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LATTICES WITH SKEW-HERMITIAN FORMS OVER

DIVISION ALGEBRAS AND UNLIKELY INTERSECTIONS

by Christopher Daw & Martin Orr

Abstract. — This paper has two objectives. First, we study lattices with skew-Hermitian forms
over division algebras with positive involutions. For division algebras of Albert types I and II,
we show that such a lattice contains an “orthogonal” basis for a sublattice of effectively bounded
index. Second, we apply this result to obtain new results in the field of unlikely intersections.
More specifically, we prove the Zilber–Pink conjecture for the intersection of curves with special
subvarieties of simple PEL type I and II under a large Galois orbits conjecture. We also prove
this Galois orbits conjecture for certain cases of type II.

Résumé (Réseaux munis de formes anti-hermitiennes sur des algèbres à division et intersections
atypiques)

Cet article a deux objectifs. Nous étudions d’abord les réseaux munis de formes anti-
hermitiennes sur des algèbres à division avec involutions positives. Pour les algèbres à division
de type I et II dans la classification d’Albert, nous montrons qu’un tel réseau contient une base
« orthogonale » pour un sous-réseau d’indice borné de manière effective. Ensuite, nous appli-
quons ce résultat pour obtenir de nouveaux résultats dans la théorie des intersections atypiques.
En particulier, nous prouvons la conjecture de Zilber–Pink pour l’intersection de courbes avec
les sous-variétés spéciales de type PEL simple I et II en supposant la conjecture des grandes
orbites galoisiennes vraie. De plus, nous prouvons cette conjecture sur les orbites galoisiennes
dans certains cas de type II.
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1. Introduction

In this paper we develop a quantitative result on reduction theory for lattices over
division algebras equipped with skew-Hermitian forms. Our main theorem is inspired
by Minkowski’s theorems on lattices and Masser and Wüstholz’s class index lemma
[MW95], with the additional ingredient of looking for a basis which interacts nicely
with a skew-Hermitian form.

Our purpose in proving this theorem is to apply it to certain cases of the Zilber–
Pink conjecture in moduli spaces of abelian varieties. The theorem on lattices supplies
the “parameter height bound” needed for the Pila–Zannier strategy. This generalises
our earlier paper [DO22], where we proved some cases of Zilber–Pink for the moduli
space of abelian surfaces using quantitative reduction theory.

1.A. Bases and skew-Hermitian forms over division algebras. — A classical result
in algebraic number theory, due to Minkowski, asserts that if R is the ring of integers
of a number field, then every ideal I ⊂ R contains an element x such that the index
[I : Rx] is bounded by an explicit multiple of

√
disc(R). A similar result can be proved

for torsion-free modules of finite rank over the ring of integers of a number field, by
combining Minkowski’s theorem with the structure theory of finite-rank modules over
a Dedekind domain (see [CR62, §22, Ex. 6]).

In [MW95], Masser and Wüstholz generalised this theorem to torsion-free R-mod-
ules L of finite rank over any order R in a division Q-algebra. This generalisation
shows that there is a free R-submodule of finite index in L, with index [L :R] bounded
polynomially in terms of disc(R). The statement is as follows. (See section 2.F for the
definition of the discriminant of an order in a semisimple Q-algebra.)

Theorem 1.1 ([MW95, Chap. 2, Class Index Lem.]) — Let D be a division Q-algebra
and let R be an order in D. Let L be a torsion-free R-module of finite rank m. Then
there exists a left D-basis v1, . . . , vm for D ⊗R L such that v1, . . . , vm are in L and
[L : Rv1 + · · ·+Rvm] ⩽ |disc(R)|m/2.

In another direction, if L is a Z-module of finite rank equipped with a positive
definite symmetric bilinear form ψ : L×L→ Z, then one can use the classical reduction
theory of quadratic forms to find an orthogonal basis v1, . . . , vm for L⊗Z Q such that
v1, . . . , vn ∈ L and [L : Zv1 + · · · + Zvm] is bounded by a polynomial in |disc(L)|.
A similar result for a Z-module of finite rank equipped with a symplectic form can
be found in [Orr15] (see Lemma 4.3 therein).

In this paper, we obtain a version of Theorem 1.1 in which L is equipped with
a (D, †)-skew-Hermitian form (see section 3.A for the definition of a (D, †)-skew-
Hermitian form.) We seek a basis of D ⊗R L which is weakly symplectic or weakly
unitary with respect to this form. Weakly symplectic or weakly unitary bases are
the analogues for (D, †)-skew-Hermitian forms of bases which are orthogonal but
not necessarily orthonormal: we say that a D-basis v1, . . . , vm is weakly symplectic if
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Lattices with skew-Hermitian forms and unlikely intersections 1099

ψ(vi, vj) = 0 for all i, j except when {i, j} = {2k − 1, 2k} for some k ∈ Z, and that
the basis is weakly unitary if ψ(vi, vj) = 0 for all i, j ∈ {1, . . . ,m} such that i ̸= j.

Theorem 1.2. — Let D be either a totally real number field or a totally indefinite
quaternion algebra over a totally real number field. Let † be a positive involution
of D. Let V be a left D-vector space of dimension m, equipped with a non-degenerate
(D, †)-skew-Hermitian form ψ : V × V → D. Let L be a Z-lattice of full rank in V

such that TrdD/Q ψ(L× L) ⊂ Z. Let R = StabD(L) denote the stabiliser of L in D.
Then there exists a D-basis v1, . . . , vm for V such that:
(i) v1, . . . , vm ∈ L;
(ii) the basis is weakly symplectic (when D is a field) or weakly unitary (when D

is a quaternion algebra) with respect to ψ;
(iii) [L : Rv1 + · · ·+Rvm] ⩽ C1|disc(R)|C2 |disc(L)|C3 ;
(iv) |ψ(vi, vj)|D ⩽ C4|disc(R)|C5 |disc(L)|C6 for 1 ⩽ i, j ⩽ m.
The constants C1, . . . , C6 depend only on m and dimQ(D).

Explicit, but not optimal, values for the constants are given in Proposition 4.5. One
could also prove a version of this theorem that bounds the lengths of the vectors vi,
in the style of Minkowski’s second theorem, but this is stronger than needed for our
application, and according to the proof that we know, the constants are exponential
instead of polynomial in m.

Division Q-algebras with positive involution were classified by Albert into four
types (see section 2.B). The division algebras treated in Theorem 1.2 are those of
types I and II in Albert’s classification. It is likely that this paper’s strategy could
be adapted to prove Theorem 1.2 for division Q-algebras with positive involution of
types III and IV, as well as a version for Hermitian forms instead of skew-Hermitian
forms, although various steps in the argument would require modification.

1.B. Applications to the Zilber–Pink conjecture. — We apply Theorem 1.2 to
prove certain cases of the Zilber–Pink conjecture on unlikely intersections in the
moduli space Ag of principally polarised abelian varieties of dimension g (which is an
example of a Shimura variety), as follows.

Theorem 1.3. — Let g ⩾ 3. Let Σ denote the set of points s ∈ Ag(C) for which the
endomorphism algebra of the associated abelian variety As is either a totally real field,
other than Q, or a non-split totally indefinite quaternion algebra over a totally real
field. Let C be an irreducible Hodge generic algebraic curve in Ag.

If C satisfies Conjecture 1.4, then C ∩ Σ is finite.

Throughout this paper, whenever we refer to endomorphisms of an abelian variety,
we refer to its endomorphisms over an algebraically closed field.

The analogous statement to Theorem 1.3 for g = 2 was proved in our earlier
work [DO22]. In that paper, [DO22, Lem. 5.7] played the role which is now played by
Theorem 1.2. Indeed this paper represents the next stage of our programme on the

J.É.P. — M., 2023, tome 10



1100 C. Daw & M. Orr

Zilber–Pink conjecture for Shimura varieties, following on from [DO21] and [DO22],
which were inspired by the earlier papers [HP12], [HP16], [DR18], [Orr21].

Conjecture 1.4, referred to in Theorem 1.3, is a large Galois orbits conjecture,
of the sort appearing in many works on unlikely intersections (for example, [Ull14,
Conj. 2.7], [HP16, Conj. 8.2], [DR18, Conj. 11.1], [DO22, Conj. 6.2]).

Conjecture 1.4. — Define Σ ⊂ Ag as in Theorem 1.3 and let C ⊂ Ag denote an
irreducible Hodge generic algebraic curve defined over a finitely generated field L ⊂ C.
Then there exist positive constants C7 and C8, depending only on g, L and C, such
that, for any point s ∈ C ∩ Σ,

#Aut(C/L) · s ⩾ C7|disc(End(As))|C8 .

The most general conjecture of this type in the context of Shimura varieties which
has been written down is [DR18, Conj. 11.1]. It is not clear whether [DR18, Conj. 11.1]
implies Conjecture 1.4, because it is not clear how |disc(End(As))| is related to the
complexity ∆(⟨s⟩) defined in [DR18]. For example, in [DR18, Conj. 11.1], ∆(⟨s⟩) is the
complexity of the smallest special subvariety of Ag containing s. In Conjecture 1.4,
|disc(End(As))| is a measure of the complexity of the smallest special subvariety of
PEL type containing s, which might not be the same as the smallest special subvariety
containing s. However, for the purpose of proving cases of the Zilber–Pink conjecture,
the precise definition of complexity is not important: we only need a parameter height
bound and a Galois orbits bound which involve the same notion of complexity. Since
we are focusing on special subvarieties of PEL type, the discriminant of the endomor-
phism ring is a natural measure of complexity.

Using André’s G-functions method [And89], in the form of [DO21, Th. 8.2], we
prove Conjecture 1.4 in certain cases and thus establish Theorem 1.3 unconditionally
in those settings. The proof of large Galois orbits in Theorem 1.5 does not involve
new ideas beyond those in [DO21], [DO22]: the new contribution of this paper is in
the parameter height bound.

Theorem 1.5. — Let g be an even positive integer. Let Σ∗ denote the set of points
s ∈ Ag for which End(As) ⊗Z Q is a non-split totally indefinite quaternion algebra
whose centre is a totally real field of degree e such that 4e does not divide g.

Let C ⊂ Ag denote an irreducible Hodge generic algebraic curve defined over a
number field. Suppose that the Zariski closure of C in the Baily–Borel compactification
of Ag intersects the 0-dimensional stratum.

Then C satisfies Conjecture 1.4 for Σ∗ (in the place of Σ). Hence, C ∩Σ∗ is finite.

Compared with Conjecture 1.4, Theorem 1.5 adds two restrictions: Σ∗ is defined
by a smaller class of endomorphism algebras than Σ, and there is a condition on the
intersection of the Zariski closure of C with the boundary of the Baily–Borel com-
pactification. We recall that the Baily–Borel compactification of the moduli space Ag

is naturally stratified as a disjoint union

Ag ⊔Ag−1 ⊔ · · · ⊔A1 ⊔A0

J.É.P. — M., 2023, tome 10



Lattices with skew-Hermitian forms and unlikely intersections 1101

of locally closed subvarieties. The zero-dimensional stratum is A0, which is a point.
The condition that C intersects the zero-dimensional stratum is equivalent to saying
that the associated family of principally polarised abelian varieties degenerates to a
torus (this informal statement can be made precise as in [DO21, Th. 1.4]).

1.C. The Zilber–Pink conjecture and special subvarieties of PEL type. — Let us
recall a general statement of the Zilber–Pink conjecture for Shimura varieties. A spe-
cial subvariety of a Shimura variety S means an irreducible component of a Shimura
subvariety of S. An irreducible subvariety of S is Hodge generic if it is not contained
in any special subvariety other than a component of S itself.

Conjecture 1.6 ([Pin05, Conj. 1.3]). — Let S be a Shimura variety and let V be an
irreducible Hodge generic subvariety of S. Then the intersection of V with the special
subvarieties of S having codimension greater than dimV is not Zariski dense in V .

In order to relate this to Theorem 1.3, we introduce a class of special subvarieties
of Ag which come from endomorphisms of abelian varieties. We recall that Ag is an
irreducible algebraic variety over Q. For any algebraically closed field k containing Q
and any point s ∈ Ag(k), we write As for the principally polarised abelian variety
over k (defined up to isomorphism) corresponding to the point s.

For any ring R, the set

MR = {s ∈ Ag(C) : there exists an injective homomorphism R→ End(As)}

is a countable union of algebraic subvarieties of Ag. Each irreducible component of
MR is a special subvariety of Ag. We call a subvariety of Ag a special subvariety of
PEL type if it is an irreducible component of MR for some R.

If R ̸∼= Z, then MR is strictly contained in Ag. Hence the set Σ defined in Theo-
rem 1.3 is contained in the union of the proper special subvarieties of PEL type of Ag.
Furthermore, as we prove in Proposition 5.5, for g ⩾ 3, all proper special subvarieties
of PEL type of Ag have codimension at least 2. Thus, Conjecture 1.6 predicts that
the intersection C ∩ Σ of Theorem 1.3 should not be Zariski dense in the curve C,
that is, it should be finite.

For each special subvariety of PEL type S ⊂ Ag, there is a largest ring R such
that S is a component of MR. We call this ring R the generic endomorphism ring
of S, and we call R⊗ZQ the generic endomorphism algebra of S. We say that a point
s ∈ S(C) is endomorphism generic if the endomorphism ring of As is equal to R.
Note that all points in the complement of countably many proper subvarieties of S
are endomorphism generic.

We call S ⊂ Ag a special subvariety of simple PEL type if it is a special subvariety
of PEL type and its generic endomorphism algebra is a division algebra. (Equivalently,
As is a simple abelian variety for endomorphism generic points s ∈ S(C).) We call S
a special subvariety of simple PEL type I or II if it is a special subvariety of PEL
type whose generic endomorphism ring is a division algebra of type I or II in the
Albert classification (see section 2.B). Thus the set Σ in Theorem 1.3 is the union of
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the endomorphism generic loci of all special subvarieties of simple PEL type I or II,
excluding Ag itself.

In section 5.C we establish the following bounds on the dimensions of special subva-
rieties of PEL type in Ag. These are not necessary for proving Theorem 1.3, but they
are interesting for understanding the Zilber–Pink conjecture in the context of special
subvarieties of PEL type. In particular, when g ⩾ 3, Proposition 5.5 guarantees that
intersections between a Hodge generic curve and all proper special subvarieties of PEL
type in Ag are predicted to be “unlikely” by the Zilber–Pink conjecture.

Proposition 1.7. — Let S ⊂ Ag be a special subvariety, not equal to Ag.
(i) If S is of simple PEL type, then dim(S) ⩽ dim(Ag)− g2/4.
(ii) If S is of PEL type, then dim(S) ⩽ dim(Ag)− g + 1.

We also prove a finiteness result for special subvarieties of simple PEL type I or II of
bounded complexity (Corollary 8.4). This is the analogue of a special case of [DR18,
Conj. 10.3], using our notion of complexity (cf. discussion of complexity of special
subvarieties below Conjecture 1.4).

Proposition 1.8. — Define Σ⊂Ag as in Theorem 1.3. For each b ∈ R, the points s∈Σ

such that |disc(End(As))| ⩽ b belong to only finitely many proper special subvarieties
of simple PEL type I or II.

1.D. High-level proof strategy for Theorem 1.3. — We now outline the strategy
of the proof of Theorem 1.3, which is carried out in sections 5 to 8, making use of
Theorem 1.2. For our notation and terminology around Shimura datum components,
see [DO21, §§2.A & 2.B].

Let G = GSp2g and let (G, X+) denote the Shimura datum component defined in
section 5.A, which gives rise to the Shimura variety Ag. By Lemma 5.1, the Shimura
subdatum components (H, X+

H) associated with special subvarieties of simple PEL
type I or II lie in only finitely many G(R)-conjugacy classes. Hence it suffices to prove
Theorem 1.3 “one G(R)-conjugacy class at a time.” Thanks to Lemma 5.1, this means
that we choose positive integers d, e,m and let H0 be the subgroup of G = GSp2g

defined in (5.2) for these d, e,m. We prove Theorem 1.3 with Σ replaced by Σd,e,m,
namely, the union of the endomorphism generic loci of all proper special subvarieties
of Ag of simple PEL type I or II whose underlying group is G(R)-conjugate to H0.

Let π denote the standard quotient map X+ → Ag(C) and let Fg denote a Siegel
fundamental set of X+, as defined in [Orr18, §2] and [DO21, §2.G].

In order to prove Theorem 1.3 for Σd,e,m, we follow the same proof strategy as
[DO22] (which proves the analogous result for g = 2, d = 2, e = m = 1). The idea is
to apply the Habegger–Pila–Wilkie counting theorem [HP16, Cor. 7.2] to a definable
set of the form

D = {(y, z) ∈ Y × C : z ∈ Xy},
where Y ⊂ Rn is a semi-algebraic parameter space for subsets Xy ⊂ X+ and C =

π−1(C(C)) ∩ Fg. The parameter space Y has the following properties:

J.É.P. — M., 2023, tome 10
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(1) For every rational point y ∈ Y ∩Qn, Xy is a pre-special subvariety of X+ whose
underlying group is G(R)-conjugate to H0.

(2) For every point s ∈ Σd,e,m, there exists z ∈ π−1(s) ∩ Fg such that z lies in Xy

for some rational point y ∈ Y ∩ Qn, with the height H(y) polynomially bounded in
terms of End(As).

Consequently, if C∩Σd,e,m is infinite, and if the large Galois orbits conjecture holds,
then the number of points (y, z) ∈ D with y ∈ Y ∩Qn grows reasonably quickly with
respect to H(y). Then the Habegger–Pila–Wilkie theorem tells us that D contains
a path whose projection to Y is semi-algebraic and whose projection to C is non-
constant. We can conclude by a functional transcendence argument as in [DO22,
§6.5].

1.E. Proof strategy: parameter space. — The strategy described in section 1.D is
the same as that applied in [HP16], [DR18], [DO21], [DO22], and others. The new
ingredient required to apply the strategy described in section 1.D in our case is to
construct a suitable parameter space Y for special subvarieties of simple PEL type I
or II and prove that it satisfies property (2) above.

To construct Y , we will choose a suitable representation ρ : G → GL(W ), where W
is a Q-vector space, and a vector w0 ∈ W such that StabG(w0) = H0. Then we
define Y to be the “expanded ρ-orbit” of w0 in WR:

Y = Autρ(G)(WR) ρ(G(R))w0.

For each y ∈ Y , we define Hy = StabGR(y) and

Xy = {z ∈ X+ : z(S) ⊂ Hy}.

If y ∈ Y ∩Qn, then Hy is a Q-algebraic subgroup of G, which is G(R)+-conjugate
to H0. By Lemma 5.1, we have Hy,R = gH0,Rg

−1 for some g ∈ G(R)+ and, for each
component X+

y of Xy, (H0, g
−1X+

y ) is a Shimura subdatum component. By Lem-
ma 5.2, there is only one Shimura subdatum component with group H0. We denote
this component by X+

0 . Therefore, g−1X+
y = X+

0 for every component X+
y of Xy.

Hence, Xy is connected and (Hy, Xy) is a Shimura subdatum component of (G, X+).
This establishes property (1) of section 1.D. To establish property (2) of section 1.D,

we use the method of [DO22, Prop. 6.3]. All we have to do is understand how funda-
mental sets in Hy vary through the G(R)-conjugacy class. A quantitative description
of these fundamental sets is given by [DO22, Th. 1.2], but it requires as input a suitable
representation ρ and bounds on the lengths of certain vectors in ρ. This input is given
in Propositions 6.1 and 7.1, which together generalise [DO22, Prop. 5.1] (which is the
case d = 2, e = m = 1). The representation is constructed in Proposition 6.1, and the
construction of vectors wu with bounds for their lengths is found in Proposition 7.1.

To explain how Theorem 1.2 is used, we outline the proof of Proposition 7.1. Let
L = Z2g and let V = LQ = Q2g, with the standard action of G = GSp2g on V .
Choosing a lift s̃ ∈ π−1(s) induces an isomorphism L ∼= H1(As,Z), hence an action
of End(As) on L. The polarisation induces a (D, †)-skew-Hermitian form ψ on V ,
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1104 C. Daw & M. Orr

where D = End(As) ⊗ Q and † is the Rosati involution. We use Theorem 1.2 to
choose a weakly unitary or weakly symplectic D-basis {vi} for (V, ψ) contained in L.
Suitable multiples of the {vi} yield a symplectic or α-unitary DR-basis for (VR, ψ)

(see section 3.B for definitions). The choice of a symplectic or α-unitary DR-basis for
(VR, ψ) is equivalent to the choice of an element u′ ∈ Sp2g(R) such that s̃ ∈ u′X+

0 .
This element u′ is called θ−1 = uh in section 7, and its construction is detailed in
Lemmas 7.3 and 7.4.

We then use the bound from Theorem 1.2(iv), via Lemma 7.3(iii), together with the
fact that vi ∈ L, to obtain γ ∈ Sp2g(Z) such that the entries of the matrices γg and
(γg)−1 are polynomially bounded (Lemmas 7.5 to 7.7). Since π is Sp2g(Z)-invariant,
we still have π−1(s) ∩ γgX+

0 ̸= ∅. From γg, we construct a vector (denoted wu in
section 7) suitable for use as input to [DO22, Th. 1.2], which gives the height bound
for y = ρ(b−1u)wu.

