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HAUSDORFF DIMENSION OF LIMIT SETS FOR

PROJECTIVE ANOSOV REPRESENTATIONS

by Olivier Glorieux, Daniel Monclair & Nicolas Tholozan

Abstract. — We study the relation between critical exponents and Hausdorff dimensions of
limit sets for projective Anosov representations. We prove that the Hausdorff dimension of the
symmetric limit set in P(Rn)×P(Rn∗) is bounded between two critical exponents associated
respectively to a highest weight and a simple root.

Résumé (Dimension de Hausdorff d’ensembles limites pour les représentations projectivement
Anosov)

Nous étudions la relation entre les exposants critiques et les dimensions de Hausdorff des
ensembles limites pour les représentations projectivement Anosov. Nous prouvons que la dimen-
sion de Hausdorff de l’ensemble limite symétrique dans P(Rn) × P(Rn∗) est bornée par deux
exposants critiques associés respectivement à un plus haut poids et à une racine simple.
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1. Introduction

1.1. Critical exponents and Hausdorff dimension. — Let Γ be a discrete group of
isometries of a metric space (X, d). A well-known metric invariant of Γ is its critical
exponent, which measures the exponential growth rate of its orbits. It can be defined by

δΓ = lim sup
R→+∞

1

R
log

(
Card{g ∈ Γ | d(x, g · x) ⩽ R}

)
,

where x is any base point in X.
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When (X, d) is the hyperbolic space Hn and Γ is convex-cocompact (i.e., acts co-
compactly on a non-empty convex subset of Hn), Sullivan [Sul79] proved that the
critical exponent of Γ equals the Hausdorff dimension of the limit set of Γ inside
∂∞Hn. The proof relies on the Ahlfors regularity of the Patterson–Sullivan measure
on the limit set.

This famous theorem has known a number of generalizations. See for instance
[DOP00, Rob03, Coo93] for generalizations to other discrete groups acting on hyper-
bolic spaces. This paper is mainly interested in extensions to other non-positively
curved geometries. A fairly general version of Sullivan’s theorem was given by Coor-
naert for a discrete group Γ acting convex-cocompactly on a Gromov hyperbolic
space X [Coo93, Cor. 7.6]. In this setting, the critical exponent equals the Hausdorff
dimension of the limit set of Γ in ∂∞X measured with respect to Gromov’s “quasi-
distance” on the boundary (see Section 3.1). When X is a Riemannian manifold
with variable negative curvature, however, this metric typically differs from the visual
metric (obtained by identifying the boundary at infinity with the tangent sphere at
a basepoint). For instance, the visual metric on the boundary of the complex hyper-
bolic space Hn

C is the round metric on the unit sphere in Cn, while the Gromov metric
coincides with the Carnot–Carathéodory metric.

There have also been several important works generalizing Patterson–Sullivan the-
ory to discrete subgroups of a semisimple Lie group G of higher rank acting on its
symmetric space X [Lin04, Qui02b]. A new feature of the higher rank is the existence
of several critical exponents corresponding to several G-invariant “metrics” on X.
Quint studied in [Qui02b] the dependence of those critical exponents on such a choice
and constructed analogs of Patterson–Sullivan measures on the space G/Pmin, where
Pmin is a minimal parabolic subgroup (see Section 2.4).

The recently developed theory of Anosov subgroups of higher rank Lie groups mo-
tivates a further investigation of these generalizations. Anosov subgroups are in many
aspects the “right” generalization of convex cocompact groups in rank 1. In particular,
they are Gromov hyperbolic, and their Gromov boundary is realized geometrically as
a limit set in some flag variety G/P . It is natural to ask how the Hausdorff dimension
of this limit set relates to the different critical exponents of the group.

An important feature of this new context is that the action of G on G/P is far from
conformal as soon as the rank of G is at least 2. This makes Hausdorff dimensions of
attractors hard to track (see [PSW21] for further discussion).

1.2. Main results. — The present work focuses on projective Anosov subgroups of
SL(n,R). We explain in Section 2.3 that general Anosov subgroups of a semisimple
Lie group G can be seen as projective Anosov groups after composing with a suitably
chosen linear representation (see also [GGKW17, §3.3]).

Let Γ be a projective Anosov subgroup of SL(n,R). Then Γ is Gromov hyperbolic
and comes with two injective equivariant maps

ξ : ∂∞Γ −→ P(Rn) and ξ∗ : ∂∞Γ −→ P(Rn∗).

J.É.P. — M., 2023, tome 10
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We denote by ξsym the map (ξ, ξ∗) : ∂∞Γ → P(Rn)×P(Rn∗). If, moreover, Γ preserves
a proper convex subset of P(Rn), then Γ is strongly projectively convex-cocompact in
the sense of [DGK17].

Given g ∈ SL(n,R), define µi(g) as the logarithm of the ith eigenvalue of
√
gtg

(in decreasing order). We define the simple root critical exponent of Γ by

δ1,2(Γ) = lim sup
R→+∞

1

R
log(Card{γ ∈ Γ | µ1(γ)− µ2(γ) ⩽ R})

and the highest weight critical exponent of Γ by

δ1,n(Γ) = lim sup
R→+∞

1

R
log(Card{γ ∈ Γ | µ1(γ)− µn(γ) ⩽ R}).

These critical exponents are relevant for different reasons: the projective Anosov
property means that µ1(γ)−µ2(γ) grows linearly with the word length of γ, so δ1,2(Γ)

can be seen as a “measure” of the Anosov property. The critical exponent δ1,n(Γ) is
the critical exponent associated to the Hilbert metric on SL(n,R)/SO(n) seen as the
projectivization of the cone of positive definite quadratic forms on Rn. Our main result
compares these two critical exponents with the Hausdorff dimension of ξsym(∂∞Γ)

with respect to a Riemannian metric on P(Rn)×P(Rn∗).
Our first comparison result between Hausdorff dimensions concerns strongly projec-

tively convex-cocompact subgroups of SL(n,R), introduced by Crampon and Marquis
[CM14]. It is shown in [DGK17] that these groups are projective Anosov.

Theorem 1.1. — Let Γ be a strongly projectively convex-cocompact subgroup of
SL(n,R). Then

2δ1,n(Γ) ⩽ DimH(ξsym(∂∞Γ)) ⩽ δ1,2(Γ).

For projective Anosov subgroups that are not convex-cocompact, composing with
the representation of SL(n,R) into SL(Sym2(Rn)) gives the following weaker result:

Corollary 1.2. — Let Γ be a projective Anosov subgroup of SL(n,R). Then

δ1,n(Γ) ⩽ DimH(ξsym(∂∞Γ)) ⩽ δ1,2(Γ).

Note that Theorem 1.1 is “sharp” in the sense that, when Γ is a convex cocompact
subgroup in SO(n− 1, 1) ⊂ SL(n,R), we have

2δ1,n(Γ) = DimH(ξsym(∂∞Γ)) = δ1,2(Γ).

Corollary 1.2 is weaker since δ1,n(Γ) is always less than or equal to 1
2δ1,2(Γ). How-

ever, it cannot be sharpened in full generality. For instance, let Γ be a cocompact
lattice in SL(2,R) and let ρirr and ρred denote respectively the irreducible and redu-
cible representations of SL(2,R) into SL(3,R). Then ρirr(Γ) and ρred(Γ) are projective
Anosov with limit set a smooth curve (of Hausdorff dimension 1). However, their crit-
ical exponents differ:

– ρirr(Γ) is convex cocompact and

2δ1,3(ρirr(Γ)) = δ1,2(ρirr(Γ)) = 1.

J.É.P. — M., 2023, tome 10
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– ρred(Γ) is not convex cocompact and

δ1,3(ρred(Γ)) =
1

2
δ1,2(ρred(Γ)) = 1.

Similar results where obtained simultaneously by Pozzetti–Sambarino–Wienhard
[PSW21] and, shortly after the first version of this paper appeared on arXiv, by Dey
and Kapovich [DK22].

Let us now discuss further our main theorem.

Lower inequality. — The main motivation for the lower inequality in Theorem 1.1
was to generalize the following theorem of Crampon:

Theorem 1.3 ([Cra11]). — Let Γ ⊂ SL(n,R) be a Gromov hyperbolic group acting
properly discontinuously and cocompactly on a strictly convex open domain Ω in
P(Rn). Then

2δ1,n ⩽ n− 2,

with equality if and only if Γ is conjugate to a subgroup of SO(n − 1, 1) (in which
case Ω is projectively equivalent to the hyperbolic space Hn−1).

In that case, Γ is projective Anosov, ξ(∂∞Γ) is the boundary of Ω and ξ∗(∂∞Γ)

the boundary of the dual convex set. We will show (Theorem 2.55) that ξsym(∂∞(Γ))

is a Lipschitz manifold of dimension n − 2, so that DimH(∂∞Γ) = n − 2. Therefore,
Theorem 1.1 recovers Crampon’s inequality as a particular case.

For Γ ⊂ SL(n,R) strongly projectively convex-cocompact, we initially hoped to
prove the a priori stronger inequality

2δ1,n(Γ) ⩽ DimH(ξ(∂∞Γ)).

But several attempts with slightly different methods always led to a “symmetric”
version of the limit set. This raised the following question:

Question 1.4. — Let Γ ⊂ SL(n,R) be a projective Anosov subgroup. Do we have

DimH(ξ(∂∞Γ)) = DimH(ξ∗(∂∞Γ)) = DimH(ξsym(∂∞Γ)) ?

While our naive intuition leaned towards a positive answer, the following case
might actually provide a counter-example: Let Γ be a lattice in SL(2,R), u : Γ → R2

a function satisfying the cocycle relation

u(γη) = u(γ) + γ · u(η),

and let ρu be the representation of Γ into SL(3,R) given by

ρu(γ) =

(
γ u(γ)

0 1

)
.

J.É.P. — M., 2023, tome 10
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Then ρu(Γ) is projective Anosov.(1) Let

ξu : ∂∞Γ −→ P(R3) and ξ∗u : ∂∞Γ −→ P(R3∗)

denote the boundary maps associated to ρu(Γ). Then ξu(∂∞Γ) = ξ0(∂∞Γ) is a pro-
jective line. On the other side, the dual limit set ξ∗u(∂∞Γ) is not a projective line as
soon as u is not a coboundary(2) and it could plausibly have Hausdorff dimension > 1.

There are situations where the equality in Question 1.4 is known to be true: If Γ
preserves a non-degenerate quadratic form q on Rn, then ξ∗ is the image of ξ by the
isomorphism Rn ≃ Rn∗ defined by q, and therefore

DimH(ξ(∂∞Γ)) = DimH(ξ∗(∂∞Γ)) = DimH(ξsym(∂∞Γ)).

In that case we also have that µn(γ) = −µ1(γ) for all γ ∈ Γ, so that

2δ1,n(Γ) = δ1(Γ)
def
= lim sup

R→+∞

1

R
log (Card{γ ∈ Γ | µ1(γ) ⩽ R}) .

Those strongly projectively convex-cocompact groups preserving a non degener-
ate quadratic form are precisely the Hp,q-convex cocompact groups introduced in
[DGK18], whose critical exponent was studied by the first two authors in [GM21].
There, the authors introduce a pseudo-hyperbolic critical exponent δHp,q (Γ) and prove
that it coincides with δ1(Γ). Theorem 1.1 thus gives an alternative proof of the in-
equality

δHp,q (Γ) ⩽ DimH(ξ(∂∞Γ))

in [GM21, Th. 1.2].
A rigidity statement in that context was obtained by Collier–Tholozan–Toulisse

in [CTT19] for H2,q-convex cocompact surface groups, which are the images of fun-
damental groups of closed surfaces by maximal representations into SO(2, q + 1).
Their limit set is a Lipschitz curve (of Hausdorff dimension 1), and they prove that
the critical exponent δ1 is ⩽ 1, with equality if and only if the group is contained
in SO(2, 1) × SO(q) (up to conjugation and finite index). Together with Crampon’s
theorem, this leads us to formulate the following conjecture:

Conjecture 1.5. — Let Γ ⊂ SL(n,R) be a strongly projectively convex cocompact
subgroup. If 2δ1,n = DimH(ξsym(∂∞Γ)), then Γ is conjugated to a subgroup of
SO(n− 1, 1).

