Presque toute surface K3 contient une infinité d’hypersurfaces Levi-plates linéaires
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 815-836.

On s’intéresse à la construction d’hypersurfaces Levi-plates analytiques réelles dans les surfaces K3. On peut en construire dans les tores complexes de dimension 2 en prenant des images d’hyperplans réels. On montre que « presque toute » surface K3 contient une infinité d’hypersurfaces Levi-plates de ce type. La preuve repose principalement sur une construction récente due à Koike-Uehara, ainsi que sur les idées de Verbitsky sur les structures complexes ergodiques et une adaptation d’un argument dû à Ghys dans le cadre de l’étude de la topologie des feuilles génériques.

We investigate the construction of real analytic Levi-flat hypersurfaces in K3 surfaces. By taking images of real hyperplanes, one can construct such hypersurfaces in two-dimensional complex tori. We show that “almost every” K3 surface contains infinitely many Levi-flat hypersurfaces of this type. The proof relies mainly on a recent construction of Koike and Uehara, ideas of Verbitsky on ergodic complex structures, as well as an argument due to Ghys in the context of the study of the topology of generic leaves.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.233
Classification : 14J28, 37A25
Mot clés : Surfaces K3, hypersurfaces Levi-plates, périodes, théorie ergodique
Keywords: K3 surfaces, Levi-flat hypersurfaces, periods, ergodic theory

Félix Lequen 1

1 Laboratoire AGM – CY Cergy Paris Université 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__815_0,
     author = {F\'elix Lequen},
     title = {Presque toute surface {K3} contient une infinit\'e d{\textquoteright}hypersurfaces {Levi-plates} lin\'eaires},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {815--836},
     publisher = {\'Ecole polytechnique},
     volume = {10},
     year = {2023},
     doi = {10.5802/jep.233},
     language = {fr},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.233/}
}
TY  - JOUR
AU  - Félix Lequen
TI  - Presque toute surface K3 contient une infinité d’hypersurfaces Levi-plates linéaires
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 815
EP  - 836
VL  - 10
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.233/
DO  - 10.5802/jep.233
LA  - fr
ID  - JEP_2023__10__815_0
ER  - 
%0 Journal Article
%A Félix Lequen
%T Presque toute surface K3 contient une infinité d’hypersurfaces Levi-plates linéaires
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 815-836
%V 10
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.233/
%R 10.5802/jep.233
%G fr
%F JEP_2023__10__815_0
Félix Lequen. Presque toute surface K3 contient une infinité d’hypersurfaces Levi-plates linéaires. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 815-836. doi : 10.5802/jep.233. https://jep.centre-mersenne.org/articles/10.5802/jep.233/

[1] M. Adachi & S. Biard - “On Levi flat hypersurfaces with transversely affine foliation”, Math. Z. 301 (2022) no. 1, p. 373-383 | DOI | MR | Zbl

[2] V. I. Arnolʼd - “Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves”, Funkcional. Anal. i Priložen. 10 (1976) no. 4, p. 1-12 | MR

[3] U. Bader & T. Gelander - “Equicontinuous actions of semisimple groups”, Groups Geom. Dyn. 11 (2017) no. 3, p. 1003-1039 | DOI | MR | Zbl

[4] D. E. Barrett & T. Inaba - “On the topology of compact smooth three-dimensional Levi-flat hypersurfaces”, J. Geom. Anal. 2 (1992) no. 6, p. 489-497 | DOI | MR | Zbl

[5] W. P. Barth, K. Hulek, C. A. M. Peters & A. Van de Ven - Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), vol. 4, Springer-Verlag, Berlin, 2004 | DOI

[6] B. Bekka, P. de la Harpe & A. Valette - Kazhdan’s property (T), New Math. Monographs, vol. 11, Cambridge University Press, Cambridge, 2008 | DOI

[7] A. Borel & Harish-Chandra - “Arithmetic subgroups of algebraic groups”, Ann. of Math. (2) 75 (1962), p. 485-535 | DOI | MR | Zbl

