Global pluripotential theory on hybrid spaces
[Théorie du pluripotentiel global sur les espaces hybrides]
Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 601-658.

Soit (X,L) un schéma polarisé sur un anneau de Banach A. Nous définissons et étudions la classe des métriques plurisousharmoniques PSH(X,L) sur l’analytifié de Berkovich X an . Nous nous intéressons en particulier au cas où A est l’anneau hybride des séries convergentes, et X an est l’espace hybride associé à une dégénérescence de variétés complexes X. Nous démontrons alors que toute métrique plurisousharmonique sur (X,L) à croissance logarithmique en zéro admet une extension plurisousharmonique canonique à l’espace hybride X hyb . Nous discutons aussi de la continuité de la famille de mesures de Monge-Ampère associée à une métrique hybride plurisousharmonique continue.

Let (X,L) be a polarized scheme over a Banach ring A. We define and study a class PSH(X,L) of plurisubharmonic metrics on the Berkovich analytification X an . We focus mainly on the case where A is a hybrid ring of power series, so that X an is the hybrid space associated to a degeneration of complex manifolds X. We then prove that any plurisubharmonic metric on (X,L) with logarithmic growth at zero admits a canonical plurisubharmonic extension to the hybrid space X hyb . We also discuss the continuity of the family of Monge-Ampère measures associated to a continuous plurisubharmonic hybrid metric.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.228
Classification : 32P05, 32U05, 14D06
Keywords: Berkovich spaces, pluripotential theory, hybrid spaces
Mot clés : Espaces de Berkovich, théorie du pluripotentiel, espaces hybrides

Léonard Pille-Schneider 1

1 Département de Mathématiques et Applications, École Normale Supérieure 45 rue d’Ulm, 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2023__10__601_0,
     author = {L\'eonard Pille-Schneider},
     title = {Global pluripotential theory on hybrid spaces},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {601--658},
     publisher = {\'Ecole polytechnique},
     volume = {10},
     year = {2023},
     doi = {10.5802/jep.228},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.228/}
}
TY  - JOUR
AU  - Léonard Pille-Schneider
TI  - Global pluripotential theory on hybrid spaces
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2023
SP  - 601
EP  - 658
VL  - 10
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.228/
DO  - 10.5802/jep.228
LA  - en
ID  - JEP_2023__10__601_0
ER  - 
%0 Journal Article
%A Léonard Pille-Schneider
%T Global pluripotential theory on hybrid spaces
%J Journal de l’École polytechnique — Mathématiques
%D 2023
%P 601-658
%V 10
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.228/
%R 10.5802/jep.228
%G en
%F JEP_2023__10__601_0
Léonard Pille-Schneider. Global pluripotential theory on hybrid spaces. Journal de l’École polytechnique — Mathématiques, Tome 10 (2023), pp. 601-658. doi : 10.5802/jep.228. https://jep.centre-mersenne.org/articles/10.5802/jep.228/

[AK00] D. Abramovich & K. Karu - “Weak semistable reduction in characteristic 0”, Invent. Math. 139 (2000) no. 2, p. 241-273 | DOI | MR | Zbl

[ALT18] K. Adiprasito, G. Liu & M. Temkin - “Semistable reduction in characteristic 0”, 2018 | arXiv

[Aub78] T. Aubin - “Équations du type Monge-Ampère sur les variétés kählériennes compactes”, Bull. Sci. Math. (2) 102 (1978) no. 1, p. 63-95 | Zbl

[BBJ21] R. J. Berman, S. Boucksom & M. Jonsson - “A variational approach to the Yau-Tian-Donaldson conjecture”, J. Amer. Math. Soc. 34 (3) (2021), p. 605-652 | DOI | MR | Zbl

[BCHM10] C. Birkar, P. Cascini, C. D. Hacon & J. McKernan - “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc. 23 (2010) no. 2, p. 405-468 | DOI | MR | Zbl

[BE21] S. Boucksom & D. Eriksson - “Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry”, Adv. Math. 378 (2021), article ID 107501, 124 pages | DOI | MR | Zbl

[BEGZ10] S. Boucksom, P. Eyssidieux, V. Guedj & A. Zeriahi - “Monge-Ampère equations in big cohomology classes”, Acta Math. 205 (2010) no. 2, p. 199-262 | DOI | Zbl

[Ber90] V. G. Berkovich - Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990 | DOI | MR

[Ber99] V. G. Berkovich - “Smooth p-adic analytic spaces are locally contractible”, Invent. Math. 137 (1999) no. 1, p. 1-84 | DOI | MR | Zbl

[Ber09] V. G. Berkovich - “A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures”, in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, Progr. Math., vol. 269, Birkhäuser Boston, Boston, MA, 2009, p. 49-67 | DOI | MR | Zbl

[BFJ08] S. Boucksom, C. Favre & M. Jonsson - “Valuations and plurisubharmonic singularities”, Publ. RIMS, Kyoto Univ. 44 (2008) no. 2, p. 449-494 | DOI | MR | Zbl

