
∑N

i=1 Ii(t)δ(θ − θi(t)),

(2.6) d

dt

N∑
i=1

Ii = −8β

∫
(H ′)2dθ,

where
H ′(t, θ) =

N∑
i=1

Ii(t)K
′(θ − θi(t)).

Proof. — Assuming that h is smooth,
d

dt

∫
hdθ = −2

∫
H∂θhdθ = 2

∫
H ′(4H − 4βH ′ + (1 + β2)H ′′)dθ

= −8β

∫
(H ′′)2dθ +

∫
∂θ

(
4H2 + (1 + β2)(H ′)2

)
dθ = −8β

∫
(H ′′)2dθ.

The case of h ∈ Lp follows from an approximation argument. In the case of Dirac
deltas, we have

1

2

d

dt

N∑
i=1

Ii =
∑
i,j

∫
Ii(t)Ij(t)K

′(θi(t)− θj(t)).

On the other hand,

−4β

∫
(∂2

θH)2dθ = −4β
∑
i,j

∫
Ii(t)Ij(t)K

′(θ − θj(t))K
′(θ − θi(t))dθ.

Then (2.6) follows from (2.3) and (2.4). □

3. Well-posedness issues

3.1. Proof of well-posedness results. — In this section, we give the proof of exis-
tence and uniqueness. We emphasize that the uniqueness statement we prove is
uniqueness only among the solutions in the class of logarithmic spiral vortices.

Proof of Theorem 1.1. — We divide the proof into three parts.

1. Local existence in Lp. — We obtain a priori estimates in Lp for any p ⩾ 1. For this,
assume that we are given a smooth solution h,H to (1.3)–(1.4). Then,

d

dt

∫
|h|pdθ = −p

∫
|h|p−1(2Hh′) sgn(h)dθ

=

∫
2H ′|h|pdθ ⩽ 2∥H ′∥L∞

∫
|h|pdθ.

(3.1)

Using that ∥H ′∥L∞ ⩽ C∥h∥Lp holds for any p ⩾ 1,
d

dt
∥h∥Lp ⩽

C

p
∥h∥2Lp .
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In the case p = ∞, we obtain
d

dt
∥h∥L∞ = 0.

This gives that ∥h∥L∞([0,T∗];Lp) ⩽ 2∥h0∥Lp for T ∗ > 0 depending only on p and
∥h0∥Lp . Based on this a priori estimate, proving the existence of an Lp solution can
be done by the method of mollification. Given any initial data h0 ∈ Lp, consider the
sequence of mollified data hε

0 converging to h0 in Lp. For each hε
0, one can construct a

corresponding local smooth solution (hε, Hε) to (1.3)–(1.4), for example by an itera-
tion scheme. The sequence of solutions hε remains smooth in the time interval [0, T ∗]

and satisfies the uniform bound ∥hε∥L∞([0,T∗];Lp) ⩽ 2∥h0∥Lp . Appealing to the Aubin–
Lions lemma, this gives a weak-Lp limit h ∈ L∞([0, T ∗];Lp) as ε → 0, by passing to
a subsequence if necessary. The corresponding limit Hε → H is strong in W 1,p, and
this shows that (h,H) gives a weak solution to (1.3)–(1.4). (This argument is parallel,
and only easier, compared to the well-known proof of existence for Lp vorticity weak
solutions to 2D incompressible Euler equations, see [23].)

2. Uniqueness in L1. — We prove that there is at most one solution in the class
L∞([0, T ];L1) of logarithmic spiraling solutions. The case p > 1 is only easier. Given
an initial datum h0 ∈ L1, we assume that there are two associated solutions h and h̃

belonging to L∞([0, T ];L1) for some T > 0. We denote H = Kh and H̃ = Kh̃.
By taking K to the equation for h, we may derive the evolution equations satisfied
by H and H ′:

∂tH + 2H∂θH = −K(8β − 3(1 + β2)∂θ)
[
(H ′)2

]
,(3.2)

∂tH
′ + 2H∂θH

′ = (H ′)2 − 4K(3− β∂θ)
[
(H ′)2

]
.(3.3)

Denoting D = (H − H̃), we see that it satisfies

(3.4) ∂tD + 2H∂θD + 2DH̃ ′ = −K(8β − 3(1 + β2)∂θ)
[
(H ′ + H̃ ′)D′].

Here, H ′, H̃ ′ ∈ L∞([0, T ];W 1,1) ⊂ L∞([0, T ];C0). The operator −K(8β−3(1+β2)∂θ)

is convolution type with a bounded kernel. We consider the estimate of K∂θ(gD
′),

where g is a W 1,1 function:

K∂θ(gD
′)(θ) =

∫
K ′(θ − θ′)g(θ′)D′(θ′)dθ′.

Note that for any θ, K ′(θ− θ′)g(θ′) is differentiable in the sense of distributions with
respect to θ′, with

∂θ′ (K ′(θ − θ′)g(θ′))

= K ′(θ − θ′)g′(θ′)− δ(θ − θ′)

1 + β2
g(θ′) +

4β

1 + β2
K ′(θ − θ′)g(θ′)− 4

1 + β2
K(θ − θ′)g(θ′).