1.F. Remark on effectivity. — We note that Theorem 1.2 and Theorem 8.5 are
effective. As such, the obstructions to effectivity in Theorem 1.5 are (1) its dependence
on the (ineffective) Habegger–Pila–Wilkie theorem (as stated in [DR18, Th. 9.1]) from
o-minimality and (2) the ineffectivity in [DO22], as explained in Remark 4.3 therein.
Obstruction (1) was recently overcome for the André–Oort conjecture for non-compact
curves in Hilbert modular varieties by Binyamini and Masser [BM21] using so-called
Q-functions. It seems plausible that these techniques could also apply to our setting.

1.G. Outline of the paper. — The paper is in two parts. The first part, sections 2
to 4, proves Theorem 1.2. It deals only with modules over division algebras and skew-
Hermitian forms, with no mention of Shimura varieties. The second part, sections 5
to 8, proves Theorem 1.3. The main new ingredient is Theorem 1.2.

In section 2, we introduce terminology around division algebras and their orders,
as well as various lemmas used throughout the calculations in sections 3 and 4. In sec-
tion 3, we define the notion of a skew-Hermitian form on a module over a division
algebra with involution and define several notions of well-behaved bases with respect
to a skew-Hermitian form. Section 4 consists of the proof of Theorem 1.2, which
involves substantial calculations.

Section 5 introduces Shimura data and establishes the basic properties of special
subvarieties of simple PEL type I and II in Ag. The representation and vectors required
as input for [DO22, Th. 1.2] are constructed in sections 6 and 7, as sketched in sec-
tion 1.E. The application of Theorem 1.2 is found in section 7, specifically Lemma 7.3.
Finally section 8 states some slightly stronger versions of Theorems 1.3 and 1.5 and
completes their proofs.

1.H. Notation. — We shall use the following notation for matrices. If A and B are
square matrices, we will denote by A ⊕ B the block diagonal matrix with blocks A
(top-left) and B (bottom-right). We will write A⊕d to denote the block diagonal
matrix A⊕ · · · ⊕A with A appearing d times.

We shall write J2 =
(

0 1
−1 0

)
and Jn = J

⊕n/2
2 for each even positive integer n.
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2. Division algebras

In this section, we introduce the notation and terminology we shall use for division
algebras. A key definition is a norm |·|D on an R-algebra with positive involution.
We establish useful properties of this norm and of the discriminants of orders in
division algebras. We also include some broader preliminary lemmas, on discriminants
of bilinear forms and versions of Minkowski’s second theorem.

In this paper, our main interest will be in division Q-algebras with positive invo-
lution of Albert types I and II. However, we have stated many of the definitions and
results in this section in greater generality, such as for semisimple algebras over any
subfield of R. We do this not only because this greater generality is often natural, but
also it is sometimes necessary as we wish to apply the results to D⊗QR where D is a
division Q-algebra, but D ⊗Q R might not be a division algebra. We have not stated
all results at their greatest possible generality, if doing so would require additional
complications while not being required for our application.

Throughout this section, k denotes a subfield of R. Later in the paper, we will
usually use k = Q or k = R. Whenever we say k-algebra, we mean a k-algebra of finite
dimension. If V is a k-vector space or k-algebra, then VR denotes V ⊗k R.

2.A. Semisimple algebras, norms and traces. — As a reference on semisimple alge-
bras, reduced norm and trace, see [Rei75, §9].

Let D be a semisimple k-algebra. Then D ∼=
∏s
i=1Di for some simple k-algebras

D1, . . . , Ds. For each i, let Fi be the centre of Di, which is a field.
We write TrdDi/Fi

and NrdDi/Fi
for the reduced trace and reduced norm respec-

tively of the central simple algebra Di/Fi. Letting TrFi/k and NmFi/k denote the
trace and norm of finite extensions of fields, we define

TrdD/k =

s∑
i=1

TrFi/k ◦TrdDi/Fi
, NrdD/k =

s∏
i=1

NmFi/k ◦NrdDi/Fi
.

Note that TrdD/k and NrdD/k are compatible with extension of scalars. By this, we
mean that, if K is a field containing k and DK = D⊗kK, then TrdD/k = TrdDK/K |D
and similarly for NrdD/k. This is true even though the simple factors of D might not
remain simple after extension of scalars. Note also that TrdD/k(ab) = TrdD/k(ba) for
all a, b ∈ D.

Suppose that D is a simple k-algebra and let F be the centre of D. Let
d =

√
dimF (D) = TrdD/F (1), e = [F : k].

Then dimk(D) = d2e. We will use the notation F , d, e from this paragraph throughout
the paper whenever we talk about simple algebras, without further comment. Note
that TrD/F (a) = dTrdD/F (a) and NmD/F (a) = NrdD/F (a)

d for all a ∈ D, where
TrD/F and NmD/F are the non-reduced trace and norm.
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2.B. Division algebras with positive involution. — Let D be a semisimple k-alge-
bra. An involution † of D means a k-linear map D → D such that † ◦ † = idD and
(ab)† = b†a† for all a, b ∈ D. (We follow the convention of [Mil05, §8] by requiring
involutions of k-algebras to be k-linear. This is important for Lemma 3.1. Thus, with
our definition, an “involution of the second kind” of a central simple F -algebra is
not an F -algebra involution. However, an involution of the second kind can still be
handled within our framework by taking k to be the fixed subfield of F .)

For every a ∈ D, we have TrdD/k(a
†) = TrdD/k(a). Consequently, the bilinear

form D×D → k given by (a, b) 7→ TrdD/k(ab
†) is symmetric. The involution † is said

to be positive if this bilinear form is positive definite (equivalently, if the non-reduced
trace bilinear form (a, b) 7→ TrD/k(ab

†) is positive definite).
Division Q-algebras with positive involution (D, †) were classified by Albert into

four types, depending on the isomorphism type of DR [Mum74, §21, Th. 2].

Type I. — D = F , a totally real number field. The involution is trivial. (In this case
DR ∼= Re.)

Type II. — D is a non-split totally indefinite quaternion algebra over a totally real
number field F . (Totally indefinite means that DR ∼= M2(R)e.) The involution is
of orthogonal type, meaning that after extending scalars to R it becomes matrix
transpose on each copy of M2(R).

Type III. — D is a totally definite quaternion algebra over a totally real number
field F . (Totally definite means that DR ∼= He where H is Hamilton’s quaternions.)
The involution is the “canonical involution” defined by a 7→ TrdD/F (a)− a.

Type IV. — D is a division algebra whose centre is a CM field F . The involution
restricts to complex conjugation on F . (In this case DR ∼= Md(C)e.)

2.C. The norm |·|D. — Let (D, †) be a semisimple k-algebra with a positive involu-
tion. We define a norm |·|D on DR by:

|a|D =
√

TrdDR/R(aa
†).

This is a norm in the sense of a real vector space norm (that is, a length function).
Note that |a†|D = |a|D for all a ∈ DR.

The norm |·|D is induced by the inner product (a, b) 7→ TrdDR/R(ab
†) on DR.

This inner product (together with an orientation of DR) also induces a volume form.
Whenever we refer to the covolume of a lattice in DR, we use this volume form. (Note
that the covolume is the absolute value of the integral of the volume form over a
fundamental domain, so it is independent of the choice of orientation.)

If D is a semisimple k-algebra, then

DR ∼=
r∏
i=1

Msi(Ki),
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where Ki = R, C or H. If D is equipped with a positive involution †, then we can
choose the isomorphism so that † corresponds to conjugate-transpose on each simple
factor [Voi21, Prop. 8.4.7]. Throughout the paper, whenever we choose an isomorphism
between DR and a product of matrix algebras, we implicitly assume that it has this
property.

Let |·|F denote the Frobenius norm on any matrix algebra over R, C or H:

|M |2F =

s∑
j,k=1

MjkMjk.

Then, for any a = (a1, . . . , ar) ∈
∏
iMsi(Ki), we have

|a|2D =

r∑
i=1

|ai|2F .

The following lemma will be used repeatedly throughout sections 3 and 4. It is
well-known in the case DR = Mn(R) or Mn(C) – see, for example, [HJ85, p. 291].

Lemma 2.1. — Let (D, †) be a semisimple k-algebra with positive involution. Then
|ab|D ⩽ |a|D|b|D for all a, b ∈ DR.

Proof. — Identify DR with
∏r
i=1 Msi(Ki) and write

a = (a1, . . . , ar), b = (b1, . . . , br) ∈
r∏
i=1

Msi(Ki).

Then

|ab|2D =

r∑
i=1

∥aibi∥2F ⩽
r∑
i=1

∥ai∥2F ∥bi∥2F ⩽
( r∑
i=1

∥ai∥F
)2( r∑

i=1

∥bi∥F
)2

= |a|2D|b|2D.

This calculation uses the submultiplicativity of the Frobenius norm and the following
inequality, valid for all non-negative real numbers x1, . . . , xr, y1, . . . , yr:

(2.1)
r∑
i=1

xiyi ⩽
( r∑
i=1

xi

)( r∑
i=1

yi

)
.

Since the Frobenius norm is less well-known over H, we remark that, just as in the
real and complex cases, submultiplicativity of the Frobenius norm follows from the
Cauchy–Schwarz inequality( s∑

j=1

xjyj

)( s∑
j=1

yjxj

)
⩽

( s∑
j=1

xjxj

)( s∑
j=1

yjyj

)
for all x, y ∈ Kn.

The Cauchy–Schwarz inequality over H can be proved by considering the discriminant
of the quadratic polynomial (

∑s
i=1 xjt+yj)(

∑n
i=1 xjt+yj), which is non-negative for

all t ∈ R, and then applying the arithmetic mean–geometric mean inequality to the
left hand side. □
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We say that a semisimple k-algebra D is R-split if DR ∼= Md(R)e for some positive
integers d and e. Note that a division Q-algebra with positive involution is R-split if
and only if it has type I or II in the Albert classification, and these are the types of
algebras that we focus on in this paper.

Lemma 2.2. — Let (D, †) be an R-split semisimple k-algebra with positive involution
and let F be its centre. Then, for all a ∈ D×

R :
(i) |NrdDR/FR(a)|D ⩽ d(1−d)/2|a|dD;
(ii) |NrdDR/R(a)| ⩽ (de)−de/2|a|deD .

Proof. — Identify DR with Md(R)e and write

a = (a1, . . . , ae).

For each i, the matrix aiati ∈ Md(R) is symmetric and positive definite and therefore
diagonalisable with positive eigenvalues. Let its eigenvalues be λi1, . . . , λid. Note that
|ai|2F = Tr(aia

t
i) = λi1+ · · ·+λid. By the arithmetic mean–geometric mean inequality,

(2.2) det(ai)
2/d = det(aia

t
i)

1/d =
(
λi1 · · ·λid

)1/d
⩽ d−1

(
λi1 + · · ·+ λid

)
= d−1|ai|2F .

(i) We have NrdDR/FR(a) = (det(a1)Id, . . . ,det(ae)Id) where Id denotes the identity
matrix in Md(R). Hence

|NrdDR/FR(a)|
2
D =

e∑
i=1

|det(ai)Id|2F =

e∑
i=1

d|det(ai)|2

⩽
e∑
i=1

d
(
d−1|ai|2F

)d
= d1−d

e∑
i=1

|ai|2dF

⩽ d1−d
( e∑
i=1

|ai|2
)d

= d1−d|a|2dD .

(ii) Using (2.2) and another application of the AM-GM inequality,

|NrdDR/R(a)|
2/de =

( e∏
i=1

|det(ai)|2/d
)1/e

⩽ e−1
e∑
i=1

d−1|ai|2F = (de)−1|a|2D. □

2.D. The Hermite constant and Minkowski’s theorems. — Let γn denote the Her-
mite constant for Rn, that is, the smallest positive real number such that the following
holds: For every lattice L in Rn with the Euclidean norm and volume form, there exists
a vector v ∈ L satisfying |v| ⩽ √

γn covol(L)
1/n.

It is immediate from the definition that γn ⩾ 1 for all n. As a consequence of
Minkowski’s theorem on convex bodies,

(2.3) γn ⩽ 4V−2/n
n = 4

π Γ(n2 + 1)2/n,

where Vn denotes the volume of the unit ball in Rn.

Lemma 2.3. — For all positive integers n, we have γn ⩽ n.

J.É.P. — M., 2023, tome 10



Lattices with skew-Hermitian forms and unlikely intersections 1109

Proof. — According to [AQ97, Th. 1.5], Γ(x)⩽xx−1 for all real numbers x>1. Hence

Γ(x+ 1) = xΓ(x) < xx

for all x > 1. Furthermore, for x = 1, we have Γ(x+1) = 1 = xx. Thus Γ(x+1) ⩽ xx

for all x ⩾ 1. Plugging this into (2.3), we obtain γn ⩽ (4/π) · (n/2) < n for all n ⩾ 2.
It is clear that γ1 = 1 [Cas97, App.], so the lemma is also true for n = 1. □

Lemma 2.3 is not optimal for large n. Indeed, our proof itself shows that γn ⩽ 2
πn

for n ⩾ 2. Using Stirling’s approximation to the Gamma function, one can obtain
γn ⩽ 2n/πe+ o(n) as n → +∞. However we have chosen to use Lemma 2.3 because
we need a simple bound for the Hermite constant which is valid for all n ⩾ 1, without
hidden constants or special cases for small n, as we wish to avoid fiddly special cases
when calculating the (non-optimal) constants in Proposition 4.5.

A version of Minkowski’s second theorem for the Euclidean norm also holds with
the Hermite constant:

Theorem 2.4 ([Cas97, Chap. VIII, Th. 1]). — For every lattice L in Rn with the Eu-
clidean norm and volume form, there exist vectors e1, . . . , en ∈ L which form a basis
for Rn and which satisfy |e1| · · · |en| ⩽ γ

n/2
n covol(L).

With some book-keeping, we can obtain a version of Theorem 2.4 for vector spaces
over a division Q-algebra. This is the same method as the proof of a version of
Minkowski’s second theorem over number fields in [BG06, C.2.18].

Proposition 2.5. — Let D be a division Q-algebra. Let V be a left D-vector space of
dimension m. Let L be a Z-lattice in V . Let |·| be any norm on VR induced by an
inner product, and use the associated volume form to define covol(L).

Then there exists a D-basis w1, . . . , wm for V such that:

(i) w1, . . . , wm ∈ L;
(ii) |w1||w2| · · · |wm| ⩽ γ

m/2
[D:Q]m covol(L)1/[D:Q].

Proof. — Let n = dimQ(V ) = [D : Q]m. Choose e1, . . . , en ∈ L as in Theorem 2.4.
Order the ei so that |ei| ⩽ |ei+1| for all i = 1, . . . , n− 1.

For i = 1, . . . ,m, let qi denote the smallest positive integer q such that the D-span
of e1, . . . , eq has D-dimension equal to i. Let wi = eqi . By construction, for each i,
the D-span of w1, . . . , wi has D-dimension equal to i. Hence w1, . . . , wm is a D-basis
for V .

For 1 ⩽ i ⩽ m, the vectors e1, . . . , eqi−1 are contained in a D-vector space of
D-dimension i− 1, so they are contained in a Q-vector space of Q-dimension at most
[D : Q](i− 1). These vectors are Q-linearly independent, so

qi − 1 ⩽ [D : Q](i− 1).
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Since the lengths |ei| are increasing, we deduce that

|wi|[D:Q] ⩽ |e[D:Q](i−1)+1|[D:Q] ⩽
[D:Q]∏
j=1

|e[D:Q](i−1)+j |.

Hence by Theorem 2.4,
m∏
i=1

|wi|[D:Q] ⩽
n∏
i=1

|ei| ⩽ γn/2n covol(L). □

Let D be a division Q-algebra, R an order in D and L a torsion-free R-module of
rank m. Combining Proposition 2.5 with Theorem 2.4 applied to R and Hadamard’s
inequality, we could prove that there exist w1, . . . , wm ∈ L forming a D-basis for
D⊗RL and satisfying [L : Rw1+ · · ·+Rwm] ⩽ C9|disc(R)|m/2. However this method
of proof gives a constant C9 > 1, so this is weaker than Theorem 1.1.

2.E. Discriminants of bilinear forms. — If Λ is a Z-module, we write ΛQ for Λ⊗ZQ.
If Λ is free of finite rank and ϕ : ΛQ × ΛQ → Q is a bilinear form, we write disc(Λ, ϕ)

for the determinant of the matrix (ϕ(ei, ej))i,j where {e1, . . . , en} is a Z-basis for Λ

(the determinant is independent of the choice of basis).

Lemma 2.6. — Let L be a free Z-module of finite rank and let ϕ : L × L → Z be
a non-degenerate bilinear form. Let M ⊂ L be a Z-submodule such that ϕ|M×M is
non-degenerate. Let

M⊥ = {x ∈ L : ϕ(x, y) = 0 for all y ∈M}.

Then
(i) [L :M +M⊥] ⩽ |disc(M,ϕ)|; and
(ii) |disc(M⊥, ϕ)| ⩽ |disc(L, ϕ)||disc(M,ϕ)|.

Proof. — Since ϕ|M×M is non-degenerate, LQ =MQ⊕M⊥
Q . Let π : LQ →MQ denote

the projection with kernel M⊥
Q .

If x ∈ L and π(x) ∈ M , then x − π(x) ∈ ker(π) ∩ L = M⊥. Hence x ∈ M +M⊥.
Conversely, if x ∈M +M⊥, it is clear that π(x) ∈M . Thus π−1(M) =M +M⊥.

Let
M∗ = {x ∈MQ : ϕ(x, y) ∈ Z for all y ∈M}.

If x ∈ L, then ϕ(π(x), y) = ϕ(x, y) ∈ Z for all y ∈M so π(x) ∈M∗. Thus π(L) ⊂M∗.
Thus we obtain

L/(M +M⊥) = L/π−1(M) ∼= π(L)/M ⊂M∗/M.

It is well-known that [M∗ :M ] = |disc(M,ϕ)|, so this proves (i).
Since M and M⊥ are orthogonal with respect to ϕ,

|disc(M,ϕ)||disc(M⊥, ϕ)| = |disc(M +M⊥, ϕ)|

= [L :M +M⊥]2|disc(L, ϕ)| ⩽ |disc(M,ϕ)|2|disc(L, ϕ)|.

Since |disc(M,ϕ)| ≠ 0, this proves (ii). □
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2.F. Orders and discriminants. — Let k = Q or R. If V is a finite-dimensional
k-vector space, then a Z-lattice in V means a Z-submodule L ⊂ V such that the
natural map L⊗Z k → V is an isomorphism.

Let D be a semisimple Q-algebra. An order in D is a Z-lattice in D which is
also a subring. Note that if V is a D-vector space and L is a Z-lattice in V , then
StabD(L) = {a ∈ D : aL ⊂ L} is an order in D. (This is proved on [Rei75, p. 109]
when V = D, and the proof generalises.)

If R is an order in D, the discriminant disc(R) is defined to be the discriminant
of the k-bilinear form (a, b) 7→ TrD/k(ab) on R, where TrD/Q is the non-reduced
trace. The trace form of a semisimple algebra is non-degenerate, so disc(R) ̸= 0.
Furthermore, TrD/Q(a) ∈ Z for all a ∈ R, so disc(R) ∈ Z.

If D is a simple Q-algebra, then TrdD/Q(a) ∈ Z for all a ∈ R [Rei75, Th. 10.1].
Since TrD/Q = dTrdD/Q, it follows that disc(R) ∈ dd

2eZ so

(2.4) |disc(R)| ⩾ dd
2e.

Now suppose that (D, †) is a simple Q-algebra with a positive involution. According
to [DO22, Lem. 5.6], for any order R ⊂ D, |disc(R)| is equal to the discriminant of the
symmetric bilinear form (a, b) 7→ TrD/k(ab

†). Consequently, |disc(R)| is equal to dd2e
multiplied by the discriminant on R of the positive definite bilinear form which induces
the norm |·|D. We conclude that

(2.5) |disc(R)| = dd
2e covol(R)2.

For an order R in a simple Q-algebra D, let R∗ denote the dual lattice

R∗ = {a ∈ D : TrdD/Q(ab) ∈ Z for all b ∈ R}.

Lemma 2.7. — Let D be a semisimple k-algebra and let R be an order in D. Let F be
the centre of D and let O be an order in F which contains R ∩ F . Then

[O : R ∩ F ]2 |disc(OR)| ⩽ |disc(R)|.

Proof. — This follows from the facts O+R ⊂ OR and [O+R : R] = [O : R ∩F ]. □

Lemma 2.8. — Let D be a simple Q-algebra. Let F be the centre of D and let OF

be the maximal order of F . Let S be an order in D which contains OF . Define S∗

analogously to R∗. Then there exists an ideal I ⊂ OF such that IS∗ ⊂ S and

Nm(I) ⩽ d−d
2e|disc(S)|.

Proof. — Let I = {x ∈ OF : xS∗ ⊂ S}, that is, the annihilator of the finite OF -mod-
ule S∗/S. By the structure theorem for finitely generated torsion modules over a
Dedekind domain, there is an isomorphism of OF -modules

S∗/S ∼= OF /I1 ⊕ OF /I2 ⊕ · · · ⊕ OF /Ir

for some OF -ideals I1, I2, . . . , Ir. We have I = I1 ∩ I2 ∩ · · · ∩ Ir ⊃ I1I2 · · · Ir and so

Nm(I) ⩽ Nm(I1)Nm(I2) · · ·Nm(Ir) = [S∗ : S].
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The index [S∗ : S] is equal to the absolute value of the discriminant of S with
respect to the reduced trace form. Thus [S∗ : S] = d−d

2e|disc(S)|. □

Lemma 2.9. — Let D be a simple Q-algebra. Let F be the centre of D and let OF be
the maximal order of F . Let R be an order in D. Let S = OFR. Let c be the conductor
of R ∩ F (as an order in the number field F ). Then

cS ⊂ R and cR∗ ⊂ S∗.

Proof. — From the definitions of S and c,

cS = cOFR ⊂ (R ∩ F )R ⊂ R.

If c ∈ c and a ∈ R∗, then for all b ∈ S we have

TrdD/Q((ca)b) = TrdD/Q(a(cb)) ∈ Z

because c is in the centre of D and cb ∈ cS ⊂ R. Thus ca ∈ S∗. □

Lemma 2.10. — Let D be a division Q-algebra and let V be a left D-vector space of
dimension m. Let L be a Z-lattice in V and consider the order R = StabD(L) of D.
Let S = EndR(L) denote the ring of endomorphisms of L commuting with R. Then

|disc(S)| ⩽ |disc(R)|(d
2em+1)m2

.

Proof. — By Theorem 1.1, there is a D-basis v1, . . . , vm for V such that v1, . . . , vm∈L
and

(2.6) [L : Rv1 + · · ·+Rvm] ⩽ |disc(R)|m/2.

Let N = [L : Rv1 + · · ·+Rvm] and s = dimQ(EndD(V )) = d2em2.
Using the D-basis v1, . . . , vm, we identify EndD(V ) with Mm(Dop). Note that

EndR(L) and Mm(Rop) are both Z-lattices in EndD(V ).
For every a ∈ Mm(Rop) ⊂ EndD(V ), we have

aNL ⊂ a(Rv1 + · · ·+Rvm) ⊂ Rv1 + · · ·+Rvm ⊂ L.

Hence Na ∈ EndR(L).
Thus NMm(Rop) ⊂ EndR(L). Therefore

|disc(S)| ⩽ N2s|disc(Mm(Rop))| = N2s|disc(R)|m
2

.

Combining this with the bound for N from (2.6) proves the lemma. □

2.G. Anti-symmetric elements in division algebras of type II. — If (D, †) is a divi-
sion Q-algebra with involution, we define

D− = {a ∈ D : a† = −a}.

If ψ : V × V → D is a (D, †)-skew-Hermitian form on a D-vector space V and x ∈ V ,
then ψ(x, x) ∈ D−, so D− is important for the study of weakly unitary bases (see
section 3.A for the definition of (D, †)-skew-Hermitian forms).
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Let (D, †) be a division Q-algebra with a positive involution of Albert type II.
Choose an isomorphism DR ∼= M2(R)e (as always, we implicitly assume that † corre-
sponds to matrix transpose on each factor). Then D−

R consists of those elements of
M2(R)e in which all matrices are anti-symmetric. Hence D−

R is a free FR-module of
rank 1, so D− is a 1-dimensional F -vector space. The following lemma can be proved
by calculations in DR ∼= M2(R)e.

Lemma 2.11. — Let (D, †) be a division Q-algebra with a positive involution of type II.
Let F be the centre of D.

(i) If a, b ∈ D−, then ab ∈ F .
(ii) If a ∈ D and b ∈ D−, then aba† = NrdD/F (a)b.

Lemma 2.12. — Let (D, †) be a division Q-algebra with a positive involution of type II.
Let R be an order in D and let η ∈ Z>0 be a positive integer such that ηR† ⊂ R. Then
there exists ω ∈ D such that:

(i) ω ∈ D− ∖ {0};
(ii) ωR∗ ⊂ R and R∗ω ⊂ R;
(iii) |ω|D ⩽ 2−4γ

1/2
e η7|disc(R)|2/e.

Proof. — Let F be the centre of D and let OF be the maximal order of F . Let
c={α∈OF : αOF ⊂R∩F} be the conductor of the orderR∩F in OF . By [DCD00, (2)],
we have the following inclusion of ideals in Z:

discF/Q(R ∩ F ) ⊆ NmF/Q(c) discF/Q(OF ).

This leads to the following inequality of integers:

Nm(c)|disc(OF )| ⩽ |disc(R ∩ F )|.

Since also |disc(R ∩ F )| = [OF : R ∩ F ]2|disc(OF )|, we deduce that

Nm(c) ⩽ [OF : R ∩ F ]2.

Let S = OFR and S− = S ∩ D−. Let I be the ideal of OF given by Lemma 2.8
applied to S. Let J = c2I (as a product of ideals of OF ). Then by Lemma 2.9,

JSR∗ = cSIcR∗ ⊂ cSIS∗ ⊂ cSS ⊂ cS ⊂ R,

R∗JS = cIcR∗S ⊂ cIS∗S ⊂ cSS ⊂ cS ⊂ R.

Hence if we choose ω ∈ JS ∩D− ∖ {0} = JS− ∖ {0}, then it will satisfy (i) and (ii).
Since S− is a non-zero OF -submodule of an F -vector space of dimension 1, we can

write S− = I−α for some ideal I− ⊂ OF and some α ∈ D−, then use the multiplica-
tivity of ideal norms in OF to conclude that

covol(JS−) = Nm(J) covol(S−),

where we measure covolumes in D−
R by the volume form associated with the restriction

of the inner product TrdDR/R(ab
†).
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Let S+ = {a ∈ S : a† = a}. Then S+ ∩S− = {0}. Thus the sum S++S− is direct.
This sum is also orthogonal because, if a ∈ S+ and b ∈ S−, then

TrdD/Q(ab
†) = TrdD/Q((ab

†)†) = TrdD/Q(ba
†) = −TrdD/Q(ab

†)

so TrdD/Q(ab
†) = 0.

For every a ∈ S, we have ηa† ∈ η(OFR)
† = OF ηR

† ⊂ OFR = S. Hence

2ηa = (ηa+ ηa†) + (ηa− ηa†) ∈ S+ + S−.

Thus 2ηS ⊂ S+ ⊕ S−, so

(2.7) covol(S+) covol(S−) = covol(S+ ⊕ S−) ⩽ covol(2ηS) = 24eη4e covol(S).

Here we measure covolumes in both D−
R and S+⊗ZR by the volume forms associated

with the restriction of the inner product TrdDR/R(ab
†).

For all a, b ∈ S, ηab† ∈ S and so TrdD/Q(ab
†) ∈ η−1Z. Consequently, covol(S+) ⩾

η− rkZ(S
+) = η−3e so by (2.5) applied to S and (2.7),

covol(S−) ⩽ η3e · 24eη4e covol(S) = 24eη7e · 2−2e|disc(S)|1/2.

Therefore, using Lemma 2.8,

covol(JS−) = Nm(c)2 Nm(I) covol(S−)

⩽ [OF : R ∩ F ]4 · 2−4e|disc(S)| · 22eη7e|disc(S)|1/2

= 2−2eη7e[OF : R ∩ F ]4|disc(S)|3/2.

Applying (2.4) to S, we see that |disc(S)| ⩾ 24e. Using Lemma 2.7, we deduce that

covol(JS−) ⩽ 2−2e|disc(S)|−1/2η7e[OF : R ∩ F ]4|disc(S)|2 = 2−4eη7e|disc(R)|2.

Since JS− is a free Z-module of rank e, there exists ω ∈ JS− ∖ {0} with

|ω|D ⩽
√
γe covol(JS

−)1/e ⩽
√
γe · 2−4η7|disc(R)|2/e. □

3. Skew-Hermitian forms over division algebras

In this section, we introduce the notion of a (D, †)-skew-Hermitian form on a vector
space over a division algebra D with an involution, and explain how this is related to
skew-symmetric forms over the base field. We define several notions of good behaviour
for bases relative to (D, †)-skew-Hermitian forms, such as symplectic and unitary bases
and a weakened version of these notions. Finally we prove the existence of norms on
D-vector spaces, which we call D-norms, which behave well relative to the action of D
and to a (D, †)-skew-Hermitian form.

As in section 2, we are interested in applying the results of this section when
(D, †) is either a division Q-algebra with a positive involution of type I or II, or the
semisimple R-algebra which arises from such a Q-algebra by extending scalars to R,
but we state the results in greater generality whenever it is convenient.
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3.A. Skew-Hermitian forms. — Let k be any field. Let (D, †) be a semisimple
k-algebra with an involution. Let V be a left D-module.

A (D, †)-skew-Hermitian form on V is a k-bilinear map ψ : V × V → D which
satisfies

ψ(y, x) = −ψ(x, y)† and ψ(ax, by) = aψ(x, y)b†

for all a, b ∈ D and x, y ∈ V . We say that a (D, †)-skew-Hermitian form ψ is non-
degenerate if, for every x ∈ V ∖ {0}, there exists y ∈ V such that ψ(x, y) ̸= 0.

A (D, †)-compatible skew-symmetric form on V is a skew-symmetric k-bilinear map
ϕ : V × V → k which satisfies

ϕ(ax, y) = ϕ(x, a†y)

for all a ∈ D and x, y ∈ V . A pair (V, ϕ), where ϕ is a (D, †)-compatible skew-
symmetric form, is called a symplectic (D, †)-module in [Mil05, §8].

Lemma 3.1. — Let (D, †) be a semisimple k-algebra with an involution. Let V be a
left D-module. Then the map ψ 7→ TrdD/k ◦ψ is a bijection between the set of (D, †)-
skew-Hermitian forms on V and the set of (D, †)-compatible skew-symmetric forms
on V .

Proof. — It is clear that, if ψ is a (D, †)-skew-Hermitian form on V , then TrdD/k ψ

is a (D, †)-compatible skew-symmetric form.
Let ϕ be a (D, †)-compatible skew-symmetric form. We shall show that there is a

unique (D, †)-skew-Hermitian form on V such that ϕ = TrdD/k ψ.
For each x, y ∈ V , define a k-linear map αx,y : D → k by αx,y(a) = ϕ(ax, y).

Because D is a semisimple k-algebra, (a, b) 7→ TrdD/k(ab) is a non-degenerate bilinear
form D×D → k [Rei75, Th. 9.26]. Hence there exists a unique element βx,y ∈ D such
that

αx,y(a) = TrdD/k(aβx,y) for all a ∈ D.

Define ψ(x, y) = βx,y. Using the uniqueness of the elements βx,y, it is clear that the
resulting function ψ : V × V → D is k-bilinear.

If a, b ∈ D and x, y ∈ V , then

TrdD/k(abβx,y) = αx,y(ab) = ϕ(abx, y) = αbx,y(a) = TrdD/k(aβbx,y).

By uniqueness of βbx,y, we deduce that ψ is D-linear in the first variable.
If a ∈ D and x, y ∈ V , then

TrdD/k(aβx,y) = ϕ(ax, y) = −ϕ(a†y, x) = −TrdD/k(a
†βy,x) = −TrdD/k(aβ

†
y,x).

Again by uniqueness of βbx,y, ψ(x, y) = −ψ(y, x)†.
Since ψ is D-linear in the first variable and satisfies ψ(x, y) = −ψ(y, x)†, it is also

(D, †)-anti-linear in the second variable. Thus it is (D, †)-skew-Hermitian. □

Lemma 3.2. — Let (D, †) be a semisimple k-algebra with an involution. Let V be a
left D-module. Let ψ : V × V → k be a (D, †)-skew-Hermitian form and let ϕ =

TrdD/k ψ : V × V → k.
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Let W ⊂ V be a left D-submodule and define

W⊥
ψ = {x ∈ V : ψ(w, x) = 0 for all w ∈W},

W⊥
ϕ = {x ∈ V : ϕ(w, x) = 0 for all w ∈W}.

Then W⊥
ψ =W⊥

ϕ .
In particular, W⊥

ϕ is a left D-submodule of V .

Proof. — It is clear that W⊥
ψ ⊂W⊥

ϕ .
If x ∈W⊥

ϕ and w ∈W then, for all a ∈ D, we have aw ∈W and so

TrdD/Q(aψ(w, x)) = TrdD/Q(ψ(aw, x)) = ϕ(aw, x) = 0.

By the non-degeneracy of the reduced trace form, it follows that ψ(w, x) = 0, that is,
x ∈W⊥

ψ . Thus W⊥
ϕ ⊂W⊥

ψ . □

Corollary 3.3. — Let (D, †) be a semisimple k-algebra with an involution. Let V
be a left D-module. Let ψ : V × V → k be a (D, †)-skew-Hermitian form and let
ϕ = TrdD/k ψ : V × V → k. Then ψ is non-degenerate if and only if ϕ is non-
degenerate.

Proof. — Apply Lemma 3.2 to W = V . □

3.B. Weakly symplectic and weakly unitary bases. — Let k be a field satisfying
char(k) ̸= 2 and let (D, †) be a semisimple k-algebra with an involution. Let V be a
free left D-module and let ψ : V × V → D be a (D, †)-skew-Hermitian form.

We will now define special properties relative to ψ which may be possessed by a
basis of V . The notion of (weakly) symplectic basis is useful when D a division Q-al-
gebra of type I or ke, and the notion of (weakly) unitary basis is useful when D is a
division Q-algebra of type II or M2(k)

e.
We say that a D-basis v1, . . . , vm for V is weakly symplectic if ψ(vi, vj) = 0 for all

i, j except when {i, j} = {2k − 1, 2k} for some k ∈ Z. If ψ is non-degenerate, then
this implies that ψ(v2k−1, v2k) ̸= 0 for all k.

We say that a D-basis v1, . . . , vm is symplectic if ψ is non-degenerate, the basis is
weakly symplectic and furthermore, ψ(v2k−1, v2k) = 1 for all k. When D is a field and
† = id, a (D, †)-skew-Hermitian form is the same thing as a symplectic form and this
definition agrees with the usual definition of symplectic basis.

We say that a D-basis v1, . . . , vm is weakly unitary if ψ(vi, vj) = 0 for all i, j ∈
{1, . . . ,m} such that i ̸= j. If ψ is non-degenerate, then this implies that ψ(vi, vi) ̸= 0

for all i.
For a general division algebra with involution (D, †), there is no canonical choice

of a non-zero element of D−, so there is no natural definition of “unitary basis” with
respect to a (D, †)-skew-Hermitian form. In the special case D0 = Md(k)

e with d

even, let us define
ω0 = (Jd, . . . , Jd) ∈ D−

0 ,
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where Jd ∈ Md(k) was defined in section 1.H. If V is a free left D0-module equipped
with a (D0, t)-skew-Hermitian form ψ0, then we say that a left D0-basis v1, . . . , vm
of V is unitary if it is weakly unitary and ψ(vi, vi) = ω0 for all i = 1, . . . ,m.

If (D, †) is a division Q-algebra with positive involution of type II, α : (D0,R, †) →
(DR, t) is an isomorphism of R-algebras with involution, and V is a left D-vector space
equipped with a (D, †)-skew-Hermitian form ψ, then we say that a left DR-basis for VR
is α-unitary if it forms a unitary D0,R-basis for VR viewed as a D0,R-module via α,
with respect to the (D0,R, t)-skew-Hermitian form α−1 ◦ ψ : VR × VR → D0,R. The
elements vi of an α-unitary basis satisfy ψ(vi, vi) = α(ω0).

As an aside, which will be used in later calculations, we remark that, for any a ∈ D0,
the entries of the matrices which make up aω0 are (up to signs) a permutation of the
matrix entries making up a. Hence

(3.1) |aω0|D0 = |a|D0 .

The following lemma shows how we can adjust a weakly symplectic or weakly
unitary basis to become symplectic or α-unitary. Note that it works only over DR,
not over D, because it requires taking square roots.

Lemma 3.4. — Let (D, †) be a division Q-algebra with a positive involution of type I
or II. Let α : (Md(R)e, t) → (DR, †) be an isomorphism of R-algebras with involu-
tion. Let V be a left D-vector space equipped with a (D, †)-skew-Hermitian form
ψ : V × V → D. Let v1, . . . , vm be a left D-basis for V which is weakly symplectic
(when D has type I) or weakly unitary (when D has type II).

Then there exist s1, . . . , sm ∈ D×
R such that s−1

1 v1, . . . , s
−1
m vm form a symplectic or

α-unitary DR-basis for VR (according to the type of D) and, for all i,

|si|D ⩽ (de)1/4|ψ(vi, vj)|1/2D ,

where j is the unique index such that ψ(vi, vj) ̸= 0.

Proof. — The proof is in two parts, depending on the type of D.

Type I case. — For each k = 1, . . . ,m/2, i = 2k − 1 and j = 2k, let

tk = (de)−1/2|ψ(vi, vj)|D ∈ R>0.

Let si = t
−1/2
k ψ(vi, vj) and sj = t

1/2
k . Then

ψ(s−1
i vi, s

−1
j vj) = s−1

i ψ(vi, vj)(s
−1
j )† = 1

since s†j = sj and tk ∈ R is in the centre of DR.
Furthermore,

|si|D = t
−1/2
k |ψ(vi, vj)|D = (de)1/4|ψ(vi, vj)|1/2D ,

while
|sj |D = t

1/2
k |1|D = (de)1/2t

1/2
k = (de)1/4|ψ(vi, vj)|1/2D .
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Type II case. — For each i, ψ(vi, vi) ∈ D−∖{0} ⊂ F×
R α(ω0). Thus ψ(vi, vi) = tiα(ω0)

for some ti ∈ F×
R . Write α−1(ti) = (ti1, . . . , tie) ∈ (R×)e. Let si = α(si1, . . . , sie) ∈ D×

R
where sij ∈ GL2(R) are defined as follows:

sij =

(√
tij 0

0
√
tij

)
if tij ⩾ 0, sij =

(√−tij 0

0 −√−tij

)
if tij < 0.

Then

NrdDR/FR(si) = α(det(si1), . . . ,det(sie)) = α(ti1, . . . , tie) = ti.

Hence by Lemma 2.11,

ψ(s−1
i vi, s

−1
i vi) = s−1

i ψ(vi, vi)(s
−1
i )† = NrdDR/FR(s

−1
i )ψ(vi, vi) = α(ω0).

Furthermore,

|si|2D =

e∑
j=1

Tr(sijs
t
ij) =

e∑
j=1

2|tij |

⩽
√
4e

∑e
j=1|tij |2 =

√
2eTrdDR/R(tit

†
i ) = (2e)1/2|ti|D.

By (3.1), this implies that

|si|2D ⩽ (2e)1/2|tiα(ω0)|D = (de)1/2|ψ(vi, vi)|D. □

Lemma 3.5. — Let D0 = Md(k)
e where d = 1 or 2 and let t denote the involution

of D0 which is transpose on each factor. Let V be a free left D0-module and let ψ0 be
a non-degenerate (D0, t)-skew-Hermitian form V × V → D0.

Then there exists a D0-basis v1, . . . , vm for V and a k-basis a1, . . . , ad2e for D0

with the following properties:
(i) {v1, . . . , vm} is symplectic with respect to ψ0 if d = 1 and unitary if d = 2;
(ii) {a1, . . . , ad2e} is an orthonormal basis for D0 with respect to |·|D;
(iii) {arvj : 1 ⩽ r ⩽ d2e, 1 ⩽ j ⩽ m} is a symplectic k-basis for V with respect to

TrdD0/k ψ0.

Proof. — Write B0 = Md(k). Write F0 for the centre of D0, namely ke. Let u1, . . . , ue
denote the standard k-basis of F0 = ke.

Let Vi = uiV . Then V =
⊕e

i=1 Vi and each Vi is a free left B0-module. Because V0
is a free left D0-module, rkB0

(V1) = · · · = rkB0
(Ve). Let m denote this rank.

Because ψ0 : V × V → D0 is F0-bilinear, it takes the form

ψ0((x1, . . . , xe), (y1, . . . , ye)) = (ψ1(x1, y1), . . . , ψe(xe, ye)) for all xi, yi ∈ Vi,

where ψi : Vi × Vi → B0 are some non-degenerate (B0, t)-skew-Hermitian forms.
Below, we shall prove the lemma with (D0, V, ψ0) replaced by (B0, Vi, ψi), yield-

ing a B0-basis vi1, . . . , vim for (Vi, ψi) and a k-basis b1, . . . , bd2 for B0. Then letting
vj = (v1j , . . . , vej), we obtain a symplectic or unitary D0-basis for V . Furthermore
{vibj : 1 ⩽ i ⩽ e, 1 ⩽ j ⩽ d2} forms a k-basis for D0 which satisfies (ii) and (iii).

Now we prove the lemma for (B0, Vi, ψi), breaking into two cases depending on d.
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Case d = 1. — When d = 1, B0 = k. Each Vi is a k-vector space of dimension m

and ψi is a non-degenerate symplectic form Vi × Vi → k. By the theory of symplectic
forms, there exists a symplectic k-basis {vi1, . . . , vim} for Vi, proving (i).

Choosing b1 = 1 gives an orthonormal k-basis of B0 with respect to |·|B0
. Since

TrdB0/k ψ = ψ, the bases vi1, . . . , vim and b1 satisfy (iii).