Note that Potrie–Sambarino proved in [PS17] a similar but stronger inequality for
Hitchin representations of surface groups. If Γ is the fundamental group of a closed
surface and ρ : Γ → SL(n,R) is a Hitchin representation, then ρ(Γ) is projective

(1)Indeed, for u small enough, this follows from the openness of the Anosov property, and more-
over, ρu is conjugated to ρεu for all ε > 0.

(2)Recall that a cocycle u is a coboundary if there exists v ∈ R2 such that u(γ) = γ · v− v for all
γ ∈ Γ.

J.É.P. — M., 2023, tome 10
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Anosov and ξρ(∂∞Γ) is a C1 curve, of Hausdorff dimension 1. However, they prove
that

2δ1,n(ρ(Γ)) ⩽
2

n− 1
.

with equality if and only if ρ = mirr ◦ j where j : Γ → SL(2,R) is Fuchsian and
mirr : SL(2,R) → SL(n,R) is irreducible.

Upper inequality. — The upper inequality DimH(ξsym(∂∞Γ)) ⩽ δ1,2(Γ) is proved
independently by Pozzetti–Sambarino–Wienhard in [PSW21]. There, they also find a
sufficient criterion for this inequality to be an equality. This criterion is satisfied by
many families of Anosov groups, showing in particular that the equality can be stable
under small deformations of Γ. Their work generalizes a result of Potrie–Sambarino
for surface groups embedded in SL(n,R) via a Hitchin representation. They are in
stark contrast with the rigidity phenomena for the δ1,n discussed above.

Here we merely give an example where equality holds:

Theorem 1.6. — Let Γ be the fundamental group of a closed surface of genus greater
than 1 and let j1 and j2 be two Fuchsian representations of Γ into SL(2,R). Then
j1 ⊗ j2(Γ) ⊂ SL(2,R) × SL(2,R) ⊂ SL(4,R) is projective Anosov, ξsymj1⊗j2

(∂∞Γ) is a
Lipschitz curve and

δ1,2(j1 ⊗ j2(Γ)) = 1.

The groups to which this theorem applies are the fundamental groups of globally
hyperbolic Cauchy compact anti-de Sitter spacetimes studied by Mess [Mes07].
They form a connected component in the space of surface groups embedded in
SL(2,R)× SL(2,R) ≃ SO(2, 2). This class of examples is not covered by the main
result of Pozzetti–Sambarino–Wienhard [PSW21].(3)

On the other hand, a Fuchsian group of SL(2,R) embedded reducibly in SL(3,R)
gives an example where DimH(ξsym(Γ)) < δ1,2. Determining a necessary and sufficient
criterion for the equality to hold seems difficult.

1.3. Further results and strategy of the proof. — Section 2 introduces the back-
ground of this work (Anosov groups, critical exponents, convex projective geometry).
In particular, we explain in Section 2.3.1 how any Anosov subgroup of a semisimple
Lie group G defines a projective Anosov group after composing with a suitably chosen
linear representation τ of G. In Section 2.4 we introduce the various critical exponents
δα(Γ) of an Anosov group Γ ⊂ G (depending on a choice of linear form α on a Car-
tan subalgebra of G) and we prove a fairly general result about when these critical
exponents coincide with the corresponding entropy hα(Γ) (see Definition 2.29).

In Section 3, we prove the lower inequality of Theorem 1.1. The proof follows a
strategy similar to that of [GM21], with the Hilbert geometry of Ω replacing the
pseudo-Riemannian geometry of Hp,q. More precisely, we first notice that 2δ1,n(Γ)

(3)It is however a particular case of the main result of their new work [PSW19].

J.É.P. — M., 2023, tome 10
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coincides with the critical exponent of Γ acting on Ω equipped with its Hilbert metric.
Applying a theorem of Coornaert (Theorem 3.4), we deduce the equality

2δ1,n(Γ) = DimH(∂∞Γ, dGromov),

the Hausdorff dimension of ∂∞Γ equipped with Gromov’s quasidistance dGromov (see
Definition 3.2). Finally, we prove that, for any Gromov hyperbolic convex set Ω ⊂
P(Rn), there exists a constant C such that, for any p, q ∈ ∂Ω,

dGromov(p, q) ⩽ C
√

d(p, q)d∗(p∗, q∗),

where p∗ and q∗ denote respectively the hyperplanes tangent to Ω at p and q and d

and d∗ denote Riemannian distances on P(Rn) and P(Rn∗) respectively. The inequality
DimH(∂∞Γ, dGromov) ⩽ DimH(ξsym(∂∞Γ))

then follows from elementary comparison results between Hausdorff dimensions.
Section 4 is devoted to the proof of the upper bound in Theorem 1.1. Let Γ be a

projective Anosov subgroup of SL(n,R). Roughly speaking, eµ2(γ)−µ1(γ) controls the
Lipschitz factor of an element γ ∈ Γ on a large part of P(Rn). This allows us to cover
ξ(∂∞Γ) by balls with radii controlled by eµ2(γ)−µ1(γ), giving an upper bound on its
Hausdorff dimension.

Acknowledgements. — While writing this paper, we have been informed that Beatrice
Pozzetti, Andres Sambarino and Anna Wienhard were working on similar results.
We thank them for sharing their work in progress. We also thank the anonymous
referees for their careful reading and numerous helpful remarks and the editors for
their patience.

2. Background

In this section, we introduce some background to our work. We start by stating
a few basic properties of Hausdorff dimension (Section 2.1). In Section 2.2 we recall
some fundamentals of Lie theory. In Section 2.3, we introduce Anosov subgroups of
semisimple Lie groups and explain how to embed then as projective Anosov subgroups
of SL(n,R). In Section 2.4 we introduce their various critical exponents and entropies,
and prove some comparison results between them. Finally, in Section 2.5, we introduce
strongly projectively convex-cocompact groups, following [DGK17].

2.1. Hausdorff dimension. — Let (X, d) be a metric space. For s > 0, the Hausdorff
measure of X of dimension s is defined by

Hs(X, d) = lim
ε→0

Hs
ε (X, d),

where
Hs

ε (X, d) = inf
{∑

i r
s
i | X ⊂

⋃
i∈I B(xi, ri), ri ⩽ ε

}
.

Here, the infimum is taken over all countable covers of X by balls of radius less than ε.
One can show that there exists a critical parameter s0 > 0 such that Hs(X, d) = +∞
for all s < s0 and Hs(X, d) = 0 for all s > s0. This number s0 is called the Hausdorff
dimension of (X, d) and is denoted by DimH(X, d).

J.É.P. — M., 2023, tome 10
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In this paper, we will compare the Hausdorff dimension of different metrics on a
compact set. The classical following proposition summarizes the comparison proper-
ties that we will need.

Proposition 2.1. — Let d and d′ be two distances on a space X. If there exists C and
α > 0 such that

d′ ⩽ Cdα,

then
DimH(X, d′) ⩽

1

α
DimH(X, d).

In particular, if d and d′ are bi-Lipschitz, then

DimH(X, d) = DimH(X, d′).

Assume now that X is a compact subset of a smooth manifold M . Any two Riemann-
ian metrics on M are bi-Lipschitz equivalent in a neighbourhood of X. Hence the
Hausdorff dimension of X with the induced distance is independent of the choice of
such a metric. We denote this Hausdorff dimension by DimH(X) and we have:

DimH(X) = DimH(X, d)

where d is the distance induced by any Riemannian metric on M .

2.2. Cartan and Jordan projections

2.2.1. Cartan subspaces and restricted roots. — We present in this subsection the basic
structure theory of semisimple real Lie groups. A detailed exposition of this theory
can be found in [Ebe96].

Let G be a real semisimple Lie group with finite center, K a maximal compact
subgroup of G and X = G/K the symmetric space of G. We denote by g the Lie
algebra of G and by k ⊂ g the Lie algebra of K. Let p denote the orthogonal of k with
respect to the Killing form of g. A Cartan subspace a is a maximal Abelian subalgebra
of p.

A restricted root is a non-zero linear form α on a for which there exists u ∈ g∖{0}
such that

ada(u) = α(a)u

for all a ∈ a. We will denote by ∆ the set of restricted roots. From now on, restricted
roots will be called roots for simplicity.

The Weyl group W (a) is the finite group N(a)/Z(a), where N(a) and Z(a) denote
respectively the normalizer and the centralizer of a in K. The kernels of the restricted
roots cut a into fundamental domains for the action of W (a). Choosing a connected
component of a∖

⋃
α∈∆ kerα, we define the set of positive roots ∆+ as the roots that

are positive on this connected component, and the Weyl chamber as the closure of
this connected component, i.e.,

a+ = {b ∈ a | α(b) ⩾ 0 for all α ∈ ∆+}.

J.É.P. — M., 2023, tome 10
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The Weyl chamber is a convex cone. We denote by a∗+ the dual convex cone, i.e.,

a∗+ = {α ∈ a∗ | α|a+
⩾ 0}.

With those choices, the simple roots are the positive roots that are not a positive
linear combination of other positive roots. They form a basis of a∗. We denote by ∆s

the set of simple roots.
Finally there is a unique element w ∈ W (a) such that −w preserves a+. The

transformation −w is an involution called the opposition involution and denoted by ι.
The opposition involution preserves ∆s.
Main example. — The main example we will be interested in here is when G is the
group SL(n,R). A canonical choice for a maximal compact subgroup K is the subgroup
SO(n,R) of orthogonal matrices. The symmetric space Xn = SL(n,R)/SO(n) can be
identified with the space of scalar products on Rn up to scaling, with the standard
scalar product as base point o.

The Lie algebra k is the space of anti-symmetric matrices and its orthogonal p ⊂
sl(n,R) is the space of symmetric matrices of trace 0. A canonical choice of Cartan
subspace is a = {Diagonal matrices of trace 0} = {diag(λ1, . . . , λn) |

∑
i λi = 0}. The

Weyl group is the symmetric group Sn acting by permuting the eigenvalues. Denote
by εi ∈ a∗ the linear form on a corresponding to the i-th eigenvalue. The restricted
roots are the αi,j = εi − εj , for 1 ⩽ i, j ⩽ n. A canonical choice of Weyl chamber is

a+ = {Diagonal matrices with ordered eigenvalues}

= {diag(λ1, . . . , λn) | λ1 ⩾ λ2 ⩾ · · · ⩾ λn,
∑
i

λi = 0},

with associated set of positive restricted roots {αi,j | 1 ⩽ i < j ⩽ n}. The simple
roots are the roots αi,i+1, 1 ⩽ i ⩽ n − 1. Finally, the opposition involution ι maps
diag(λ1, . . . , λn) to diag(−λn, . . . ,−λ1).

2.2.2. Cartan projections. — From now on, we always assume a fixed choice of
– a maximal compact subgroup K,
– a Cartan subalgebra a ⊂ p,
– a Weyl chamber a+ ⊂ a, with associated positive roots ∆+ and simple roots ∆s.

Note that the choice of a maximal compact subgroup K corresponds to the choice of
a base point o = Fix(K) in the symmetric space X.

Theorem 2.2 (Cartan decomposition). — For every g ∈ G, there is a unique vector
µ(g) ∈ a+ such that

g = k exp(µ(g))k′

for some k, k′ ∈ K. The map µ : G → a+ is called the Cartan projection.

Remark 2.3. — The Cartan projections of g and its inverse are related by the following
formula:

µ(g−1) = ι(µ(g)).

This relation characterizes the opposition involution.
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The Cartan projection allows to define a “vector valued distance” on the symmetric
space X. If x and y are two points in X, we define

µ(x, y) = µ(g−1h),

where g and h are elements of G such that g · o = x and h · o = y. This is a vector
valued distance in the following sense: if ∥ · ∥ is a W (a)-invariant norm on a, then

(x, y) 7−→ ∥µ(x, y)∥

is a G-invariant Finsler distance on X. In particular, if ∥ · ∥eucl is the Euclidean norm
on a given by the Killing form, then

∥µ(x, y)∥eucl = dR(x, y),

where dR is the symmetric Riemannian distance of X.
Benoist showed that the Cartan projection satisfies a generalized triangle inequal-

ity:

Proposition 2.4 ([Ben97]). — For every compact subset L of G, there is a constant
C > 0 (depending on L) such that

∥µ(ℓgℓ′)− µ(g)∥eucl ⩽ C

for all g ∈ G and all ℓ, ℓ′ ∈ L.

In particular, given two points x and y ∈ X, there is a constant C (depending on
x and y) such that

∥µ(x, z)− µ(y, z)∥eucl ⩽ C

for all z ∈ X.

2.2.3. Jordan projections. — For a restricted root α ∈ ∆ we denote by

gα := {u ∈ g | ada(u) = α(a)u, ∀a ∈ a}

the corresponding eigenspace. We denote by A+ := exp(a+) and N = exp(⊕α∈∆+gα).
An element of G is called elliptic (resp. hyperbolic, unipotent) if it is conjugated to

an element of K (resp. A+, N).

Theorem 2.5 (Jordan decomposition [Hel01, Th. 2.19.24]). — For all g ∈ G, there is a
unique triple (ge, gh, gp) of commuting elements, such that ge is elliptic, gh hyperbolic
and gp unipotent, that satisfies: g = geghgp.

Definition 2.6. — The Jordan projection of g is the element λ(g) ∈ a+ such that gh
is conjugated to exp(λ(g)).

While the Cartan projection depends on the choice of a base point in X, the Jordan
projection is a conjugacy invariant. One has the following alternative definition of λ(g):

Proposition 2.7. — For every g ∈ G, we have

λ(g) = lim
n→+∞

1

n
µ(gn).
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Remark 2.8. — Similarly to the Cartan projection, we have the following relation:

λ(g−1) = ι(λ(g)).

Main example. — The Cartan decomposition for SL(n,R) is usually called the polar
decomposition, and the Cartan projection associates to a matrix g ∈ SL(n,R) the
logarithm of the eigenvalues of

√
gtg in decreasing order. We will denote by µi(g) =

εi(µ(g)) the i-eigenvalue of the Cartan projection of g.
The decomposition g = geghgp in that case is sometimes called the Dunford de-

composition. The Jordan projection associates to g the logarithms of the moduli
of the complex eigenvalues of g, in decreasing order. We will denote similarly by
λi(g) = εi(λ(g)) the ith eigenvalue of the Jordan projection of g.

2.3. Anosov groups. — Anosov subgroups of higher rank Lie groups have been intro-
duced by Labourie [Lab06] as a reasonable generalization of convex-cocompact sub-
groups in rank 1. The original definition for deformations of uniform lattices in rank 1

was extended by Guichard and Wienhard to Gromov hyperbolic groups. More re-
cently, Guéritaud–Guichard–Kassel–Wienhard [GGKW17] and Kapovich–Leeb–Porti
[KLP17] independently gave a characterization of Anosov subgroups in terms of their
Cartan projections. While the first team assumes a priori that the group is hyperbolic,
the second team shows moreover that their condition implies Gromov hyperbolicity.
Here, following [Gui19], we use their characterization as a definition.

Let G be a semisimple Lie group. Fix a choice of K, a and a+ as before. Let Θ be
a non-empty subset of the set of simple roots ∆s.

Definition 2.9. — A finitely generated group Γ ⊂ G is called Θ-Anosov if there exist
constants α,A > 0 such that

θ(µ(γ)) ⩾ α|γ| −A

for all γ ∈ Γ and all θ ∈ Θ. (Here, |g| denotes the word length of g with respect to a
finite generating set.)

The definition implies in particular that Γ is discrete and quasi-isometrically em-
bedded in G. One of the nice features of this definition is that it forces Γ to have some
“negatively curved behaviour”:

Theorem 2.10 ([KLP18, Th. 6.15]). — Let Γ ⊂ G be a Θ-Anosov subgroup, for some
non-empty subset Θ of ∆s. Then Γ is Gromov hyperbolic.

Remark 2.11. — Since Γ is invariant by g 7→ g−1 this definition readily implies that
a Θ-Anosov subgroup is also ι(Θ)-Anosov, and thus Θsym-Anosov, where Θsym =

Θ ∪ ι(Θ). There is thus no loss of generality in assuming that Θ is invariant by the
opposition involution.
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Main example. — Let us describe more properties of Anosov subgroups in a specific
case. In the next section, we will explain how to reduce the general case to this specific
case.

Definition 2.12. — A finitely generated group Γ ⊂ SL(n,R) is called projective
Anosov if there exist constants α,A > 0 such that

µ1(γ)− µ2(γ) ⩾ α|γ| −A

for all γ ∈ Γ.

Remark 2.13. — By definition, a projective Anosov subgroup is Θ-Anosov for Θ =

{α1,2}. Since the opposition involution sends α1,2 to αn−1,n, projective Anosov sub-
groups are actually Θsym-Anosov for Θsym = {α12, αn−1,n}

The group SL(n,R) acts on the projective space P(Rn) = {lines in Rn} and on
the “dual” projective space P(Rn∗) = {hyperplanes in Rn}. Recall that the Gro-
mov boundary ∂∞Γ of a Gromov hyperbolic group Γ is a compact metrizable space
on which Γ acts by homeomorphisms. The following theorem says that the Gromov
boundary of a projective Anosov subgroup is “realized” in the projective space:

Theorem 2.14 ([Lab06], [KLP17]). — Let Γ ⊂ SL(n,R) be a projective Anosov sub-
group. Then there exist Γ-equivariant continuous maps

ξ : ∂∞Γ −→ P(Rn) and ξ∗ : ∂∞Γ −→ P(Rn∗)

such that
ξ(x) ⊂ ξ∗(y) ⇐⇒ x = y.

These maps are moreover strongly dynamics preserving in the following sense: for
every sequence (γn) ∈ ΓN such that γn −→

n→+∞
x ∈ ∂∞Γ and γ−1

n −→
n→+∞

y ∈ ∂∞Γ, and
for every v ∈ P(Rn)∖ ξ∗(y),

γnv −→
n→+∞

x.

A consequence of the strongly dynamics preserving property is that every element
γ ∈ Γ of infinite order is proximal: its action on P(Rn) has a unique attracting fixed
point ξ(γ+) ∈ P(Rn), with basin of attraction P(Rn)∖ξ∗(γ−) (here γ+ and γ− denote
respectively the attracting and repelling fixed points of γ in ∂∞Γ).

2.3.1. Fundamental weights and fundamental representations. — Here, we explain how
to interpret the Θ-Anosov property as several projective Anosov properties, via linear
representations of the Lie group G. The content of this section is already described
in [GGKW17, §3].

Let ⟨· | ·⟩ denote a scalar product on a∗ invariant under the Weyl group action.

Definition 2.15. — The fundamental weight wθ associated to a simple root θ is the
unique element of a∗ such that

2
⟨wθ |α⟩
⟨α |α⟩

= δα,θ,

where δα,θ is the Kronecker symbol.
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The classical representation theory of semisimple Lie algebras gives the following:

Lemma 2.16. — For every θ ∈ ∆s there is an integer nθ ⩾ 2, an integer kθ and an
irreducible representation ρθ : G → SL(nθ,R) mapping K into SO(nθ) and such that

– θ(µ(g)) = µ1(ρθ(g))− µ2(ρθ(g)),
– kθwθ(µ(g)) = µ1(ρθ(g)),
– θ ◦ ι(µ(g)) = µnθ−1(ρθ(g))− µnθ

(ρθ(g)),
– wθ◦ι(µ(g)) = −µnθ

(ρθ(g))

for all g ∈ G. We call this ρθ the fundamental representation.(4)

Remark 2.17. — The equalities above hold when replacing Cartan projections with
Jordan projections.

Remark 2.18. — The fundamental representation ρθ◦ι is dual to the the representa-
tion ρθ.

The following proposition easily follows from the definitions of Anosov representa-
tion:

Proposition 2.19. — Let Γ be a finitely generated subgroup of G and Θ be a non-
empty subset of ∆s. Then Γ is Θ-Anosov if and only if ρθ(Γ) is projective Anosov for
all θ ∈ Θ.

Example 2.20. — For G = SL(n,R), let θi denote the simple root αi,i+1 then the
fundamental weight wi = wθi associated to θi is the linear form ε1 + · · ·+ εi, and the
fundamental representation ρθi is the representation of dimension

(
n
i

)
given by the

action of SL(n,R) on Λi(Rn).

Taking tensor products of fundamental representations, one obtains representations
for which µ1 − µ2 captures the behaviour of several simple roots at once. Given Θ

a non-empty subset of simple roots, denote by ρθ : G → SL(Vθ) the fundamental
representations associated to each θ ∈ Θ and by

ρΘ =
⊗
θ∈Θ

ρθ : G −→ SL
(⊗
θ∈Θ

Vθ

)
the tensor product representation.

Proposition 2.21. — For all g ∈ G, we have
– µ1(ρΘ(g)) =

∑
θ∈Θ kθwθ(µ(g)),

– µ1(ρΘ(g))− µ2(ρΘ(g)) = infθ∈Θ θ(µ(g)).

As a corollary we obtain the following:

(4)These properties actually do not characterize a representation, but they do if we assume
moreover that kθ is minimal. When G is the split real form of a complex Lie group (such as SL(n,R)),
we can have kθ = 1.
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Corollary 2.22. — A subgroup Γ ⊂ G is Θ-Anosov if and only if ρΘ(Γ) is projective
Anosov.

The behaviour of the limit maps under these tensor products is given by the follow-
ing proposition. Let Γ ⊂ G be a Θ-Anosov subgroup and let ξθ : ∂∞Γ → P(Vθ) be the
boundary map associated to ρθ(Γ), seen as a projective Anosov subgroup of SL(Vθ).

Proposition 2.23. — The boundary map ξΘ associated to ρΘ(Γ) sends a point x ∈
∂∞Γ to

ξΘ(x) =
⊗
θ∈Θ

ξθ(x) ∈ P
(⊗
θ∈Θ

Vθ

)
.

Remark 2.24. — The boundary map ξΘ takes values in the algebraic set of pure
tensors in P

(⊗
θ∈Θ Vθ

)
which is canonically isomorphic to

∏
θ∈Θ P(Vθ).

Example 2.25. — Let Γ ⊂ SL(n,R) be a projective Anosov subgroup. Then Γ is
Θ-Anosov with Θ = {α1,2, αn−1,n}. Let V denote the space Rn seen as the standard
representation of SL(n,R). Then ρΘ : SL(n,R) → SL(V ⊗ V ∗) is the tensor product
of the standard representation and its dual.

If ξ : ∂∞Γ → P(V ) and ξ∗ : ∂∞Γ → P(V ∗) denote the boundary maps from
Theorem 2.14, then the boundary map associated to ρΘ is the map

ξsym = (ξ, ξ∗) : ∂∞Γ −→ P(V )×P(V ∗) ⊂ P(V ⊗ V ∗).

For future use, we introduce the following notations. Given a subset Θ of ∆s, we
define

C(Θ) =
⋃

θ∈Θ

{v ∈ a+ | θ(v) = 0} and C∗(Θ) = SpanR+
(Θ).

Define also
a+(Θ) = a+ ∖ C(Θ)

and
a∗+(Θ) = a∗+ ∖ C∗(∆s −Θ) = {φ ∈ a∗+ | φ|a+(Θ) > 0}.

Remark 2.26. — The motivation to consider such a subset of linear forms comes
from the counting of elements of the group, as we will see in the next section. For a
Θ-Anosov subgroup Γ, we know that the Cartan projections of elements of Γ lie in a
closed cone contained in a+(Θ). In particular, φ(µ(g)) grows linearly with |g| for all
φ ∈ a∗+(Θ).

Main example. — Let G be SL(n,R) and Θ = {α1,2, αn−1,n}. We then have

C(Θ) = {v ∈ a+ | α1,2(v) = 0} ∪ {v ∈ a+ | αn−1,n(v) = 0}.

Thus the set a+(Θ) consists of diagonal matrices for which there is a spectral gap
between the two highest, and between the two lowest eigenvalues. Finally, a∗+(Θ) is
the set of linear forms on a which are strictly positive on a+ except maybe on the
walls of the Weyl chambers defined by the equality of the two highest (resp. smallest)
eigenvalues. In coordinates this means that any linear form φ ∈ a∗+(Θ) can be written
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as φ =
∑n−1

i=1 xiαi,i+1, for xi ∈ Rn−1 with xi > 0 for all i ∈ {2, . . . , n− 2} and xi ⩾ 0

for i ∈ {1, n− 1}.

2.4. Critical exponents and entropies. — The critical exponent of a discrete group
of isometries of a metric space is the exponential growth rate of the orbit of a base-
point. In the case of a discrete subgroup Γ of a higher rank semisimple Lie group G act-
ing on its symmetric space X, one can define a critical exponent for each G-invariant
distance on X, and more generally for every choice of a way of measuring the “size”
of Cartan projections. Following Quint [Qui02a], we focus here on non-negative linear
forms on the Weyl chamber.

Definition 2.27. — Let Γ be a discrete subgroup of G and φ a linear form on a which
is non-negative on the Weyl chamber. We define the φ-critical exponent of Γ as

δφ(Γ) = lim sup
R→∞

1

R
log (Card{γ ∈ Γ | φ(µ(γ)) ⩽ R})

= inf
{
s > 0 |

∑
γ∈Γ e

−sφ(µ(γ)) < +∞
}
.

In full generality, δφ(Γ) has no reason to be finite. However, for finitely generated
groups, Quint showed in [Qui02a] that δφ(Γ) is finite as soon as φ is positive on the
limit cone of Γ, defined as

Cone(Γ) =
⋂

n∈N

⋃
γ∈Γ
|γ|⩾n

Rµ(γ).

Applying his results to the case of Anosov representations gives the following

Proposition 2.28 (Quint, [Qui02a]). — Let Θ be a non-empty subset of ∆s. Then

δφ(Γ) < +∞

for every linear form φ in a∗+(Θ) and every Θ-Anosov subgroup Γ. Moreover, the map

φ 7−→ δφ

is convex and homogeneous of degree −1 on a∗+(Θ).

In a similar way, one can consider the exponential growth rate of the Jordan pro-
jections.

Definition 2.29. — Let Γ be a discrete subgroup of G and φ a linear form on a which
is non-negative on the Weyl chamber. We define the φ-entropy of Γ as

hφ(Γ) = lim sup
R→∞

1

R
log Card{[γ] ∈ [Γ] | φ(λ(γ)) ⩽ R}

= inf
{
s > 0 |

∑
[γ]∈[Γ] e

−sφ(λ(γ)) < +∞
}
,

where [Γ] denotes the set of conjugacy classes in Γ.
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The term “entropy” comes from the analogy with the geodesic flow of a closed neg-
atively curved manifold, whose closed orbits are in bijection with conjugacy classes in
the fundamental group, and whose topological entropy equals the exponential growth
rate of lengths of closed orbits. In the case where φ is a linear combination of the
fundamental weights wθ, θ ∈ Θ, this is more than an analogy: one can associate to
a Θ-Anosov subgroup Γ of G a flow on a compact metric space, whose orbits are in
bijection with conjugacy classes in Γ, and such that the length of the orbit associated
to g is given by φ(λ(g)). This flow has a hyperbolicity property, and its topological
entropy is hφ (see for instance [Sam14]).

For sufficiently nice discrete groups of isometries of a negatively curved manifold,
the critical exponent equals the entropy. For a Zariski dense Θ-Anosov group, Sam-
barino obtained in [Sam14] precise counting estimates for

Card{γ ∈ Γ | wθ(µ(γ)) ⩽ R},

implying in particular that hφ(Γ) = δφ(Γ) when φ is a linear combination of the
fundamental weights {wθ, θ ∈ Θ}. The tools he uses, however, do not seem to apply
to simple root critical exponents in general. Here we prove the equality δφ = hφ

whenever we manage to generalize the classical arguments that work in negative
curvature.

For the sake of clarity, let us first state our result in the main case of interest for us.

Theorem 2.30. — Let Γ be a projective Anosov subgroup of SL(n,R). Then
– h1,2(Γ) ⩽ δ1,2(Γ),

– h1,n(Γ) = δ1,n(Γ).

If Γ is moreover Zariski dense in SL(n,R), then
– h1,2(Γ) = δ1,2(Γ).

This theorem will be a particular case of a more general result for Θ-Anosov sub-
groups of a semisimple Lie group G. Recall that C∗(Θ) denotes the set of non-negative
linear combinations of the simple roots θ ∈ Θ. Let us denote by W (Θ) the span of
{wθ, θ ∈ Θ}, and define

D∗(Θ) = {φ = α+ β, α ∈ C∗(Θ), β ∈ W (Θ)} ⊂ a∗.

Theorem 2.31. — Let Γ be a Θ-Anosov subgroup of G. Then
– hφ(Γ) ⩽ δφ(Γ) for all φ ∈ D∗(Θ) ∩ a∗+(Θ),
– hφ(Γ) = δφ(Γ) for all φ ∈ W (Θ) ∩ a∗+(Θ).
If Γ is moreover Zariski dense in G, then
– hφ(Γ) = δφ(Γ) for all φ ∈ D∗(Θ) ∩ a∗+(Θ).

The conditions on φ might look exotic, but they will appear naturally in view of
Corollary 2.36.
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Main example. — Let Γ ⊂ SL(n,R) be a projective Anosov subgroup, which is
thus Θ-Anosov for Θ = {α1,2, αn−1,n}. The fundamental weights associated to α1,2

and α1,n are respectively ε1 and εn. Therefore, α1,2 belongs to D∗(Θ)∩a∗+(Θ) and α1,n

belongs to W (Θ) ∩ a∗+(Θ). Thus Theorem 2.31 implies Theorem 2.30.

Remark 2.32. — The second part of Theorem 2.31 actually holds as soon as the
Zariski closure of Γ is semisimple (by simply restricting to the Zariski closure). A typ-
ical example where we don’t know whether the equality δ1,2 = h1,2 holds is a defor-
mation of a projective Anosov subgroup of SL(n,R) inside Aff(Rn) ⊂ SL(n+ 1,R).

Recall that an element g ∈ SL(n,R) is called proximal if it has an attracting fixed
point in P(Rn). Equivalently, g is proximal if it satisfies λ1(g) > λ2(g). The attracting
point of g is then the eigenline L+(g) for the (necessarily real) eigenvalue ±eλ1(g), and
its basin of attraction is the complement of an invariant hyperplane H−(g). We will
need a quantified version of proximality. The following definition is adapted from
[GW12, Def. 5.6]. We equip P(Rn) with the round metric induced by the standard
scalar product of Rn and denote by dP the associated distance. If L is a line in Rn

and H a linear hyperplane, we denote by dP(L,H) the distance between L (seen as a
point in P(Rn)) and H (seen as a projective hyperplane). If H,H ′ are two projective
hyperplanes, we denote by dP(H,H ′) their Hausdorff distance.

Definition 2.33. — Given r > 0 and 0 < ε < 1, a matrix g ∈ SL(n,R) is called
(r, ε)-proximal if it is proximal and, moreover, g is ε-Lipschitz on the ball B(L+(g), r).

If Θ is a subset of ∆s, we say that g ∈ G is (Θ, r, ε)-proximal if ρθ(g) is (r, ε)-prox-
imal for all θ ∈ Θ. Finally, we says that g is (r, ε)-loxodromic if g is (∆s, r, ε)-proximal.

Note that, if g is (r, ε)-proximal, then d(L+(g), H−(g)) > r and

∥dL+(g)g∥ ⩽ ε,

where dxg is the derivative of g at x ∈ P(Rn).
We need to compare the Cartan and Jordan projections of proximal elements, this

will be the purpose of Lemma 2.35. We will use the following elementary topological
result:

Proposition 2.34. — Let G be a locally compact group acting transitively on a Haus-
dorff space X and let x be a point in X. Then for all compact subset M of X there
exists a compact set M ′ of G such that M ⊂ M ′ · x.

Proof. — Let M0 be a compact neighborhood of the identity in G. Since G acts
transitively on X,

⋃
g∈G g

◦
M0 · x ⊃ M . By compactness of M we can extract a finite

cover, M ⊂
⋃

i∈{1,m} gi
◦
M0 · x, for some gi ∈ G.

Then M ′ =
⋃

i∈{1,m} giM0 fulfills the conclusion of the Lemma. □

Lemma 2.35. — Let θ be a simple root of G. Then for any g ∈ G, we have

wθ(λ(g)) ⩽ wθ(µ(g)).

J.É.P. — M., 2023, tome 10



1174 O. Glorieux, D. Monclair & N. Tholozan

Moreover, for every r > 0, there exists ε > 0 and a constant C such that, if g is
(θ, r, ε)-proximal, then

wθ(µ(g)) ⩽ wθ(λ(g)) + C and θ(µ(g)) ⩽ θ(λ(g)) + C.

Taking linear combinations of θ and wθ for θ ∈ Θ, we deduce the following:

Corollary 2.36. — Let Θ be a subset of ∆s and φ ∈ D∗(Θ). Then for every r > 0,
there exists ε, C > 0 such that, if g is (Θ, r, ε)-proximal, then

φ(µ(g)) ⩽ φ(λ(g)) + C.

If, moreover, φ ∈ W (Θ), then there exists ε, C > 0 such that, if g is (Θ, r, ε)-proximal,
then

|φ(µ(g))− φ(λ(g))| ⩽ C.

Proof of Lemma 2.35. — Taking the fundamental linear representation ρθ, it is suffi-
cient to prove the inequalities for g ∈ SL(n,R) and θ = α1,2.

For the first inequality, note that

µ1(g) = log sup
u∈Cn∖{0}

∥gu∥
∥u∥

⩾ log
∥gu1∥
∥u1∥

= λ1(g),

where u1 is an eigenvector for the eigenvalue of g of highest module.
We conclude that

wθ(µ(g)) = µ1(g) ⩾ λ1(g) = wθ(λ(g)).

Now, fix r > 0. The subset of M of P(Rn) × P(Rn∗) consisting of pairs of a
line L and a hyperplane H such that d(L,H) ⩾ r is a compact subset of the set of
pairs (L,H) which are in general position. Since SL(n,R) is locally compact and acts
transitively on this latter set, by Proposition 2.34, there exists a compact set M ′ ⊂
SL(n,R) such that M ⊂ M ′ · ([e1], e⊥1 ). By compactness, there exists a constant C

such that the action of every m ∈ M ′ on P(Rn) is C-bilipschitz.
Choose ε < 1/C2 and let g ∈ SL(n,R) be (r, ε)-proximal. Choose m ∈ M ′ such

that h = m−1gm satisfies {
L+(h) = m−1L+(g) = [e1],

H−(h) = m−1 ·H−(g) = e⊥1 .

Then h is (r/C,C2ε)-proximal. In particular, ∥dh+(h)∥ ⩽ C2ε < 1.
Since L+(h) and H−(h) are orthogonal, we get that

µ1(h) = λ1(h) = λ1(g)

and, denoting ĥ the restriction of h to e⊥1 ,

µ2(h) = µ1(ĥ) ⩾ λ1(ĥ) = λ2(h) = λ2(g).

Hence
(µ1 − µ2)(h) ⩽ (λ1 − λ2)(g).
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Finally, by Proposition 2.4, there is a constant D (depending only on M ′) such
that

|µ1(h)− µ1(g)| < D and |µ2(h)− µ2(g)| < D.

It follows that (µ1 − µ2)(g) ⩽ (λ1 − λ2)(g) + 2D. We also have

µ1(g) ⩽ µ1(h) +D = λ1(h) +D = λ1(g) +D. □

A result of Abels–Margulis–Soifer ensures that in a Zariski dense subgroup of a
semisimple linear group, it is possible to make all elements (r, ε)-loxodromic up to left
multiplication by a finite set.

Lemma 2.37 ([AMS95, Th. 6.8]). — Let Γ be a Zariski dense subgroup of G. Then
there exists r > 0 such that, for any ε > 0 there is a finite subset F of Γ such that,
for every γ ∈ Γ, there exists f ∈ F such that fγ is (r, ε)-loxodromic.