[BFJ15] S. Boucksom, C. Favre & M. Jonsson - “Solution to a non-Archimedean Monge-Ampère equation”, J. Amer. Math. Soc. 28 (2015) no. 3, p. 617-667 | DOI | Zbl

[BFJ16] S. Boucksom, C. Favre & M. Jonsson - “Singular semipositive metrics in non-Archimedean geometry”, J. Algebraic Geom. 25 (2016) no. 1, p. 77-139 | DOI | MR | Zbl

[BG14] R. J. Berman & H. Guenancia - “Kähler-Einstein metrics on stable varieties and log canonical pairs”, Geom. Funct. Anal. 24 (2014) no. 6, p. 1683-1730 | DOI | Zbl

[BGGJ + 20] J. I. Burgos Gil, W. Gubler, P. Jell, K. Künnemann & F. Martin - “Differentiability of non-archimedean volumes and non-archimedean Monge-Ampère equations”, Algebraic Geom. 7 (2020) no. 2, p. 113-152 | DOI | Zbl

[BGPS14] J. I. Burgos Gil, P. Philippon & M. Sombra - Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, vol. 360, Société Mathématique de France, Paris, 2014 | Numdam

[BJ17] S. Boucksom & M. Jonsson - “Tropical and non-Archimedean limits of degenerating families of volume forms”, J. Éc. polytech. Math. 4 (2017), p. 87-139 | DOI | Numdam | MR | Zbl

[BJ18] S. Boucksom & M. Jonsson - “Singular semipositive metrics on line bundles on varieties over trivially valued fields”, 2018 | arXiv

[BJ22] S. Boucksom & M. Jonsson - “Global pluripotential theory over a trivially valued field”, Ann. Fac. Sci. Toulouse Math. (6) 31 (2022) no. 3, p. 647-836 | DOI | MR

[BT76] E. Bedford & B. A. Taylor - “The Dirichlet problem for a complex Monge-Ampère equation”, Invent. Math. 37 (1976) no. 1, p. 1-44 | DOI | Zbl

[CL06] A. Chambert-Loir - “Mesures et équidistribution sur les espaces de Berkovich”, J. reine angew. Math. 595 (2006), p. 215-235 | DOI | Zbl

[CLD12] A. Chambert-Loir & A. Ducros - “Formes différentielles réelles et courants sur les espaces de Berkovich”, 2012 | arXiv

[Dar15] T. Darvas - “The Mabuchi geometry of finite energy classes”, Adv. Math. 285 (2015), p. 182-219 | DOI | MR | Zbl

[DEL00] J.-P. Demailly, L. Ein & R. Lazarsfeld - “A subadditivity property of multiplier ideals”, Michigan Math. J. 48 (2000), p. 137-156 | DOI | MR | Zbl

[Dem92] J.-P. Demailly - “Regularization of closed positive currents and intersection theory”, J. Algebraic Geom. 1 (1992) no. 3, p. 361-409 | MR | Zbl

[Dem12] J.-P. Demailly - Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012

[Dem16] J.-P. Demailly - “Extension of holomorphic functions defined on non reduced analytic subvarieties”, in The legacy of Bernhard Riemann after one hundred and fifty years. Vol. I, Adv. Lect. Math. (ALM), vol. 35, Int. Press, Somerville, MA, 2016, p. 191-222 | MR | Zbl

[DPS01] J.-P. Demailly, T. Peternell & M. Schneider - “Pseudo-effective line bundles on compact Kähler manifolds”, Internat. J. Math. 12 (2001) no. 6, p. 689-741 | DOI | Zbl

[EGZ09] P. Eyssidieux, V. Guedj & A. Zeriahi - “Singular Kähler-Einstein metrics”, J. Amer. Math. Soc. 22 (2009) no. 3, p. 607-639 | DOI | Zbl

[Fav20] C. Favre - “Degeneration of endomorphisms of the complex projective space in the hybrid space”, J. Inst. Math. Jussieu 19 (2020) no. 4, p. 1141-1183 | DOI | MR | Zbl

[GO22] K. Goto & Y. Odaka - “Special Lagrangian fibrations, Berkovich retraction, and crystallographic groups”, 2022 | arXiv

[Gub98] W. Gubler - “Local heights of subvarieties over non-Archimedean fields”, J. reine angew. Math. 498 (1998), p. 61-113 | DOI | MR | Zbl

[GZ05] V. Guedj & A. Zeriahi - “Intrinsic capacities on compact Kähler manifolds”, J. Geom. Anal. 15 (2005) no. 4, p. 607-639 | DOI | Zbl

[GZ17] V. Guedj & A. Zeriahi - Degenerate complex Monge-Ampère equations, EMS Tracts in Math., vol. 26, European Mathematical Society (EMS), Zürich, 2017 | DOI