Since g and D are continuous functions, this allows us to rewrite

K∂θ(gD
′)(θ) =

∫
A(θ − θ′)g′(θ′)D(θ′)dθ′ +

1

1 + β2
g(θ)D(θ),
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where A is a bounded function. In particular, we obtain the estimate

∥K∂θ(gD
′)∥L2 ⩽ C∥g∥L∞∥D∥L2 .

Similarly,
∥K(gD′)∥L2 ⩽ C∥g∥L∞∥D∥L2 .

We then estimate, by multiplying (3.4) against D and integrating,
d

dt
∥D∥2L2 ⩽ C(∥H ′∥L∞ + ∥H̃∥L∞)∥D∥2L2

+ ∥K(8β − 3(1 + β2)∂θ)((H
′ + H̃ ′)D′)∥L2∥D∥L2

⩽ C(∥h∥L1 + ∥h̃∥L1)∥D∥2L2 .

Integrating in time, we obtain

∥D∥2L2 ⩽ ∥D0∥2L2 exp
(
C(∥h∥L∞

t L1 + ∥h̃∥L∞
t L1)

)
,

which gives uniqueness.

3. Blow-up criterion and global existence in L∞. — From the Lp a priori estimate,
we have that

∥h(t, ·)∥Lp ⩽ ∥h0∥Lp exp

(
2

p

∫ t

0

∥H ′(τ, ·)∥L∞dτ

)
.

Therefore, the local unique Lp solution blows up in Lp at T ∗ if and only if

(3.5)
∫ T∗

0

∥H ′(τ, ·)∥L∞dτ = ∞.

Then for each time, ∥H ′(τ, ·)∥L∞ is equivalent to ∥h(τ, ·)∥L1 , from which the claimed
blow-up criterion follows. In the case p = ∞, we have that as long as the solution ex-
ists, ∥h(t, ·)∥L∞ = ∥h0∥L∞ . In turn, this gives ∥H ′(t, ·)∥L∞ ⩽ C∥h0∥L∞ . This implies
that the L∞ solutions are global in time, in view of (3.5). □

3.2. Global well-posedness

Proof of Theorem 1.3. — The goal is to show the propagation of the constraint
limp→+∞(∥h(t, ·)∥Lp/p) < +∞ for all t. Starting back from (3.1) we get for
1 ⩽ p < +∞

d

dt
∥h∥Lp ⩽

2

p
∥H ′∥L∞ ∥h∥Lp .

By the Gronwall lemma we get

∥h(t, ·)∥Lp ⩽ e2
∫ t
0∥H′∥

L∞/p∥h0∥Lp ,

thus for p such that 2
∫ t

0
∥H ′∥L∞/p ⩽ ln(2) we have

∥h(t, ·)∥Lp ⩽ 2 ∥h0∥Lp ⩽ 2C0p.

Now, as long as the solution exists, choose

p = max{1, 4
∫ t

0
∥H ′∥L∞}.

Note that
∥H ′∥L∞ ⩽ C∥h∥L1 , ∥h∥L1 ⩽ C∥h∥Lp ,
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for any p ⩾ 1 and for C > 0 universal. It follows then that
∥h(t, ·)∥L1 ⩽ Cmax{1,

∫ t

0
∥h∥L1}.

It now follows by the Gronwall lemma that
∥h(t, ·)∥L1 ⩽ C exp(Ct).

which gives the desired result on the bound on the constraint and global existence. □

3.3. Convergence to logarithmic spiral sheets

Proof of Theorem 1.5. — Let h0 =
∑

j⩾0 Ij,0δθj,0 satisfy the assumptions of Theo-
rem 1.5. Now let us note that under those hypothesis that there exists η ≪ 1 such H ′

is smooth on all of the intervals (θj(0)− η, θj(0) + η) and thus the standard Cauchy-
Lipschitz theorem can be applied to guarantee the existence of a unique h correspond-
ing to the local in time solution given by (1.7). We let hε as the sequence of smooth
and global-in-time solutions with mollified initial data hε

0 := φε ∗ h0.
To begin with, note that as long as the solution to (1.7) does not blow up,

we have θj(t) ̸= θk(t) for j ̸= k. We fix such a time interval [0, T ] and then for
each j we can take some ηj > 0 such that h(t, ·)1Aj(t) = Ij(t)δθj(t), where Aj(t) :=

(θj(t)− ηj , θj(t) + ηj) is the open interval.
Since the sequence of data hε

0 is uniformly L1, from the L1 estimate given in the
previous section, we have that on [0, T ] (by taking T > 0 smaller if necessary) hε(t, ·)
is uniformly L1 in t and ε, and Hε(t, ·) is uniformly Lipschitz continuous in t and ε.
(Here, all the relevant norms are bounded in terms of ∥h0∥D.)

Note that supp(hε
0) ⊂ B(supp(h0), Cε) where we define for simplicity B(K, η) as

the η-neighborhood of some set K. For each fixed j, by taking ε > 0 sufficiently
small, we can ensure that supp(hε

0) has a unique connected component intersecting
Aj(t = 0). By continuity, there is a small time interval on which supp(hε(t, ·)) still
has this property for all sufficiently small ε > 0. Then, the quantities {θεj (t), Iεj (t)}
are well-defined by the following equations:

θεj (t)

∫
Aj(t)

hε(t, θ)dθ =

∫
Aj(t)

θhε(t, θ)dθ, and Iεj (t) =

∫
Aj(t)

hε(t, θ)dθ.

