On the polygonal Faber-Krahn inequality
[Sur l’inégalité Faber-Krahn polygonale]
Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 19-105.

Il y a soixante-dix ans, Pólya et Szegö ont conjecturé que l’ensemble du plan qui minimise la première valeur propre du laplacien avec conditions de Dirichlet au bord parmi les polygones de n côtés et aire fixée est le polygone régulier. Malgré sa simplicité apparente, cette conjecture a été démontrée seulement pour les triangles et les quadrilatères. Dans cet article, nous démontrons que pour chaque n5 la preuve de la conjecture peut être réduite à un nombre fini de calculs numériques certifiés. En particulier, la minimalité locale du polygone régulier est réduite à un seul calcul certifié. Pour n=5,6,7,8 nous faisons ce calcul et nous certifions l’approximation par éléments finis, aux erreurs d’arrondi près.

It has been conjectured by Pólya and Szegö seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with n sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each n5 the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For n=5,6,7,8 we perform this computation and certify the numerical approximation by finite elements, up to machine errors.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.250
Classification : 35P15, 49Q10
Keywords: Faber-Krahn inequality, polygons, shape optimization, numerical approximations
Mot clés : Inégalité de Faber-Krahn, polygones, optimisation de forme, approximations numériques
Beniamin Bogosel 1 ; Dorin Bucur 2

1 CMAP, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
2 Laboratoire de Mathématiques UMR CNRS 5127, Université Savoie Mont Blanc, Campus Scientifique, 73376 Le-Bourget-Du-Lac, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2024__11__19_0,
     author = {Beniamin Bogosel and Dorin Bucur},
     title = {On the polygonal {Faber-Krahn} inequality},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {19--105},
     publisher = {\'Ecole polytechnique},
     volume = {11},
     year = {2024},
     doi = {10.5802/jep.250},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.250/}
}
TY  - JOUR
AU  - Beniamin Bogosel
AU  - Dorin Bucur
TI  - On the polygonal Faber-Krahn inequality
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2024
SP  - 19
EP  - 105
VL  - 11
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.250/
DO  - 10.5802/jep.250
LA  - en
ID  - JEP_2024__11__19_0
ER  - 
%0 Journal Article
%A Beniamin Bogosel
%A Dorin Bucur
%T On the polygonal Faber-Krahn inequality
%J Journal de l’École polytechnique — Mathématiques
%D 2024
%P 19-105
%V 11
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.250/
%R 10.5802/jep.250
%G en
%F JEP_2024__11__19_0
Beniamin Bogosel; Dorin Bucur. On the polygonal Faber-Krahn inequality. Journal de l’École polytechnique — Mathématiques, Tome 11 (2024), pp. 19-105. doi : 10.5802/jep.250. https://jep.centre-mersenne.org/articles/10.5802/jep.250/

[1] B. Andrews & J. Clutterbuck - “Proof of the fundamental gap conjecture”, J. Amer. Math. Soc. 24 (2011) no. 3, p. 899-916 | DOI | MR | Zbl

[2] P. Antunes & P. Freitas - “New bounds for the principal Dirichlet eigenvalue of planar regions”, Experiment. Math. 15 (2006) no. 3, p. 333-342 | DOI | MR | Zbl

[3] M. S. Ashbaugh & R. D. Benguria - “A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions”, Ann. of Math. (2) 135 (1992) no. 3, p. 601-628 | DOI | MR | Zbl

[4] S. Balay, W. D. Gropp, L. C. McInnes & B. F. Smith - “Efficient management of parallelism in object oriented numerical software libraries”, in Modern software tools in scientific computing (E. Arge, A. M. Bruaset & H. P. Langtangen, eds.), Birkhäuser Press, 1997, p. 163-202 | DOI | Zbl

[5] G. Barbatis, V. I. Burenkov & P. D. Lamberti - “Stability estimates for resolvents, eigenvalues, and eigenfunctions of elliptic operators on variable domains”, in Around the research of Vladimir Maz’ya. II, Int. Math. Ser. (N. Y.), vol. 12, Springer, New York, 2010, p. 23-60 | DOI | MR | Zbl

[6] A. H. Barnett, A. Hassell & M. Tacy - “Comparable upper and lower bounds for boundary values of Neumann eigenfunctions and tight inclusion of eigenvalues”, Duke Math. J. 167 (2018) no. 16, p. 3059-3114 | DOI | MR | Zbl

[7] M. van den Berg & E. Bolthausen - “Estimates for Dirichlet eigenfunctions”, J. London Math. Soc. (2) 59 (1999) no. 2, p. 607-619 | DOI | MR | Zbl

[8] B. Bogosel - Shape optimization and spectral problems, Ph. D. Thesis, Université Grenoble Alpes, 2015

[9] M. Bourlard, M. Dauge, M.-S. Lubuma & S. Nicaise - “Coefficients of the singularities for elliptic boundary value problems on domains with conical points. III. Finite element methods on polygonal domains”, SIAM J. Numer. Anal. 29 (1992) no. 1, p. 136-155 | DOI | MR | Zbl

[10] H. Brezis & P. Mironescu - “Gagliardo-Nirenberg inequalities and non-inequalities: the full story”, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018) no. 5, p. 1355-1376 | DOI | MR | Zbl

[11] D. Bucur & I. Fragalà - “Blaschke-Santaló and Mahler inequalities for the first eigenvalue of the Dirichlet Laplacian”, Proc. London Math. Soc. (3) 113 (2016) no. 3, p. 387-417 | DOI | Zbl

[12] D. Bucur & I. Fragalà - “Symmetry results for variational energies on convex polygons”, ESAIM Control Optim. Calc. Var. 27 (2021), article ID 3, 16 pages | DOI | MR | Zbl

[13] D. Bucur & D. Mazzoleni - “A surgery result for the spectrum of the Dirichlet Laplacian”, SIAM J. Math. Anal. 47 (2015) no. 6, p. 4451-4466 | DOI | MR | Zbl

[14] V. I. Burenkov & P. D. Lamberti - “Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators”, Rev. Mat. Univ. Complut. 25 (2012) no. 2, p. 435-457 | DOI | MR | Zbl

[15] P. G. Ciarlet - The finite element method for elliptic problems, Classics in Applied Math., vol. 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002 | DOI

[16] J. Dahne, J. Gómez-Serrano & K. Hou - “A counterexample to Payne’s nodal line conjecture with few holes”, Commun. Nonlinear Sci. Numer. Simul. 103 (2021), article ID 105957, 13 pages | DOI | MR | Zbl

[17] J. Dahne & B. Salvy - “Computation of tight enclosures for Laplacian eigenvalues”, SIAM J. Sci. Comput. 42 (2020) no. 5, p. A3210-A3232 | DOI | MR | Zbl

[18] M. Dambrine & J. Lamboley - “Stability in shape optimization with second variation”, J. Differential Equations 267 (2019) no. 5, p. 3009-3045 | DOI | MR | Zbl

[19] D. Daners - “Krahn’s proof of the Rayleigh conjecture revisited”, Arch. Math. (Basel) 96 (2011) no. 2, p. 187-199 | DOI | MR | Zbl

[20] M. Dauge - Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions, Lect. Notes in Math., vol. 1341, Springer-Verlag, Berlin, 1988 | DOI

[21] E. B. Davies - “Eigenvalue stability bounds via weighted Sobolev spaces”, Math. Z. 214 (1993) no. 3, p. 357-371 | DOI | MR | Zbl

[22] S. Dominguez, N. Nigam & B. Shahriari - “A combined finite element and Bayesian optimization framework for shape optimization in spectral geometry”, Comput. Math. Appl. 74 (2017) no. 11, p. 2874-2896 | DOI | MR | Zbl

[23] R. D. Falgout, J. E. Jones & U. M. Yang - “The design and implementation of hypre, a library of parallel high performance preconditioners”, in Numerical solution of partial differential equations on parallel computers, Lect. Notes Comput. Sci. Eng., vol. 51, Springer, Berlin, 2006, p. 267-294 | DOI | MR | Zbl

[24] E. Feleqi - “Estimates for the deviation of solutions and eigenfunctions of second-order elliptic Dirichlet boundary value problems under domain perturbation”, J. Differential Equations 260 (2016) no. 4, p. 3448-3476 | DOI | MR | Zbl

[25] I. Fragalà & B. Velichkov - “Serrin-type theorems for triangles”, Proc. Amer. Math. Soc. 147 (2019) no. 4, p. 1615-1626 | DOI | MR | Zbl

[26] J. Gómez-Serrano & G. Orriols - “Any three eigenvalues do not determine a triangle”, J. Differential Equations 275 (2021), p. 920-938 | DOI | MR | Zbl

[27] A. Gopal & L. N. Trefethen - “Solving Laplace problems with corner singularities via rational functions”, SIAM J. Numer. Anal. 57 (2019) no. 5, p. 2074-2094 | DOI | MR | Zbl

[28] T. Grätsch & K.-J. Bathe - “A posteriori error estimation techniques in practical finite element analysis”, Computers & Structures 83 (2005) no. 4-5, p. 235-265 | DOI | MR

[29] D. S. Grebenkov & B.-T. Nguyen - “Geometrical structure of Laplacian eigenfunctions”, SIAM Rev. 55 (2013) no. 4, p. 601-667 | DOI | MR | Zbl

[30] P. Grisvard - Elliptic problems in nonsmooth domains, Monogr. and Studies in Math., vol. 24, Pitman, Boston, MA, 1985

[31] F. Hecht - “New development in FreeFem++”, J. Numer. Math. 20 (2012) no. 3-4, p. 251-265 | MR | Zbl

[32] A. Henrot - Extremum problems for eigenvalues of elliptic operators, Frontiers in Math., Birkhäuser Verlag, Basel, 2006 | DOI

[33] - Shape optimization and spectral theory (A. Henrot, ed.), De Gruyter Open, Warsaw, 2017 | DOI | Zbl

[34] A. Henrot & M. Pierre - Shape variation and optimization, EMS Tracts in Math., vol. 28, European Mathematical Society (EMS), Zürich, 2018 | DOI

