Hausdorff dimension of limit sets for projective Anosov representations
[Dimension de Hausdorff d’ensembles limites pour les représentations projectivement Anosov]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1157-1193.

Nous étudions la relation entre les exposants critiques et les dimensions de Hausdorff des ensembles limites pour les représentations projectivement Anosov. Nous prouvons que la dimension de Hausdorff de l’ensemble limite symétrique dans P( n )×P( n * ) est bornée par deux exposants critiques associés respectivement à un plus haut poids et à une racine simple.

We study the relation between critical exponents and Hausdorff dimensions of limit sets for projective Anosov representations. We prove that the Hausdorff dimension of the symmetric limit set in P( n )×P( n * ) is bounded between two critical exponents associated respectively to a highest weight and a simple root.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.241
Classification : 22E40, 37D40, 53A20, 20F67
Keywords: Critical exponent, Hausdorff dimension, Anosov representation, Hilbert geometry
Mot clés : Exposant critique, dimension de Hausdorff, représentation Anosov, géométrie de Hilbert

Olivier Glorieux 1 ; Daniel Monclair 2 ; Nicolas Tholozan 3

1 Lycée Chaptal 45 Bd des Batignolles, 75008 Paris
2 Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay F-91405 Orsay Cedex, France
3 CNRS, ÉNS-PSL 45 rue d’Ulm, 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__1157_0,
     author = {Olivier Glorieux and Daniel Monclair and Nicolas Tholozan},
     title = {Hausdorff dimension of limit sets for projective {Anosov} representations},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1157--1193},
     publisher = {\'Ecole polytechnique},
     volume = {10},
     year = {2023},
     doi = {10.5802/jep.241},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.241/}
}
TY  - JOUR
AU  - Olivier Glorieux
AU  - Daniel Monclair
AU  - Nicolas Tholozan
TI  - Hausdorff dimension of limit sets for projective Anosov representations
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 1157
EP  - 1193
VL  - 10
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.241/
DO  - 10.5802/jep.241
LA  - en
ID  - JEP_2023__10__1157_0
ER  - 
%0 Journal Article
%A Olivier Glorieux
%A Daniel Monclair
%A Nicolas Tholozan
%T Hausdorff dimension of limit sets for projective Anosov representations
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 1157-1193
%V 10
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.241/
%R 10.5802/jep.241
%G en
%F JEP_2023__10__1157_0
Olivier Glorieux; Daniel Monclair; Nicolas Tholozan. Hausdorff dimension of limit sets for projective Anosov representations. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1157-1193. doi : 10.5802/jep.241. https://jep.centre-mersenne.org/articles/10.5802/jep.241/

[AMS95] H. Abels, G. A. Margulis & G. A. Soĭfer - “Semigroups containing proximal linear maps”, Israel J. Math. 91 (1995) no. 1-3, p. 1-30 | DOI | MR | Zbl

[Ben97] Y. Benoist - “Propriétés asymptotiques des groupes linéaires”, Geom. Funct. Anal. 7 (1997) no. 1, p. 1-47 | DOI | Zbl

[Ben01] Y. Benoist - “Convexes divisibles”, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) no. 5, p. 387-390 | DOI | MR | Zbl

[CK02] M. Coornaert & G. Knieper - “Growth of conjugacy classes in Gromov hyperbolic groups”, Geom. Funct. Anal. 12 (2002) no. 3, p. 464-478 | DOI | MR | Zbl

[CM14] M. Crampon & L. Marquis - “Finitude géométrique en géométrie de Hilbert”, Ann. Inst. Fourier (Grenoble) 64 (2014) no. 6, p. 2299-2377 | DOI | Numdam | Zbl

[Coo93] M. Coornaert - “Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov”, Pacific J. Math. 159 (1993) no. 2, p. 241-270 | DOI | MR | Zbl

[Cra09] M. Crampon - “Entropies of strictly convex projective manifolds”, J. Modern Dyn. 3 (2009) no. 4, p. 511-547 | DOI | MR | Zbl

[Cra11] M. Crampon - Dynamics and entropies of Hilbert metrics, Ph. D. Thesis, Université de Strasbourg; Ruhr-Universität, Bochum, 2011 | MR

[CTT19] B. Collier, N. Tholozan & J. Toulisse - “The geometry of maximal representations of surface groups into SO 0 (2,n), Duke Math. J. 168 (2019) no. 15, p. 2873-2949 | DOI | MR | Zbl

[DGK17] J. Danciger, F. Guéritaud & F. Kassel - “Convex cocompact actions in real projective geometry”, 2017, to appear in Ann. Sci. École Norm. Sup. (4) | arXiv

[DGK18] J. Danciger, F. Guéritaud & F. Kassel - “Convex cocompactness in pseudo-Riemannian hyperbolic spaces”, Geom. Dedicata 192 (2018), p. 87-126 | DOI | MR | Zbl

[DK22] S. Dey & M. Kapovich - “Patterson-Sullivan theory for Anosov subgroups”, Trans. Amer. Math. Soc. 375 (2022) no. 12, p. 8687-8737 | DOI | MR | Zbl

[DOP00] F. Dal’bo, J.-P. Otal & M. Peigné - “Séries de Poincaré des groupes géométriquement finis”, Israel J. Math. 118 (2000), p. 109-124 | DOI | Zbl

[Ebe96] P. B. Eberlein - Geometry of nonpositively curved manifolds, Chicago Lectures in Math., University of Chicago Press, Chicago, IL, 1996 | MR

[GGKW17] F. Guéritaud, O. Guichard, F. Kassel & A. Wienhard - “Anosov representations and proper actions”, Geom. Topol. 21 (2017) no. 1, p. 485-584 | DOI | MR | Zbl

[GM21] O. Glorieux & D. Monclair - “Critical exponent and Hausdorff dimension in pseudo-Riemannian hyperbolic geometry”, Internat. Math. Res. Notices (2021) no. 18, p. 13661-13729 | DOI | MR | Zbl

[Gro87] M. Gromov - “Hyperbolic groups”, in Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, p. 75-263 | DOI | MR | Zbl

[Gui19] O. Guichard - “Groupes convexes-cocompacts en rang supérieur [d’après Labourie, Kapovich, Leeb, Porti,...]”, in Séminaire Bourbaki, volume 2017/2018, Astérisque, vol. 414, Société Mathématique de France, Paris, 2019, p. 95-123, Exp. no. 1138 | DOI | MR | Zbl

[GW12] O. Guichard & A. Wienhard - “Anosov representations: domains of discontinuity and applications”, Invent. Math. 190 (2012) no. 2, p. 357-438 | DOI | MR | Zbl

[Hel01] S. Helgason - Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Math., vol. 34, American Mathematical Society, Providence, RI, 2001 | DOI

[KLP17] M. Kapovich, B. Leeb & J. Porti - “Anosov subgroups: dynamical and geometric characterizations”, European J. Math. 3 (2017) no. 4, p. 808-898 | DOI | MR | Zbl

[KLP18] M. Kapovich, B. Leeb & J. Porti - “A Morse lemma for quasigeodesics in symmetric spaces and Euclidean buildings”, Geom. Topol. 22 (2018) no. 7, p. 3827-3923 | DOI | MR | Zbl

[Lab06] F. Labourie - “Anosov flows, surface groups and curves in projective space”, Invent. Math. 165 (2006) no. 1, p. 51-114 | DOI | MR | Zbl

[Lin04] G. Link - “Measures on the geometric limit set in higher rank symmetric spaces”, in Séminaire de Théorie Spectrale et Géométrie. Année 2003–2004, vol. 22, Univ. Grenoble I, Saint-Martin-d’Hères, 2004, p. 59-69 | DOI | Numdam | MR | Zbl

[Mes07] G. Mess - “Lorentz spacetimes of constant curvature”, Geom. Dedicata 126 (2007), p. 3-45 | DOI | MR | Zbl

[PS17] R. Potrie & A. Sambarino - “Eigenvalues and entropy of a Hitchin representation”, Invent. Math. 209 (2017) no. 3, p. 885-925 | DOI | MR | Zbl

[PSW19] M. B. Pozzetti, A. Sambarino & A. Wienhard - “Anosov representations with Lipschitz limit set”, 2019 | arXiv

[PSW21] M. B. Pozzetti, A. Sambarino & A. Wienhard - “Conformality for a robust class of non-conformal attractors”, J. reine angew. Math. 774 (2021), p. 1-51 | DOI | MR | Zbl

[Qui02a] J.-F. Quint - “Divergence exponentielle des sous-groupes discrets en rang supérieur”, Comment. Math. Helv. 77 (2002) no. 3, p. 563-608 | DOI | MR | Zbl

[Qui02b] J.-F. Quint - “Mesures de Patterson-Sullivan en rang supérieur”, Geom. Funct. Anal. 12 (2002) no. 4, p. 776-809 | DOI | Zbl

[Rob03] T. Roblin - Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. France (N.S.), vol. 95, Société Mathématique de France, Paris, 2003 | DOI | Numdam | MR

[Sam14] A. Sambarino - “Quantitative properties of convex representations”, Comment. Math. Helv. 89 (2014) no. 2, p. 443-488 | DOI | MR | Zbl

[Sul79] D. Sullivan - “The density at infinity of a discrete group of hyperbolic motions”, Publ. Math. Inst. Hautes Études Sci. (1979) no. 50, p. 171-202 | DOI | Numdam | MR | Zbl

[Zim21] A. Zimmer - “Projective Anosov representations, convex cocompact actions, and rigidity”, J. Differential Geom. 119 (2021) no. 3, p. 513-586 | DOI | MR | Zbl

Cité par Sources :