Note that uniform Lipschitz continuity of Hε implies that the length of supp(hε)∩Aj

is ⩽ Cε with C depending only on the Lipschitz norm. This in particular guarantees
that ∫

Aj(t)

|θ − θεj (t)|hε(t, θ)dθ ⩽ CεIεj (t),

simply because θεj (t) ∈ supp(hε(t, ·)) ∩ Aj . Now, differentiating in time the above
relations (and using that hε is smooth and vanishes on ∂Aj),

d

dt
Iεj (t) =

∫
Aj(t)

2(H ′)ε(t, θ)hε(t, θ)dθ,(3.6)

θεj (t)
d

dt
Iεj (t) + Iεj (t)

d

dt
θεj (t) =

∫
Aj(t)

2Hε(t, θ)hε(t, θ)dθ(3.7)

+

∫
Aj(t)

2θ(H ′)ε(t, θ)hε(t, θ)dθ.
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We use (3.6) to rewrite (3.7) as follows:

d

dt
θεj (t) = 2Hε(t, θεj (t)) +

2

Iεj (t)

∫
Aj(t)

(Hε(t, θ)−Hε(t, θεj (t)))h
ε(t, θ)dθ

+
2

Iεj (t)

∫
Aj(t)

(θ − θεj (t))(H
′)ε(t, θ)hε(t, θ)dθ.

Estimating∣∣∣∣∣
∫
Aj(t)

(Hε(t, θ)−Hε(t, θεj (t)))h
ε(t, θ)dθ

∣∣∣∣∣
⩽ ∥(H ′)ε∥L∞

∫
Aj(t)

|θ − θεj (t)|hε(t, θ)dθ ⩽ CεIεj (t)

and similarly the other term, we obtain that

(3.8)
∣∣∣ d
dt

θεj (t)− 2Hε(t, θεj (t))
∣∣∣ ⩽ Cε.

Let us now derive a similar estimate for (3.6). To this end, we first decompose
Hε = Hε

j + Hε
̸=j ; Hε

j is simply defined as the solution to (1.4) with right hand side
hε
j := hε1Aj

. We write∫
Aj(t)

2(H ′)ε(t, θ)hε(t, θ)dθ =

∫
Aj(t)

2(H ′)εj(t, θ)h
ε(t, θ)dθ

+

∫
Aj(t)

2(H ′)ε̸=j(t, θ)h
ε(t, θ)dθ.

Then note that Hε
̸=j is smooth on Aj from the support property, and this gives by

writing (H ′)ε̸=j(t, θ) = (H ′)ε̸=j(t, θ
ε
j ) +O(|θ − θεj |)∫

Aj(t)

2(H ′)ε̸=j(t, θ)h
ε(t, θ)dθ = 2(H ′)ε̸=j(t, θ

ε
j (t))I

ε
j (t) +O(ε).

Next, we have that

(3.9)
∫
Aj(t)

2(H ′)εj(t, θ)h
ε(t, θ)dθ =

∫
S
2(∂θK ∗ hε

j)(θ)h
ε
j(θ)dθ,

where K is the kernel for the elliptic problem (1.4) (see Appendix for its explicit form).
We consider K as defined on [−π, π], and then we can decompose K = Ke + Ko,
where Ke and Ko are even and odd parts of K around θ = 0, respectively. Using the
ODE satisfied by K, we can derive the relation

(1 + β2)(Ko)′′ − 4β(Ke)′ +Ko = 0,

and since (Ke)′ ∈ L∞(S), we have that Ko ∈ W 2,∞(S) (we only need it to be
strictly better than Lipschitz). Alternatively, Ko ∈ W 2,∞(S) can be checked using
the explicit formula (A.2) given in the appendix. Returning to (3.9) and observing
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that (Ko)′ and (Ke)′ are even and odd respectively,∫
S
2(∂θK ∗ hε

j)(θ)h
ε
j(θ)dθ =

∫∫
S×S

2(Ko +Ke)′(θ − θ′)hε
j(θ)h

ε
j(θ

′)dθdθ′

=

∫∫
S×S

2(Ko)′(θ − θ′)hε
j(θ)h

ε
j(θ

′)dθdθ′

=

∫
S
2(∂θK

o ∗ hε
j)(θ)h

ε
j(θ)dθ,

which can be estimated as

=

∫
S
2(∂θK

o ∗ hε
j)(θ

ε
j (t))h

ε
j(θ)dθ +

∫
S
2((∂θK

o ∗ hε
j)(θ)− (∂θK

o ∗ hε
j)(θ

ε
j (t)))h

ε
j(θ)dθ

= 2(∂θK
o ∗ hε

j)(θ
ε
j (t))I

ε
j (t) +O(ε),

where we have used that hε
j is L1 uniformly in ε and ∂θK

o is Lipschitz. This gives
that

(3.10)
∣∣∣ d
dt

Iεj (t)− 2(H̃ ′)εj(t, θ
ε
j (t))I

ε
j (t)

∣∣∣ ⩽ Cε,

where by definition,
(H̃ ′)εj := (H ′)ε̸=j + ∂θK

o ∗ hε
j ,

which is Lipschitz continuous in Aj . Note that under the assumption (which we can
bootstrap upon) of hε → h in the sense of distributions, we have (H̃ ′)εj(t, θ

ε
j (t)) →

∂θH(t, θj(t)) where the latter is defined in (1.8).
Using this observation together with (3.8)–(3.10) and noting that Iεj (t = 0) = Ij,0,

θεj (t = 0) = θj,0 for all ε sufficiently small (possibly depending on j) gives that for any
fixed N ⩾ 1 and some T > 0 small, we have convergence {Iεj (t), θεj (t)} → {Ij(t), θj(t)}
for t ∈ [0, T ] and j ⩽ N . This gives the desired convergence in the sense of distribu-
tions. □

3.4. Proof of Proposition 1.7. — The goal is to show that h ∈ C∗ ([0, T );M (S))
solution of (1.3)–(1.4) defines a weak solution to the 2d Euler equations through
(1.2)–(1.5) in velocity forms. For h ∈ C

(
[0, T );L1 (S)

)
, we show moreover that h

defines a weak solution in vorticity form.

3.4.1. In vorticity form for h0 ∈ L1 (S). — To do so we write the 2d Euler equations
(1.1) in polar coordinates

(3.11) ∂tω + ur∂rω +
1

r
uθ∂θω = 0.

To begin with, assume that ω(t, r, θ) = h(t, θ − β ln r) with h ∈ C1(S). Then H,H ′ ∈
C1(S) as well, and in particular ω and u are C1(R2\{0}), where we recall that

(3.12) u(t, r, θ) = −rH ′(t, θ − β ln(r))er + (2rH(t, θ − β ln(r))

− rβH ′(t, θ − β ln(r)))eθ.

Using the relation between h and H, we see that a solution of (1.3)–(1.4) with h ∈
C1(S) solves (3.11) pointwise, except at the origin. To deal with this problem we can
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just directly use the definition of a weak solution to (3.11): it should solve for any
test function ϕ ∈ C∞

c

(
I × R2

)
the identity∫

(0,T )×R2

ω∂tϕ+ ω
(
∂ru

r +
1

r
∂θu

θ
)

︸ ︷︷ ︸
=0

ϕ+ ωur∂rϕ+
1

r
uθω∂θϕ = −

∫
R2

ω0ϕ0.

To verify this, one simply rewrite the integral as the limit

lim
ε→0+

∫
(0,T )×(R2\B0(ε))

ω∂tϕ+ ωur∂rϕ+
1

r
uθω∂θϕ,

which is possible thanks to uniform boundedness (in ε) of the integrand in space and
time. Then we simply integrate by parts in space: the boundary integral terms vanish
as we take ε → 0+ since ∂r(ωu

r) and r−1∂θ(ωu
θ) are again uniformly bounded in

space and time.
In the case of ω(t, r, θ) = h(t, θ − β ln r) with h ∈ C

(
[0, T ], L1(S)

)
, we note that

H ∈ C
(
[0, T ],W 2,1(S)

)
and H ′ ∈ C

(
[0, T ],W 1,1(S)

)
. In particular, from (3.12) we

see that u ∈ C
(
[0, T ], C0(R2)

)
. Now, to verify that it is a weak solution in R2, one

can mollify h,H,H ′ in θ to reduce to the case of h ∈ C1(S), while the error terms
coming from mollification are small thanks to the L1 bound of h.

3.4.2. In velocity form for h0 ∈ M (S). — When h is merely a measure, we need to use
the velocity formulation to prove that the associated velocity defines a weak solution
in R2. We write the 2d Euler equations on the velocity in polar coordinates{

∂tu
r + ur∂ru

r + 1
ru

θ∂θu
r = −∂rp,

∂tu
θ + ur∂ru

θ + 1
ru

θ∂θu
θ = − 1

r∂θp.

Thus a weak solution of the 2d Euler equation on an interval [0, T ) ⊂ R solves for
(ϕr, ϕθ) ∈ C∞

c

(
I × R2

)

(3.13)


∫

(0,T )×R2

ur∂tϕ
r + (ur)2∂rϕ

r + 1
ru

θur∂θϕ
r = −

∫
R2

ur
0ϕ

r
0 −

∫
(0,T )×R2

p∂rϕ
r,∫

(0,T )×R2

uθ∂tϕ
θ + uruθ∂rϕ

θ + 1
r (u

θ)2∂θϕ
θ = −

∫
R2

uθ
0ϕ

θ
0 −

∫
(0,T )×R2

p 1
r∂θϕ

θ,

where we again used the incompressibility condition ∂ru
r + 1

r∂θu
θ = 0.