Case d = 2, part (i). — We prove by induction on m that there is a unitary B0-basis
vi1, . . . , vim using the Gram–Schmidt method.

First we claim that there exists z ∈ Vi such that ψi(z, z) ̸= 0. The image of
ψi : Vi × Vi → B0 is a two-sided ideal in B0, which is a simple algebra, so this image
is all of B0. In particular, we can choose x, y ∈ Vi such that ψi(x, y) is not skew-
symmetric, that is, ψi(x, y) + ψi(y, x) = ψi(x, y) + ψi(x, y)

t ̸= 0. Then ψi(x, x),
ψi(y, y) and ψi(x+ y, x+ y) are not all zero. Choosing z to be one of x, y and x+ y,
we obtain ψi(z, z) ̸= 0.

Then ψi(z, z) ∈ B−
0 = kJd so ψi(z, z) = sJd for some s ∈ k×. Letting vi1 =(

s−1 0
0 1

)
z, we obtain that ψi(vi1, vi1) = Jd.

Let V ′
i = {v ∈ Vi : ψi(vi1, v) = 0} = {v ∈ Vi : ψi(v, vi1) = 0}, which is a left

B0-submodule of Vi. For every b ∈ B0 ∖ {0}, we have

(3.2) ψi(bvi1, vi1) = bψi(vi1, vi1) = bJd ̸= 0,

and so B0vi1 ∩ V ′
i = {0}. For every v ∈ Vi, we have

v − ψi(v, vi1)J
−1
d vi1 ∈ V ′

i .

Hence Vi = B0vi1 ⊕ V ′
i as a direct sum of left B0-modules.

By (3.2), bvi1 ̸= 0 for all b ∈ B0 ∖ {0}. Hence dimk(B0vi1) = 4 and so dimk(V
′
0) =

4(m− 1). Every B0-module whose k-dimension is a multiple of 4 is a free B0-module,
so B0vi1 and V ′

0 are free left B0-modules. By induction, there is a unitary B0-basis
vi2, . . . , vim for V ′

i . Then vi1, vi2, . . . , vim is a unitary B0-basis for Vi.

Case d = 2, part (ii) and (iii). — Let

b1 =
(
1 0
0 0

)
, b2 =

(
0 1
0 0

)
, b3 =

(
0 0
1 0

)
, b4 =

(
0 0
0 1

)
∈ B0 = M2(k).

These form an orthonormal k-basis for B0 with respect to |·|B0 .
Since ψi is (B0, t)-skew-Hermitian,

ψi(brvij , br′vij′) = brψi(vij , vij′)b
†
r′ .

Thus if j ̸= j′, we obtain ψi(brvij , br′vij′) = 0. If j = j′, then ψi(vij , vij) = J2, so we
can calculate

TrdB0/k ψ(brvij , br′vij) = TrdM2(k)/k(brJ2b
t
r′) =


1 if (r, r′) = (1, 2) or (3, 4),

−1 if (r, r′) = (2, 1) or (4, 3),

0 otherwise.

Thus the bases vi1, . . . , vim and b1, . . . , b4 satisfy (iii) for (B0, Vi, ψi). □
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3.C. Discriminants and skew-Hermitian forms. — The following lemmas are useful
for calculating discriminants of skew-Hermitian forms.

Lemma 3.6. — Let (D, †) be a division Q-algebra with an involution and let R be an
order in D. Let r1, . . . , rd2e be a Z-basis for R. For a ∈ D, let Ta ∈ Md2e(Q) be the
matrix with entries (Ta)ij = TrdD/Q(riar

†
j). Then

det(Ta) = ±d−d
2e disc(R)NmD/Q(a).

Proof. — Let Ma ∈ Md2e(Z) denote the matrix which represents “multiplication by a
on the right” with respect to the basis r1, . . . , rd2e. Using the facts that TrdD/Q(xy) =
TrdD/Q(yx) for all x, y ∈ D and that TrdD/Q is Q-linear,

(Ta)ij = TrdD/Q(riar
†
j) = TrdD/Q(r

†
jria) = TrdD/Q

(
r†j

∑d2e
k=1(Ma)kirk

)
=

d2e∑
k=1

(Ma)ki TrdD/Q(rkr
†
j) =

d2e∑
k=1

(Ma)ki(T1)kj .

Thus Ta =M t
aT1 so

det(Ta) = det(Ma) det(T1) = NmD/Q(a) det(T1).

Now T1 is the Gram matrix of the bilinear form (x, y) 7→ d−1 TrdD/Q(xy
†) with

respect to r1, . . . , rd2e. Hence by [DO22, Lem. 5.6], det(T1) = ±d−d2e disc(R). □

The following lemma allows us to calculate the discriminant of TrdD/Q ψ on a free
R-module generated by a weakly symplectic or weakly unitary basis (weakly sym-
plectic or weakly unitary bases with respect to a non-degenerate form automatically
satisfy the condition about uniqueness of a permutation σ). We have stated the lemma
more generally because we shall require it in one additional case: when m = 2 and
the matrix with entries ψ(vi, vj) has the form

(
0 ∗
∗ ∗

)
.

Lemma 3.7. — Let (D, †) be a division Q-algebra with a positive involution of type I
or II. Let V be a left D-vector space with a non-degenerate (D, †)-skew-Hermitian
form ψ : V × V → D. Let R be an order in D.

Let v1, . . . , vm be a D-basis for V . Suppose that there is exactly one permutation
σ ∈ Sm for which ψ(vi, vσ(i)) ̸= 0 for all i = 1, . . . ,m. Then

|disc(Rv1 + · · ·+Rvm,TrdD/Q ψ)| = d−d
2em|disc(R)|m

m∏
i=1

|NmD/Q(ψ(vi, vσ(i)))|.

Proof. — Choose a Z-basis r1, . . . , rd2e for R. Let A ∈ Mn(Q) be the Gram ma-
trix of the bilinear form TrdD/Q ψ : V × V → Q with respect to the Q-basis
r1v1, r2v1, . . . , rd2ev1, r1v2, . . . , rd2evm for V . Then A is made up of square blocks
Bij ∈ Md2e(Q) where Bij is the matrix with entries

(Bij)kℓ = TrdD/Q ψ(rkvi, rℓvj) = TrdD/Q(rkψ(vi, vj)r
†
ℓ).

In other words, Bij is equal to the matrix Tψ(vi,vj) as defined in Lemma 3.6.
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Let σ ∈ Sm be the permutation from the hypothesis of the lemma. By the permu-
tation formula for determinants, the blocks Biσ(i) are the only blocks that contribute
to det(A) (although they need not be the only non-zero blocks of A). Indeed, we have

disc(Rv1 + · · ·+Rvm,TrdD/Q ψ) = det(A) = ±
m∏
i=1

det(Biσ(i)),

which, by Lemma 3.6, is equal to

±
m∏
i=1

d−d
2e disc(R)NmD/Q(ψ(vi, vσ(i))). □

3.D. D-norms. — Let k be a subfield of R. Let (D, †) be a semisimple k-algebra with
a positive involution. Let V be a left D-module. We say that a function |·| : VR → R
is a D-norm if it is a norm induced by a positive definite inner product on VR and it
satisfies the inequality

|av| ⩽ |a|D|v| for all a ∈ DR, x ∈ VR.

Note that |·|D is itself a D-norm on DR thanks to Lemma 2.1.
Let ψ : V × V → D be a non-degenerate (D, †)-skew-Hermitian form. We say that

a D-norm |·| is adapted to ψ if it satisfies the following two conditions:
(1) covol(L1) = 1 where L1 ⊂ V is the Z-module generated by a symplectic k-basis

for V with respect to TrdD/k ψ. (Note that a symplectic basis always exists since
TrdD/k ψ is a symplectic form over a field. Furthermore, this condition is independent
of the choice of symplectic k-basis, because the matrix transforming one symplectic
basis into another has determinant 1.)

(2) |ψ(x, y)|D ⩽ |x||y| for all x, y ∈ VR.
The following two lemmas demonstrate the significance of condition (1) and estab-

lish the existence of a D-norm adapted to ψ.

Lemma 3.8. — Let (D, †) be a division Q-algebra with a positive involution of type I
or II. Let V be a left D-vector space with a non-degenerate (D, †)-skew-Hermitian
form ψ : V × V → D. Let |·| be a D-norm on VR which satisfies condition (1) from
the definition of “adapted to ψ.” Let L be a Z-lattice in V .

Then covol(L) = |disc(L)|1/2, where we use the volume form associated with |·|.

Proof. — Choose a symplectic Q-basis e1, . . . , en for V with respect to TrdD/Q ψ and a
Z-basis f1, . . . , fn for L. Let M be the matrix which maps e1, . . . , en to f1, . . . , fn. The
Z-module generated by e1, . . . , en has covolume 1 by condition (1). Hence covol(L) =

|det(M)|. The matrix with entries ψ(fi, fj) is equal to MJnM
t. So

disc(L) = det(MJnM
t) = det(M)2. □

Lemma 3.9. — Let (D, †) be a division Q-algebra with a positive involution of type I
or II. Let V be a left D-vector space of dimension m, equipped with a non-degenerate
(D, †)-skew-Hermitian form ψ : V × V → D. Then there exists a D-norm |·| on VR
which is adapted to ψ.
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Proof. — Identify DR with Md(R)e where d = 1 or 2. By Lemma 3.5(i), there exists
a symplectic or unitary DR-basis v1, . . . , vm for VR, according to the type of (D, †).
Define the following norm on VR:∣∣∣ m∑

i=1

xivi

∣∣∣ = √∑m
i=1|xi|2D.

This is induced by the inner product
〈∑m

i=1 xivi,
∑m
j=1 yjvi

〉
= TrdDR/R

(∑m
i=1 xiy

†
i

)
.

It is a D-norm by Lemma 2.1.
Let a1, . . . , ad2e be the R-basis for DR given by Lemma 3.5. Since a1, . . . , ad2e is

an orthonormal R-basis for DR with respect to |·|D, {ajvi} is an orthonormal basis
for VR with respect to |·|. Therefore the lattice generated by {ajvi} has covolume 1.
According to Lemma 3.5(iii), {ajvi} is a symplectic basis for VR with respect to
TrdDR/R ψ. Thus the norm |·| satisfies condition (1).

By the triangle inequality for |·|D, we have

(3.3)
∣∣∣ψ( m∑

i=1

xivi,

m∑
j=1

yjvj

)∣∣∣
D

⩽
m∑
i=1

m∑
j=1

|xiψ(vi, vj)y†j |D.

If ψ(vi, vj) ̸= 0, then ψ(vi, vj) = ±1 or ω0 for all i, j and so by (3.1), |xi|D =

|xiψ(vi, vj)|D. Hence

(3.4) |xiψ(vi, vj)y†j |D ⩽ |xiψ(vi, vj)|D|y†j |D = |xi|D|yj |D.

Let σ ∈ Sm be the permutation such that ψ(vi, vσ(i)) ̸= 0 (thus if (D, †) has type I,
then σ = (1, 2)(3, 4)(5, 6) · · · , while if (D, †) has type II, then σ = id). From (3.3)
and (3.4), we obtain∣∣∣ψ( m∑

i=1

xivi,

m∑
j=1

yjvj

)∣∣∣
D

⩽
m∑
i=1

|xi|D|yσ(i)|D.

By the Cauchy–Schwarz inequality, we get∣∣∣ψ( m∑
i=1

xivi,

m∑
j=1

yjvj

)∣∣∣
D

⩽
( m∑
i=1

|xi|2D
)1/2( m∑

j=1

|yj |2D
)1/2

=
∣∣∣ m∑
i=1

xivi

∣∣∣
D

∣∣∣ m∑
j=1

yjvj

∣∣∣
D
.

Thus the norm |·| satisfies condition (2). □

4. Proof of Theorem 1.2

In this section we prove our main theorem on weakly unitary or symplectic bases
with respect to skew-Hermitian forms. The proof is based on the Gram–Schmidt
process, following an inductive structure. For technical reasons we may construct
either one or two basis vectors at each step of the induction. Lemma 4.4 constructs
the new basis vector(s) for each induction step, and then Proposition 4.5 consists of
calculations to keep track of the bounds during this induction.
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4.A. Initial vectors of a weakly symplectic or unitary basis. — We would like to
begin by choosing v1 to be the shortest non-zero vector in V (with respect to a suit-
able D-norm), then inductively choosing a basis for V ⊥, the orthogonal complement
of Dv1. However if we do this, ψ(v1, v1) might be zero (indeed, if D has type I, then
it must be zero) and then Dv1 + V ⊥ is not a direct sum.

We will therefore instead choose either
(1) one short vector v1 ∈ V such that ψ(v1, v1) ̸= 0; or
(2) two short vectors v1, v2 ∈ V such that the restriction of ψ to Dv1 + Dv2

is non-degenerate, and v1, v2 form a weakly symplectic or weakly unitary basis for
Dv1 +Dv2.

Let V ⊥ denote the orthogonal complement of v1 (in case (1)) or of Dv1 + Dv2
(in case (2)). We will bound the discriminant of TrdD/Q ψ restricted to V ⊥, and then
inductively obtain a weakly symplectic or weakly unitary basis for V ⊥. Combining
this with v1 and perhaps v2 gives the basis for V required to prove Theorem 1.2.

The following lemmas choose v1 and perhaps v2 satisfying (1) or (2) above.

Lemma 4.1. — Let (D, †) be a division Q-algebra with an involution. Let V be a
left D-vector space, equipped with a non-degenerate (D, †)-skew-Hermitian form
ψ : V × V → D. Let w1, . . . , wm be a D-basis for V . Then there exists a permutation
σ ∈ Sm such that ψ(wi, wσ(i)) ̸= 0 for all i = 1, . . . ,m.

Proof. — If D is a field, then the non-degeneracy of ψ implies that the matrix with
entries ψ(wi, wj) has non-zero determinant. Then the result is immediate by express-
ing the determinant as an alternating sum over permutations in Sm. When D is
non-commutative, we cannot use determinants so we instead use a combinatorial ar-
gument (which is also valid in the commutative case).

The argument is based on Hall’s theorem on distinct representatives of subsets:

Theorem 4.2 ([Hal35]). — Let T be a set and let T1, . . . , Tm be subsets of T . Then
there exist pairwise distinct elements a1, . . . , am satisfying ai ∈ Ti if and only if, for
every k = 1, . . . ,m and every choice of k distinct indices i1, . . . , ik, we have

(4.1) |Ti1 ∪ · · · ∪ Tik | ⩾ k.

We shall apply Theorem 4.2 with T = {1, . . . ,m} and

Ti = {j : 1 ⩽ j ⩽ m, ψ(wi, wj) ̸= 0}.

We claim that these sets Ti satisfy the condition (4.1) in Theorem 4.2.
Indeed, suppose that (4.1) is not satisfied for some distinct i1, . . . , ik. Let W denote

the leftD-vector space spanned by wi1 , . . . , wik . Consider the vectors w ∈W satisfying

(4.2) ψ(w,wj) = 0 for all j ∈ Ti1 ∪ · · · ∪ Tik .

Since (4.1) is not satisfied, (4.2) imposes |Ti1 ∪· · ·∪Tik | < k = dimD(W ) left D-linear
conditions on w. Hence, there exists a non-zero w ∈ W which satisfies (4.2). By the
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definition of the sets Ti and of W , w is also orthogonal to wj for every j ̸∈ Ti1∪· · ·∪Tik .
Thus w is orthogonal to all of V . This contradicts the non-degeneracy of ψ.

Hence by Theorem 4.2, there exist pairwise distinct a1, . . . , am such that ai ∈ Ti.
Since a1, . . . , am are m distinct elements of {1, . . . ,m}, the function σ(i) = ai is
a permutation of {1, . . . ,m}. By the definition of Ti, we have ψ(wi, wσ(i)) ̸= 0 for
all i. □

Lemma 4.3. — Let (D, †) be a division Q-algebra with a positive involution. Let V
be a left D-vector space of dimension m, equipped with a non-degenerate (D, †)-skew-
Hermitian form ψ : V × V → D. Let |·| be a D-norm on VR. Let w1, . . . , wm be a
D-basis for V .

Then there exist i, j ∈ {1, . . . ,m} satisfying the following conditions:

(i) |wi||wj | ⩽
(
|w1||w2| · · · |wm|

)2/m;
(ii) ψ(wi, wj) ̸= 0;
(iii) if i ̸= j, then ψ(wi, wi) = 0.

Proof. — Let σ be a permutation as in Lemma 4.1.
Choose k ∈ {1, . . . ,m} so that |wk||wσ(k)| is minimal. Then

|wk||wσ(k)| ⩽
( m∏
i=1

|wi||wσ(i)|
)1/m

=
( m∏
i=1

|wi| ·
m∏
j=1

|wj |
)1/m

=
( m∏
i=1

|wi|
)2/m

.

By the choice of σ, we have ψ(wk, wσ(k)) ̸= 0.
– If σ(k) = k, then i = j = k satisfies the conditions of the lemma.
– Otherwise choose i ∈ {k, σ(k)} so that |wi| is minimal.
– If ψ(wi, wi) ̸= 0, then choosing j = i satisfies the required conditions.
– If ψ(wi, wi) = 0, then choose j to be the element of {k, σ(k)} which is different

from i. This i and j satisfy the required conditions. □

In the remainder of this section, whenever we refer to a discriminant other than
disc(R), we mean the discriminant of TrdD/Q ψ restricted to the specified Z-module.

Lemma 4.4. — Let (D, †) be a division Q-algebra with a positive involution of type I
or II. Let V be a left D-vector space with a non-degenerate (D, †)-skew-Hermitian
form ψ : V × V → D. Let L be a Z-lattice in V such that TrdD/Q ψ(L× L) ⊂ Z. Let
R be an order which is contained in StabD(L) and let η ∈ Z>0 be a positive integer
such that ηR† ⊂ R.

Then there exists an R-submodule M ⊂ L with the following properties:
(i) r := dimD(D ⊗RM) = 1 or 2;
(ii) the restriction of ψ to M is non-degenerate;
(iii) |disc(M)| ⩽ (γ2d2em/d

3e)d
2er/2|disc(R)|r|disc(L)|r/m;

(iv) one of the following occurs:
(a) D has type I, r = 2 and M = Rv1 +Rv2 for some v1, v2 such that

|ψ(v1, v2)|D ⩽ γem|disc(L)|1/em;

J.É.P. — M., 2023, tome 10



Lattices with skew-Hermitian forms and unlikely intersections 1125

(b) D has type II, r = 1 and M = Rv1 for some v1 such that
|ψ(v1, v1)|D ⩽ γ4em|disc(L)|1/4em;

(c) D has type II, r = 2 and there exist D-linearly independent vectors
v1, v2 ∈M such that ψ(v1, v2) = 0,
|ψ(v1, v1)|D, |ψ(v2, v2)|D ⩽ 2−5/2γ1/2e γ24emη

7|disc(R)|2/e|disc(L)|1/2em,

and
[M : Rv1 +Rv2] ⩽ (γe/8e)

2e(γ24em/8e)
2eη28e|disc(R)|8|disc(L)|1/m.

Proof. — By Lemma 3.9, there is aD-norm |·| on VR adapted to ψ. By Proposition 2.5,
there exists a D-basis w1, . . . , wm for V satisfying w1, . . . , wm ∈ L and

|w1| · · · |wm| ⩽ γ
m/2
d2em covol(L)1/d

2e ⩽ γ
m/2
d2em|disc(L)|1/2d

2e,

where the second inequality comes from Lemma 3.8.
Choose i, j as in Lemma 4.3. Since |·| is adapted to ψ, we have

(4.3) |ψ(wi, wj)|D ⩽ |wi||wj | ⩽ γd2em|disc(L)|1/d
2em.

Proof of (i)–(iii). — Let M = Rwi +Rwj , so that r = 1 if i = j and r = 2 if i ̸= j.
If i = j, then by Lemma 4.3, ψ(wi, wi) ̸= 0, so the restriction of ψ to M is non-

degenerate.
If i ̸= j, then by Lemma 4.3, ψ(wi, wi) = 0 and ψ(wi, wj) ̸= 0. Consequently,

for any vector x ∈ M , if x ∈ Dwi ∖ {0} then ψ(x,wj) ̸= 0 while if x ̸∈ Dwi then
ψ(x,wi) ̸= 0. Thus the restriction of ψ to M is non-degenerate.

By Lemma 3.7, Lemma 2.2 and (4.3), we obtain that in both cases i = j or i ̸= j,

|disc(M)| = d−d
2er|disc(R)|r|NmD/Q(ψ(wi, wj))|r

= d−d
2er|disc(R)|r|NrdD/Q(ψ(wi, wj))|dr

⩽ d−d
2er|disc(R)|r(de)−d

2er/2|ψ(wi, wj)|d
2er
D

⩽ (d3e)−d
2er/2|disc(R)|r · γd

2er
d2em|disc(L)|r/m.

For the proof of (iv), we split into cases depending on the type of D and on whether
i = j or i ̸= j.

Case (a). — If D has type I, then D is a field and ψ is a symplectic form. Hence
ψ(v, v) = 0 for all v ∈ V , so we must have i ̸= j.

Let v1 = wi and v2 = wj . The bound in (iv)(a) is (4.3).

Case (b). — If D has type II and i = j, then let v1 = wi. Then (iv)(b) holds thanks
to (4.3).

Case (c). — If D has type II and i ̸= j, then choose ω ∈ D− as in Lemma 2.12. Let
w′
j = 2ψ(wi, wj)ωwj − ωψ(wj , wj)wi.
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Since TrdD/Q ψ(L× L) ⊂ Z, ψ(L× L) ⊂ R∗. Hence ψ(wi, wj)ω and ωψ(wj , wj) ∈ R,
so w′

j ∈ Rwi+Rwj =M . Furthermore w′
j and wi are D-linearly independent because

ψ(wi, wj)ω ̸= 0.
By Lemma 2.11(i), ωψ(wj , wj), ψ(wj , wj)ω ∈ F . Using this, along with the facts

that ψ(wi, wi) = 0 and (ωψ(wi, wj))
† = ψ(wj , wi)ω, we can calculate

ψ(w′
j , w

′
j) = 2ψ(wi, wj)ω ψ(wj , wj) (2ψ(wi, wj)ω)

†

− 2ψ(wi, wj)ω ψ(wj , wi) (ωψ(wj , wj))
†

− ωψ(wj , wj)ψ(wi, wj) (2ψ(wi, wj)ω)
† + 0

= (4− 2− 2)ψ(wi, wj)ωψ(wj , wj)ωψ(wj , wi)

= 0.

Using Lemma 2.11(ii) and the fact that ψ(wi, wi) = 0, we can calculate

ψ(w′
j , wi) = 2ψ(wi, wj)ω ψ(wj , wi)− 0 = −2NrdD/F (ψ(wi, wj))ω.

Thus ψ(w′
j , wi) ∈ Fω = D−, so ψ(wi, w′

j) = −ψ(w′
j , wi)

† = ψ(w′
j , wi).

Now let

v1 = wi − w′
j , v2 = wi + w′

j .

Clearly v1, v2 ∈ Rwi + Rw′
j ⊂ M . Since wi = 1

2 (v1 + v2) and w′
j = 1

2 (v2 − v1), the
vectors v1 and v2 are D-linearly independent.

Since ψ(w′
j , wi) = ψ(wi, w

′
j) we can calculate

ψ(v1, v2) = ψ(wi, wi) + ψ(wi, w
′
j)− ψ(w′

j , wi)− ψ(w′
j , w

′
j) = 0,

ψ(v1, v1) = ψ(wi, wi)− ψ(wi, w
′
j)− ψ(w′

j , wi) + ψ(w′
j , w

′
j) = −2ψ(w′

j , wi),

ψ(v2, v2) = ψ(wi, wi) + ψ(wi, w
′
j) + ψ(w′

j , wi) + ψ(w′
j , w

′
j) = 2ψ(w′

j , wi).

Consequently, using Lemmas 2.1, 2.2 and 2.12 and (4.3),

|ψ(v1, v1)|D = |ψ(v2, v2)|D = 2|ψ(w′
j , wi)|D ⩽ 4|NrdD/F (ψ(wi, wj))|D|ω|D

⩽ 4 · 2−1/2|ψ(wi, wj)|2D · 2−4η7
√
γe|disc(R)|2/e

= 2−5/2√γeη7|disc(R)|2/e · γ24em|disc(L)|2/4em.

This proves the first inequality in (iv)(c).
Using Lemma 3.7, we have

[M : Rv1 +Rv2] =
|disc(Rv1 +Rv2)|1/2

|disc(M)|1/2

=
|NmD/Q(ψ(v1, v1))|1/2|NmD/Q(ψ(v2, v2))|1/2

|NmD/Q(ψ(wi, wj))|1/2|NmD/Q(ψ(wj , wi))|1/2

=
|NrdD/Q(ψ(v1, v1))||NrdD/Q(ψ(v2, v2))|

|NrdD/Q(ψ(wi, wj))|2
.
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Now by Lemma 2.2 and the fact that if a ∈ F , then NrdD/Q(a) = NmF/Q(a)
2,

|NrdD/Q(ψ(v1, v1))| = |NrdD/Q(ψ(v2, v2))|
= |NrdD/Q(4NrdD/F (ψ(wi, wj))ω)|

= 42e|NmF/Q(NrdD/F (ψ(wi, wj))|2|NrdD/Q(ω)|

= 42e|NrdD/Q(ω)||NrdD/Q(ψ(wi, wj))|2.

Therefore by Lemmas 2.2 and 2.12 and (4.3),

[M : Rv1 +Rv2] =
44e|NrdD/Q(ω)|2|NrdD/Q(ψ(wi, wj))|4

|NrdD/Q(ψ(wi, wj))|2

= 44e|NrdD/Q(ω)|2|NrdD/Q(ψ(wi, wj))|2

⩽ 44e · (2e)−2e|ω|4eD · (2e)−2e|ψ(wi, wj)|4eD
⩽ 24ee−4e · 2−16eη28eγ2ee |disc(R)|8 · γ4e4em|disc(L)|4e/4em. □

4.B. Inductive construction of weakly symplectic or unitary basis. — The follow-
ing theorem is a slight generalisation of Theorem 1.2, together with explicit values for
the constants. Compared to Theorem 1.2, we only require R ⊂ StabD(L) (allowing
R ⫋ StabD(L) is needed for the induction) and we add an additional parameter η.
When R = StabD(L), the parameter η is controlled by Lemma 4.6.

Proposition 4.5. — Let (D, †) be a division Q-algebra with a positive involution
of type I or II. Let V be a left D-vector space with a non-degenerate (D, †)-skew-
Hermitian form ψ : V×V →D. Let L be a Z-lattice in V such that TrdD/Q ψ(L×L)⊂Z.
Let R be an order which is contained in StabD(L) and let η ∈ Z>0 be a positive integer
such that ηR† ⊂ R.

Then there exists a D-basis v1, . . . , vm for V such that:
(i) v1, . . . , vm ∈ L;
(ii) the basis is weakly symplectic (when D has type I) or weakly unitary (when D

has type II) with respect to ψ;
(iii) the index of Rv1 + · · ·+Rvm in L is bounded as follows:

[L : Rv1 + · · ·+Rvm] ⩽ C10(d, e,m)ηC11(d,e,m)|disc(R)|C12(d,e,m)|disc(L)|C13(d,e,m);

(iv) for all i, j ∈ {1, . . . ,m} such that ψ(vi, vj) ̸= 0,

|ψ(vi, vj)|D ⩽ C14(d, e,m)ηC15(d,e,m)|disc(R)|C16(d,e,m)|disc(L)|C17(d,e,m).

The inequalities (iii) and (iv) hold with the values of the constants given by Table 1.

Proof. — The proof is by induction on m = dimD(V ). Let M be an R-submodule
of L as in Lemma 4.4. Let r = dimD(D ⊗RM) = 1 or 2. Choose v1 and perhaps v2
as in Lemma 4.4(iv).

For part (iii), the base case of the induction will be when m = r, and this is dealt
with in the three cases below. For part (iv), the base case is when m = 0, in which
case (iv) is vacuously true.
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Table 1.

d = 1 d = 2

C10(d, e,m) (em2)em(m+2)/16 (2em2)em(m+2)/2

C11(d, e,m) 0 14em

C12(d, e,m) m(m+ 2)/8 m(m+ 16)/4

C13(d, e,m) (m− 2)/4 (m− 1)/2

C14(d, e,m) (em2)(m(m+2)+24)/32 (2em2)(m(m+1)+14)/8

C15(d, e,m) 0 7

C16(d, e,m)
(
m(m+ 2)− 8

)
/16e

(
m(m+ 1) + 26

)
/16e

C17(d, e,m) (m+ 2)/8e (m+ 1)/8e

Let M⊥ be the orthogonal complement of M in L with respect to ψ. By Lem-
ma 3.2, M⊥ is also the orthogonal complement of M in L with respect to TrdD/Q ψ.
By Lemma 2.6 and Lemma 4.4(iii),

|disc(M⊥)| ⩽ |disc(L)| · |disc(M)|

⩽ (γ2d2em/d
3e)d

2er/2|disc(R)|r|disc(L)|(m+r)/m.
(4.4)

Now ψ restricted to M⊥ is non-degenerate, dimD(D ⊗R M⊥) = m − r < m and
R ⊂ StabD(M

⊥) so we can apply the lemma inductively to M⊥. We obtain a D-basis
vr+1, . . . , vm for D ⊗RM⊥ whose elements lie in M⊥ ⊂ L.

Now v1, . . . , vr ∈ M are orthogonal to vr+1, . . . , vm and v1, . . . , vr form a weakly
symplectic or weakly unitary D-basis for D⊗RM . Hence by induction v1, . . . , vm form
a weakly symplectic or weakly unitary D-basis for V . Thus (i) and (ii) are satisfied.

By induction,

(4.5)

[M⊥ : Rvr+1 + · · ·+Rvm]

⩽ C10(d, e,m− r)ηC11(d,e,m−r)|disc(R)|C12(d,e,m−r)

· |disc(M⊥)|C13(d,e,m−r)

⩽ C10(d, e,m− r)ηC11(d,e,m−r)|disc(R)|C12(d,e,m−r)

· (γ2d2em/d3e)d
2er/2·C13(d,e,m−r)|disc(R)|rC13(d,e,m−r)

· |disc(L)|(m+r)/m·C13(d,e,m−r).

We now split into cases depending on the type of D and on whether r = 1 or 2, as
in Lemma 4.4(iv). The proofs in the three cases are very similar, with just the details
of the calculations varying. For each case, the proofs of (iii) and (iv) are independent
of each other.

Case (a), part (iii). — This is the case when D has type I and r = 2.
When m = r = 2, from Lemma 4.4(iii) and (iv)(a), we have

[L : Rv1 +Rv2] = [L :M ] =
|disc(M)|1/2

|disc(L)|1/2
⩽ (γ22e/e)

e/2|disc(R)|.
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This establishes (iii) when m = 2 because

(γ22e/e)
e/2 ⩽ (4e)e/2 = C10(1, e, 2),

C11(1, e, 2) = 0, C12(1, e, 2) = 1, C13(1, e, 2) = 0.

When m ⩾ 3, we have, using the fact that M = Rv1+Rv2, along with Lemma 2.6,
Lemma 4.4(iii) and (4.5),

[L : Rv1 + · · ·+Rvm] = [L :M +M⊥][M⊥ : Rv3 + · · ·+Rvm]

⩽ |disc(M)|[M⊥ : Rv3 + · · ·+Rvm]

⩽ (γ2em/e)
e|disc(R)|2|disc(L)|2/m · C10(1, e,m− 2) (γ2em/e)

eC13(1,e,m−2)

· |disc(R)|C12(1,e,m−2)+2C13(1,e,m−2)|disc(L)|(m+2)/m·C13(1,e,m−2).

Now we can calculate: for the multiplicative constant:

C10(1, e,m− 2) (γ2em/e)
e(1+C13(1,e,m−2)) = (e(m− 2)2)e(m−2)m/16(γ2em/e)

em/4

⩽ (em2)e(m−2)m/16 · (em2)m/4

= (em2)e(m
2−2m+4m)/16

= C10(1, e,m),

for the exponent of |disc(R)|:

2 + C12(1, e,m− 2) + 2C13(1, e,m− 2) = 2 +
(m− 2)m

8
+ 2 · m− 4

4
= C12(1, e,m),

for the exponent of |disc(L)|:

2

m
+

(m+ 2)

m
· C13(1, e,m− 2) =

2

m
+

(m+ 2)(m− 4)

4m

=
8 + (m2 − 2m− 8)

4m
=

(m− 2)m

4m
= C13(1, e,m).

Case (a), part (iv). — For i = 1, j = 2, Lemma 4.4(iv)(a) gives

(4.6) |ψ(v1, v2)|D ⩽ γem|disc(L)|1/em.

This establishes (iv) when i = 1, j = 2 because, using Lemma 2.3 and the fact that
m ⩾ 2 so 1 ⩽ (m(m+ 2) + 24)/32 and 1 ⩽ (m(m+ 2) + 8)/16,

γem ⩽ em ⩽ C14(1, e,m),

0 ⩽
m(m+ 2)− 8

16e
= C16(1, e,m),

1

em
⩽

2 · 4
8em

⩽
m(m+ 2)

8em
= C17(1, e,m).
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For i, j ⩾ 3, induction gives

|ψ(vi, vj)|D ⩽ C14(1, e,m− 2)|disc(R)|C16(1,e,m−2) disc(M⊥)C17(1,e,m)

⩽ C14(1, e,m− 2)|disc(R)|C16(1,e,m−2)

·
(
(γ2em/e)

e|disc(R)|2|disc(L)|(m+2)/m
)C17(1,e,m−2)

.

Now we can calculate: for the multiplicative constant (using Lemma 2.3):

C14(1, e,m− 2) (γ2em/e)
eC17(1,e,m−2) = (e(m− 2)2)((m−2)m+24)/32 (γ2em/e)

m/8

⩽ (em2)((m−2)m+24)/32 · (em2)m/8

= (em2)(m
2−2m+24+4m)/32

= C14(1, e,m),

for the exponent of |disc(R)|:

C16(1, e,m− 2) + 2C17(1, e,m− 2) =
(m− 2)m− 8

16e
+ 2 · m

8e
= C16(1, e,m),

for the exponent of |disc(L)|:
m+ 2

m
C17(1, e,m− 2) =

(m+ 2)

m
· m
8e

= C17(1, e,m).

Case (b), part (iii). — In this case, D has type II and r = 1.
When m = r = 1, from Lemma 4.4(iii) and (iv)(b), we have

[L : Rv1] = [L :M ] =
|disc(M)|1/2

|disc(L)|1/2
⩽ (γ24e/8e)

e|disc(R)|1/2.

This establishes (iii) when m = 1 because

(γ24e/8e)
e ⩽ (2e)e ⩽ (2e)3e/2 = C10(2, e, 1),

C11(2, e, 1) = 14e > 0, C12(2, e, 1) = 17/4 > 1/2, C13(2, e, 1) = 0.

When m ⩾ 2, we have (using M = Rv1, Lemma 2.6, Lemma 4.4(iii) and (4.5))

[L : Rv1 + · · ·+Rvm] = [L :M +M⊥][M⊥ : Rv2 + · · ·+Rvm]

⩽ |disc(M)|[M⊥ : Rv2 + · · ·+Rvm]

⩽ (γ24em/8e)
2e|disc(R)||disc(L)|1/m

· C10(2, e,m− 1)ηC11(2,e,m−1)(γ24em/8e)
2eC13(2,e,m−1)

· |disc(R)|C12(2,e,m−1)+C13(2,e,m−1)|disc(L)|(m+1)/m·C13(2,e,m−1).

Now we can calculate: for the multiplicative constant:

C10(2, e,m− 1)(γ24em/8e)
2e(1+C13(2,e,m−1)) = (2e(m− 1)2)e(m−1)(m+1)/2(γ24em/8e)

em

⩽ (2em2)e(m−1)(m+1)/2 · (2em2)em

= (2em2)e(m
2−1+2m)/2

⩽ C10(2, e,m),
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for the exponent of η:

C11(2, e,m− 1) = 14e(m− 1) < C11(2, e,m),

for the exponent of |disc(R)|:

1 + C12(2, e,m− 1) + C13(2, e,m− 1) = 1 +
(m− 1)(m+ 15)

4
+
m− 2

2

=
m2 + 16m− 15

4
< C12(2, e,m),

for the exponent of |disc(L)|:
1

m
+

(m+ 1)

m
· C13(2, e,m− 1) =

1

m
+

(m+ 1)(m− 2)

2m

=
2 + (m2 −m− 2)

2m
=

(m− 1)m

2m
= C13(2, e,m).

Case (b), part (iv). — For i = j = 1, Lemma 4.4(iv)(b) gives

(4.7) |ψ(v1, v1)|D ⩽ γ4em|disc(L)|1/4em.

This establishes (iv) for i = j = 1 because, using Lemma 2.3 and the fact that m ⩾ 1,
so (m(m+ 1) + 14)/8 ⩾ 2,

γ4em ⩽ 4em ⩽ (2em2)2 ⩽ C14(2, e,m),

0 < 7 = C15(2, e,m),

0 <
1 · 2 + 26

16e
⩽
m(m+ 1) + 26

16e
= C16(2, e,m),

1

4em
⩽

2

8e
⩽
m+ 1

8e
= C17(2, e,m).

For i = j ⩾ 2, induction gives

|ψ(vj , vj)|D ⩽ C14(2, e,m− 1)ηC15(2,e,m−1)|disc(R)|C16(2,e,m−1)

· |disc(M⊥)|C17(2,e,m−1)

⩽ C14(2, e,m− 1)ηC15(2,e,m−1)|disc(R)|C16(2,e,m−1)

·
(
(γ24em/8e)

2e|disc(R)||disc(L)|(m+1)/m
)C17(2,e,m−1)

.

Now we can calculate: for the multiplicative constant:

C14(2, e,m− 1)(γ24em/8e)
2eC17(2,e,m−1) = (2e(m− 1)2)((m−1)m+14)/8 · (γ24em/8e)m/4

⩽ (2em2)(m
2−m+14)/8 · (2em2)2m/8

= (2em2)(m
2+m+14)/8

= C14(2, e,m),

for the exponent of η:

C15(2, e,m− 1) = 7 = C15(2, e,m),
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for the exponent of |disc(R)|:

C16(2, e,m− 1) + C17(2, e,m− 1) =
(m− 1)m+ 26

16e
+
m

8e
= C16(2, e,m),

for the exponent of |disc(L)|:
m+ 1

m
C17(2, e,m− 1) =

(m+ 1)

m
· m
8e

=
m+ 1

8e
= C17(2, e,m).

Case (c), part (iii). — This is the case where D has type II and r = 2.
When m = r = 2, from Lemma 4.4(iii) and (iv)(c), we have

[L : Rv1 +Rv2] = [L :M ][M : Rv1 +Rv2]

=
|disc(M)|1/2

|disc(L)|1/2
[M : Rv1 +Rv2]

⩽
(γ28e/8e)

2e|disc(R)||disc(L)|1/2

|disc(L)|1/2
(γe/8e)

2e(γ28e/8e)
2eη28e|disc(R)|8|disc(L)|1/2

= (γe/8e)
2e(γ28e/8e)

4eη28e|disc(R)|9|disc(L)|1/2.

This establishes (iii) when m = 2 because

(γe/8e)
2e(γ28e/8e)

4e ⩽ 1 · (8e)4e = C10(2, e, 2),

C11(2, e, 2) = 28e, C12(2, e, 2) = 9, C13(2, e, 2) = 1/2.

When m ⩾ 3, we have (using Lemma 2.6, Lemma 4.4(iv)(c) and (4.5))

[L : Rv1 + · · ·+Rvm]

= [L :M +M⊥][M : Rv1 +Rv2][M
⊥ : Rv3 + · · ·+Rvm]

⩽ |disc(M)|[M : Rv1 +Rv2][M
⊥ : Rv3 + · · ·+Rvm]

⩽ (γ24em/8e)
4e|disc(R)|2|disc(L)|2/m

· (γe/8e)2e(γ24em/8e)2eη28e|disc(R)|8|disc(L)|1/m

· C10(2, e,m− 2)ηC11(2,e,m−2)(γ24em/8e)
4eC13(2,e,m−2)

· |disc(R)|C12(2,e,m−2)+2C13(2,e,m−2)|disc(L)|(m+2)/m·C13(2,e,m−2).

Now we can calculate: for the multiplicative constant:

C10(2, e,m− 2)(γe/8e)
2e(γ24em/8e)

e(6+4C13(2,e,m−2))

= (2e(m− 2)2)e(m−2)m/2(γe/8e)
2e (γ24em/8e)

2em

⩽ (2em2)e(m−2)m/2 · 1 · (2em2)2em

= (2em2)e(m
2−2m+4m)/2

= C10(2, e,m),

for the exponent of η:

28e+ C11(2, e,m− 2) = 28e+ 14e(m− 2) = C11(2, e,m),
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for the exponent of |disc(R)|:

2 + 8 + C12(2, e,m− 2) + 2C13(2, e,m− 2)

= 10 +
(m− 2)(m+ 14)

4
+ (m− 3) =

m2 + 16m

4
= C12(2, e,m),

for the exponent of |disc(L)|:

2

m
+

1

m
+
m+ 2

m
· C13(2, e,m− 2) =

3

m
+

(m+ 2)(m− 3)

2m

=
6 + (m2 −m− 6)

2m
=

(m− 1)m

2m
= C13(2, e,m).

Case (c), part (iv). — For i = j = 1 or 2, Lemma 4.4(iv)(c) gives

(4.8) |ψ(vi, vi)|D ⩽ 2−5/2γ1/2e γ24emη
7|disc(R)|2/e|disc(L)|1/2em.

This establishes (iv) for i = j = 1 or 2 because, using Lemma 2.3 and the fact that
m ⩾ 2 so (m(m+ 1) + 14)/8 ⩾ 5/2,

2−5/2γ1/2e γ24em ⩽ 2−5/2e1/2(4em)2 = 23/2e5/2m2 ⩽ (2em2)5/2 ⩽ C14(2, e,m),

7 = C15(2, e,m),

2

e
=

2 · 3 + 26

16e
⩽
m(m+ 1) + 26

16e
= C16(2, e,m),

1

2em
⩽

2

8e
⩽
m+ 1

8e
⩽ C17(d, e,m).

For i = j ⩾ 3, induction gives

|ψ(vj , vj)|D ⩽ C14(2, e,m− 2)ηC15(2,e,m−2)|disc(R)|C16(2,e,m−2)

· |disc(M⊥)|C17(2,e,m−2)

⩽ C14(2, e,m− 2)ηC15(2,e,m−2)|disc(R)|C16(2,e,m−2)

·
(
(γ24em/8e)

4e|disc(R)|2|disc(L)|(m+2)/m
)C17(2,e,m−2)

.

Now we can calculate: for the multiplicative constant:

C14(2, e,m− 2)(γ24em/8e)
4eC17(2,e,m−2)

= (2e(m− 2)2)((m−2)(m−1)+14)/8 · (γ24em/8e)(m−1)/2

⩽ (2em2)(m
2−3m+16)/8 · (2em2)(4m−4)/8

= (2em2)(m
2+m+12)/8

⩽ C14(2, e,m),

for the exponent of η:

C15(2, e,m− 2) = 7 = C15(2, e,m),
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for the exponent of |disc(R)|:

C16(2, e,m− 2) + 2C17(2, e,m− 2) =
(m− 2)(m− 1) + 26

16e
+ 2 · m− 1

8e

=
m2 +m+ 24

16e
⩽
m(m+ 1) + 26

16e
= C16(2, e,m),

for the exponent of |disc(L)|:

m+ 2

m
C17(2, e,m− 2) =

m+ 2

m
· m− 1

8e

=
m2 +m− 2

8em
⩽
m(m+ 1)

8em
= C17(2, e,m). □

Lemma 4.6. — Let (D, †) be a division Q-algebra with a positive involution. Let V be a
left D-vector space with a non-degenerate (D, †)-skew-Hermitian form ψ : V ×V → D.
Let L be a Z-lattice in V such that TrdD/Q ψ(L × L) ⊂ Z. Let R = StabD(L). Then
disc(L)R† ⊂ R.

Proof. — Let a ∈ R and x, y ∈ L. Then

TrdD/Q ψ(a
†x, y) = TrdD/Q

(
a†ψ(x, y)

)
= TrdD/Q

(
ψ(x, y)a†

)
= TrdD/Q ψ(x, ay).

Since x, ay ∈ L, we conclude that TrdD/Q ψ(a
†x, y) ∈ Z.

Since this holds for all y ∈ L, we have a†x ∈ L∗. Consequently,

disc(L)a†x = [L∗ : L]a†x ∈ L.

This holds for all x ∈ L, so disc(L)a† ∈ StabD(L) = R. □

To complete the proof of Theorem 1.2, we combine Proposition 4.5 and Lemma 4.6.
The resulting exponent of |disc(L)| in (iii) is C11(d, e,m) + C13(d, e,m) and the ex-
ponent of |disc(L)| in (iv) is C15(d, e,m) + C17(d, e,m), while the other constants in
Theorem 1.2 are the same as the corresponding constants in Proposition 4.5.

5. Application to the Zilber–Pink conjecture

In this section we study special subvarieties of PEL type from the point of view of
Shimura data. The main result of the section is that Shimura datum components of
simple PEL type I and II lie in a single GSp2g(R)-conjugacy class, which we describe
explicitly. We also establish a bound on the dimension of all special subvarieties of
PEL type in Ag, demonstrating that Theorem 1.3 is indeed a consequence of the
Zilber–Pink conjecture. We end the section by outlining the strategy of the proof of
Theorem 1.3 carried out in the subsequent sections.

For our notation and terminology around Shimura datum components, see [DO21,
sec. 2A and 2B].
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5.A. Shimura data. — Let L = Z2g, let V = LQ and let ϕ : L × L → Z be the
symplectic form represented, in the standard basis, by the matrix J2g. Let G =

GSp(V, ϕ) = GSp2g and let Γ = Sp2g(Z). Let X+ denote the G(R)+-conjugacy
class of the morphism h0 : S → GR given by

(5.1) h0(a+ ib) 7−→
(
a b
−b a

)⊕g
.

Then (G, X+) is a Shimura datum component and there is a G(R)+-equivariant
bijection X+ ∼= Hg, where Hg is the Siegel upper half-space. The moduli space of
principally polarised abelian varieties of dimension g, denoted Ag, is the Shimura
variety whose complex points are Γ\X+.

Let S be a special subvariety of PEL type of Ag, as defined in section 1.C, and let R
be its generic endomorphism ring. Choose a point x ∈ X+ whose image s ∈ Ag is an
endomorphism generic point in S(C). Then x induces an isomorphism H1(As,Z) ∼= L

and hence the action of R on As induces an action of R on L.
Let H denote the centraliser in G of the action of R on L, which is a reductive

Q-algebraic group. We call H the general Lefschetz group of S. Note that H is only
defined up to conjugation by Γ, because different choices of x may lead to isomor-
phisms H1(As,Z) ∼= L which differ by Γ. (The group H is isomorphic to the Lefschetz
group of an endomorphism generic abelian variety parameterised by S, as defined
in [Mil99], thanks to [Mil99, Th. 4.4]. However it seems to be more common to call
H ∩ Sp or (H ∩ Sp)◦ the Lefschetz group, so we have added the adjective “general”
by analogy with the general symplectic and general orthogonal groups.)

The special subvariety of PEL type S is a Shimura subvariety component of Ag

associated with a Shimura subdatum component of the form (H◦, X+
H) ⊂ (G, X+),

where H is the general Lefschetz group of S (see [Mil05, paragraph above Theo-
rem 8.17]).

We say that (H, X+
H) ⊂ (G, X+) is a Shimura subdatum component of simple PEL

type I or II if it is a Shimura subdatum component associated with a special subvariety
of PEL type, where H is the general Lefschetz group, and its generic endomorphism
algebra is a division algebra with positive involution of type I or II. Note that in the
simple type I or II case, H = H◦.

5.B. Representatives of conjugacy classes of Shimura data of simple PEL type I
or II. — The Shimura subdatum components of (G, X+) of simple PEL type I or II
lie in only finitely many G(R)+-conjugacy classes. Indeed, we shall now explicitly
describe finitely many Shimura subdatum components which represent these G(R)+-
conjugacy classes. Note that, for convenience, these representative subdatum compo-
nents are not of simple PEL type, although they are of PEL type. This generalises
[DO22, Lem. 6.1], which is the case g = 2, d = 2, e = m = 1.

Let d, e, m be positive integers such that d2em = 2g, d = 1 or 2 and dm is even.
For fixed g, there are only finitely many integers d, e,m satisfying these conditions.
As we shall show, each triple d, e,m corresponds to a single G(R)+-conjugacy class
of Shimura subdatum components of simple PEL type I or II.
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Let D0 = Md(Q)e. Define a Q-algebra homomorphism ι0 : D0 → M2g(Q) as follows:
– when d = 1: ι0(a1, . . . , ae) = a1Im ⊕ · · · ⊕ aeIm.
– when d = 2:

ι0

((a1 b1
c1 d1

)
, . . . ,

(
ae be
ce de

))
=

(
a1I2m b1I2m
c1I2m d1I2m

)
⊕ · · · ⊕

(
aeI2m beI2m
ceI2m deI2m

)
.

We view V as a left D0-module via ι0.
Let t denote the involution of D0 which is transpose on each factor. Since dm is

even, ι0(D0) commutes with J2g and so, for all a ∈ D0 and x, y ∈ V , we have

ϕ(ax, y) = xtι(a)tJ2gy = xtJ2gι(a)
ty = ϕ(x, aty).

Thus ϕ : V × V → Q is a (D0, t)-compatible symplectic form. By Lemma 3.1
and Corollary 3.3, there is a unique non-degenerate (D0, t)-skew-Hermitian form
ψ0 : V × V → D0 such that ϕ = TrdD0/Q ψ0.

Let H0 denote the centraliser of ι0(D0) in G. In other words,

(5.2) H0 = {g⊕d1 ⊕ g⊕d2 ⊕ · · · ⊕ g⊕de : g1, . . . , ge ∈ GSpdm, ν(g1) = · · · = ν(ge)},

where ν : GSpdm → Gm denotes the symplectic multiplier character. This is a con-
nected Q-algebraic group, and it is equal to the general Lefschetz group of a special
subvariety of PEL type in which endomorphism generic points correspond to abelian
varieties isogenous to a product of the form Ad1 × · · · ×Ade where A1, . . . , Ae are pair-
wise non-isogenous simple abelian varieties of dimension dm/2 with End(A1) = · · · =
End(Ae) = Z.

Lemma 5.1. — Let (H, X+
H) ⊂ (GSp2g,Hg) be a Shimura subdatum component of

simple PEL type I or II. Let D be the generic endomorphism algebra of (H, X+
H) and

let F be the centre of D. Then HR is a G(R)+-conjugate of the group H0 constructed
above for the parameters

d =
√
dimF (D) = 1 or 2, e = [F : Q], m = 2g/d2e.

Proof. — The tautological family of principally polarised abelian varieties on X+

restricts to a family of principally polarised abelian varieties on X+
H. The polarisation

induces a Rosati involution † of the endomorphism algebra of this family, namely D.
As we saw in the construction of the general Lefschetz group, D acts on V . Via this
action, the symplectic form ϕ : V × V → Q is (D, †)-compatible.

Since (D, †) is a simple Q-algebra with a positive involution of type I or II, there
is an isomorphism α : (D0,R, t) → (DR, †) of R-algebras with involution (where D0 =

Md(Q)e for the parameters d and e specified in the lemma). We obtain an action of
D0,R on VR by composing the action of DR with α.

Since ϕ is (D, †)-compatible, it is also (D0,R, t)-compatible under the via α. Hence
there is a unique non-degenerate (D0,R, t)-skew-Hermitian form ψα : VR × VR → D0,R
such that ϕ = TrdD0,R/R ψα, where “(D0,R, t)-skew-Hermitian” refers to the action
via α. (Note that ψα is in general different from ψ0 because ψ0 is (D0,R, t)-skew-
Hermitian with respect to the action via ι0.)
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By Lemma 3.5, there exists a D0,R-basis v1, . . . , vm for VR with respect to the
action via ι0 which is symplectic (if d = 1) or unitary (if d = 2) with respect to ψ0.
There likewise exists a D0,R-basis w1, . . . , wm for VR with respect to the action via α
which is symplectic or unitary with respect to ψα.

Define γ ∈ GL(VR) by

γ(ι0(a1)v1 + · · ·+ ι0(am)vm) = α(a1)w1 + · · ·+ α(am)wm

for all a1, . . . , am ∈ D0,R. Because v1, . . . , vm and w1, . . . , wm are symplectic or unitary
bases (depending on d) with respect to ψ0 and ψα respectively, we have

ψα(γ(vi), γ(vj)) = ψα(wi, wj) = ψ0(vj , vj)

for all i, j. Because ψ0 and ψα are (D0,R, t)-skew-Hermitian with respect to the actions
via ι0 and α respectively, it follows that

ψα(γ(v), γ(w)) = ψ0(v, w)

for all v, w ∈ VR. Taking the reduced trace, we obtain ϕ(γ(v), γ(w)) = ϕ(v, w) for all
v, w ∈ VR. In other words, γ ∈ Sp(VR, ϕ) ⊂ G(R)+.

Since γ is an isomorphism between the representations of D0,R given by α and ι0,
γH0γ

−1 is the centraliser in G of the action of D0,R via α. In other words, γH0γ
−1 is

the centraliser in G of the action of DR, which is the general Lefschetz group H. □

Lemma 5.2. — For each triple of positive integers d, e,m satisfying d2em = 2g, d = 1

or 2 and dm even, there exists a unique Shimura subdatum component (H0, X
+
0 ) of

(G, X+) with group H0. Furthermore, the Hodge parameter h0 from (5.1) is in X+
0 .

Proof. — First note that h0 ∈ X+ and h0 factors through H0,R. Hence if X+
0 de-

notes the H0(R)+-conjugacy class of h0 in Hom(S,H0,R), then (H0, X
+
0 ) is a Shimura

subdatum component of (G, X+).
To establish the uniqueness, let X+

0 now denote any subset of X+ such that
(H0, X

+
0 ) is a Shimura datum component. Let Had

0 denote the quotient of H0 by
its centre. By [Mil05, Prop. 5.7(a)], X+

0 is in bijection with its image (X+
0 )ad ⊂

Hom(S,Had
0,R) under composition with the natural map H0,R → Had

0,R.
Observe that Had

0
∼= PGSpemd. Therefore, (X+

0 )ad is a product of PGSpmd(R)+-
conjugacy classes of morphisms S → PGSpmd,R satisfying conditions SV1–SV3 from
[Mil05, §4]. From [Mil05, Prop 1.24], and the following paragraphs, there exists only
one PGSpmd(R)-conjugacy class Xmd of morphisms S → PGSpmd,R satisfying SV1–
SV3. It has two connected components X+

md and X−
md corresponding to the connected

components of PGSpmd(R). In other words, (X+
0 )ad is equal to a direct product of

copies of the spaces X+
md and X−

md.
Consider the morphisms h+2 , h

−
2 : S → GL2,R defined by

h+2 : a+ ib 7−→
(
a b
−b a

)
and h−2 : a+ ib 7−→

(
a −b
b a

)
.

Then (h+2 )
⊕md/2 and (h−2 )

⊕md/2 are non-GSpmd(R)+-conjugate morphisms S →
GSpmd,R satisfying SV1–SV3. Therefore, the images of their GSpmd(R)+-conjugacy
classes in Hom(S,PGSpmd,R) are precisely X+

md and X−
md.
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It follows that (X+
0 )ad is the image in Hom(S,PGSpemd,R) of the GSpemd(R)+-

conjugacy class of an element h ∈ Hom(S,GSpemd,R) of the form(
(h±2 )

⊕md/2, . . . , (h±2 )
⊕md/2),

for some sequence of signs in {±}e. Since the image of h in Hom(S,GSpmd2e,R)

(obtained by repeating each component d times block-diagonally) lies in a Shimura
datum, it satisfies condition SV2 of [Mil05], that is, the stabiliser of h in GSpmd2e(R)
is compact modulo the centre. This only holds when

h = h+ =: ((h+2 )
⊕md/2, . . . , (h+2 )

⊕md/2) or h = h− := ((h−2 )
⊕md/2, . . . , (h−2 )

⊕md/2).

This can be checked by observing that the centraliser of h+2 ⊕ h−2 in GSp4(R) is
non-compact modulo the centre.

Note that the image of h+ in Hom(S,GSpmd2e,R) is equal to h0. Since h0 ∈ X+

while the image of h− is not in X+, we conclude that X+
0 must be equal to the

H0(R)-conjugacy class of h0. □

Corollary 5.3. — If (H, X+
H) ⊂ (G, X+) is a Shimura subdatum component of sim-

ple PEL type I or II and H = gH0g
−1 for g ∈ G(R)+, then X+

H = gX+
0 where

(H0, X
+
0 ) ⊂ (G, X+) is the unique Shimura subdatum component given by Lemma 5.2.

5.C. Dimension of special subvarieties of PEL type. — In this section we prove
Proposition 1.7: Proposition 5.4 is Proposition 1.7(i), while Proposition 5.5 is Propo-
sition 1.7(ii).

Proposition 5.4. — Let S ⊂ Ag be a special subvariety, not equal to Ag. If S is of
simple PEL type, then dim(S) ⩽ dim(Ag)− g2/4.

Proof. — Let D be the generic endomorphism algebra of S. Following our usual no-
tation, let F be the centre of D and let

d =
√
dimF (D), e = [F : Q], m = 2g/d2e.

When D has Albert type IV, we need some additional notation. Let s ∈ S(C).
Then DR ∼= Md(C)e/2 acts R-linearly on the tangent space T0(As(C)). For each i =

1, . . . , e/2, let ri denote the multiplicity in T0(As(C)) of the standard representation
of the i-th factor Md(C) of DR. Similarly let si denote the multiplicity of the complex
conjugate of the standard representation of the i-th factor of DR. The values ri and si
are independent of the choice of s ∈ S(C), and satisfy ri + si = dm.

The dimension of special subvarieties of simple PEL type was determined by
Shimura [Shi63, 4.1]. Note that our m is the same as m in [Shi63], while our e is
called g in [Shi63]. For a more modern account of this theory, see [BL04, Chap. 9].
For each type of endomorphism algebra D, we quote the dimension of the special
subvariety from [Shi63, 4.1] and use some elementary inequalities.

When D has type I, d = 1, em = 2g and e ⩾ 2 since S ̸= Ag, so m ⩽ g. Hence

dim(S) = 1
2
m
2

(
m
2 + 1

)
e ⩽ 1

2g
(
1
2g + 1

)
= 1

4g
2 + 1

2g.
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When D has type II, d = 2, em = g/2 and m ⩽ g/2 so

dim(S) = 1
2m(m+ 1)e ⩽ 1

4g
(
1
2g + 1

)
= 1

8g
2 + 1

4g.

When D has type III, d = 2, em = g/2 and m ⩽ g/2 so

dim(S) = 1
2m(m− 1)e ⩽ 1

4g
(
1
2g − 1

)
= 1

8g
2 − 1

4g.

When D has type IV, 2g = d2em and e ⩾ 2 since F is a CM field, so m ⩽ g.
Furthermore ri + si = dm so risi ⩽ d2m2/4 for each i. Hence,

dim(S) =

e/2∑
i=1

risi ⩽ 1
2e ·

1
4d

2m2 = 1
4gm ⩽ 1

4g
2.

Hence in all cases,

dim(S) ⩽ 1
4g

2 + 1
2g = 1

2g(g + 1)− 1
4g

2 = dim(Ag)− 1
4g

2. □

Proposition 5.5. — Let S ⊂ Ag be a special subvariety, not equal to Ag. If S is of
PEL type, then dim(S) ⩽ dim(Ag)− g + 1.

Proof. — Note that g2/4 ⩾ g − 1 for all real numbers g, so Proposition 5.4 implies
the claim for special subvarieties of simple PEL type.

Let S ⊂ Ag be a special subvariety of non-simple PEL type. By adding level
structure, we may obtain a finite cover S′ → S which is a fine moduli space of abelian
varieties with PEL structure. Then there is a universal abelian scheme with PEL
structure A → S′. Since S′ is of non-simple PEL type, A is a non-simple abelian
scheme. Thus there exist non-trivial abelian schemes A1, A2 → S′ such that A is
isogenous to A1×A2. (There may be multiple choices of isogeny decompositions of A.
Choose any such decomposition.) Let g1, g2 denote the relative dimensions of A1

and A2 respectively.
Set

T = {(s, s1, s2) ∈ S′ ×Ag1 ×Ag2 : As is isogenous to As1 ×As2}.

Since isogenies As → As1 × As2 give rise to Hodge classes on As × As1 × As2 , the
locus T is a countable union of special subvarieties of S′ ×Ag1 ×Ag2 .

By construction, the projection T → S′ is surjective on C-points. An irreducible
complex algebraic variety cannot be contained in the union of countably many proper
closed subvarieties. Hence there exists an irreducible component T+ ⊂ T such that
the image of T+ is dense in S′. Hence dim(T+) ⩾ dim(S′) = dim(S).

Given any two abelian varieties As1 and As2 over C, there are only countably many
isomorphism classes of abelian varieties which are isogenous to As1 × As2 . Further-
more each abelian variety of dimension g carries only finitely many PEL structures
parameterised by S′ (the natural morphism S′ → Ag is finite). Hence the projection
T → Ag1 ×Ag2 has countable fibres. Therefore

dim(T+) ⩽ dim(Ag1 ×Ag2) =
g1(g1 + 1)

2
+
g2(g2 + 1)

2
.
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Since g1 + g2 = g, we obtain
1
2g1(g1 + 1) + 1

2g2(g2 + 1) = 1
2

(
(g1 + g2)

2 − 2g1g2 + (g1 + g2)
)
= 1

2 (g
2 + g)− g1g2.

Therefore
dim(S) ⩽ dim(T+) ⩽ dim(Ag)− g1g2.

Now g1g2 = g1(g − g1) is a quadratic function of g1 with a maximum at g1 = g/2.
Hence, for 1 ⩽ g1 ⩽ g−1, g1g2 is minimised when g1 = 1 or g−1. Thus g1g2 ⩾ g−1. □

6. Construction of representation and closed orbit

This section constructs the representation required for the strategy outlined in
section 1.E and proves that it satisfies conditions (i) and (ii) of [DO22, Th. 1.2].
These conditions are algebraic and geometric in nature. We also prove a small piece
of arithmetic information about the representation, namely Proposition 6.1(v), which
will be used to obtain more substantial arithmetic properties in section 7. This section
generalises [DO22, §§5.2 & 5.3].

We will actually construct two representations ρL, ρR : G → GL(W ), which are
induced by left and right multiplication respectively in End(V ). The representation
to which we shall apply [DO22, Th. 1.2] is ρL, while ρR is an auxiliary object required
at the end of section 7.

Proposition 6.1. — Let d, e and m be positive integers such that dm is even. Let
n = d2em. Let L = Zn and let ϕ : L × L → Z be the standard symplectic form as in
section 5.A. Let V = LQ, let G = GSp(V, ϕ) = GSpn,Q and let Γ = Spn(Z).