If Γ is not assumed to be Zariski dense, then it may not contain loxodromic ele-
ments. However, if Γ is Θ-Anosov, it certainly contains Θ-proximal elements, and we
have the analogous statement:

Lemma 2.38 ([GW12, Th. 5.9]). — Let Γ be a (not necessarily Zariski dense) Θ-Anosov
subgroup of G. Then there exists r > 0 such that, for all ε > 0, there is a finite subset F
of Γ such that, for every γ ∈ Γ, there exists f ∈ F such that fγ is (Θ, r, ε)-proximal.

We will also need to control the number of Θ-proximal elements in a conjugacy
class.

Let | · | be the word length on Γ associated to a finite set of generators and let d∞
be a distance on Γ ∪ ∂∞Γ inducing the Gromov topology. For every [γ] ∈ [Γ], define

ℓ([γ]) = inf
γ′∈[γ]

|γ′|.

We call an element γ ∈ Γ η-hyperbolic if γ has an attracting fixed point γ+ and a
repelling fixed point γ− in ∂∞Γ such that d∞(γ−, γ+) > η. We have the following
properties of η-hyperbolic elements:

Proposition 2.39. — Let Γ be a Gromov hyperbolic group. For every η, η′ > 0, there
exist constants C,C ′ > 0 such that

– every η-hyperbolic element γ ∈ Γ satisfies

|γ| ⩽ ℓ([γ]) + C ;

– if, moreover, |γ| ⩾ C ′, then d∞(γ, γ+) < η′.

Proof. — By construction of the Gromov topology of ∂∞Γ, there is a constant C such
that every bi-infinite geodesic in the Cayley graph of Γ with endpoints x, y such that
d∞(x, y) > η is at distance at most C/2 from the origin 1Γ (see for instance [CK02,
Lem. 7.1]).
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Reformulated in terms of word length, it shows the existence of a constant C > 0

such that, for any η-hyperbolic element γ ∈ Γ there exists m ∈ Γ with |m| ⩽ C/2 and
|mγm−1| = ℓ([γ]). We deduce that

|γ| ⩽ ℓ([γ]) + C.

Now let (γn)n∈N be a sequence of η-hyperbolic elements with |γn| −→
n→+∞

+∞. Let
(γn−, γn+) be a geodesic axis for γn, and let [1Γ, γn+) be a geodesic ray from 1Γ

to γn+. Since dΓ(1Γ, (γn−, γn+)) is uniformly bounded (where dΓ is the word met-
ric dΓ(x, y) = |xy−1| for x, y ∈ Γ), so are the distances dΓ(γn, (γn−, γn+)) and
dΓ([1Γ, γn+), (γn−, γn+)). We deduce that dΓ(γn, [1Γ, γn+)) is uniformly bounded
and, since |γn| −→

n→+∞
+∞, we conclude that

d∞(γn, γn+) −→
n→+∞

0.

This convergence is uniform in |γ| by compactness of Γ ∪ ∂∞Γ. □

The following proposition will allow us to reduce the counting of (Θ, r, ε)-proximal
elements to a counting intrinsic to Gromov hyperbolic groups.

Proposition 2.40. — Let Γ be a Θ-Anosov subgroup of G. For all η, ε > 0, there
exists r > 0 and a constant D > 0 such that, if γ ∈ Γ is η-hyperbolic and |γ| ⩾ D,
then γ is (Θ, r, ε)-proximal.

Conversely, for all r > 0, there exists η > 0 such that every (Θ, r, ε)-proximal
element γ (for arbitrary ε) is η-hyperbolic.

Proof. — By Corollary 2.22, one can assume that Γ is a projective Anosov subgroup
of SL(n,R). Let ξ : ∂∞Γ → P(Rn) and ξ∗ : ∂∞Γ → P(Rn∗) be the corresponding
boundary maps.

Fix η and ε > 0. The set B1 = {(x, y) ∈ ∂∞Γ × ∂∞Γ | d∞(x, y) ⩾ η} is compact
and does not intersect the diagonal. By continuity and transversality of the map
(ξ, ξ∗), there exists r > 0 such that for all (x, y) ∈ B1, we have dP(ξ(x), ξ

∗(y)) > 3r.
In particular, dP(ξ(γ+), ξ∗(γ−)) ⩾ 3r for every η-hyperbolic element γ.

For g ∈ SL(n,R) with µ1(g) > µ2(g), write its Cartan decomposition g = k1e
µ(g)k2

and set V−(g) = k−1
2 e⊥1 . One can show the existence of a constant D1 (depending

only on r) such that the projective action of g is D1e
µ2(g)−µ1(g)-Lipschitz on the set

{v ∈ P(Rn) | dP(v, V−(g)) ⩾ r}.
Rewriting the dynamics preserving property of the boundary maps ξ and ξ∗ (see

Theorem 2.14), we get the existence of some η′ > 0 (depending on r) such that, if γ ∈ Γ

and x ∈ ∂∞Γ satisfy d∞(g−1, x) ⩽ η′, then dP(V−(g), ξ
∗(x)) < r. By Proposition 2.39,

there exists a constant D2 such that every η-hyperbolic element γ ∈ Γ with |γ| ⩾ D2

satisfies d∞(γ−1, γ−) < η′.
Let (α,A) be such that (µ1 − µ2)(γ) ⩾ α|γ| − A for all γ ∈ Γ. Finally, choose

D = max(D2, (− log(ε) +A+ log(D1))/α). Let γ be η-hyperbolic with |γ| ⩾ D. Then:
– dP(ξ(γ+), ξ

∗(γ−)) > 3r by construction of r,
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– D1e
(µ2−µ1)(γ) ⩽ D1e

A−αD ⩽ ε, which means that γ is ε-Lipschitz on the set
{v | dP(v, V−(γ)) ⩾ r},

– d∞(γ, γ+) ⩽ η′ since D ⩾ D2, hence dP(V−(γ), ξ
∗(γ−)) ⩽ r, which shows that

dP(ξ(γ+), V−(γ)) > 2r and {v | dP(v, V−(γ)) ⩾ r} ⊃ B(ξ(γ+), r).

We conclude that γ is (r, ε)-proximal.
Conversely, fix r > 0. Then the set

B2 = {(x, y) ∈ ∂∞Γ× ∂∞Γ | dP(ξ(x), ξ∗(y)) ⩾ r}

is compact by continuity of (ξ, ξ∗) and does not intersect the diagonal (since ξ(x) ∈
ξ∗(x) for all x). Hence there exists η > 0 such that d∞(x, y) ⩾ η for all (x, y) ∈ B.
In particular, every (r, ε)-proximal element is η-hyperbolic. □

Now, the following lemma controls the number of η-hyperbolic elements in a given
conjugacy class:

Lemma 2.41 (See [CK02, §7]). — There exists η0 > 0 such that every conjugacy class
of an infinite order element [γ] ∈ [Γ] contains at least one η0-hyperbolic element.

Moreover, for every η > 0, there exists a constant C such that any conjugacy
class [γ] of infinite order contains at most Cℓ([γ]) elements that are η-hyperbolic.

Corollary 2.42. — Let Γ be a Θ-Anosov subgroup of G. Then there exists r > 0

such that, for any ε > 0, there exists D > 0 such that every conjugacy class of an
infinite order element [γ] ∈ [Γ] with ℓ([γ]) ⩾ D contains at least one (Θ, r, ε)-proximal
element.

Moreover, for any r, ε > 0, there exists a constant C such that any conjugacy
class [γ] of an infinite order element contains at most Cℓ([γ]) elements that are
(Θ, r, ε)-proximal.

Proof. — Let η0 be such that Lemma 2.41 applies. By Proposition 2.40, there exists
r > 0 such that, for every ε > 0 there is a D > 0 such that γ ∈ Γ is (Θ, r, ε)-proximal
whenever γ is η0-hyperbolic and |γ| ⩾ D. Let [γ] be the conjugacy class of an infinite
order element such that ℓ([γ]) ⩾ D. By Lemma 2.41, [γ] contains an η0-hyperbolic
element γ which satisfies |γ| ⩾ ℓ([γ]) ⩾ D. By construction of D and r, this element γ
is (Θ, r, ε)-proximal.

Conversely, for any r, ε > 0, by Proposition 2.40 there exists η > 0 such that γ is
η-hyperbolic whenever γ is (Θ, r, ε)-proximal. We thus get

Card{γ′ ∈ [γ] | γ′ (Θ, r, ε)-proximal} ⩽ Card{γ′ ∈ [γ] | γ′ η-hyperbolic}
⩽ Cℓ([γ]),

where the constant C is given by Lemma 2.41. □

We now have all the tools to prove Theorem 2.31.
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Proof of Theorem 2.31. — Let φ be an element of D∗(Θ)∩a∗+(Θ). Since Γ is Θ-Anosov
and φ ∈ a∗+(Θ), there exist α,A > 0 such that for all γ ∈ Γ,

α|γ| −A ⩽ φ(µ(γ)) ⩽
1

α
|γ|+A and αℓ([γ])−A ⩽ φ(λ(γ)) ⩽

1

α
ℓ([γ]) +A.

We first prove the inequality hφ ⩽ δφ, then the reverse inequality.
Fix r > 0 given by Corollary 2.42, then ε > 0 given by Corollary 2.36, then D

as in Corollary 2.42. With these choices, every conjugacy class [γ] with φ(λ(γ)) ⩾
(D −A)/α contains at least one (Θ, r, ε)-proximal element.

Define
Γφ(R) = {γ ∈ Γ | φ(µ(γ)) ⩽ R}.

For every R > 0 and every conjugacy class [γ] ∈ [Γ] of infinite order such that
(D −A)/α ⩽ φ(λ(γ)) ⩽ R, we can find γ′ ∈ [γ] which is (Θ, r, ε)-proximal by Corol-
lary 2.42. By Corollary 2.36, since φ ∈ D∗(Θ), there exists a constant C (independent
of R) such that γ′ ∈ Γφ(R+ C). We deduce that

CardΓφ(R+ C) ⩾ Card{[γ] ∈ [Γ] of infinite order | (D −A)/α ⩽ φ(λ(γ)) ⩽ R}.

The inequality δφ ⩾ hφ easily follows.
To show δφ ⩽ hφ, assume first that Γ is Zariski dense. Take r > 0 given by

Abels–Margulis–Soifer’s Lemma 2.37, then ε such that Lemma 2.36 applies to
(r, ε)-loxodromic elements. Lemma 2.37 then gives us a finite subset F ⊂ Γ such
that for any γ ∈ Γ, there exists f ∈ F such that fγ is (r, ε)-loxodromic. By Proposi-
tion 2.4 and Corollary 2.36, there is a constant C ′ depending on F, r and ε such that
|φ(λ(fγ))− φ(µ(γ))| ⩽ C ′. We thus have

CardΓφ(R) ⩽ Card(F ) · Card{γ ∈ Γ | φ(λ(γ)) ⩽ R+ C ′, γ is ε-loxodromic}.

Now, by Corollary 2.42, every conjugacy class [γ] such that φ(λ(γ)) ⩽ R+C ′ contains
at most C(R+A+ C ′)/α elements that are (r, ε)-loxodromic, for the constant C

given by Corollary 2.42.
We thus obtain

CardΓφ(R) ⩽
C(R+A+ C ′)

α
CardF · Card{[γ] ∈ [Γ] | φ(λ(γ)) ⩽ R+ C},

from which the inequality δφ ⩽ hφ easily follows.
If Γ is not assumed Zariski dense, we can still apply Lemma 2.38 and choose r > 0

for which every element γ ∈ Γ can be made (Θ, r, ε)-proximal by multiplying it by an
element f in a finite set. By Corollary 2.36, we do have |φ(λ(fγ)) − φ(µ(γ))| ⩽ C ′

provided that φ belongs to W (Θ). The rest of the proof works in a similar way and
we eventually obtain the inequality δφ ⩽ hφ for φ ∈ W (Θ). □

2.4.1. Critical exponent and tensor product. — We conclude this section by discussing
the behaviour of the simple root and highest root critical exponents under taking
tensor products of representations.
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Given g⊗h a pure tensor in SL(n1,R)⊗SL(n2,R) ⊂ SL(n1n2,R), one easily verifies
the following identities:

µ1(g ⊗ h)− µn1n2
(g ⊗ h) = µ1(g)− µn1

(g) + µ1(h)− µn2
(h),(1)

µ1(g ⊗ h)− µ2(g ⊗ h) = inf{µ1(g)− µ2(g), µ1(h)− µ2(h)}.(2)

Now, let Γ be a finitely generated group and ρ1 : Γ → SL(n1,R) and ρ2 : Γ →
SL(n2,R) two discrete and faithful representations. From (1), one obtains the following

Proposition 2.43. — The highest weight critical exponent of ρ1 ⊗ ρ2 satisfies

δ1,n1n2
(ρ1 ⊗ ρ2) ⩽

δ1,n1(ρ1)δ1,n2(ρ2)

δ1,n1
(ρ1) + δ1,n2

(ρ2)
.