To proceed, we need to compute the form of the pressure under logarithmic spiral
symmetry. The ansatz for the pressure is p = r2P (t, θ − β ln r) and we compute the
gradient in polar coordinates

∇p = (2rP − βrP ′)er + rP ′eθ,

which gives

−2rP = ∂t
(
ur + βuθ

)
+ ur∂r

(
ur + βuθ

)
+

1

r
uθ∂θ(u

r + βuθ).
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Now ur + βuθ = r
(
2βH − (1 + β2)H ′) thus from (3.2)–(3.3) we get

2P = −4βHH ′ − 2βK(8β − 3(1 + β2)∂θ)
[
(H ′)2

]
+ (1 + β2)

(
2HH ′′ − (H ′)2 + 4K(3− β∂θ)

[
(H ′)2

])
−H ′ (2βH + (1 + β2)βH ′′ − (1 + 3β2)H ′)+ (2H − βH ′)

(
2βH ′ −

(
1 + β2

)
H ′′).

In particular we observe that the worst term (1+β2)βH ′H ′′, which is not well defined
in the case of h ∈ D (S) cancels out, and we get

2P = −2βK(8β − 3(1 + β2)∂θ)
[
(H ′)2

]
+ (1 + β2)

(
4K(3− β∂θ)

[
(H ′)2

])
−H ′(2βH − β2H ′).

Recall that h ∈ D(S) gives H ∈ W 1,∞(S) and H ′ ∈ L∞(S). Using this (with reg-
ularizing property of K∂θ), we have in particular for h ∈ C∗ ([0, T );D (S)) that
P ∈ C∗ ([0, T );L

∞ (S)).
We now proceed to the proof that h provides a weak solution to (3.13). To do so,

we consider hε as the mollification of our solution given in Section 3.3. Let uε and pε

be the respective velocity and pressure associated to hε. As they are W 1,∞ solutions
(and actually smooth outside of 0) to the 2d Euler equation they solve

∫
(0,T )×R2

(ur)
ε
∂tϕ

r + ((ur)ε)
2
∂rϕ

r + 1
r (u

θ)ε(ur)ε∂θϕ
r

= −
∫
R2

(ur
0)

εϕr
0 −

∫
(0,T )×R2

pε∂rϕ
r,∫

(0,T )×R2

(uθ)ε∂tϕ
θ + (ur)ε(uθ)ε∂rϕ

θ + 1
r

(
(uθ)ε

)2
∂θϕ

θ

= −
∫
R2

(uθ
0)

εϕθ
0 −

∫
(0,T )×R2

pε 1
r∂θϕ

θ.

This can be proved along the lines of the proof that h ∈ C1(S) gives rise to weak
solutions to the vorticity equation. Now, by the results of Section 3.3 hε converges
to h in the sense of measures. This shows that (H ′′)ε again converges to H ′′ in the
sense of measures (the same holds for H and H ′ for a stronger reason), giving that
uε → u and pε → p in the sense of measures, where u and p are the velocity and
pressure generated from h. In particular, u and p verify (3.13) by passing to the limit
ε → 0 in the previous identities. This finishes the proof. □

4. Long time dynamics and singularity formation

4.1. Convergence for bounded solutions

Proof of Theorem 1.8. — Recall that we are assuming β > 0. For h0 ∈ L∞, we have
that for all t > 0, the solution h(t, ·) satisfies

−∥h0∥L∞ ⩽ h(t, θ) ⩽ ∥h0∥L∞ .

In particular,

I(t) :=

∫
h(t, θ)dθ ⩾ −2π∥h0∥L∞
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and since the left hand side is strictly decreasing in time (unless h0 is a constant),

I(t) −→ I+

for some constant I+ < I(0) as t → ∞. Then, integrating (2.5) in time,

8β

∫ ∞

0

∫
(H ′)2dθdt = I(0)− I+,

which gives H ∈ L2([0,∞); Ḣ1(S)) =: L2
t Ḣ

1
θ . Next, from the equation (3.2) for H

∥∂tH∥L2 ⩽ 2∥HH ′∥L2 + ∥K(8β − 3(1 + β2)∂θ)
[
(H ′)2

]
∥L2

⩽ C∥H∥W 1,∞∥H ′∥L2 ⩽ C∥h∥L∞∥H ′∥L2 ⩽ C∥h0∥L∞∥H ′∥L2 .

This gives ∂tH ∈ L2
tH

1
θ as well. We have that

∫
Hdθ = 1

4

∫
hdθ → 1

4I+. Applying
Aubin–Lions lemma to the sequence of functions {H(·+ tn, ·)} defined on [0,∞)× S
(here, tn ⩾ 0 is an arbitrary increasing sequence), we obtain a convergent subsequence
in L2

tH
1
θ . The limit must be equal to the constant 1

4I+, and therefore is independent
of the choice of a subsequence; H(t, ·) → 1

4I+ in L2(S). Since h ∈ L∞(S) uniformly in
time, the convergence holds in H−a(S) for any a > 0 in terms of h. □

4.2. Trichotomy for Lp data

Proof of Theorem 1.10. — The trichotomy of behavior follows from the analysis of I(t)
when h0 ∈ Lp. We work again with β > 0 and h0 not identically constant, then I(t)

is a strictly decreasing function of time and one the following three scenarios must
occur. There exists T ∗ ∈ (0,+∞] such that either

– T∗ = +∞ and there exists I+ ∈ R such that I(t) →
t→+∞

I+,
– T∗ < +∞,
– T∗ = +∞ and I(t) →

t→+∞
−∞.

The only point requiring more analysis is the first one. Indeed as for the case h0 ∈ L∞

we get that H ∈ L2
t Ḣ

1
θ . Now I(t) being bounded combined with H ∈ L2

t Ḣ
1
θ implies

that h ∈ L∞
t L1

θ. Again from (3.2)

∥∂tH∥L2 ⩽ C ∥H∥W 1,∞ ∥H ′∥L2 ⩽ C∥h∥L∞
(0,+∞)

L1
θ
∥H ′∥L2 ,

and the proof follows as in the previous paragraph. □

4.3. Singularity formation for Diracs

Proof of Theorem 1.11. — We assume β > 0. To begin with, we note that for each
fixed N , if h =

∑N
i=1 Iiδ(θ − θi) then |

∑N
i=1 Ii| is controlled ∥H ′∥L2 .(1) This is clear

in the case N = 1. To see this for N = 2, note that ∥H ′∥L2 is a bilinear form of I1
and I2 with coefficients depending only on θ1 − θ2. Then, it suffices to observe that
this bilinear form is strictly positive when I1 + I2 ̸= 0 and converges to a strictly

(1)On the other hand, it is not correct for the norm
∑N

i=1 |Ii|.
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positive quadratic form of (I1 + I2) as θ1 − θ2 → 0. The general case follows from a
continuity argument and induction in N . That is,

∥H ′∥L2 ⩾ cN |
N∑
i=1

Ii|

for some cN > 0 depending on N . Applying (2.6), we see that

(4.1) d

dt

( N∑
i=1

Ii

)
⩽ −8βc2N

( N∑
i=1

Ii

)2

.

In particular, if it happens that (
∑N

i=1 Ii) < 0 for some t0, then necessarily
(
∑N

i=1 Ii(t)) → −∞ as t approaches some T > t0. Therefore, for finite time singular-
ity to not occur, it is necessary that

∑N
i=1 Ii(t) ⩾ 0 for all t ⩾ 0. Furthermore, we can

exclude the case
∑N

i=1 Ii(t) = 0 (for any t ⩾ 0) since
∑N

i=1 Ii(t) is strictly decreasing
(see (2.6)), unless h is trivial. Then, we have that

∑N
i=1 Ii(t) > 0 for all t ⩾ 0 and

(4.1) tells us that
∑N

i=1 Ii(t) → 0 as t → ∞. □

4.4. Case study of m symmetric Dirac deltas. — In this section, we revisit the case
of m-fold symmetric Dirac deltas where m ⩾ 1 is an integer. Namely, we consider the
dynamics of the solution of the form

(4.2) h(t, ·) = I0(t)

m−1∑
j=0

δθj(t),

where θj(t) = θ0(t) + 2πj/m for j = 1, . . . ,m− 1. The m-fold symmetry is preserved
in time, and the solution is characterized by (I0, θ0). It is then natural to introduce
the m-fold symmetric kernel Km by

Km(θ) =

m−1∑
j=0

K(θ + 2πj/m).

We give an explicit form of this symmetrized kernel in the appendix. Furthermore,
we can simply take the spatial domain to be Sm which is (0, 2π/m) with endpoints
identified with each other. The system of equations for (I0, θ0) reads

d

dt
θ0(t) = 2H(t, θ0(t)) = 2Km(0)I0(t),

d

dt
I0(t) = 2(Km)′(0)(I0(t))

2.

We see that the equation for I0 does not involve the other variable θ0, and the solution
is simply

I0(t) =
I0(0)

1− 2(Km)′(0)I0(0)t
.

Depending on the sign of 2(Km)′(0)I0(0), we have either finite-time blow up or decay
of rate 1/t as t becomes large. The constant (Km)′(0) can be explicitly determined
as a function of m,β and is given in Remark A.2. Assume that (Km)′(0)I0(0) > 0,
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so that the Dirac solution blows up at some T ∗ > 0. It is an interesting exercise to
see what happens to the sequence of patch regularizations of (4.2):

hε
0 :=

I0(0)

2ε

m−1∑
j=0

1[θj(0)−ε,θj(0)+ε].

While there is a global solution associated with hε
0, one can show that as t → T ∗,

the support of hε(t) occupies almost all of the spatial domain, so that in particular
∥hε(T ∗)∥L1 = O(ε−1), which blows up as ε → 0+.

4.5. Case study of two non-symmetric Diracs. — In this section, we study the evo-
lution of two Dirac deltas in the case m = 1. For simplicity, we shall assume that they
evolve in a self-similar fashion: their distance in S is fixed while the amplitudes are
proportional to 1/t. To this end, we recall the system (1.7) for two Diracs:

I ′1 = 2K ′(0)I21 + 2K ′(θ1 − θ2)I1I2,

I ′2 = 2K ′(0)I22 + 2K ′(θ2 − θ1)I1I2,

θ′1 = 2I1K(0) + 2I2K(θ1 − θ2),

θ′2 = 2I2K(0) + 2I1K(θ2 − θ1),

and assume a solution of the form

I1(t) = A1t
−1, I2(t) = A2t

−1, θ1(t)− θ2(t) = d,

where A1, A2, d are constants. We may assume further that 0 < d ⩽ π. Under these
assumptions, the ODE reduces to the following system of algebraic equations

−1 = 2A1K
′(0) + 2A2K

′(d),

−1 = 2A2K
′(0) + 2A1K

′(−d),

0 = (A1 −A2)K(0) +A2K(d)−A1K(−d).

