Lattices with skew-Hermitian forms over division algebras and unlikely intersections
[Réseaux munis de formes anti-hermitiennes sur des algèbres à division et intersections atypiques]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1097-1156.

Cet article a deux objectifs. Nous étudions d’abord les réseaux munis de formes anti-hermitiennes sur des algèbres à division avec involutions positives. Pour les algèbres à division de type I et II dans la classification d’Albert, nous montrons qu’un tel réseau contient une base « orthogonale » pour un sous-réseau d’indice borné de manière effective. Ensuite, nous appliquons ce résultat pour obtenir de nouveaux résultats dans la théorie des intersections atypiques. En particulier, nous prouvons la conjecture de Zilber–Pink pour l’intersection de courbes avec les sous-variétés spéciales de type PEL simple I et II en supposant la conjecture des grandes orbites galoisiennes vraie. De plus, nous prouvons cette conjecture sur les orbites galoisiennes dans certains cas de type II.

This paper has two objectives. First, we study lattices with skew-Hermitian forms over division algebras with positive involutions. For division algebras of Albert types I and II, we show that such a lattice contains an “orthogonal” basis for a sublattice of effectively bounded index. Second, we apply this result to obtain new results in the field of unlikely intersections. More specifically, we prove the Zilber–Pink conjecture for the intersection of curves with special subvarieties of simple PEL type I and II under a large Galois orbits conjecture. We also prove this Galois orbits conjecture for certain cases of type II.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.240
Classification : 11E39, 11G18
Keywords: Division algebras, Hermitian forms, abelian varieties, Zilber–Pink conjecture, unlikely intersections
Mot clés : Algèbres à division, formes hermitiennes, variétés abéliennes, conjecture de Zilber–Pink, intersections atypiques

Christopher Daw 1 ; Martin Orr 2

1 Department of Mathematics and Statistics, University of Reading Whiteknights, PO Box 217, Reading, Berkshire RG6 6AH, United Kingdom
2 Department of Mathematics, The University of Manchester Alan Turing Building, Oxford Road, Manchester M13 9PL, United Kingdom
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__1097_0,
     author = {Christopher Daw and Martin Orr},
     title = {Lattices with {skew-Hermitian} forms over division algebras and unlikely intersections},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1097--1156},
     publisher = {\'Ecole polytechnique},
     volume = {10},
     year = {2023},
     doi = {10.5802/jep.240},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.240/}
}
TY  - JOUR
AU  - Christopher Daw
AU  - Martin Orr
TI  - Lattices with skew-Hermitian forms over division algebras and unlikely intersections
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 1097
EP  - 1156
VL  - 10
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.240/
DO  - 10.5802/jep.240
LA  - en
ID  - JEP_2023__10__1097_0
ER  - 
%0 Journal Article
%A Christopher Daw
%A Martin Orr
%T Lattices with skew-Hermitian forms over division algebras and unlikely intersections
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 1097-1156
%V 10
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.240/
%R 10.5802/jep.240
%G en
%F JEP_2023__10__1097_0
Christopher Daw; Martin Orr. Lattices with skew-Hermitian forms over division algebras and unlikely intersections. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 1097-1156. doi : 10.5802/jep.240. https://jep.centre-mersenne.org/articles/10.5802/jep.240/

[And89] Y. André - G-functions and geometry, Aspects of Math., vol. E13, Friedr. Vieweg & Sohn, Braunschweig, 1989 | DOI

[AQ97] G. D. Anderson & S.-L. Qiu - “A monotoneity property of the gamma function”, Proc. Amer. Math. Soc. 125 (1997) no. 11, p. 3355-3362 | DOI | MR | Zbl

[BG06] E. Bombieri & W. Gubler - Heights in Diophantine geometry, New Math. Monographs, vol. 4, Cambridge University Press, Cambridge, 2006 | DOI

[BHC62] A. Borel & Harish-Chandra - “Arithmetic subgroups of algebraic groups”, Ann. of Math. (2) 75 (1962), p. 485-535 | DOI | MR | Zbl

[BL04] C. Birkenhake & H. Lange - Complex abelian varieties, Grundlehren Math. Wissen., vol. 302, Springer-Verlag, Berlin, 2004 | DOI

[BM21] G. Binyamini & D. Masser - “Effective André–Oort for non-compact curves in Hilbert modular varieties”, Comptes Rendus Mathématique 359 (2021) no. 3, p. 313-321 | DOI | Numdam | Zbl

[Cas97] J. W. S. Cassels - An introduction to the geometry of numbers, Classics in Math., Springer-Verlag, Berlin, 1997

[CR62] C. W. Curtis & I. Reiner - Representation theory of finite groups and associative algebras, Pure and Applied Math., vol. XI, Interscience Publishers, New York-London, 1962

[DCD00] I. Del Corso & R. Dvornicich - “Relations among discriminant, different, and conductor of an order”, J. Algebra 224 (2000) no. 1, p. 77-90 | DOI | MR | Zbl

[DO21] C. Daw & M. Orr - “Unlikely intersections with E× CM curves in 𝒜 2 , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 22 (2021) no. 4, p. 1705-1745 | MR

[DO22] C. Daw & M. Orr - “Quantitative reduction theory and unlikely intersections”, Internat. Math. Res. Notices (2022) no. 20, p. 16138-16195 | DOI | MR | Zbl

[DR18] C. Daw & J. Ren - “Applications of the hyperbolic Ax–Schanuel conjecture”, Compositio Math. 154 (2018), p. 1843-1888 | DOI | MR | Zbl

[Hal35] P. Hall - “On representatives of subsets”, J. London Math. Soc. 10 (1935) no. 1, p. 26-30 | DOI | MR | Zbl

[HJ85] R. A. Horn & C. R. Johnson - Matrix analysis, Cambridge University Press, Cambridge, 1985 | DOI

[HP12] P. Habegger & J. Pila - “Some unlikely intersections beyond André–Oort”, Compositio Math. 148 (2012) no. 1, p. 1-27 | DOI | Zbl

[HP16] P. Habegger & J. Pila - “O-minimality and certain atypical intersections”, Ann. Sci. École Norm. Sup. (4) 49 (2016) no. 4, p. 813-858 | DOI | MR | Zbl

[KUY16] B. Klingler, E. Ullmo & A. Yafaev - “The hyperbolic Ax-Lindemann-Weierstrass conjecture”, Publ. Math. Inst. Hautes Études Sci. 123 (2016) no. 1, p. 333-360 | DOI | MR | Zbl

[Mil99] J. S. Milne - “Lefschetz classes on abelian varieties”, Duke Math. J. 96 (1999) no. 3, p. 639-675 | DOI | MR | Zbl

[Mil05] J. S. Milne - “Introduction to Shimura varieties”, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, American Mathematical Society, Providence, RI, 2005, p. 265-378 | MR | Zbl

[Mum74] D. Mumford - Abelian varieties, T.I.F.R. Studies in Math., vol. 5, Oxford University Press, 1974

[MW94] D. W. Masser & G. Wüstholz - “Endomorphism estimates for abelian varieties”, Math. Z. 215 (1994) no. 4, p. 641-653 | DOI | MR | Zbl

[MW95] D. Masser & G. Wüstholz - “Factorization estimates for abelian varieties”, Publ. Math. Inst. Hautes Études Sci. 81 (1995), p. 5-24 | DOI | Numdam | Zbl

[Orr15] M. Orr - “Families of abelian varieties with many isogenous fibres”, J. reine angew. Math. 705 (2015), p. 211-231 | DOI | MR | Zbl

[Orr18] M. Orr - “Height bounds and the Siegel property”, Algebra Number Theory 12 (2018) no. 2, p. 455-478 | DOI | MR | Zbl

[Orr21] M. Orr - “Unlikely intersections with Hecke translates of a special subvariety”, J. Eur. Math. Soc. (JEMS) 23 (2021) no. 1, p. 1-28 | DOI | MR | Zbl

[Pin05] R. Pink - “A common generalization of the conjectures of André–Oort, Manin–Mumford, and Mordell–Lang” (2005), preprint, available at http://www.math.ethz.ch/~pink/ftp/AOMMML.pdf

[PS10] Y. Peterzil & S. Starchenko - “Tame complex analysis and o-minimality”, in Proceedings of the ICM. Vol. II, Hindustan Book Agency, New Delhi, 2010, p. 58-81 | Zbl

[Rei75] I. Reiner - Maximal orders, London Math. Soc. Monographs, vol. 5, Academic Press, London-New York, 1975

[Shi63] G. Shimura - “On analytic families of polarized abelian varieties and automorphic functions”, Ann. of Math. (2) 78 (1963), p. 149-192 | DOI | MR | Zbl

[Ull14] E. Ullmo - “Applications du théorème d’Ax-Lindemann hyperbolique”, Compositio Math. 150 (2014) no. 2, p. 175-190 | DOI | Zbl

[Voi21] J. Voight - Quaternion algebras, Graduate Texts in Math., vol. 288, Springer, Cham, 2021 | DOI

[Wey40] H. Weyl - “Theory of reduction for arithmetical equivalence”, Trans. Amer. Math. Soc. 48 (1940), p. 126-164 | DOI | MR | Zbl

Cité par Sources :