[35] A. Henrot, M. Pierre & M. Rihani - “Positivity of the shape Hessian and instability of some equilibrium shapes”, Mediterr. J. Math. 1 (2004) no. 2, p. 195-214 | DOI | MR | Zbl

[36] V. Hernandez, J. E. Roman & V. Vidal - “SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems”, ACM Trans. Math. Software 31 (2005) no. 3, p. 351-362 | DOI | MR | Zbl

[37] R. Hiptmair, J. Li & J. Zou - “Universal extension for Sobolev spaces of differential forms and applications”, J. Funct. Anal. 263 (2012) no. 2, p. 364-382 | DOI | MR | Zbl

[38] R. A. Horn & C. R. Johnson - Matrix analysis, Cambridge University Press, Cambridge, 2013

[39] R. S. Jones - “Computing ultra-precise eigenvalues of the Laplacian within polygons”, Adv. Comput. Math. 43 (2017) no. 6, p. 1325-1354 | DOI | MR | Zbl

[40] P. D. Lamberti & I. Y. Violo - “On Stein’s extension operator preserving Sobolev-Morrey spaces”, Math. Nachr. 292 (2019) no. 8, p. 1701-1715 | DOI | MR | Zbl

[41] J. Lamboley, A. Novruzi & M. Pierre - “Estimates of first and second order shape derivatives in nonsmooth multidimensional domains and applications”, J. Funct. Anal. 270 (2016) no. 7, p. 2616-2652 | DOI | MR | Zbl

[42] R. S. Laugesen & B. A. Siudeja - “Triangles and other special domains”, in Shape optimization and spectral theory, De Gruyter Open, Warsaw, 2017, p. 149-200 | DOI | Zbl

[43] A. Laurain - “Distributed and boundary expressions of first and second order shape derivatives in nonsmooth domains”, J. Math. Pures Appl. (9) 134 (2020), p. 328-368 | DOI | MR | Zbl

[44] X. Liu & S. Oishi - “Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape”, SIAM J. Numer. Anal. 51 (2013) no. 3, p. 1634-1654 | DOI | MR | Zbl

[45] E. Makai - “A lower estimation of the principal frequencies of simply connected membranes”, Acta Math. Acad. Sci. Hungar. 16 (1965), p. 319-323 | DOI | MR | Zbl

[46] E. Makai - “A proof of Saint-Venant’s theorem on torsional rigidity”, Acta Math. Acad. Sci. Hungar. 17 (1966), p. 419-422 | DOI | MR | Zbl

[47] N. Nigam, B. Siudeja & B. Young - “A proof via finite elements for Schiffer’s conjecture on a regular pentagon”, Found. Comput. Math. 20 (2020) no. 6, p. 1475-1504 | DOI | MR | Zbl

[48] H. C. Pak & Y. J. Park - “Sharp trace inequalities on fractional Sobolev spaces”, Math. Nachr. 284 (2011) no. 5-6, p. 761-763 | DOI | MR | Zbl

[49] M. M. H. Pang - “Approximation of ground state eigenvalues and eigenfunctions of Dirichlet Laplacians”, Bull. London Math. Soc. 29 (1997) no. 6, p. 720-730 | DOI | MR | Zbl

[50] G. Pólya & G. Szegö - Isoperimetric inequalities in mathematical physics, Annals of Math. Studies, vol. 27, Princeton University Press, Princeton, NJ, 1951

[51] A. Porretta - “A note on the Sobolev and Gagliardo-Nirenberg inequality when p>N, Adv. Nonlinear Stud. 20 (2020) no. 2, p. 361-371 | DOI | Zbl

[52] S. M. Rump - “Verification methods: rigorous results using floating-point arithmetic”, Acta Numer. 19 (2010), p. 287-449 | DOI | MR | Zbl

[53] G. Savaré & G. Schimperna - “Domain perturbations and estimates for the solutions of second order elliptic equations”, J. Math. Pures Appl. (9) 81 (2002) no. 11, p. 1071-1112 | DOI | MR | Zbl

[54] A. Y. Solynin & V. A. Zalgaller - “An isoperimetric inequality for logarithmic capacity of polygons”, Ann. of Math. (2) 159 (2004) no. 1, p. 277-303 | DOI | MR | Zbl

[55] E. M. Stein - Singular integrals and differentiability properties of functions, Princeton Math. Series, vol. 30, Princeton University Press, Princeton, NJ, 1970

[56] L. Tartar - An introduction to Sobolev spaces and interpolation spaces, Lect. Notes Unione Mat. Italiana, vol. 3, Springer, Berlin; UMI, Bologna, 2007

[57] G. J. Tee - “Eigenvectors of block circulant and alternating circulant matrices”, New Zealand J. Math. 36 (2007), p. 195-211 | MR | Zbl

[58] N. S. Trudinger - “The boundary gradient estimate for quasilinear elliptic and parabolic differential equations”, Indiana Univ. Math. J. 21 (1971/72), p. 657-670 | DOI | MR | Zbl

Cité par Sources :