Dans cet article, nous discutons de la propriété de Steiner pour les clusters minimaux dans le plan avec une double densité anisotrope. Cela signifie que nous considérons le problème isopérimétrique classique pour les clusters, mais que le volume et le périmètre sont définis à l’aide de deux densités. En particulier, la densité du périmètre peut également dépendre de la direction du vecteur normal. La « propriété de Steiner » classique pour le cas euclidien (qui correspond aux deux densités égales à ) dit que les clusters minimaux sont constitués d’un nombre fini d’arcs , se rencontrant en un nombre fini de « points triples ». Nous pouvons montrer que cette propriété est valable sous des hypothèses très faibles sur les densités. Dans l’article parallèle [13], nous considérons le cas isotrope, c’est-à-dire lorsque la densité du périmètre ne dépend pas de la direction, ce qui rend la plupart des constructions beaucoup plus simples. En particulier, dans le cas présent, les trois arcs aux points triples ne se rencontrent pas nécessairement avec trois angles de , contrairement à ce qui arrive dans le cas isotrope.
In this paper we discuss the Steiner property for minimal clusters in the plane with an anisotropic double density. This means that we consider the classical isoperimetric problem for clusters, but volume and perimeter are defined by using two densities. In particular, the perimeter density may also depend on the direction of the normal vector. The classical “Steiner property” for the Euclidean case (which corresponds to both densities being equal to ) says that minimal clusters are made by finitely many arcs, meeting in finitely many “triple points”. We can show that this property holds under very weak assumptions on the densities. In the parallel paper [13] we consider the isotropic case, i.e., when the perimeter density does not depend on the direction, which makes most of the construction much simpler. In particular, in the present case the three arcs at triple points do not necessarily meet with three angles of , which is instead what happens in the isotropic case.
Accepté le :
Publié le :
Keywords: Perimeter and volume with density, clustering isoperimetric problem, Steiner property, anisotropic perimeter
Mot clés : Densités du périmètre et du volume, problème isopérimétrique pour les clusters, propriété de Steiner, périmètre anisotrope
Valentina Franceschi 1 ; Aldo Pratelli 2 ; Giorgio Stefani 3
@article{JEP_2023__10__989_0, author = {Valentina Franceschi and Aldo Pratelli and Giorgio Stefani}, title = {On the {Steiner} property for planar minimizing clusters. {The} anisotropic case}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {989--1045}, publisher = {\'Ecole polytechnique}, volume = {10}, year = {2023}, doi = {10.5802/jep.238}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.238/} }
TY - JOUR AU - Valentina Franceschi AU - Aldo Pratelli AU - Giorgio Stefani TI - On the Steiner property for planar minimizing clusters. The anisotropic case JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 989 EP - 1045 VL - 10 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.238/ DO - 10.5802/jep.238 LA - en ID - JEP_2023__10__989_0 ER -
%0 Journal Article %A Valentina Franceschi %A Aldo Pratelli %A Giorgio Stefani %T On the Steiner property for planar minimizing clusters. The anisotropic case %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 989-1045 %V 10 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.238/ %R 10.5802/jep.238 %G en %F JEP_2023__10__989_0
Valentina Franceschi; Aldo Pratelli; Giorgio Stefani. On the Steiner property for planar minimizing clusters. The anisotropic case. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 989-1045. doi : 10.5802/jep.238. https://jep.centre-mersenne.org/articles/10.5802/jep.238/
[1] - “The structure of singularities in -minimizing networks in ”, Pacific J. Math. 149 (1991) no. 2, p. 201-210 | DOI | MR
[2] - “Some isoperimetric inequalities on with respect to weights ”, J. Math. Anal. Appl. 451 (2017) no. 1, p. 280-318 | DOI | MR | Zbl
[3] - “The isoperimetric problem for a class of non-radial weights and applications”, J. Differential Equations 267 (2019) no. 12, p. 6831-6871 | DOI | MR | Zbl
[4] - Functions of bounded variation and free discontinuity problems, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 2000