(4.3)

Assuming that (K ′(0))2−K ′(d)K ′(−d) ̸= 0, A1 and A2 are uniquely determined from
the first two equations in terms of d, and we are left with the single equation

(4.4) K(0)(K ′(−d)−K ′(d))+K(d)(K ′(0)−K ′(−d))+K(−d)(K ′(d)−K ′(0)) = 0.

Even when (K ′(0))2 − K ′(d)K ′(−d) = 0, a solution of (4.4) gives (infinitely many)
solutions to (4.3). We clearly see that d = π solves (4.4), which simply corresponds to
the symmetric self-similar blow up of two Dirac deltas. We now consider the function
F (β, d) = K(0)(K ′(−d)−K ′(d)) +K(d)(K ′(0)−K ′(−d)) +K(−d)(K ′(d)−K ′(0)),

then computing

Kβ(θ) = − sin(2θ)

8πβ
+O(β) and K ′

β(θ) = −cos(2θ)

4πβ
+O(β)

we get
F (β, d) ∼

β→0

1

16π2β2
sin(2d)(1− cos(2d)).

Thus considering the function F̃ = 16π2β2F we observe that F̃ is C1 in neighborhood
of (0, π/2), F̃ (0, π/2) = 0 and ∂dF̃ (0, π/2) = −4 thus an application of the implicit
function theorem immediately yields the existence and uniqueness of a continuum of
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(non symmetric) solutions in the form (β, d(β)) in a neighborhood of (0, π/2). This
exactly the content of [5, Th. 1] in the case M = 2.

Remark 4.1. — The case of 2 Diracs is not special indeed an analogous reasoning
for M Diracs yields a system of 1 + M − 1 equations analogous to (4.4). It can
be then observed that the problem reduces to finding the zeros of another func-
tion F of 1 +M − 1 variables, β and the M − 1 differences of angles, into RM−1

for which the implicit function theorem can applied near the point β = 0 and
(π/M, . . . , ((M − 1)/M)π) if the differential is not singular in the M − 1 variables.
This is the content of Theorem 1 of [5] where the cases M ∈ {2, 3, 5, 7, 9} are covered.

We get back to the case M = 2 and study the behavior of F in the limit β goes to
infinity. In this case, it is not very difficult to verify that

Kβ(θ) =
1

8π
+

(2π − θ)θ

4πβ2
+O(β−3), K ′

β(θ) =
π − θ

2πβ2
+O(β−3).

This gives that, as β → ∞,

F (β, d) ∼ 1

4π2β4
(2π − d)(π − d)d+O(β−6).

This limit can be shown to be uniform in C1 on 0 ⩽ d ⩽ π. From this we deduce that
for 0 < d < π, there are no zeros of F (β, d) as long as β is taken to be sufficiently large.
Combining this computation with the previous one, we can arrive at the following
bifurcation result in the case of two Dirac deltas.

Proposition 4.2. — There exist some β0, β1 > 0 such that the following holds:
– for all 0 < β < β0, there is only one zero of F (β, d) = 0 in 0 < d < π. This

unique zero converges to π/2 as β → 0, and
– for all β > β1, there are no zeroes of F (β, d) = 0 in 0 < d < π.

In particular, there exists at least one bifurcation point of non-symmetric solutions
from the symmetric one.

4.6. Some open questions. — The following observations would be interesting to
investigate further potentially shedding some light on some new phenomena emerging
in the long time dynamics for solutions of the 2d Euler equations.

(1) Based on numerical simulations it seems like β0 = β1 = βb and the two Diracs
system exhibits a unique bifurcation.

(2) For β > βb, the symmetric configuration seems to be stable and is the unique
global attractor of the blow up dynamics exhibited in Theorem 1.11.

(3) For β < βb, bifurcation occurs, the new configuration becomes the stable and
unique global attractor of the blow up and the symmetric configuration becomes
unstable.

(4) It would be interesting to investigate further this bifurcation phenomena for
three or more Diracs.

(5) One can investigate the role of m-fold symmetry in the bifurcation of non-
symmetric solutions.
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Appendix A. Derivation of the kernel

In this section, we give an explicit form of the kernel.

Lemma A.1. — Let h,H solve the elliptic equation (1.4) for some β ̸= 0 and suppose
moreover they are m-fold symmetric in θ for m ⩾ 1. Then for θ ∈ [0, 2π/m) we have

H(θ) =

∫ 2π

0

h(θ′)Km
β (θ − θ′)dθ′,

with

Km
β (θ) =

1

4
ℜ
[
e

2(β−i)

m(1+β2)
(mθ−π)

sin
( 2π(1+iβ)
m(1+β2)

) ]
.

Remark A.2. — We record the values

Km
β (0) =

1

4
ℜ
[
cot

(2π(1 + iβ)

m(1 + β2)

)]
,

and

Km
β

′(0) =
ℜ
[
(β − i) cot

(
2π(1+iβ)
m(1+β2)

)]
2(1 + β2)

=
4βKm

β (0) + ℑ
[
cot

(
2π(1+iβ)
m(1+β2)

)]
2(1 + β2)

.