Proof. — Take s > δ1,n1
(ρ1)δ1,n2

(ρ2)/(δ1,n1
(ρ1) + δ1,n2

(ρ2)). Then
s

δ1,n1(ρ1)
+

s

δ1,n2(ρ2)
> 1.

Hence there exists p, q > 1 such that
s

δ1,n1(ρ1)
>

1

p
,

s

δ1,n2(ρ2)
>

1

q
and 1

p
+

1

q
= 1.

Now,∑
γ∈Γ

e−sµ1(ρ1⊗ρ2(γ))−µn1n2 (ρ1⊗ρ2(γ))

=
∑
γ∈Γ

e−sµn1
(ρ1(γ))e−sµn2

(ρ2(γ)) by (1)

⩽

(∑
γ∈Γ

e−psµn1
(ρ1(γ))

)1/p(∑
γ∈Γ

e−qsµn2
(ρ2(γ))

)1/q

by Hölder’s inequality

< +∞ since ps > δ1,n1(ρ1) and qs > δ1,n2(ρ2).

Hence s > δ1,n1n2
(ρ1 ⊗ ρ2). □

Remark 2.44. — Proposition 2.43 is sharp: it is an equality when the highest weight
length spectra of ρ1 and ρ2 are proportional, which happens for instance when ρ1
and ρ2 are tensor powers of the same linear representation.

Proposition 2.45. — The simple weight critical exponent of ρ1 ⊗ ρ2 satisfies

δ1,2(ρ1 ⊗ ρ2) = max{δ1,2(ρ1), δ1,2(ρ2)}.

Proof. — By (2), we have

Card{γ ∈ Γ | µ1(ρi(γ))− µ2(ρi(γ)) ⩽ R} ⩽ Card{γ ∈ Γ | (µ1 − µ2)(ρ1 ⊗ ρ2(γ)) ⩽ R}

for i = 1, 2, from which we deduce that

δ1,2(ρi) ⩽ δ1,2(ρ1 ⊗ ρ2)
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for i = 1, 2. On the other hand, we have

Card{γ ∈ Γ | (µ1 − µ2)(ρ1 ⊗ ρ2(γ)) ⩽ R} ⩽ Card{γ ∈ Γ | (µ1 − µ2)(ρ1(γ)) ⩽ R}
+Card{γ ∈ Γ | (µ1 − µ2)(ρ2(γ)) ⩽ R},

from which we get

δ1,2(ρ1 ⊗ ρ2(Γ)) ⩽ max{δ1,2(ρ1), δ1,2(ρ2)}. □

Applying this to the tensor product of two Fuchsian representations, we obtain
Theorem 1.6:

Proof of Theorem 1.6 (assuming Corollary 1.2). — Let Γ be the fundamental group of
a closed surface and j1 and j2 be two Fuchsian representations of Γ into SL(2,R).

Since the boundary at infinity of Γ is a topological circle, the symmetrized limit
set Λsym

j1⊗j2
of j1 ⊗ j2(Γ) in P(R4)×P(R4∗) has Hausdorff dimension at least 1.

Now, it is well-known(5) that δ1,2(j1) = δ1,2(j2) = 1. Applying Proposition 2.45,
we obtain

δ1,2(j1 ⊗ j2) = 1.

Using the right inequality in Corollary 1.2, we conclude that

δ1,2(j1 ⊗ j2) = DimH(Λsym
j1⊗j2

) = 1. □

2.5. Projectively convex cocompact representations. — We now recall some back-
ground on projective convex geometry and its relation to Anosov groups. We refer to
[DGK17] and [Zim21] for more details.

2.5.1. Hilbert geometries. — Let us first recall some classical facts on convex subsets
of P(Rn) and their Hilbert geometry. The main references for this are Benoist [Ben01],
Crampon [Cra09, Cra11], Danciger–Guéritaud–Kassel [DGK17].

An open domain Ω of P(Rn) is said to be properly convex if it is convex and bounded
in some affine chart. Hilbert constructed a natural projective invariant distance on
a properly convex domain in P(Rn). To define it, let us choose an affine chart in
which Ω is bounded. Given u and v two points in this affine chart, we denote by uv

the length of the segment [u, v].

Definition 2.46. — Let x, y be two points in Ω. Let a and b denote respectively the
intersections of the half lines [y, x) and [x, y) with ∂Ω. Then the Hilbert distance
between x and y is given by

dΩ(x, y) =
1

2
log

(xb · ay
ax · yb

)
.

This distance actually does not depend on the chosen affine chart (it is essentially
the logarithm of a projective cross-ratio), and if a projective transformation maps Ω

(5)As a consequence, for instance, of the volume growth of balls in the hyperbolic plane.
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to Ω′, then it induces an isometry between the Hilbert distances of Ω and Ω′. In par-
ticular, the group of projective transformations preserving Ω acts by isometries for
the Hilbert distance.

The Hilbert distance is induced by a Finsler metric for which straight lines are
geodesic. We will say that a proper convex domain Ω is Gromov hyperbolic if (Ω, dΩ)
is a hyperbolic metric space in the sense of Gromov. This implies in particular that Ω
is strictly convex and has C1 boundary. Benoist [Ben01] gave more precise character-
izations of Gromov hyperbolic convex sets.

Example 2.47. — Let Ω ⊂ P(Rn) be the set of lines in Rn in restriction to which the
quadratic form

q : (x1, . . . , xn) 7−→ x2
1 + · · ·+ x2

n−1 − x2
n

is negative. The convex set Ω identifies with the symmetric space of the group
SO(n− 1, 1) of linear transformations preserving q, that is, the hyperbolic space of
dimension n−1. In that case, the Hilbert distance on Ω is induced by the SO(n−1, 1)-
invariant Riemannian metric of constant curvature −1. In particular, Ω is a Gromov
hyperbolic convex domain.

Example 2.48. — Let Sym2(Rk∗) be the space of quadratic forms on Rk and let
Ω ⊂ P(Sym2(Rk∗)) be the projectivization of the cone of positive definite quadratic
forms. Then the group SL(k,R) acts transitively on Ω, and Ω identifies with the
symmetric space SL(k,R)/SO(k). In that case, the Hilbert distance on Ω is related
to the Cartan projection in the following way:

dΩ(x, y) = ε1(µ(x, y))− εn(µ(x, y)).

Note that, for k ⩾ 3, Ω is not Gromov hyperbolic.

Definition 2.49. — Let Γ be a discrete subgroup of SL(n,R) preserving a proper
convex domain Ω ⊂ P(Rn).

We say that Γ acts convex-cocompactly(6) on Ω if there exists a non-empty Γ-invari-
ant convex subset C ⊂ Ω such that Γ acts properly discontinuously and cocompactly
on C.

We say that Γ is strongly projectively convex-cocompact if there is a Gromov hy-
perbolic convex domain Ω on which it acts convex-cocompactly.

Remark 2.50. — The adjective “strongly” is here to distinguish the notion from a
weaker notion of convex-cocompactness that includes discrete subgroups that are not
hyperbolic.

Example 2.51. — If Γ ⊂ SO(n − 1, 1) is a convex-cocompact group of hyperbolic
isometries, then it preserves the convex domain Ω ≃ Hn−1 introduced in Example 2.47

(6)As explained extensively in [DGK17], this naive notion of projective convex-cocompactness is
only robust when Ω is Gromov hyperbolic, which is our only case of interest here.
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and acts properly discontinuously on its convex core C ⊂ Ω. It is thus strongly
projectively convex-cocompact.

Theorem 2.52 ([DGK17]). — Let Γ be a discrete subgroup of SL(n,R). If Γ is strongly
projectively convex-cocompact, then Γ is projective Anosov.

More precisely, we have the following description of the boundary maps ξ and ξ∗

associated to Γ:

Theorem 2.53 ([DGK17]). — Let Γ be a discrete subgroup of SL(n,R) preserving a
Gromov hyperbolic convex domain Ω and acting properly discontinuously and cocom-
pactly on a non-empty convex set C ⊂ Ω. Let C denote the closure of C in P(Rn).
Then Γ is projective Anosov and

– the boundary map ξ is a homeomorphism from ∂∞Γ to C ∩ ∂Ω,
– for every x ∈ ∂∞Γ, ξ∗(x) is the hyperplane tangent to ∂Ω at ξ(x).

Conversely, Danciger–Guéritaud–Kassel prove that a projective Anosov subgroup
of SL(n,R) is strongly projectively convex-cocompact as soon as it preserves a proper
convex domain. In particular, we have the following:

Theorem 2.54 ([DGK17]). — Let I : SL(n,R) → SL(Sym2(Rn∗)) be the representa-
tion given by the action of SL(n,R) on the space of quadratic forms on Rn. If Γ ⊂
SL(n,R) is projective Anosov, then I(Γ) ⊂ SL(Sym2(Rn∗)) is strongly projectively
convex cocompact.

2.5.2. Symmetric boundary of a divisible convex set. — A particular case of strongly
projectively convex-cocompact group in SL(n,R) is a group acting properly discon-
tinuously and cocompactly on a Gromov-hyperbolic convex set. Crampon proved that
the Hilbert critical exponent of such a group is at most n − 2. we prove here that
the Hausdorff dimension of Λsym

Γ equals n− 2, so that our main theorem does recover
Crampon’s result.

If Γ acts properly discontinuously and cocompactly on a Gromov hyperbolic convex
domain Ω, then we have ΛΓ = ∂Ω, Λ∗

Γ = ∂Ω∗ (the set of hyperplanes tangent to
∂Ω) and Λsym

Γ ⊂ ΛΓ × Λ∗
Γ is the graph of the homeomorphism mapping x ∈ ∂Ω to

x∗ := Tx∂Ω.
More generally, we prove the following:

Theorem 2.55. — Let Ω be a strictly convex domain of P(Rn) with C1 boundary.
Then

∂Ωsym := {(x, x∗) | x ∈ ∂Ω} ⊂ ∂Ω× ∂Ω∗

has Hausdorff dimension n− 2.

Note that, while ∂Ω and ∂Ω∗ are C1 spheres of dimension n−2, the homeomorphism
x 7→ x∗ is not C1 unless ∂Ω is C2 (which is very constraining for divisible convex sets).
It is thus not immediate that its graph has Hausdorff dimension n− 2 in general.
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Proof of Theorem 2.55. — Fix two distinct points x0, x∞ ∈ ∂Ω, and consider vectors
v0∈x0, v∞∈x∞ and linear forms α0∈x∗

0, α∞∈x∗
∞ such that α0(v∞) = α∞(v0) = 1.

Let V = x∗
0 ∩ x∗

∞ ⊂ Rn, so that the affine patch P(Rn) ∖ x∗
∞ can be identified with

V × R through the map (v, t) 7→ [v + tv∞ + v0].
Since Ω is strictly convex and has C1 boundary, under this identification ∂Ω∖{x∞}

is the graph of a C1 strictly convex function f : V → R.
Let p0,∞ : Rn → V be the projection with kernel x0 ⊕ x∞, so that we also get

an identification of the affine patch P ((Rn)∗) ∖ x⊥
0 with V ∗ × R through the map

(α, t) 7→ [α ◦ p0,∞ + tα∞ + α0].
Under this identification, the dual point of (u, f(u)) ∈ ∂Ω∖ {x∞} is

(u, f(u))∗ = (−duf, duf(u)− f(u)) ∈ ∂Ω∗ ∖ {x∗
∞}.