[5] - “Isoperimetric regions in with density ”, Anal. Geom. Metr. Spaces 4 (2016) no. 1, p. 236-265 | DOI | MR | Zbl
[6] - “Euclidean balls solve some isoperimetric problems with nonradial weights”, Comptes Rendus Mathématique 350 (2012) no. 21-22, p. 945-947 | DOI | Numdam | MR | Zbl
[7] - “Some isoperimetric problems in planes with density”, J. Geom. Anal. 20 (2010) no. 2, p. 243-290 | DOI | MR | Zbl
[8] - “Sharp quantitative stability for isoperimetric inequalities with homogeneous weights”, Trans. Amer. Math. Soc. 375 (2022) no. 3, p. 1509-1550 | DOI | MR | Zbl
[9] - “The property, the boundedness of isoperimetric sets in with density, and some applications”, J. reine angew. Math. 728 (2017), p. 65-103 | DOI | MR | Zbl
[10] - “Quasiminimal surfaces of codimension and John domains”, Pacific J. Math. 183 (1998) no. 2, p. 213-277 | DOI | MR | Zbl
[11] - “Existence of isoperimetric sets with densities “converging from below” on ”, J. Geom. Anal. 27 (2017) no. 2, p. 1086-1105 | DOI | MR | Zbl
[12] - “The standard double soap bubble in uniquely minimizes perimeter”, Pacific J. Math. 159 (1993) no. 1, p. 47-59 | DOI | MR | Zbl
[13] - “On the Steiner property for planar minimizing clusters. The isotropic case”, Commun. Contemp. Math. 25 (2023) no. 5, article ID 2250040, 29 pages | DOI | MR | Zbl
[14] - “Non-existence of isoperimetric sets in the Euclidean space with vanishing densities”, 2020, preprint
[15] - “Proof of the double bubble conjecture”, Ann. of Math. (2) 155 (2002) no. 2, p. 459-489 | DOI | MR | Zbl
[16] - “Regularity of sets with quasiminimal boundary surfaces in metric spaces”, J. Geom. Anal. 23 (2013) no. 4, p. 1607-1640 | DOI | MR | Zbl
[17] - “Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms”, Pacific J. Math. 166 (1994) no. 1, p. 55-83 | DOI | MR | Zbl
[18] - Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory, Cambridge Studies in Advanced Math., vol. 135, Cambridge University Press, Cambridge, 2012 | DOI
[19] - “An isoperimetric inequality in the plane with a log-convex density”, Ricerche Mat. 67 (2018) no. 2, p. 817-874 | DOI | MR | Zbl
[20] - “The Gaussian double-bubble and multi-bubble conjectures”, Ann. of Math. (2) 195 (2022) no. 1, p. 89-206 | DOI | MR | Zbl
[21] - “The structure of isoperimetric bubbles on and ”, 2022 | arXiv
[22] - “Soap bubbles in and in surfaces”, Pacific J. Math. 165 (1994) no. 2, p. 347-361 | DOI | MR | Zbl
[23] - Riemannian geometry. A beginner’s guide, A K Peters, Ltd., Wellesley, MA, 1998 | DOI
[24] - Geometric measure theory. A beginner’s guide, Elsevier/Academic Press, Amsterdam, 2016
[25] - “Wulff clusters in ”, J. Geom. Anal. 8 (1998) no. 1, p. 97-115 | DOI | MR | Zbl
[26] - “Existence of isoperimetric regions in with density”, Ann. Global Anal. Geom. 43 (2013) no. 4, p. 331-365 | DOI | MR | Zbl
[27] - “Minimal cluster computation for four planar regions with the same area”, Geom. Flows 3 (2018) no. 1, p. 90-96 | DOI | MR
[28] - “Minimal clusters of four planar regions with the same area”, ESAIM Contrôle Optim. Calc. Var. 24 (2018) no. 3, p. 1303-1331 | DOI | MR | Zbl
[29] - “The quadruple planar bubble enclosing equal areas is symmetric”, Calc. Var. Partial Differential Equations 59 (2020) no. 1, article ID 20, 9 pages | DOI | MR | Zbl
[30] - “On the isoperimetric problem with double density”, Nonlinear Anal. 177 (2018), p. 733-752 | DOI | MR | Zbl
[31] - “The property in the isoperimetric problem with double density, and the regularity of isoperimetric sets”, Adv. Nonlinear Stud. 20 (2020) no. 3, p. 539-555 | DOI | MR | Zbl
[32] - “Proof of the double bubble conjecture in ”, J. Geom. Anal. 18 (2008) no. 1, p. 172-191 | DOI | MR | Zbl
[33] - “On the isoperimetric problem in Euclidean space with density”, Calc. Var. Partial Differential Equations 31 (2008) no. 1, p. 27-46 | DOI | MR | Zbl
[34] - Regularity results for almost minimal oriented hypersurfaces in , Dipartimento di Matematica dell’Università di Lecce, 1984
[35] - “The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces”, Ann. of Math. (2) 103 (1976) no. 3, p. 489-539 | DOI | MR | Zbl
[36] - “Spaces and quasilinear equations”, Mat. Sb. (N.S.) 73 (115) (1967), p. 255-302 | MR
[37] - “Proof of the planar triple bubble conjecture”, J. reine angew. Math. 567 (2004), p. 1-49 | DOI | MR | Zbl
Cité par Sources :