[KKMSD73] G. Kempf, F. F. Knudsen, D. Mumford & B. Saint-Donat - Toroidal embeddings. I, Lect. Notes in Math., vol. 339, Springer-Verlag, Berlin-New York, 1973 | DOI

[Kli91] M. Klimek - Pluripotential theory, London Math. Society Monographs, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991

[KNX18] J. Kollár, J. Nicaise & C. Y. Xu - “Semi-stable extensions over 1-dimensional bases”, Acta Mech. Sinica (English Ed.) 34 (2018) no. 1, p. 103-113 | DOI | MR | Zbl

[Kol13] J. Kollár - Singularities of the minimal model program, Cambridge Tracts in Math., vol. 200, Cambridge University Press, Cambridge, 2013 | DOI

[Koł98] S. Kołodziej - “The complex Monge-Ampère equation”, Acta Math. 180 (1998) no. 1, p. 69-117 | DOI | Zbl

[KS06] M. Kontsevich & Y. Soibelman - “Affine structures and non-Archimedean analytic spaces”, in The unity of mathematics, Progress in Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, p. 321-385 | DOI | MR | Zbl

[Li22] Y. Li - “Strominger-Yau-Zaslow conjecture for Calabi-Yau hypersurfaces in the Fermat family”, Acta Math. 229 (2022) no. 1, p. 1-53 | MR | Zbl

[Liu11] Y. Liu - “A non-Archimedean analogue of the Calabi-Yau theorem for totally degenerate abelian varieties”, J. Differential Geom. 89 (2011) no. 1, p. 87-110 | MR | Zbl

[LP20] T. Lemanissier & J. Poineau - “Espaces de Berkovich sur : catégorie, topologie, cohomologie”, 2020 | arXiv

[MN15] M. Mustaţă & J. Nicaise - “Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton”, Algebraic Geom. 2 (2015) no. 3, p. 365-404 | DOI | MR | Zbl

[Nad90] A. M. Nadel - “Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature”, Ann. of Math. (2) 132 (1990) no. 3, p. 549-596 | DOI | MR | Zbl

[Poi10] J. Poineau - La droite de Berkovich sur , Astérisque, vol. 334, Société Mathématique de France, Paris, 2010 | Numdam

[Poi13] J. Poineau - “Les espaces de Berkovich sont angéliques”, Bull. Soc. math. France 141 (2013) no. 2, p. 267-297 | DOI | Numdam | Zbl

[Poi22] J. Poineau - “Dynamique analytique sur . I : Mesures d’équilibre sur une droite projective relative”, 2022 | arXiv

[PS22a] L. Pille-Schneider - “Hybrid convergence of Kähler-Einstein measures”, Ann. Inst. Fourier (Grenoble) 72 (2022) no. 2, p. 587-615 | DOI | Zbl

[PS22b] L. Pille-Schneider - “Hybrid toric varieties and the non-Archimedean SYZ fibration on Calabi-Yau hypersurfaces”, 2022 | arXiv

[Reb23] R. Reboulet - “The space of finite-energy metrics over a degeneration of complex manifolds”, J. Éc. polytech. Math. 10 (2023), p. 659-701 | DOI

[Sch12] G. Schumacher - “Positivity of relative canonical bundles and applications”, Invent. Math. 190 (2012) no. 1, p. 1-56, Erratum: Ibid. 192 (2013), no. 1, p. 253–255 | DOI | MR | Zbl

[Shi20a] S. Shivaprasad - “Convergence of Bergman measures towards the Zhang measure”, 2020 | arXiv

[Shi20b] S. Shivaprasad - “Convergence of Narasimhan-Simha measures on degenerating families of Riemann surfaces”, 2020 | arXiv

[Son17] J. Song - “Degeneration of Kähler-Einstein manifolds of negative scalar curvature”, 2017 | arXiv

[SSW20] J. Song, J. Sturm & X. Wang - “Riemannian geometry of Kähler-Einstein currents III: compactness of Kähler-Einstein manifolds of negative scalar curvature”, 2020 | arXiv

[Thu05] A. Thuillier - Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov, Ph. D. Thesis, Université Rennes 1, 2005, https://theses.hal.science/tel-00010990

[Thu07] A. Thuillier - “Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels”, Manuscripta Math. 123 (2007) no. 4, p. 381-451 | DOI | MR | Zbl

[Yau78] S. T. Yau - “On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I”, Comm. Pure Appl. Math. 31 (1978) no. 3, p. 339-411 | DOI | Zbl

[Zha95] S. Zhang - “Small points and adelic metrics”, J. Algebraic Geom. 4 (1995) no. 2, p. 281-300 | MR | Zbl

[Zha15] Y. Zhang - “Collapsing of negative Kähler-Einstein metrics”, Math. Res. Lett. 22 (2015) no. 6, p. 1843-1869 | DOI | MR | Zbl

Cité par Sources :