It follows that the map

∂Ω∗ ∖ {x∗
∞} −→ V ∗

(u, f(u))∗ 7−→ −duf

is just the projection on the first coordinate of a C1 submanifold of V ∗×R, so it is C1

(even though it is the composition of the non C1 maps x∗ 7→ x and v 7→ dvf).
The projection

π : (∂Ω∖ {x∞})× (∂Ω∗ ∖ {x∗
∞}) −→ V × V ∗

((u, f(u)), (v, f(v))∗) 7−→ (u,dvf)

is a C1 isomorphism. It is thus enough to prove that

π(∂Ωsym ∖ {(y, y∗)}) = {(u,duf) | u ∈ V }

has Hausdorff dimension d− 2.
Now let us equip V × V ∗ with the symmetric bilinear form

⟨(u, α), (v, β)⟩ = α(v) + β(u).

This form is non-degenerate of signature (n− 2, n− 2), and we claim that

π(∂Ωsym ∖ {(y, y∗)})

is a spacelike topological submanifold of dimension n− 2, hence a Lipschitz manifold.
Indeed, for every u ̸= v ∈ V , we have〈

(v − u,dvf − duf), (v − u,dvf − duf)
〉
= −2(duf(v − u) + dvf(u− v)).

By strict convexity of f , we have

duf(v − u) < f(v)− f(u) and dvf(u− v) < f(u)− f(v),

from which we get 〈
(v − u,dvf − duf), (v − u,dvf − duf)

〉
> 0.

Now, let W be a spacelike subspace of V × V ∗ of dimension n − 2. The previous
computation implies that the orthogonal projection of π(∂Ωsym ∖ {(x∞, x∗

∞)}) to W

is injective. Since π(∂Ωsym ∖ {(x∞, x∗
∞)}) is a C1 manifold of dimension n − 2, this
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projection is open (by Brouwer’s invariance of domain), and π(∂Ωsym ∖ {(x∞, x∗
∞)})

is the graph of a function from an open domain of W to W⊥. Finally, since
π(∂Ωsym ∖ {(x∞, x∗

∞)}) is spacelike, this graph is 1-Lipschitz (when W is endowed
with ⟨·, ·⟩ and W⊥ with −⟨·, ·⟩). We thus conclude that π(∂Ωsym ∖ {(x∞, x∗

∞)})
is a Lipschitz manifold of dimension n − 2, hence ∂Ωsym has Hausdorff dimension
n− 2. □

2.5.3. Hilbert entropy and critical exponent. — Let Γ be a discrete subgroup of
SL(n,R) preserving a proper convex subset Ω ⊂ P(Rn). Then Γ is a subgroup of
isometries of (Ω, dΩ) where dΩ is the Hilbert distance on Ω. We denote the critical
exponent associated to this metric by δΩ(Γ):

δΩ(Γ) := lim sup
R→∞

1

R
log Card{γ ∈ Γ | dΩ(x, γx) ⩽ R}.

Furthermore, if Ω is strictly convex then there is a one-to-one correspondence
between the set of conjugacy classes [Γ] and the closed geodesics of Ω/Γ. For a con-
jugacy class [γ] ∈ [Γ] we denote by ℓΩ(γ) the length of the corresponding closed
geodesic for the Hilbert metric on Ω/Γ. The exponential growth of the number of
closed geodesics is denoted by hΩ(Γ):

hΩ(Γ) := lim sup
R→∞

1

R
log Card{[γ] ∈ [Γ] | ℓΩ(γ) ⩽ R}.

The work of Coornaert–Knieper on growth rate of conjugacy classes in Gromov
hyperbolic groups has the following consequence:

Theorem 2.56 (Coornaert–Knieper, [CK02]). — Let Γ be acting convex-cocompactly
on a Gromov hyperbolic convex domain Ω ⊂ P(Rn). Then:

δΩ(Γ) = hΩ(Γ).

For any element γ ∈ Γ we can compute the length of the closed geodesic corre-
sponding to [γ] in the quotient manifold. A direct computation shows that γ acts
as a translation on the geodesic joining γ− to γ+ with translation distance given
by ℓΩ(γ) :=

1
2 (λ1(γ) − λn(γ)), hence hΩ(Γ) = 2h1,n(Γ). Combining this with Theo-

rem 2.56 and Theorem 2.30, we obtain

Corollary 2.57. — Let Γ ⊂ SL(n,R) be acting convex-cocompactly on a Gromov-
hyperbolic convex domain Ω ⊂ P(Rn). Then

δΩ(Γ) = hΩ(Γ) = 2h1,n(Γ) = 2δ1,n(Γ).

Remark 2.58. — If Γ is a projective Anosov subgroup of SL(n,R), then I(Γ) is a
strongly projectively convex cocompact subgroup of SL(Sym2(Rn∗) by Theorem 2.54.
One easily verifies that

α1,n(n+1)/2(µ(I(g))) = 2α1,n(µ(g))
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for all g ∈ SL(n,R), hence

δ1,n(n+1)/2(I(Γ)) =
1

2
δ1,n(Γ),

as well as
h1,n(n+1)/2(I(Γ)) =

1

2
h1,n(Γ).

In this case, the Hilbert length of the closed geodesic corresponding to I(γ) is given
by (λ1 − λn)(γ), and therefore hΩ(I(Γ)) = h1,n(Γ).

3. Lower bound

This section is devoted to the proof of the following lower bound on the Hausdorff
dimension. For a projective Anosov subgroup Γ ⊂ SL(n,R), we write

ΛΓ = ξ(∂∞(Γ)) ⊂ P(Rn),

Λ∗
Γ = ξ∗(∂∞(Γ)) ⊂ P(Rn∗)

and
Λsym(Γ) = (ξ, ξ∗)(∂∞Γ) ⊂ P(Rn)×P(Rn∗).

Theorem 3.1. — Let Γ be a strongly projectively convex-cocompact subgroup of
SL(n,R). Then we have

2δ1,n(Γ) ⩽ DimH(Λsym
Γ ).

The proof is divided into two parts. First, we use the Hilbert distance on a Γ-in-
variant proper convex domain Ω ⊂ P(Rn) to establish the equality between 2δ1,n(Γ)

and the Hausdorff dimension of ΛΓ ⊂ ∂Ω for Gromov’s “quasi-distance” on ∂Ω. Then,
we compare this quasi-distance with a Riemannian distance on P(Rn)×P(Rn∗).

3.1. Gromov metric on the boundary. — Let Γ be a strongly projectively convex-
cocompact subgroup of SL(n,R). Let Ω be a Γ-invariant Gromov hyperbolic convex
domain Ω ⊂ P(Rn) and C ⊂ Ω a closed Γ-invariant subset of Ω on which Γ acts
cocompactly. Let dΩ denote the Hilbert distance on Ω.

Recall that Theorem 2.53 states that ΛΓ is the intersection of the closure of C in
P(Rn) with ∂Ω and that Λ∗

Γ is the set of hyperplanes tangent to Ω at a point in ΛΓ.
Given x ∈ Ω and ξ, η ∈ ∂Ω, we define the Gromov product (ξ|η)x by

(ξ|η)x = lim
k→+∞

1

2
[dΩ(xk, x) + dΩ(yk, x)− dΩ(xk, yk)],

where (xk) and (yk) are sequences in Ω such that xk → ξ and yk → η.

Definition 3.2. — The Gromov quasi-distance between ξ and η is the quantity

dx(ξ, η) = e−(ξ|η)x .

In general, dx is not quite a distance. However, Gromov proves that dx behaves
coarsely like some power of a distance. More precisely:
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Proposition 3.3 (Gromov). — Let (X, d) be a complete Gromov hyperbolic space, and
let x ∈ X. For some sufficiently small ε, there exists a constant C > 1 and a distance
dx,ε on ∂∞X such that

1

C
dx,ε ⩽ dεx ⩽ Cdx,ε.

We can then define the Hausdorff dimension of (∂∞X, dx) by(7)

DimH(∂∞X, dx) =
1

ε
DimH(∂∞X, dx,ε).

Proposition 2.1 implies that this definition is independent of the choices of ε and dx,ε.
We can apply here the main result of [Coo93]:

Theorem 3.4 (Coornaert, [Coo93]). — Let (X, d) be a complete Gromov hyperbolic
space, and let Γ be a discrete group of isometries that acts cocompactly on X. Fix
x ∈ X, and consider the Gromov quasi-distance dx on the visual boundary ∂∞X.
Then

DimH(∂∞X, dx) = δ(Γ),

where δ(Γ) is the critical exponent of the action of Γ on (X, d).

Applying this result to (X, d) = (C, dΩ), we get that

DimH(ΛΓ, dx) = δH(Γ).

By Corollary 2.57, we conclude:

Proposition 3.5. — Let Γ ⊂ SL(n,R) be acting convex-cocompactly on a Gromov-
hyperbolic convex domain Ω ⊂ P(Rn). For any x ∈ Ω, we have:

DimH(ΛΓ, dx) = 2δ1,n(Γ).

3.2. Gromov distance VS Euclidean distance. — We keep the same notations as in
the previous subsection. We now wish to show that DimH(ΛΓ, dx) ⩽ DimH(Λsym

Γ ).
For p ∈ ∂Ω, set p∗ = Tp∂Ω ∈ P(Rn∗). The required inequality will easily follow from
the following comparison lemma:

Lemma 3.6. — Given dP and d∗P Riemannian distances on P(Rn) and P(Rn∗), there
is a constant C > 0 such that:

∀p, q ∈ ∂Ω, dx(p, q) ⩽ C
√
dP(p, q)d∗P(p

∗, q∗).

Proof. — First of all, since Ω and Ω∗ are proper convex sets, we can assume without
loss of generality that dP and d∗P are Euclidean distances in affine charts in which Ω

and Ω∗ are bounded.
Consider sequences pn ∈ [xp), qn ∈ [xq) that converge to p and q respectively.

Consider p− (resp. q−) the other intersection point between ∂Ω and the projective

(7)Alternatively, one could copy the definition of Hausdorff dimension using coverings by “quasi-
balls” for the quasi-distance dx.
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line (xp) (resp. (xq)). Finally, consider an, bn ∈ ∂Ω the endpoints of the geodesic
joining pn and qn (see Figure 1).

x

p−

q−

p

q

bn
qn

pn

ana′n

b′n
γ(p, q)

Figure 1. Computing the Gromov product

We have that:

(pn|qn)x =
1

2
(dΩ(x, pn) + dΩ(x, qn)− dΩ(pn, qn))

=
1

4
log

(p−pn · px
p−x · ppn

· q
−qn · qx
q−x · qqn

· anpn · bnqn
anqn · bnpn

)
=

1

4
log

(anpn · bnqn
ppn · qqn

)
+

1

4
log

1

anqn · bnpn︸ ︷︷ ︸
→− log

√
d(p,q)

+
1

4
log

(p−pn · px · q−qn · qx
p−x · q−x

)
︸ ︷︷ ︸

bounded

.

This gives us a constant C1 > 0 such that:

e−(pn|qn)x ⩽ C1
√
pq
( ppn
anpn

· qqn
bnqn

)1/4

.

In order to deal with the terms ppn/anpn and qqn/bnqn, we consider the affine
plane Pp,q containing x, p, q. Note that it also contains all the points defined above.

Denote by a′n (resp. b′n) the intersection of the line (pnan) with the tangent space to
∂Ω at p. Note that anpn/a

′
npn → 1 as n → +∞, so that we can work with ppn/a

′
npn

instead of ppn/anpn.
Now look at the triangle a′npnp, denote by αn the angle at a′n, and θ(p) the angle

at p. The latter does not depend on n as it is the angle between the line (xp) and
the tangent line Tp∂Ω ∩ Pp,q (see Figure 2). The law of sines gives us ppn/a

′
npn =

sinαn/sin θ(p).
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We now consider the triangle b′nqnq, and denote by βn the angle at b′n, and φ(q)

the angle at q. Just as in the previous case, we get qqn/b
′
nqn = sinβn/sinφ(q).