Proof. — We give the proof in the case m = 1, as the general case can be obtained
similarly. Using the Fourier series

h(θ) =
∑
n∈Z

ĥne
inθ, H(θ) =

∑
n∈Z

Ĥne
inθ,

we obtain the relation

Ĥn =
1

4− 4βin− (1 + β2)n2
ĥn =

[
1

2i
i−β − n

+
1

2i
i+β + n

]
ĥn

4
.

Thus

(A.1)

Kβ(θ) =
1

8π

∑
n∈Z

[
1

2i
i−β − n

+
1

2i
i+β + n

]
einθ

=
1

8π

∑
n∈Z

[
1

− 2i(i+β)
1+β2 − n

+
1

2i(−i+β)
1+β2 + n

]
einθ

=
1

8π

∑
n∈Z

[
1

2(1+iβ)
1+β2 + n

− 1
2(−1+iβ)

1+β2 + n

]
einθ.

We use the following standard Fourier series computation found for example in [31].

Lemma A.3. — For α ∈ C∖ N and θ ∈ R∑
n∈N

einθ

n+ α
=

π

sin(πα)
ei(π−θ)α.

J.É.P. — M., 2024, tome 11



Logarithmic spirals in 2d perfect fluids 679

Applying the previous lemma to (A.1) we get for β ̸= 0

(A.2) Kβ(θ) =
1

8

 e
i
2(1+iβ)

1+β2 (π−θ)

sin
( 2π(1+iβ)

1+β2

) − e
i
2(−1+iβ)

1+β2 (π−θ)

sin
( 2π(−1+iβ)

1+β2

)
 =

1

4
ℜ

 e
2(β−i)

1+β2 (θ−π)

sin
( 2π(1+iβ)

1+β2

)
 .

Noting that the m-fold symmetric Kernel m ⩾ 1 is given by

Km
β (θ) =

1

8π

∑
n∈Z

[
1

2i
i−β −mn

+
1

2i
i+β +mn

]
eimnθ

=
1

8π

∑
n∈Z

[
1

2(1+iβ)
1+β2 +mn

− 1
2(−1+iβ)

1+β2 +mn

]
eimnθ

=
1

8πm

∑
n∈Z

[
1

2(1+iβ)
m(1+β2) + n

− 1
2(−1+iβ)
m(1+β2) + n

]
einmθ.

Thus making the change of variables θ ↔ mθ and (1 + β2) ↔ m(1 + β2) we get for
θ ∈ (0, 2π/m) the desired result. □

0.1

1

10

1 2 3 4 5 6

-0.4

-0.2

0.2

0.4

0.6

Figure 2. Plots of K1
β(θ) for some values of β

Example A.4. — Let us take β = 1 and m = 1. Then, on the interval (0, 2π), we ex-
plicitly have

K1
1 (θ) =

1

2

sin(θ)eθ

1− e2π
, (K1

1 )
′(θ) =

1

2

(sin(θ) + cos(θ))eθ

1− e2π
.

The plot is given in Figure 2.

Appendix B. Self-similar logarithmic vortex sheets

In this section, we show how our formulation of logarithmic vortex sheets corre-
sponds to the traditional one which goes back to the work of Prandtl. We follow the
notation of [7, 5]: in the case of one branch, they write

Z(t, θ) = tµ exp(iθ + (θ − θ0)/β),

Γ(t, θ) = gt2µ−1 exp(2(θ − θ0)/β),
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where Z and Γ correspond to the location and circulation of the spiral in R2 parame-
terized by θ ∈ R, respectively. Here θ0, g, µ are constants. The vorticity is then given
by the sheet supported on the set Σ(t) = {Z(t, θ) : θ ∈ R}, characterized by local
circulation

R−2

∫∫
|x|⩽R

ω(t, x)dx = gt−1.

Taking t = 1 to be the initial time for simplicity, the above ansatz corresponds to
taking our h function to be

h(t = 1, θ) = 2gδ(θ − θ0).

(Here, the factor 2 comes from comparing the circulation formula with (1.9).) Using
our formulation, for the Dirac delta solution corresponding to h(t = 1, ·) to be self-
similar, we need to have

h(t, θ) =
2g

t
δ(θ −Θ(t, θ0)), Θ(t, θ0) = θ0 − βµ ln(t)

and then we obtain two consistency equations by comparing these with the ODE
system (1.7) at t = 1, which are nothing but exactly the ones given in [7, Cor. 1.3].
Indeed we are looking for I(t) = 2g/t and Θ(t, θ0) to be solutions of (1.7) which
imposes in the case of one branch:

I ′(t) = 2I(t)2K ′(0) and Θ′(t, θ0) = 2I(t)K(0),

where K(0) and K ′(0) are given explicitly in Remark (A.2) thus

−2g

t2
=

8g2K ′(0)

t2
and − βµ

t
=

4g

t
K(0),

which finally gives
−4gK ′(0) = 1 and gK(0) = −βµ.

One may similarly consider the case of m branch spiral sheets as well.
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