[Almost K3 surface contains infinitely many linear Levi-flat hypersurfaces]
We investigate the construction of real analytic Levi-flat hypersurfaces in K3 surfaces. By taking images of real hyperplanes, one can construct such hypersurfaces in two-dimensional complex tori. We show that “almost every” K3 surface contains infinitely many Levi-flat hypersurfaces of this type. The proof relies mainly on a recent construction of Koike and Uehara, ideas of Verbitsky on ergodic complex structures, as well as an argument due to Ghys in the context of the study of the topology of generic leaves.
On s’intéresse à la construction d’hypersurfaces Levi-plates analytiques réelles dans les surfaces K3. On peut en construire dans les tores complexes de dimension en prenant des images d’hyperplans réels. On montre que « presque toute » surface K3 contient une infinité d’hypersurfaces Levi-plates de ce type. La preuve repose principalement sur une construction récente due à Koike-Uehara, ainsi que sur les idées de Verbitsky sur les structures complexes ergodiques et une adaptation d’un argument dû à Ghys dans le cadre de l’étude de la topologie des feuilles génériques.
Accepted:
Published online:
Mot clés : Surfaces K3, hypersurfaces Levi-plates, périodes, théorie ergodique
Keywords: K3 surfaces, Levi-flat hypersurfaces, periods, ergodic theory
Félix Lequen 1
@article{JEP_2023__10__815_0, author = {F\'elix Lequen}, title = {Presque toute surface {K3} contient une infinit\'e d{\textquoteright}hypersurfaces {Levi-plates} lin\'eaires}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {815--836}, publisher = {\'Ecole polytechnique}, volume = {10}, year = {2023}, doi = {10.5802/jep.233}, language = {fr}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.233/} }
TY - JOUR AU - Félix Lequen TI - Presque toute surface K3 contient une infinité d’hypersurfaces Levi-plates linéaires JO - Journal de l’École polytechnique — Mathématiques PY - 2023 SP - 815 EP - 836 VL - 10 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.233/ DO - 10.5802/jep.233 LA - fr ID - JEP_2023__10__815_0 ER -
%0 Journal Article %A Félix Lequen %T Presque toute surface K3 contient une infinité d’hypersurfaces Levi-plates linéaires %J Journal de l’École polytechnique — Mathématiques %D 2023 %P 815-836 %V 10 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.233/ %R 10.5802/jep.233 %G fr %F JEP_2023__10__815_0
Félix Lequen. Presque toute surface K3 contient une infinité d’hypersurfaces Levi-plates linéaires. Journal de l’École polytechnique — Mathématiques, Volume 10 (2023), pp. 815-836. doi : 10.5802/jep.233. https://jep.centre-mersenne.org/articles/10.5802/jep.233/
[1] - “On Levi flat hypersurfaces with transversely affine foliation”, Math. Z. 301 (2022) no. 1, p. 373-383 | DOI | MR | Zbl
[2] - “Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves”, Funkcional. Anal. i Priložen. 10 (1976) no. 4, p. 1-12 | MR
[3] - “Equicontinuous actions of semisimple groups”, Groups Geom. Dyn. 11 (2017) no. 3, p. 1003-1039 | DOI | MR | Zbl
[4] - “On the topology of compact smooth three-dimensional Levi-flat hypersurfaces”, J. Geom. Anal. 2 (1992) no. 6, p. 489-497 | DOI | MR | Zbl
[5] - Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), vol. 4, Springer-Verlag, Berlin, 2004 | DOI
[6] - Kazhdan’s property (T), New Math. Monographs, vol. 11, Cambridge University Press, Cambridge, 2008 | DOI
[7] - “Arithmetic subgroups of algebraic groups”, Ann. of Math. (2) 75 (1962), p. 485-535 | DOI | MR | Zbl
[8] - “Courbes entières et feuilletages holomorphes”, Enseign. Math. (2) 45 (1999) no. 1-2, p. 195-216 | Zbl
[9] - “Levi-flat hypersurfaces and their complement in complex surfaces”, Ann. Inst. Fourier (Grenoble) 67 (2017) no. 6, p. 2323-2462 | Numdam | MR | Zbl
[10] - “Minimaux des feuilletages algébriques de ”, Ann. Inst. Fourier (Grenoble) 43 (1993) no. 5, p. 1535-1543 | DOI | MR | Zbl
[11] - “Topology and dynamics of laminations in surfaces of general type”, J. Amer. Math. Soc. 29 (2016) no. 2, p. 495-535 | DOI | MR | Zbl
[12] - “Global smoothings of varieties with normal crossings”, Ann. of Math. (2) 118 (1983) no. 1, p. 75-114 | DOI | MR | Zbl
[13] - “A new proof of the global Torelli theorem for K3 surfaces”, Ann. of Math. (2) 120 (1984) no. 2, p. 237-269 | DOI | MR | Zbl
[14] - “Topologie des feuilles génériques”, Ann. of Math. (2) 141 (1995) no. 2, p. 387-422 | DOI | Zbl
[15] - Lectures on K3 surfaces, Cambridge Studies in Advanced Math., vol. 158, Cambridge University Press, Cambridge, 2016 | DOI
[16] - “On real submanifolds of Kähler manifolds foliated by complex submanifolds”, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994) no. 1, p. 1-2 | Zbl
[17] - An introduction to CR structures, Math. Surveys and Monographs, vol. 32, American Mathematical Society, Providence, RI, 1990 | DOI
[18] - “A gluing construction of projective K3 surfaces”, Épijournal de Géom. Alg. 6 (2022), article ID 12, 15 pages | MR | Zbl
[19] - “Inexistence de pavages mesurables invariants par un réseau dans un espace homogène d’un groupe de Lie simple”, 2022 | arXiv
[20] - “A note on projective Levi flats and minimal sets of algebraic foliations”, Ann. Inst. Fourier (Grenoble) 49 (1999) no. 4, p. 1369-1385 | Numdam | MR | Zbl
[21] - “Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund’s theorem”, J. Modern Dyn. 10 (2016), p. 113-134 | DOI | MR | Zbl
[22] - “Stein domains with Levi-flat boundaries on compact complex surfaces”, Math. Notes 66 (1999) no. 4, p. 522-525 | DOI | MR | Zbl
[23] - “A Levi-flat in a Kummer surface whose complement is strongly pseudoconvex”, Osaka J. Math. 43 (2006) no. 4, p. 747-750 | MR | Zbl
[24] - “A survey on Levi flat hypersurfaces”, in Complex geometry and dynamics, Abel Symp., vol. 10, Springer, Cham, 2015, p. 211-225 | DOI | MR | Zbl
[25] - “Iteration of analytic functions”, Ann. of Math. (2) 43 (1942), p. 607-612 | DOI | MR | Zbl
[26] - “Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces”, Invent. Math. 61 (1980) no. 3, p. 251-265 | DOI | MR | Zbl
[27] - “Ergodic complex structures on hyperkähler manifolds”, Acta Math. 215 (2015) no. 1, p. 161-182 | DOI | Zbl
[28] - Ergodic theory and semisimple groups, Monographs in Math., vol. 81, Birkhäuser Verlag, Basel, 1984 | DOI
Cited by Sources: