Subdifferentials and minimizing Sard conjecture in sub-Riemannian geometry
[Sous-différentiels et conjecture de Sard minimisante en géométrie sous-riemannienne]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1195-1244.

On utilise des techniques d’analyse non-lisse et de théorie géométrique de la mesure pour produire de nouveaux exemples de structures sous-riemanniennes complètes vérifiant la conjecture de Sard minimisante. On démontre en particulier que les structures sous-riemanniennes complètes associées à des distributions de co-rang 2 ou génériques de rang 2 vérifient la conjecture de Sard minimisante.

We use techniques from nonsmooth analysis and geometric measure theory to provide new examples of complete sub-Riemannian structures satisfying the Minimizing Sard conjecture. In particular, we show that complete sub-Riemannian structures associated with distributions of co-rank 2 or generic distributions of rank 2 satisfy the Minimizing Sard conjecture.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.242
Classification : 53C17, 49J52
Keywords: Sub-Riemannian geometry, nonsmooth analysis, geometric measure theory
Mot clés : Géométrie sous-riemannienne, analyse non-lisse, théorie géométrique de la mesure

Ludovic Rifford 1

1 Université Côte d’Azur, CNRS, Labo. J.-A. Dieudonné, UMR CNRS 7351 Parc Valrose, 06108 Nice Cedex 02, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__1195_0,
     author = {Ludovic Rifford},
     title = {Subdifferentials and {minimizing~Sard~conjecture} in {sub-Riemannian~geometry}},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1195--1244},
     publisher = {\'Ecole polytechnique},
     volume = {10},
     year = {2023},
     doi = {10.5802/jep.242},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.242/}
}
TY  - JOUR
AU  - Ludovic Rifford
TI  - Subdifferentials and minimizing Sard conjecture in sub-Riemannian geometry
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 1195
EP  - 1244
VL  - 10
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.242/
DO  - 10.5802/jep.242
LA  - en
ID  - JEP_2023__10__1195_0
ER  - 
%0 Journal Article
%A Ludovic Rifford
%T Subdifferentials and minimizing Sard conjecture in sub-Riemannian geometry
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 1195-1244
%V 10
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.242/
%R 10.5802/jep.242
%G en
%F JEP_2023__10__1195_0
Ludovic Rifford. Subdifferentials and minimizing Sard conjecture in sub-Riemannian geometry. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1195-1244. doi : 10.5802/jep.242. https://jep.centre-mersenne.org/articles/10.5802/jep.242/

[1] A. Agrachev - “Compactness for sub-Riemannian length-minimizers and subanalyticity”, Rend. Sem. Mat. Univ. e Politec. Torino 56 (1998) no. 4, p. 1-12 (2001), Control theory and its applications (Grado, 1998) | MR | Zbl

[2] A. Agrachev - “Any sub-Riemannian metric has points of smoothness”, Dokl. Akad. Nauk 424 (2009) no. 3, p. 295-298 | DOI

[3] A. Agrachev - “Some open problems”, in Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., vol. 5, Springer, Cham, 2014, p. 1-13 | DOI | MR | Zbl

[4] A. Agrachev, D. Barilari & U. Boscain - A comprehensive introduction to sub-Riemannian geometry. From the Hamiltonian viewpoint, Cambridge Studies in Advanced Math., vol. 181, Cambridge University Press, Cambridge, 2020

[5] A. Agrachev & J.-P. Gauthier - “On the subanalyticity of Carnot-Caratheodory distances”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 18 (2001) no. 3, p. 359-382 | DOI | Numdam | MR | Zbl

[6] A. Agrachev & P. Lee - “Optimal transportation under nonholonomic constraints”, Trans. Amer. Math. Soc. 361 (2009) no. 11, p. 6019-6047 | DOI | MR | Zbl

[7] A. Agrachev & P. W. Y. Lee - “Generalized Ricci curvature bounds for three dimensional contact subriemannian manifolds”, Math. Ann. 360 (2014) no. 1-2, p. 209-253 | DOI | MR | Zbl

[8] A. Agrachev & Y. L. Sachkov - Control theory from the geometric viewpoint. Control Theory and Optimization, II, Encyclopaedia of Mathematical Sciences, vol. 87, Springer-Verlag, Berlin, 2004 | DOI

[9] A. Agrachev & A. V. Sarychev - “Abnormal sub-Riemannian geodesics: Morse index and rigidity”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 13 (1996) no. 6, p. 635-690 | DOI | Numdam | MR | Zbl

[10] A. Agrachev & A. V. Sarychev - “Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity”, ESAIM Control Optim. Calc. Var. 4 (1999), p. 377-403 | DOI | MR | Zbl

[11] Z. Badreddine & L. Rifford - “Measure contraction properties for two-step analytic sub-Riemannian structures and Lipschitz Carnot groups”, Ann. Inst. Fourier (Grenoble) 70 (2020) no. 6, p. 2303-2330 | DOI | Numdam | MR | Zbl

[12] D. Barilari & L. Rizzi - “Sharp measure contraction property for generalized H-type Carnot groups”, Commun. Contemp. Math. 20 (2018) no. 6, article ID 1750081, 24 pages | DOI | MR | Zbl

[13] A. Bellaïche - “The tangent space in sub-Riemannian geometry”, J. Math. Sci. (New York) 83 (1997) no. 4, p. 461-476, Dynamical systems, 3 | DOI | MR | Zbl

[14] A. Belotto da Silva, A. Figalli, A. Parusiński & L. Rifford - “Strong Sard conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3”, Invent. Math. 229 (2022) no. 1, p. 395-448 | DOI | MR | Zbl