[8] M. Brunella - “Courbes entières et feuilletages holomorphes”, Enseign. Math. (2) 45 (1999) no. 1-2, p. 195-216 | Zbl

[9] C. Canales González - “Levi-flat hypersurfaces and their complement in complex surfaces”, Ann. Inst. Fourier (Grenoble) 67 (2017) no. 6, p. 2323-2462 | Numdam | MR | Zbl

[10] D. Cerveau - “Minimaux des feuilletages algébriques de (n), Ann. Inst. Fourier (Grenoble) 43 (1993) no. 5, p. 1535-1543 | DOI | MR | Zbl

[11] B. Deroin & C. Dupont - “Topology and dynamics of laminations in surfaces of general type”, J. Amer. Math. Soc. 29 (2016) no. 2, p. 495-535 | DOI | MR | Zbl

[12] R. Friedman - “Global smoothings of varieties with normal crossings”, Ann. of Math. (2) 118 (1983) no. 1, p. 75-114 | DOI | MR | Zbl

[13] R. Friedman - “A new proof of the global Torelli theorem for K3 surfaces”, Ann. of Math. (2) 120 (1984) no. 2, p. 237-269 | DOI | MR | Zbl

[14] É. Ghys - “Topologie des feuilles génériques”, Ann. of Math. (2) 141 (1995) no. 2, p. 387-422 | DOI | Zbl

[15] D. Huybrechts - Lectures on K3 surfaces, Cambridge Studies in Advanced Math., vol. 158, Cambridge University Press, Cambridge, 2016 | DOI

[16] T. Inaba & M. A. Mishchenko - “On real submanifolds of Kähler manifolds foliated by complex submanifolds”, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994) no. 1, p. 1-2 | Zbl

[17] H. Jacobowitz - An introduction to CR structures, Math. Surveys and Monographs, vol. 32, American Mathematical Society, Providence, RI, 1990 | DOI

[18] T. Koike & T. Uehara - “A gluing construction of projective K3 surfaces”, Épijournal de Géom. Alg. 6 (2022), article ID 12, 15 pages | MR | Zbl

[19] F. Lequen - “Inexistence de pavages mesurables invariants par un réseau dans un espace homogène d’un groupe de Lie simple”, 2022 | arXiv

[20] A. Lins Neto - “A note on projective Levi flats and minimal sets of algebraic foliations”, Ann. Inst. Fourier (Grenoble) 49 (1999) no. 4, p. 1369-1385 | Numdam | MR | Zbl

[21] M. Martínez, S. Matsumoto & A. Verjovsky - “Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund’s theorem”, J. Modern Dyn. 10 (2016), p. 113-134 | DOI | MR | Zbl

[22] S. Y. Nemirovskii - “Stein domains with Levi-flat boundaries on compact complex surfaces”, Math. Notes 66 (1999) no. 4, p. 522-525 | DOI | MR | Zbl

[23] T. Ohsawa - “A Levi-flat in a Kummer surface whose complement is strongly pseudoconvex”, Osaka J. Math. 43 (2006) no. 4, p. 747-750 | MR | Zbl

[24] T. Ohsawa - “A survey on Levi flat hypersurfaces”, in Complex geometry and dynamics, Abel Symp., vol. 10, Springer, Cham, 2015, p. 211-225 | DOI | MR | Zbl

[25] C. L. Siegel - “Iteration of analytic functions”, Ann. of Math. (2) 43 (1942), p. 607-612 | DOI | MR | Zbl

[26] A. N. Todorov - “Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces”, Invent. Math. 61 (1980) no. 3, p. 251-265 | DOI | MR | Zbl

[27] M. Verbitsky - “Ergodic complex structures on hyperkähler manifolds”, Acta Math. 215 (2015) no. 1, p. 161-182 | DOI | Zbl

[28] R. J. Zimmer - Ergodic theory and semisimple groups, Monographs in Math., vol. 81, Birkhäuser Verlag, Basel, 1984 | DOI

Cité par Sources :