Let E0 be a Q-subalgebra of End(V ) = Mn(Q) such that E0,C ∼= Mdm(C)e and the
resulting E0,C-module structure on VC is isomorphic to the direct sum of d copies of
each of the e irreducible representations of E0,C. Let H0 be the Q-algebraic subgroup
of G whose k-points are

H0(k) = (E0 ⊗Q k) ∩G(k)

for each field extension k of Q.
Then there exists a Q-vector space W , a Z-lattice Λ ⊂W , Q-algebraic representa-

tions ρL, ρR : G → GL(W ), a vector w0 ∈ Λ and a constant C18 such that:
(i) StabG,ρL(w0) = StabG,ρR(w0) = H0;
(ii) the orbit ρL(G(R))w0 is closed in WR;
(iii) ρL and ρR commute with each other;
(iv) ρL(Γ) and ρR(Γ) stabilise Λ;
(v) for each u ∈ G(R), if the group Hu = uH0,Ru

−1 is defined over Q, then there
exists du ∈ R>0 such that

duρL(u)ρR(u)w0 ∈ Λ and du ⩽ C18|disc(Su)|1/2,

where Su denotes the ring uE0,Ru
−1 ∩Mn(Z).
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In our application to Theorem 1.3, H0 shall be equal to the group H0 defined
in (5.2). To achieve this, let d = 1 or 2 and define D0 and ι0 : D0 → Mn(Q) as in
section 5.B (with n = 2g). Let E0 be the centraliser of ι0(D0) in Mn(Q), that is,

(6.1) E0 = {f⊕d1 ⊕ f⊕d2 ⊕ · · · ⊕ f⊕de ∈ Mn(Q) : f1, . . . , fe ∈ Mdm(Q)}.

It is immediate that intersecting this algebra E0 with G yields the same group H0 as
in (5.2). Furthermore, the map (f1, . . . , fe) 7→ f⊕d1 ⊕f⊕d2 ⊕· · ·⊕f⊕de is an isomorphism
of Q-algebras Mdm(Q)e → E0. By decomposing V as a direct sum of dm-dimensional
subspaces, matching the block diagonal decomposition of elements of E0, we see that V
is isomorphic to the sum of d copies of each of the e irreducible representations of E0.
After extending scalars to C, we conclude that E0 as defined by (6.1) satisfies the
conditions of Proposition 6.1.

Allowing more general choices of E0 in Proposition 6.1 than simply (6.1), and only
imposing conditions on E0 after extending scalars to C, ensures that the proposition
could be used as part of a similar strategy for proving the Zilber–Pink conjecture for
special subvarieties of simple PEL type III and IV, as well as types I and II.

6.A. Construction of the representation. — Let σL, σR : G → GL(End(V )) de-
note the left and right multiplication representations of G:

σL(g)f = gf, σR(g)f = fg−1.

Note that σR(g)f = fg−1 rather than fg so that σR is a group representation.
The representations ρL and ρR in Proposition 6.1 are induced by σL and σR via a
linear algebra construction which we shall now explain, and hence one may think of
ρL(u)ρR(u) in Proposition 6.1(v) as being induced by conjugation by u ∈ G(R).

Let ν : G = GSpn → Gm denote the symplectic multiplier character. Let W =

Λmn End(V ), which is a Q-vector space of dimension
(
n2

mn

)
. The representations re-

quired by Proposition 6.1 are defined as

ρL = ΛmnσL ⊗ ν−mn/2, ρR = ΛmnσR ⊗ νmn/2 : G −→ GL(W ).

The powers of ν are chosen so that both ρL and ρR restrict to the trivial representation
on the scalars Gm ⊂ GSpn.

Next we construct a vector w0 ∈ W satisfying Proposition 6.1(i). Observe that
dimQ(E0) = e(dm)2 = mn so ΛmnE0 is a 1-dimensional subspace of W . This was the
reason we used the mn-th exterior power to define W .

Because E0 is a subring of End(V ), for any field extension k of Q,

StabG(k),σL
(E0) = G(k) ∩ (E0 ⊗Q k) = H0(k).

Similarly StabG(k),σR
(E0) = Hd,e,m(k). Consequently,

StabG,ρL(Λ
mn
E0) = StabG,ρR(Λ

mn
E0) = H0.

The action of E0 on ΛmnE0 via the mn-th exterior power of the left regular repre-
sentation is multiplication by the non-reduced norm NmE0/Q. Choose an isomorphism
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η : E0,C → Mdm(C). Let f ∈ E0,C and η(f) = (f1, . . . , fe) ∈ Mdm(C)e. Since the irre-
ducible representations of E0,C are projections onto the simple factors of Mdm(C)e,
and each irreducible representation appears d times in VC, we have

det(f) =

e∏
i=1

det(fi)
d.

Hence

NmE0,C/C(f) =

e∏
i=1

NmMdm(C)/C(fi) =

e∏
i=1

det(fi)
dm = det(f)m.

If f ∈ H0(Q) ⊂ G(Q), then det(f) = ν(f)n/2 so

NmE0/Q(f) = ν(f)mn/2.

Hence the action of H0 on ΛmnE0 via ρL is multiplication by NmE0/Q ⊗ν−mn/2 = 1.
Thus for any w ∈ ΛmnE0, we have ρL(H0)w = w, while

StabG,ρL(w) ⊂ StabG,ρL(Λ
mn
E0) = H0.

Thus StabG,ρL(w) = H0.
For similar reasons, the action of H0 on ΛmnE0 via ΛmnσR is multiplication by

Nm−1
E0/Q, and hence the action of H0 on ΛmnE0 via ρR is trivial. It follows that for

any w ∈ ΛmnE0, StabG,ρR(w) = H0.
Let Λ = ΛmnMn(Z), which is a Z-lattice in W . Let S0 = E0 ∩Mn(Z), which is an

order in E0. Then ΛmnS0 is a free Z-module of rank 1 contained in Λ. Choose w0 to
be a generator of ΛmnS0 (it does not matter which generator we choose).

Since w0 ∈ ΛmnE0, the argument above shows that w0 satisfies Proposition 6.1(i).
It is clear that ρL and ρR commute, so Proposition 6.1(iii) holds. It is also imme-
diate that Proposition 6.1(iv) holds. Most of this section will be devoted to proving
Proposition 6.1(ii). Since the proof of 6.1(v) is short, let us first include it here.

Proof of Proposition 6.1(v). — By definition,

ρL(u)ρR(u) = ΛmnσL(u)σR(u) ∈ GL(Λmn End(V )),

where σL(u)σR(u) ∈ GL(End(V )) is conjugation by u. Hence ρL(u)ρR(u)w0 is a
generator of the Z-module ΛmnuS0u

−1.
Let du = covol(Su)/ covol(uS0u

−1) with respect to the volume form induced by
the non-reduced trace form on Su,R. Then duρL(u)ρR(u)w0 is a generator for ΛmnSu
and therefore is in Λ.

Conjugation by u pulls back TrSu,R/R to TrS0,R/R. Hence

du = covol(S,TrSu,R/R)/ covol(S0,TrS0,R/R) =
√

|disc(Su)|/|disc(S0)|. □

6.B. Proof of closed orbit. — According to [BHC62, Prop. 6.3], in order to show
that ρL(G(R))w0 is closed in WR (in the real topology), it suffices to prove that
ρL(G(C))w0 is Zariski closed in WC. Therefore, for the rest of this section, we shall
deal entirely with linear algebra and algebraic geometry over C.
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Set

Q = {g ∈ End(VC) : ∃s ∈ C s.t. for all v, v′ ∈ VC, ϕ(gv, gv
′) = sϕ(v, v′)}.

Note that Q is equal to the union of G(C) with the set of elements of End(VC) whose
image is contained in a ϕ-isotropic subspace of VC. In particular,

G(C) = {g ∈ Q : det(g) ̸= 0}.

Let e1, . . . , en be a symplectic basis for (VC, ϕ). Then Q is a Zariski closed subset
of End(VC) because it is defined by the polynomial equations

ϕ(gei, gej) = 0 for each i, j except when {i, j} = {2k − 1, 2k} for some k,
ϕ(ge1, ge2) = ϕ(ge3, ge4) = · · · = ϕ(gen−1, gen).

Furthermore, Q is a homogeneous subset of End(VC), that is, it is closed under mul-
tiplication by scalars.

Consequently, for any map from End(VC) to another vector space whose coordinates
are given by homogeneous polynomials of the same positive degree, the image of Q is
homogeneous and Zariski closed. (This is because such a map induces a morphism of
varieties between the associated projective spaces, and the image of the projective alge-
braic set (Q∖{0})/Gm under such a morphism will again be a projective algebraic set.)

Note that σL : G(C) → GL(End(VC)) extends to a C-algebra homomorphism
End(VC) → End(End(VC)) ∼= Mn2(C) defined by the formula σL(g)f = gf . Consider-
ing σL as a representation of the multiplicative monoid End(VC), it induces a monoid
representation

ΛmnσL : End(VC) −→ End(Λmn End(VC)).

Here ΛmnσL is a homogeneous morphism of degree mn, so the set (ΛmnσL)(Q)w0 is
a homogeneous Zariski closed subset of WC.

Lemma 6.2. — There exist vectors u1, . . . , um∈V such that the map δ : End(V ) → V m

defined by δ(f) = (f(u1), . . . , f(um)) restricts to an isomorphism of Q-vector spaces
E0 → V m.

Proof. — By the hypothesis of Proposition 6.1, we can decompose VC as a direct sum
of irreducible E0,C-modules

(6.2) VC =
e⊕
i=1

d⊕
j=1

Vij

such that the action of E0,C ∼= Mdm(C)e on Vij factors through the i-th copy of
Mdm(C). Since Mdm(C) is a simple algebra, it has a unique irreducible representa-
tion (up to isomorphism), so we may choose an isomorphism of Mdm(C)-modules
θij : Cdm → Vij .

Label the standard basis of Cdm as ekℓ for 1 ⩽ k ⩽ d, 1 ⩽ ℓ ⩽ m. Given f ∈ E0,C,
write η(f) = (f1, . . . , fe) ∈ Mdm(C)e. For i = 1, . . . , e, k = 1, . . . , d and ℓ = 1, . . . ,m,
let fi,kℓ ∈ Cdm denote the column of fi indexed by k and ℓ (ordered to match the
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basis vectors ekℓ). The action of E0,C on Vij factors through the i-th copy of Mdm(C)
and θij is an Mdm(C)-module homomorphism, so

f(θij(ekℓ)) = θij(fi(ekℓ)) = θij(fi,kℓ).

For ℓ = 1, . . . ,m, let

uℓ =

e∑
i=1

d∑
j=1

θij(ejℓ) ∈ VC.

(Note that the index j is used twice in this expression.) Then

(6.3) f(uℓ) =

e∑
i=1

d∑
j=1

θij(fi,jℓ).

If f ∈ ker(δ) ∩ E0,C, then f(uℓ) = 0 for ℓ = 1, . . . ,m. Since (6.2) is a direct sum
and the θij are injective, it follows from (6.3) that fi,jℓ = 0 for all i, j and ℓ. In other
words f = 0.

Thus δ|E0,C is injective. In particular δ|E0
is injective. Since

dimQ(E0) = dimC(E0,C) = ed2m2 = dimQ(V
m)

and δ is a linear map, it follows that δ|E0 is an isomorphism E0 → V m. □

Lemma 6.3. — There exists a linear function ζ : W → Q such that ζ(w0) ̸= 0 and

ζ
(
(ΛmnσL)(g)w

)
= det(g)mζ(w)

for all g ∈ End(V ) and all w ∈W .

Proof. — Define ζ to be the linear map on mn-th exterior powers induced by δ from
Lemma 6.2. Then ζ is a linear map W = Λmn End(V ) → ΛmnV m ∼= Q. We identify
ΛmnV m with Q (the choice of isomorphism ΛmnV m ∼= Q is not important).

Since δ|E0
is an isomorphism E0 → V m and w0 is a generator of ΛmnE0, we deduce

that ζ(w0) is a generator of ΛmnV m. In particular ζ(w0) ̸= 0.
Let τL : End(V ) → End(V m) denote the direct sum of m copies of the tautological

representation of End(V ) on V . Then

δ(σL(g)f) = τL(g)δ(f)

for all f, g ∈ End(V ). Taking the mn-th exterior power, we get

ζ
(
(ΛmnσL)(g)w

)
= det(τL(g))ζ(w) = det(g)mζ(w)

for all g ∈ End(V ) and w ∈W . □

Lemma 6.4. — ρL(G(C))w0 = {w ∈ (ΛmnσL)(Q)w0 : ζ(w) = ζ(w0)}.

Proof. — If g ∈ G(C), then we can write g = sg′ where s ∈ C× and g′ ∈ Spn(C).
(Choose s to be a square root of ν(g).) Then g′ ∈ Q, ρL(g) = (ΛmnσL)(g′) and

ζ(ρL(g)w0) = det((ΛmnσL)(g
′))mζ(w0) = ζ(w0),

so ρL(g)w0 is in {w ∈ (ΛmnσL)(Q)w0 : ζ(w) = ζ(w0)}.
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Conversely, if w = (ΛmnσL)(g)w0 for some g ∈ Q and ζ(w) = ζ(w0), then

det(g)mζ(w0) = ζ
(
(ΛmnσL)(g)w0

)
= ζ(w) = ζ(w0).

Since ζ(w0) ̸= 0, we deduce that det(g)m = 1. In particular det(g) ̸= 0. Together with
g ∈ Q, this implies that g ∈ GSpn(C). Furthermore,

ρL(g) = (ΛmnσL)(g)⊗ det(g)m = (ΛmnσL)(g),

so ρL(g)w0 = w. Thus w ∈ ρL(G(C))w0. □

Thus ρL(G(C))w0 is Zariski closed in WC, so by [BHC62, Prop. 6.3] ρL(G(R))w0

is closed in WR in the real topology.

7. Arithmetic bound for the representation

In this section, we bound the lengths of the vectors vu of [DO22, Th. 1.2] (here
renamed wu), when applied to the representation ρL defined in section 6. This bound is
arithmetic in nature, being in terms of discriminants of orders in Q-division algebras.
The argument generalises [DO22, §5.5] and Theorem 1.2 plays the role of [DO22,
Lem. 5.7].

Proposition 7.1. — Let d, e and m be positive integers such that dm is even. Let
n = d2em. Let L = Zn and let ϕ : L × L → Z be the standard symplectic form as
in section 5.A. Let G = GSp(LQ, ϕ) = GSpn,Q and let Γ = Spn(Z). Let H0 be the
subgroup of G defined in (5.2). Let W , Λ ⊂W , ρL, ρR : G → GL(W ) and w0 ∈ Λ be
as in Proposition 6.1.

Then there exist positive constants C19, C20, C21 and C22 such that, for each u ∈
G(R), if the group Hu = uH0,Ru

−1 is defined over Q and LQ is irreducible as a
representation of Hu over Q, then

(a) there exists wu ∈ AutρL(G)(ΛR)w0 such that ρL(u)wu ∈ Λ and

|wu| ⩽ C19|disc(Ru)|C20 ;

(b) there exists γ ∈ Γ and h ∈ H0(R) such that

∥γuh∥ ⩽ C21|disc(Ru)|C22 ,

where Ru denotes the ring EndHu
(L) ⊂ Mn(Z).

Note that LQ is irreducible as a representation of Hu if and only if Ru,Q is a division
algebra. Because Ru,R is G(R)-conjugate to EndH0

(LR), Ru,Q is an R-split algebra
with positive involution. Hence whenever Ru,Q is a division algebra, it must be of
type I or II in the Albert classification, and d must equal 1 or 2 for Proposition 7.1
to be non-vacuous.

Let V = LQ = Q2g. Define D0 = Md(Q)e, ι0 : D0 → Mn(Q), t : D0 → D0 and
ψ0 : V × V → D0 as in Section 5.B.

By Lemma 3.5, we can choose a D0-basis w1, . . . , wm for V which is either sym-
plectic or unitary depending on the type of D0.
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Define a symmetric Q-bilinear form σ0 : V × V → Q by

σ0(x1w1 + · · ·+ xmwm, y1w1 + · · ·+ ymwm)) = TrdD0/Q

( m∑
i=1

xiy
t
i

)
for all x1, . . . , xm, y1, . . . , ym ∈ D0. This bilinear form is positive definite because t
is a positive involution. In fact, a lengthy calculation shows that σ0 is the standard
Euclidean inner product on V = Qn, but we shall not need this fact.

As in the statement of Proposition 7.1, let u ∈ G(R) be such that Hu = uH0,Ru
−1

is defined over Q and V is irreducible as a representation of Hu. Let D = EndHu
(V ),

which is a division algebra of type I or II depending on whether d = 1 or 2. By
construction, V is a left D-vector space of dimension m.

Because ι0(D0) = EndH0
(V ) and Hu = uH0,Ru

−1, we have

D = uι0(D0,R)u
−1 ∩Mn(Q).

Let α : D0,R → DR be the isomorphism of R-algebras

α(d) = uι0(d)u
−1.

Let † = α ◦ t ◦ α−1, which is a positive involution of DR. A calculation using the
fact that u ∈ G(R) = GSpn(R) shows that ϕ is (DR, †)-compatible, that is, † is the
adjoint involution of DR with respect to ϕ. This has two consequences:

(1) † is defined over Q, that is, † is an involution of D and not just of DR.
(2) There is a non-degenerate (D, †)-skew-Hermitian form ψ : V × V → D such

that ϕ = TrdD/Q ψ, thanks to Lemma 3.1.
We are thus in a position to apply Theorem 1.2 (with R = Ru = StabD(L)). Let

v1, . . . , vm be the resulting weakly symplectic or weakly unitary D-basis for V .
Define a Q-bilinear form σ : V × V → Q by

σ
( m∑
i=1

xivi,

m∑
i=1

yivi

)
= TrdD/Q

( m∑
i=1

xiy
†
i

)
for all x1, . . . , xm, y1, . . . , ym ∈ D.

Lemma 7.2. — The bilinear form σ is symmetric and positive definite. It takes integer
values on Ruv1 + · · ·+Ruvm and it satisfies

|disc(Ruv1 + · · ·+Ruvm, σ)| = d−d
2em|disc(Ru)|m.

Proof. — The form σ is symmetric because TrdD/Q(xy
†) = TrdD/Q(yx

†) and it is
positive definite because † is a positive involution of D.

For each a ∈ Ru and y ∈ L, the map

x 7−→ ϕ(x, a†y) = ϕ(ax, y)

is Z-linear and maps L into Z. Since ϕ is a perfect pairing on L, this implies that
a†y ∈ L for all y ∈ L. Hence a† ∈ StabD(L) = Ru.

Thus if x1, . . . , xm, y1, . . . , ym∈Ru, then each xiy†i is inRu and so TrdD/Q(xiy
†
i )∈Z.

Hence σ(
∑
xivi,

∑
yivi) ∈ Z.
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For each i, the restriction of σ to Ruvi is isometric to the inner product associated
with |·|D on Ru. Hence |disc(Ruvi, σ)| = d−d

2e|disc(Ru)| and so

|disc(Ruv1 + · · ·+Ruvm, σ)| = d−d
2em|disc(Ru)|m. □

Lemma 7.3. — There exists an R-linear map θ : VR → VR with the following properties:

(i) θ(α(a)x) = ι0(a)θ(x) for all a ∈ D0,R, x ∈ VR;
(ii) ψ = α ◦ θ∗ψ0;
(iii) σ0(θ(x), θ(x)) ⩽ C23|disc(Ru)|C24σ(x, x) for all x ∈ VR, where the constants

depend only on d, e and m (and not on u).

Proof. — Use Lemma 3.4 to choose s1, . . . , sm ∈ D×
R such that s−1

1 v1, . . . , s
−1
m vm is a

symplectic or α-unitary DR-basis for VR.
Define θ : VR → VR by

θ(x1v1 + · · ·+ xmvm) = ι0(α
−1(x1s1))w1 + · · ·+ ι0(α

−1(xmsm))wm

for all x1, . . . , xm ∈ DR.

– Claim (i) holds because α : D0,R → DR is a ring homomorphism.
– Claim (ii) holds because s−1

1 v1, . . . , s
−1
m vm is a symplectic or α-unitary DR-basis

for VR while w1, . . . , wm is a symplectic or unitary D0,R-basis for Dm
0,R. Thus

α(ψ0(θ(s
−1
i vi), θ(s

−1
j vj))) = α(ψ0(wi, wj)) = ψ(s−1

i vi, s
−1
j vj) for all i, j.

– For claim (iii): for every x = x1v1 + · · ·+ xmvm ∈ VR, where x1, . . . , xm ∈ DR,

(7.1)

σ0(θ(x), θ(x)) = TrdD0,R/R

( m∑
i=1

α−1(xisi)α
−1(xisi)

t
)

=

m∑
i=1

TrdD0,R/R
(
α−1(xisis

†
ix

†
i )
)

=

m∑
i=1

TrdDR/R(xisis
†
ix

†
i ) =

m∑
i=1

|xisi|2D

⩽
m∑
i=1

|xi|2D|si|2D ⩽
(

max
i=1,...,m

|si|2D
)
σ(x, x).

Thanks to Lemma 3.4 and Theorem 1.2(iv), we have

max
i=1,...,m

|si|2D ⩽ (de)1/2 max
i,j=1,...,m

|ψ(vi, vj)|D ⩽ C25|disc(Ru)|C26 ,

where the constants depend only on d, e and m. Combined with (7.1), this proves
claim (iii). □

Lemma 7.4. — Let h = u−1θ−1 : VR → VR. Then uh = θ−1 ∈ Spn(R) and h ∈ H0(R).
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Proof. — Firstly, θ ∈ Spn(R) by the following calculation, which relies on Lem-
ma 7.3(ii):

θ∗ϕ = θ∗(TrdD0,R/R ◦ ψ0) = θ∗(TrdDR/R ◦ α ◦ ψ0)

= TrdDR/R ◦ α ◦ (θ∗ψ0) = TrdDR/R ◦ ψ = ϕ.

Since Spn(R)⊂GSpn(R) = G(R) and u∈G(R), it follows that h∈G(R). By defi-
nition, H0 = ZG(ι0(D0)) and so it remains to prove that h commutes with the action
of D0 on V . For a ∈ D0,R and x ∈ VR, we have

h(ι0(a)x) = u−1θ−1(ι0(a)x) = u−1α(a)θ−1(x)

= ι0(a)u
−1θ−1(x) = ι0(a)h(x)

where we use Lemma 7.3(i) and the fact that α(a) = uι0(a)u
−1 (from the definition

of α). Thus h commutes with all a ∈ ι0(D0). □

Lemma 7.5. — There exists a Z-basis {e′1, . . . , e′n} for L such that the coordinates
of the vectors θ(e′1), . . . , θ(e

′
n) in VR = Rn are polynomially bounded in terms of

|disc(Ru)|.

Proof. — Let λ1, . . . , λn denote the successive minima of Ruv1 + · · · + Ruvm with
respect to σ. By Theorem 2.4 and Lemma 7.2, we have

λ1λ2 · · ·λn ⩽ γ
n/2
d2em covol(Ruv1 + · · ·+Ruvm) ⩽ C27|disc(Ru)|−m,

where C27 depends only on d, e and m.
For each i, λ2i = σ(v, v) for some v ∈ Ruv1+· · ·+Ruvm and so λi ⩾ 1 by Lemma 7.2.

We deduce that, for each i,

λi ⩽ C27|disc(Ru)|−m.

Let λ′1, . . . , λ′n denote the successive minima of L with respect to σ. Since Ruv1 +
· · ·+Ruvm ⊂ L, λ′i ⩽ λi for each i. By [Wey40, Th. 4], there exists a Z-basis e′1, . . . , e′n
for L such that √

σ(e′i, e
′
i) ⩽ C28λ

′
i,

where C28 depends only on n. Combining the above inequalities, we obtain

σ(e′i, e
′
i) ⩽ C32|disc(Ru)|−2m.

Combining this with Lemma 7.3(iii), we obtain that

σ0(θ(e
′
i), θ(e

′
i)) ⩽ C23|disc(Ru)|C24σ(e′i, e

′
i) ⩽ C30|disc(Ru)|C31

for some constants C30, C31 independent of u ∈ G(R). Since σ0 is a fixed posi-
tive definite quadratic form on VR, this implies that the coordinates of the vectors
θ(e′1), . . . , θ(e

′
n) are likewise bounded by a polynomial in |disc(Ru)|. □

Let γ′ be the matrix in GLn(Z) which maps the vectors e′1, . . . , e′n to the standard
basis of L = Zn.

Lemma 7.6. — The entries of the matrices γ′uh, (γ′uh)−1 ∈ GLn(R) are polynomially
bounded in terms of disc(Ru).
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Proof. — Let A = γ′uh = γ′θ−1 ∈ GLn(R). Observe that A maps θ(e′1), . . . , θ(e′n)
to the standard basis. In other words, the entries of A−1 are the coordinates of
θ(e′1), . . . , θ(e

′
n) and so are bounded by Lemma 7.5.

By Lemma 7.4, det(uh) = 1, while |det(γ′)| = 1 since γ′ ∈ GLn(Z). Hence
|det(A)| = 1. By Cramer’s rule, each entry of A is a fixed polynomial in the entries
of A−1, multiplied by det(A). We conclude that the entries of A are polynomially
bounded in terms of disc(Ru). □

We now show that we can modify γ′ ∈ GLn(Z) to obtain γ ∈ Spn(Z), with a
similar bound on γuh. This establishes Proposition 7.1(b), and we will subsequently
use it to prove Proposition 7.1(a).

Lemma 7.7. — There exists γ ∈ Γ = Spn(Z) such that the entries of γuh and (γuh)−1

are polynomially bounded in terms of |disc(Ru)|.

Proof. — Let e1, . . . , en denote the standard basis of L = Zn.
According to Lemma 7.4, uh ∈ Spn(R). Consequently,

ϕ(γ′−1ei, γ
′−1ej) = ϕ((uh)−1γ′−1ei, (uh)

−1γ′−1ej) for all i, j ∈ {1, . . . , n}.

By Lemma 7.6, the entries of (uh)−1γ′−1 are polynomially bounded in terms of
|disc(Ru)|, and hence the same is true of the values ϕ(γ′−1ei, γ

′−1ej).
Hence, by [Orr15, Lem. 4.3], there exists a symplectic Z-basis {f1, . . . , fn} for (L, ϕ)

whose coordinates with respect to {γ′−1e1, . . . , γ
′−1en} are polynomially bounded in

terms of |disc(Ru)|. Applying γ′, we deduce that the coordinates of γ′f1, . . . , γ′fn with
respect to the standard basis are polynomially bounded.

Let γ ∈ GLn(Z) be the matrix such that ei = γfi for each i = 1, . . . , n. Since
{f1, . . . , fn} is a symplectic basis, we have γ ∈ Γ. We have just shown that the
coordinates of γ′fi = γ′γ−1ei are polynomially bounded for each i. In other words,
the entries of the matrix γ′γ−1 are polynomially bounded in terms of |disc(Ru)|.

Multiplying (γ′uh)−1 by γ′γ−1 and applying Lemma 7.6, we deduce that the entries
of (γuh)−1 are polynomially bounded in terms of |disc(Ru)|. Thanks to Lemma 7.4,
|det(γuh)| = 1, so it follows that the entries of γuh are also polynomially bounded in
terms of |disc(Ru)|. □

Let Su = EndRu(L) = uE0,Ru
−1 ∩Mn(Z), where E0 is defined in (6.1). By Propo-

sition 6.1(v), there exists du ∈ R>0 such that

duρR(u)ρL(u)w0 ∈ Λ and du ⩽ C18|disc(Su)|1/2.

In order to prove Proposition 7.1(a), we shall use the vector

wu = duρR(γu)w0 ∈WR.

Observe first that duρR(γu) ∈ AutρL(G)(ΛR) thanks to Proposition 6.1(iii), and that
ρL(u)wu = ρR(γ)duρR(u)ρL(u)w0 is in Λ thanks to Proposition 6.1(iv) . Hence wu
satisfies the qualitative conditions of Proposition 7.1(a), and it only remains to prove
the bound for |wu|.
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Lemma 7.8. — |wu| ⩽ C32|disc(Ru)|C33 .

Proof. — According to Proposition 6.1(i), Hd,e,m = StabρR(G)(w0). Therefore

wu = duρR(γu)w0 = duρR(γuh)w0.

The homomorphism ρR : G → GL(W ) is given by fixed polynomials in the entries
and inverse determinant. Since the entries of γuh and det(γuh)−1 are bounded by
Lemma 7.7, we deduce that the entries of ρR(γuh) are likewise polynomially bounded
in terms of disc(Ru).

Meanwhile, by definition, du is polynomially bounded in terms of disc(Su). By Lem-
ma 2.10, disc(Su) is polynomially bounded in terms of disc(Ru). We conclude that
|wu| is polynomially bounded in terms of |disc(Ru)|, as required. □

8. Cases of Zilber–Pink

In this section, we prove Theorems 1.3 and 1.5. The proofs follow closely [DO22, §6].
We refer to notation and terminology from [Orr18, §2.2 and 2.4].

8.A. Proof of Theorem 1.3. — In fact, instead of proving Theorem 1.3, we will prove
the following, more general theorem. (Recall that, by Proposition 5.5, for g ⩾ 3, all
proper special subvarieties of PEL type of Ag have codimension at least 2.)

Theorem 8.1. — Let g ⩾ 3 and let C be an irreducible algebraic curve in Ag. Let
S denote the smallest special subvariety of Ag containing C. Let Ω denote the set of
special subvarieties of Ag of simple PEL type I or II of dimension at most dim(S)−2.
Let Σ denote the set of points in Ag(C) which are endomorphism generic in some
Z ∈ Ω.

If C satisfies Conjecture 8.2, then C ∩ Σ is finite.

Conjecture 8.2 is the natural generalisation of Conjecture 1.4.

Conjecture 8.2. — Let C and Σ be as in Theorem 8.1 and let L be a finitely generated
subfield of C over which C is defined. Then there exist positive constants C34 and C35

such that

#Aut(C/L) · s ⩾ C34|disc(End(As))|C35

for all s ∈ C ∩ Σ.

Let L = Z2g and let ϕ : L × L → Z be the standard symplectic form as in
section 5.A. Let G = GSp(LQ, ψ) = GSp2g and let Γ = Sp2g(Z). Define h0 : S → GR
as in (5.1) and let X+ denote the G(R)-conjugacy class of h0 in Hom(S,GR). Then
(G, X+) is a Shimura datum component and so StabG(R)(h0) = R×K+

∞ where K+
∞ is

a maximal compact subgroup of G(R)+ [Mil05, Chap. 6].
Let (P,S,K∞) be a Siegel triple for G, as defined in [Orr18, §2B], where K∞ is a

maximal compact subgroup of G(R) such that K+
∞ = G(R)+ ∩K∞. By the results

of Borel quoted in [Orr18, §2D], there exists a Siegel set S ⊂ G(R) with respect to
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(P,S,K∞) and a finite set CG ⊂ G(Q) such that FG = CGS is a fundamental set
for Γ in G(R).

Let F = (FG ∩G(R)+)h0. Since Γ ⊂ G(R)+, F is a fundamental set in X+ for Γ.
If we denote by π : X+ → Ag the uniformising map, then π|F is definable in the
o-minimal structure Ran,exp (see [PS10] for the original result and [KUY16] for a
formulation in notations more similar to ours).

As explained in section 1.D, Σ is the union of sets Σd,e,m, where d, e, m are positive
integers satisfying d2em = 2g, d = 1 or 2 and dm is even. Since there are only finitely
many choices for such d, e, m (given g), in order to prove Theorem 8.1, it suffices to
prove that C ∩ Σd,e,m is finite for each d, e, m.

From now on, we fix such integers d, e and m. Let H0 ⊂ G be the group defined
in (5.2) associated with these parameters. Let X+

0 = H0(R)+h0, so that (H0, X
+
0 ) is

the unique Shimura subdatum component of (G, X+) given by Lemma 5.2.
By Propositions 6.1 and 7.1, there exists a finitely generated, free Z–module Λ,

a representation ρL : G → GL(ΛQ) such that Λ is stabilised by ρL(Γ), a vector
w0 ∈ Λ and positive constants C19 and C20 such that:

(i) StabG,ρL(w0) = H0;
(ii) the orbit ρL(G(R))w0 is closed in ΛR;
(iii) for each u ∈ G(R), if the group Hu = uH0,Ru

−1 is defined over Q and LQ is
irreducible as a representation of Hu over Q, then there exists wu ∈ AutρL(G)(ΛR)w0

such that ρL(u)wu ∈ Λ and

|wu| ⩽ C19|disc(Ru)|C20 ,

where Ru denotes the ring EndHu(L) ⊂ M2g(Z).
By [DO22, Th. 1.2], there exist positive constants C36 and C37 with the following

property: for every u ∈ G(R) and wu ∈ AutρL(G)(ΛR)w0 such that Hu = uH0,Ru
−1

is defined over Q and ρL(u)wu ∈ Λ, there exists a fundamental set for Γ ∩Hu(R) in
Hu(R) of the form

BuFGu
−1 ∩Hu(R),

where Bu ⊂ Γ is a finite set such that

|ρL(b−1u)wu| ⩽ C36|wu|C37

for every b ∈ Bu.
For any w ∈ ΛR, we write G(w) for the real algebraic group StabGR,ρL(w). Fixing

a basis for Λ, we may refer to the height H(w) of any w ∈ Λ (namely, the maximum
of the absolute values of its coordinates with respect to this basis.)

Lemma 8.3. — Let P ∈ Σd,e,m. There exists z ∈ π−1(P ) ∩ F and

w ∈ AutρL(G)(ΛR)ρL(G(R)+)w0 ∩ Λ

such that z(S) ⊂ G(w) and

H(w) ⩽ C36C
C37
19 |disc(R)|C20C37 ,

where R = End(AP ) ∼= EndG(w)(L) ⊂ M2g(Z).
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Proof. — Let z′ ∈ π−1(P )∩F. Since P ∈ Σd,e,m, it is an endomorphism generic point
of a special subvariety S ⊂ Ag of simple PEL type I or II with parameters d, e,m.
Therefore, there is a Shimura subdatum component (H, Y +) ⊂ (G, X+) of simple
PEL type I or II such that π(Y +) = S and z′ ∈ Y +. (In particular, z′(S) ⊂ HR.)
By Lemma 5.1, HR = uH0,Ru

−1 for some u ∈ G(R)+, and so we write Hu = H.
By Corollary 5.3,

Y + = uX+
0 = uH0(R)+h0 = Hu(R)+uh0.

Let Ru = EndHu
(L). Since Hu is the general Lefschetz group of S, Ru is the generic

endomorphism ring of S and, hence, isomorphic to End(AP ). Since S is a special
subvariety of simple PEL type, Ru,Q is a division algebra. Hence LQ is irreducible as
a representation of Hu.

By Proposition 7.1(a), there exists wu ∈ AutρL(G)(ΛR)w0 such that

ρL(u)wu ∈ Λ and |wu| ⩽ C19|disc(Ru)|C20 .

Hence, by [DO22, Th. 1.2], there exists a fundamental set for Γ∩Hu(R) in Hu(R) of
the form

Fu = BuFGu
−1 ∩Hu(R),

where Bu ⊂ Γ is a finite set such that

|ρL(b−1u)wu| ⩽ C36|wu|C37

for every b ∈ Bu. Therefore, we can write z′ ∈ Hu(R)+uh0 as

z′ = γbfu−1 · uh0

for some γ ∈ Γ ∩Hu(R), b ∈ Bu, and f ∈ FG.
Set

z = b−1γ−1z′ = fh0 ∈ FGh0 ∩X+ = F,

where the last equality uses the fact that StabG(R)(h0) ⊂ G(R)+. Since b, γ ∈ Γ,
we obtain z ∈ π−1(P ) ∩ F.

Let w = ρL(b
−1u)wu. As in [DO22, Prop. 6.3], we can show that z(S) ⊂ G(w)

and that G(w) is a Γ-conjugate of Hu, so Ru ∼= EndG(w)(L). Consequently, z and w

satisfy the requirements of the lemma. □

We can now deduce Proposition 1.8.

Corollary 8.4. — Define Σ ⊂ Ag as in Theorem 1.3. For each b ∈ R, the points s ∈ Σ

such that |disc(End(As))| ⩽ b belong to only finitely many proper special subvarieties
of simple PEL type I or II.

Proof. — The proof is essentially the same as [DO22, Cor. 6.4]. □

The proof of Theorem 8.1 now proceeds as in [DO22, §6.5] with some modifications,
which we outline below (following the notation from [DO22, §6.5] mutatis mutandis).

(1) The argument is carried out inside X+ ∼= Hg instead of H2.
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(2) If P ∈ Σd,e,m, then P is endomorphism generic in some special subvariety
Z ∈ Ω (where Ω is defined in Theorem 8.1). Then Z is an irreducible component
of MR, where R = End(AP ) (see definitions in section 1.C). Since MR is Aut(C)-
invariant and its (analytic) irreducible components are algebraic subvarieties of Ag,
for each σ ∈ Aut(C), σ(Z) is also an irreducible component of MR. Thus, σ(Z) is
also a special subvariety of simple PEL type I or II with the same parameters d, e,m.
Furthermore, dim(σ(Z)) = dim(Z), so σ(Z) ∈ Ω. Since End(Aσ(P )) ∼= End(AP ),
σ(P ) is endomorphism generic in σ(Z), so σ(P ) ∈ Σd,e,m.

(3) In the definition of the definable set D, we replace G(R) with G(R)+. That is,
w ∈ AutρL(G)(ΛR)ρL(G(R)+)w0, as in Lemma 8.3. Then

gt ∈ AutρL(G)(ΛR)ρL(G(R)+)

for all t. So g−1
t zt is in the same connected component of X as zt ∈ C ⊂ X+. We con-

clude that g−1
t zt lies on the unique pre-special subvariety of X+ ∼= Hg associated

with H0, namely, X+
0 (see Lemma 5.2).

(4) By the inverse Ax–Lindemann conjecture, the smallest algebraic subset of X+

containing C̃ is an irreducible component of π−1(S), which we call S̃.
(5) As in the penultimate paragraph of [DO22, §6.5], we choose a complex algebraic

subset B̃ ⊂ AutρL(G)(ΛC)ρL(G(C)) of dimension at most 1 whose image under the
map g 7→ g · w0 is B. Here, the map

· : AutρL(G)(ΛC)ρL(G(C))× (X+)∨ −→ (X+)∨ ∼= H∨
g

(which is used in [DO22, §6.5], but not explicitly defined there) is given by

(aρL(g), x) 7−→ g · x

for each a ∈ AutρL(G)(ΛC) and ρL(g) ∈ ρL(G(C)). This is well-defined since

AutρL(G)(ΛC) ∩ ρL(G(C)) ⊂ ρL(Z(G)(C)) and ker(ρL) ⊂ Z(G),

and Z(G), the centre of G, acts trivially on (X+)∨.
(6) In the final step, we conclude that B̃ · (X+

0 )∨ has uncountable intersection
with C̃ and, hence, contains it. Therefore, S̃ is contained in B̃ · (X+

0 )∨, but

dim(B̃ · (X+
0 )∨) ⩽ 1 + dim(X+

0 ) ⩽ dim(S)− 1,

delivering the contradiction.

8.B. Proof of Theorem 1.5. — If C is an algebraic curve over a number field, and
A → C is an abelian scheme of even relative dimension g, we say that s ∈ C(Q)

is an exceptional quaternionic point if End(As) ⊗Z Q is a non-split totally indefinite
quaternion algebra over a totally real field of degree e such that 4e does not divide g.
Note that these are precisely the points for which:

(i) As is simple and D := End(As)⊗Q has type I or II; and
(ii) As is exceptional in the sense of [DO21, Def. 8.1], that is, D is not isomorphic

to a subring of Mg(Q).
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Indeed, if As is simple, then D is a division algebra and hence embeds into Mg(Q)

if and only if dimQ(D) divides g. If D has type I, then dimQ(D) always divides g,
while if D has type II, then dimQ(D) = 4e.

In order to prove Theorem 1.5, it suffices to prove the following theorem, by the
same argument as in [DO22, §6.7]. This theorem is a direct generalisation of [DO22,
Th. 6.5]. Note that the image of C → Ag is Hodge generic if and only if the generic
Mumford–Tate group of the abelian scheme A → C is GSp2g,Q.

Theorem 8.5. — Let C be a irreducible algebraic curve and let A → C be a principally
polarised non-isotrivial abelian scheme of even relative dimension g such that the
image of the morphism C → Ag induced by A is Hodge generic.

Suppose that C and A are defined over a number field L and that there exists a
smooth curve C ′, a semi-abelian scheme A′ → C ′ and an open immersion ι : C → C ′,
all defined over Q, such that A ∼= ι∗A′ and, for some point s0 ∈ C ′(Q) ∖ C(Q), the
fibre A′

s0 is a torus.
Then there exist positive constants C38 and C39 such that, for any exceptional

quaternionic point s ∈ C,

#Aut(C/L) · s ⩾ C38|disc(End(As))|C39 .

Proof. — After replacing L by a finite extension, we may assume that C ′, A′ → C ′

and ι : C → C ′ are all defined over L. After replacing C ′ by its normalisation and A′

by its pullback to this normalisation, we may assume that C ′ is smooth. (Note that
this step, which is required in order to apply [DO21, Th. 8.2], was erroneously omitted
in the proofs of [DO21, Prop. 9.2] and [DO22, Th. 6.5].) Observe that A → C satisfies
the conditions of [DO21, Th. 8.2].

Let s ∈ C be an exceptional quaternionic point. The image of s under the map
C → Ag induced by A → C is in the intersection between the image of C and a
proper special subvariety of PEL type. Since C is a curve defined over Q and special
subvarieties of Ag are defined over Q, it follows that s ∈ C(Q).

The remainder of the proof proceeds as in the proof of [DO22, Th. 6.5]. The key
ingredients are:

(1) [DO21, Th. 8.2], a height bound for exceptional points of C (including excep-
tional quaternionic points) which generalises [And89, Chap. X, Th. 1.3];

(2) endomorphism estimates of Masser and Wüstholz [MW94] (a version using
present notations is [DO22, Th. 6.6]).

□
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