We now find:

e−(pn|qn)x ⩽
C1

(sin θ(p) sinφ(q))1/4
√
pq (sinαn sinβn)

1/4
.

Notice that the sequence (αn) (resp. (βn)) has a limit α(p, q) (resp. β(p, q)) which
is the angle at p (resp. at q) between the line (pq) and Tp∂Ω∩Pp,q (resp. Tq∂Ω∩Pp,q).

γ(p, q)

β(p, q)

α(p, q)

αn

θ(p)

φ(q)
βn

p

q

pn

qn

a′n

b′n

Figure 2.

We thus obtain:

dx(p, q) ⩽
C1

(sin θ(p) sinφ(q))1/4
√
pq (α(p, q)β(p, q))

1/4
.

The function θ is continuous on the compact set ∂Ω (because Ω has C1 boundary),
and never vanishes (because x is in the interior of Ω), hence is bounded away from 0.
The same goes for φ (notice that φ(q) = π − θ(q)), and we can thus find a constant
C2 > 0 such that:

dx(p, q) ⩽ C2
√
pq(α(p, q)β(p, q))1/4.

Consider now the exterior angle γ(p, q) between the lines Tp∂Ω∩Pp,q and Tq∂Ω∩Pp,q.
Notice that we have α(p, q)+β(p, q) = γ(p, q). Using the inequality between arithmetic
and geometric means, we deduce:

dx(p, q) ⩽ C2
√
pq
√

γ(p, q).

Finally, there is a constant C3 such that the angle γ(p, q) between the lines p∗∩Pp,q

and q∗ ∩ Pp,q is smaller than C3d
∗(p∗, q∗). This gives the desired inequality. □
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Let us now conclude the proof of Theorem 3.1.

Proof of Theorem 3.1. — By Lemma 3.6, we have

dx(p, q) ⩽
C√
2

√
d(p, q)2 + d∗(p∗, q∗)2

for all p, q ∈ ΛΓ. Since
√

d(p, q)2 + d∗(p∗, q∗)2 is a Riemannian distance on a neigh-
borhood of Λsym(Γ) ⊂ P(Rn)×P(Rn∗), we deduce that

DimH(ΛΓ, dx) ⩽ DimH(Λsym(Γ)).

Since
2δ1,n(Γ) = DimH(ΛΓ, dx)

by Corollary 3.5, the theorem follows. □

Let us finally recall the following consequence for every projective Anosov group:

Corollary 3.7. — Let Γ ⊂ SL(n,R) be a projective Anosov group. Then

δ1,n(Γ) ⩽ DimH(Λsym(Γ)).

Proof. — Let I be the representation of SL(n,R) into SL(Sym2(Rn∗)). Then I(Γ) is
strongly projectively convex cocompact. Applying Theorem 3.1, we obtain

δ1,n(Γ) = 2δ1,n(n+1)/2(I(Γ)) ⩽ DimH(Λsym(Γ)). □

4. Upper bound

In this section we prove the upper inequality for the Hausdorff dimension of the
limit set of a general projective Anosov subgroup:

Theorem 4.1. — Let Γ ⊂ SL(n,R) be a projective Anosov subgroup. Then

DimH(ΛΓ) ⩽ δ1,2(Γ).

Applying this theorem to ρ(Γ) where ρ : SL(n,R) → SL(Rn ⊗ Rn∗) is the tensor
product of the standard representation with its dual, we obtain the a priori stronger
inequality:

Corollary 4.2. — Let Γ ⊂ SL(n,R) be a projective Anosov subgroup. Then

DimH(Λsym
Γ ) ⩽ δ1,2(Γ).

Proof of Corollary 4.2 assuming Theorem 4.1. — Let ρ : SL(n,R) → SL(Rn ⊗ Rn∗)

denote the tensor product of the standard representation with its adjoint. Recall that
we have

Λρ(Γ) = Λsym
Γ .

(See Proposition 2.23 and Example 2.25.) By Theorem 4.1, we have

DimH(Λsym
Γ ) ⩽ δ1,2(ρ(Γ)).

By Proposition 2.45, we have

δ1,2(ρ(Γ)) = sup{δ1,2(Γ), δn−1,n(Γ)}.
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Finally, since (µn−1 − µn)(γ) = (µ1 − µ2)(γ
−1), we have

δ1,2(Γ) = δn−1,n(Γ).

We conclude that

DimH(Λsym
Γ ) = DimH(Λρ(Γ)) ⩾ δ1,2(ρ(Γ)) = δ1,2(Γ)

and the corollary follows. □

Let us now turn to the proof of Theorem 4.1. The main technical tool for the proof
is Lemma 4.3 that quantifies the distortion of balls by proximal elements. The second
part of the proof presents a covering of the limit set by images of a fixed ball in order
to obtain the upper bound.

4.1. Distortion of balls by proximal elements. — As in Section 2.4, we endow
P(Rn) with the Riemannian distance dP that lifts to the round metric on Sn−1.
Recall that an element g ∈ SL(n,R) is proximal if it has an attracting fixed point in
P(Rn). We denote this attracting point by L+(g) and the hyperplane complement of
its basin of attraction by H−(g). If dP(L+(g), H−(g)) > r, then for every ε > 0 there
exists k ∈ N such that gk is (r, ε)-proximal (see definition 2.33).

The following lemma states that the contraction of a proximal element g near its
attracting fixed point is controlled by e(µ2−µ1)(g).

Lemma 4.3. — For every r > 0, there exists ε > 0 and a constant C > 0 such that
every (2r, ε)-proximal matrix g ∈ SL(n,R) is Ce(µ2−µ1)(g)-Lipschitz on B(L+(g), r).

Proof. — The proof is similar to that of Lemma 2.35.
We can find a compact set M ⊂ SL(n,R) (depending only on r) that any (2r, ε)-

proximal element g can be written as m−1hm with m ∈ M and h proximal satisfying
L+(h) = [e1] and H−(h) = e⊥1 . Let C1 > 0 be such that every m ∈ M is C1-bilipschitz.

If ε < 1/C2
1 , then h is contracting at L+(h), from which we deduce that h acts as

a e(µ2−µ1)(h)- contracting linear map in the affine chart x1 = 1.
Now, m(B(L+(g), r)) is contained in the domain T = {v | dP(v, e⊥1 ) ⩾ r/C1}.

There exists a constant C2 such that the Euclidean metric of the affine chart x1 = 1

and the round metric are C2-bilipschitz on T . We deduce that h is C2
2e

(µ2−µ1)(h)-
Lipschitz on T , hence g is C2

1C
2
2e

(µ2−µ1)(h) on B(L+(g), r). Finally, by Proposition 2.4,
there exists a constant C3 such that

|(µ2 − µ1)(g)− (µ2 − µ1)(h)| ⩽ C3,

and we conclude that g is Ce(µ2−µ1)(g)-Lipschitz on B(L+(g), r) for C = C2
1C

2
2e

C3 . □

4.2. Proof of the upper bound. — In order to bound the Hausdorff dimension of a
set from above, it is sufficient to find a cover of this set by sufficiently small balls.
We will show in Lemma 4.5 that ΛΓ can be covered by translates of a ball by some
particular proximal elements.
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Let x, y be two distinct points of ΛΓ. By transversality of the boundary maps, there
exists r > 0 such that, for all x′ ∈ ξ−1(B(x, r)) and all y′ ∈ ξ−1(B(y, r)), we have

dP(ξ(x
′), ξ∗(y′)) > 6r.

Denote respectively by U and V the preimages of B(x, r) and B(y, r) by ξ. Note
that U and V are neighborhoods of ξ−1(x) and ξ−1(y) respectively.

For ε > 0, define Γε to be the set of elements γ ∈ Γ such that
– γ(V c) ⊂ U ,
– γ is ε-Lipschitz on B(x, 5r).

Proposition 4.4. — For ε < 2/3, the set Γε is a non-empty semigroup.

Proof. — Let γ and γ′ be elements in Γε. Since U ∩ V = ∅, we have γγ′(V c) ⊂ U .
Note also that γ′

+ ∈ U , hence L+(γ
′) ∈ B(x, r) and B(x, 5r) ⊂ B(L+(γ

′), 6r). Since γ′

is ε-Lipschitz on B(x, 5r), we deduce that γ′B(x, 5r) ⊂ B(L+(γ
′), 6εr) ⊂ B(x, 5r).

Since γ is ε-Lipschitz on B(x, 5r), we conclude that γγ′ is ε2-Lipschitz on B(x, 5r).
Hence Γε is a semigroup.

Moreover, by Corollary 8.2.G of [Gro87], the set of pairs (γ+, γ−) of hyperbolic
elements γ ∈ Γ is dense in ∂∞Γ × ∂∞Γ. Hence there exists γ ∈ Γ such that γ+ ∈ U

and γ− ∈ V . By definition of U and V , we have dP(L+(γ), H−(γ)) > 6r. Hence, after
replacing γ by a large enough power, we can assume that γ is (6r, ε)-proximal for an
arbitrarily small ε. Since B(x, 5r) ⊂ B(L+(γ), 6r), we conclude that γ ∈ Γε. Hence Γε

is non-empty. □

Lemma 4.5. — For any 0 < ε < 2/3 we have

ΛΓ ∩B(x, r) ⊂
⋃

γ∈Γε

γ ·B(x, r).

Proof. — Set Oε =
⋃

γ∈Γε
γ · B(x, r). By definition, it is a Γε-invariant open subset

of B(x, r). Moreover, ΛΓ ∩ Oε is non-empty since it contains Γε · x. The set Cε =

ΛΓ ∩ (B(x, r)∖ Oε) is closed in B(x, r) and Γε-invariant. We want to prove that Cε

is empty. Assume by contradiction that it is not the case, and pick c ∈ ξ−1(Cε).
Let γ ∈ Γ be a proximal element such that γ− ∈ V and γ+ ∈ U . Then for k

large enough, γk belongs to Γε. Since c ̸= γ−, γkc converges to γ+ as k goes to +∞.
Since Cε is Γε-invariant and closed, we obtain that L+(γ) ∈ Cε. By density of the
pairs (γ+, γ−) in ∂∞Γ× ∂∞Γ, we conclude that Cε = ΛΓ ∩B(x, r), contradicting the
fact that ΛΓ ∩Oε is non-empty. □

We now have all the tools to prove Theorem 4.1.

Proof of Theorem 4.1. — By compactness of ΛΓ it is sufficient to prove that, for all
x ∈ ΛΓ, there exists r > 0 such that the Hausdorff dimension of ΛΓ ∩ B(x, r) is less
than δ1,2(Γ).

Given such and x, let us fix y, r, U , and V as before. Let C > 0 be given by
Lemma 4.3.
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By Lemma 4.5, we have ΛΓ ∩B(x, r) ⊂
⋃

γ∈Γε
γ ·B(x, r). By definition of Γε, this

gives a covering of ΛΓ∩B(x, r) by balls of radius less than εr. Note that every γ ∈ Γε

is ε-Lipschitz on B(L+(γ), 4r) ⊂ B(x, 5r), hence it is (4r, ε)-proximal. By Lemma 4.3,
it is thus Ce(µ2−µ1)(γ)-Lipschitz on B(x, r) ⊂ B(L+(γ), 2r), for some constant C.

Let s > 0. By definition of the s-dimensional Hausdorff measure, we have:

Hs
rε(ΛΓ ∩B(x, r)) ⩽

∑
γ∈Γε

diam(γ ·B(x, r))s ⩽ Cs
∑
γ∈Γε

es(µ2−µ1)(γ)

⩽ Cs
∑
γ∈Γ

e−s(µ1−µ2)(γ).

Since ε can be taken arbitrarily small, we obtain :

Hs(ΛΓ ∩B) ⩽ Cs
∑
γ∈Γ

e−s(µ1−µ2)(γ).

Therefore, for all s > δ1,2, Hs(ΛΓ ∩ B(x, r)) < +∞ which in turn implies that
DimH(ΛΓ ∩B(x, r)) ⩽ δ1,2. □
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