[15] A. Belotto da Silva, A. Parusiński & L. Rifford - “Abnormal subanalytic distributions and minimal rank Sard conjecture”, 2022 | arXiv

[16] A. Belotto da Silva & L. Rifford - “The Sard conjecture on Martinet surfaces”, Duke Math. J. 167 (2018) no. 8, p. 1433-1471 | DOI | MR | Zbl

[17] F. Boarotto, L. Nalon & D. Vittone - “The Sard problem in step 2 and in filiform Carnot groups”, 2022 | arXiv

[18] F. Boarotto & D. Vittone - “A dynamical approach to the Sard problem in Carnot groups”, J. Differential Equations 269 (2020) no. 6, p. 4998-5033 | DOI | MR | Zbl

[19] Y. Chitour, F. Jean & E. Trélat - “Genericity results for singular curves”, J. Differential Geom. 73 (2006) no. 1, p. 45-73 | MR | Zbl

[20] F. H. Clarke - Functional analysis, calculus of variations and optimal control, Graduate Texts in Math., vol. 264, Springer, London, 2013 | DOI

[21] F. H. Clarke, Y. S. Ledyaev, R. J. Stern & P. R. Wolenski - Nonsmooth analysis and control theory, Graduate Texts in Math., vol. 178, Springer-Verlag, New York, 1998

[22] L. C. Evans & R. F. Gariepy - Measure theory and fine properties of functions, Textbooks in Math., CRC Press, Boca Raton, FL, 2015 | DOI

[23] H. Federer - Geometric measure theory, Grundlehren Math. Wissen., vol. 153, Springer-Verlag New York, Inc., New York, 1969

[24] P. Góra & R. J. Stern - “Subdifferential analysis of the Van der Waerden function”, J. Convex Anal. 18 (2011) no. 3, p. 699-705 | MR | Zbl

[25] R. S. Hamilton - “The inverse function theorem of Nash and Moser”, Bull. Amer. Math. Soc. (N.S.) 7 (1982) no. 1, p. 65-222 | DOI | MR | Zbl

[26] E. H. Hanson - “A new proof of a theorem of Denjoy, Young, and Saks”, Bull. Amer. Math. Soc. 40 (1934) no. 10, p. 691-694 | DOI | MR | Zbl

[27] N. Juillet - “Geometric inequalities and generalized Ricci bounds in the Heisenberg group”, Internat. Math. Res. Notices (2009) no. 13, p. 2347-2373 | DOI | MR | Zbl

[28] N. Juillet - “Sub-Riemannian structures do not satisfy Riemannian Brunn-Minkowski inequalities”, Rev. Mat. Iberoamericana 37 (2021) no. 1, p. 177-188 | DOI | MR | Zbl

[29] E. Le Donne, R. Montgomery, A. Ottazzi, P. Pansu & D. Vittone - “Sard property for the endpoint map on some Carnot groups”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016) no. 6, p. 1639-1666 | DOI | Numdam | MR | Zbl

[30] P. W. Y. Lee - “On measure contraction property without Ricci curvature lower bound”, Potential Anal. 44 (2016) no. 1, p. 27-41 | DOI | MR | Zbl

[31] P. W. Y. Lee, C. Li & I. Zelenko - “Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds”, Discrete Contin. Dynam. Systems 36 (2016) no. 1, p. 303-321 | DOI | MR | Zbl

[32] R. Montgomery - A tour of subriemannian geometries, their geodesics and applications, Math. Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, 2002 | DOI

[33] S.-i. Ohta - “On the measure contraction property of metric measure spaces”, Comment. Math. Helv. 82 (2007) no. 4, p. 805-828 | DOI | MR | Zbl

[34] A. Ottazzi & D. Vittone - “On the codimension of the abnormal set in step two Carnot groups”, ESAIM Control Optim. Calc. Var. 25 (2019), article ID 18, 17 pages | DOI | MR | Zbl

[35] L. Rifford - “Ricci curvatures in Carnot groups”, Math. Control Relat. Fields 3 (2013) no. 4, p. 467-487 | DOI | MR | Zbl

[36] L. Rifford - Sub-Riemannian geometry and optimal transport, SpringerBriefs in Math., Springer, Cham, 2014 | DOI

[37] L. Rifford - “Singulières minimisantes en géométrie sous-Riemannienne”, in Séminaire Bourbaki 2015/2016, Astérisque, vol. 390, Société Mathématique de France, Paris, 2017, p. 277-301, Exp. No. 1113 | Zbl

[38] L. Rifford & E. Trélat - “Morse-Sard type results in sub-Riemannian geometry”, Math. Ann. 332 (2005) no. 1, p. 145-159 | DOI | MR | Zbl

[39] L. Rizzi - “Measure contraction properties of Carnot groups”, Calc. Var. Partial Differential Equations 55 (2016) no. 3, article ID 60, 20 pages | DOI | MR | Zbl

[40] R. T. Rockafellar & R. J.-B. Wets - Variational analysis, Grundlehren Math. Wissen., vol. 317, Springer-Verlag, Berlin, 1998 | DOI

[41] T. Sakai - Riemannian geometry, Translations of Math.Monographs, vol. 149, American Mathematical Society, Providence, RI, 1996 | DOI

[42] A. I. Subbotin - Generalized solutions of first-order PDEs. The dynamical optimization perspective, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995 | DOI

[43] E. Trélat - “Some properties of the value function and its level sets for affine control systems with quadratic cost”, J. Dynam. Control Systems 6 (2000) no. 4, p. 511-541 | DOI | MR | Zbl

Cité par Sources :