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GLOBAL PLURIPOTENTIAL THEORY ON

HYBRID SPACES

by Léonard Pille-Schneider

Abstract. — Let (X,L) be a polarized scheme over a Banach ring A. We define and study a class
PSH(X,L) of plurisubharmonic metrics on the Berkovich analytification Xan. We focus mainly
on the case where A is a hybrid ring of power series, so that Xan is the hybrid space associated
to a degeneration of complex manifolds X. We then prove that any plurisubharmonic metric on
(X,L) with logarithmic growth at zero admits a canonical plurisubharmonic extension to the
hybrid space Xhyb. We also discuss the continuity of the family of Monge-Ampère measures
associated to a continuous plurisubharmonic hybrid metric.

Résumé (Théorie du pluripotentiel global sur les espaces hybrides). — Soit (X,L) un schéma
polarisé sur un anneau de Banach A. Nous définissons et étudions la classe des métriques
plurisousharmoniques PSH(X,L) sur l’analytifié de Berkovich Xan. Nous nous intéressons en
particulier au cas où A est l’anneau hybride des séries convergentes, et Xan est l’espace hybride
associé à une dégénérescence de variétés complexes X. Nous démontrons alors que toute mé-
trique plurisousharmonique sur (X,L) à croissance logarithmique en zéro admet une extension
plurisousharmonique canonique à l’espace hybride Xhyb. Nous discutons aussi de la continuité
de la famille de mesures de Monge-Ampère associée à une métrique hybride plurisousharmo-
nique continue.
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Introduction

The study of plurisubharmonic functions and positive currents on complex
manifolds—referred to as pluripotential theory—has proved itself over the past
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decades to be a central tool in complex Kähler and algebraic geometry. The heuristic
idea that one should be able to develop a pluripotential theory on Berkovich analytic
spaces over a non-Archimedean field K, similar to the classical one over the complex
numbers, is by now well-established, see for instance [Thu05], [CLD12] [BFJ16],
[BE21], [BJ22] in chronological order.

To be more precise, let K be a complete non-Archimedean field, and X/K a proper
algebraic variety. In this setting, Berkovich’s theory of K-analytic spaces [Ber90] asso-
ciates to the variety X/K its Berkovich analytification Xan, in a similar spirit to how
one associates to a variety over C its complex analytification. One may then define
in this setting a class PSH(X,L) of plurisubharmonic—or semi-positive—metrics on
Lan, whose properties mimic those of plurisubharmonic metrics in the complex case.

While the work of Chambert-Loir–Ducros [CLD12] provides a local definition of
semi-positivity, we will adopt a global point of view throughout this paper, following
the approach initiated by Boucksom-Favre-Jonsson in [BFJ16] and further developed
in [BJ18], [BJ22]. The basic idea is as follows: for m ⩾ 1, given a non-zero global
section s ∈ H0(X,mL), the singular metric (using additive notation for metrics)
ϕ = m−1 log|s| should be plurisubharmonic, as follows in the complex world from the
Lelong-Poincaré formula. It moreover follows from Demailly’s seminal work [Dem92]
on regularization of plurisubharmonic functions that on a smooth polarized complex
variety (X,L), the class PSH(X,L) is the smallest class of singular metrics containing
the metrics of the form ϕ = m−1 log|s| as above, and that is furthermore stable by
addition of constants, finite maxima and decreasing limits (see Theorem 2.24). It is
thus natural to take this characterization as the definition of PSH(X,L) in the non-
Archimedean setting, which turns out to be consistent with the more local, Chambert-
Loir–Ducros approach, by the results from [BE21].

One of the upsides of Berkovich’s construction of analytic spaces is that it works
over more general bases than non-Archimedean fields: given a Banach ring (A, |·|),
one can define its Berkovich spectrum M (A), and for any scheme X/A of finite type,
a Berkovich analytic space Xan π−→ M (A) equipped with a continuous structure map
to M (A). Each point x ∈ M (A) has a residue field H (x) in a natural sense, which
is a complete valued field, and the fiber π−1(x) of the structure map is naturally
homeomorphic to Berkovich analytification of the base change XH (x). One may thus
view the A-analytic space Xan as the family of analytic spaces (Xan

H (x))x∈M (A) over
different base fields, in a similar manner to which one views a scheme over a ring A as
a family of varieties over different base fields, parametrized by SpecA. More general
Berkovich analytic spaces over Banach rings were studied more extensively recently
in [LP20], where it is for instance proved that A-analytic spaces form a category in a
natural way, under certain assumptions on A.

At this point, pluripotential theory on Berkovich spaces over a Banach ring remains
a vastly unexplored territory. In this paper, assuming that the base ring A is integral,
we define a class PSH(X,L) of plurisubharmonic metrics on the analytification of
a scheme X/A of finite type, endowed with a semi-ample line bundle L. Roughly
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Global pluripotential theory on hybrid spaces 603

speaking, a singular plurisubharmonic metric ϕ ∈ PSH(X,L) can be seen as a family
of psh metrics ϕx ∈ PSH(XH (x), LH (x)) on the fibers of the structure map, varying in
a plurisubharmonic way with respect to x ∈ M (A) as well. Note however that it can
happen that ϕx ≡ −∞ for some x ∈ M (A), as one would expect in the complex world.
The class PSH(X,L) is defined following the global approach of [BFJ16], [BE21]: it is
the smallest class of singular metrics on L that contains metrics of the form m−1 log|s|
whenever s ∈ H0(X,mL) is a non-zero global section, and is stable under addition of
constants, finite maxima and decreasing limits.

Our main concern is the case where A is a hybrid ring (see Section 1.3 for the
definitions) and X → D∗ is a projective degeneration of complex manifolds—we will
always assume the degeneration to be meromorphic at t = 0, which means that we
may view X as a projective scheme over the field K = C((t)) of complex Laurent
series—so that Xan = Xhyb is the associated hybrid space, as studied for instance in
[BJ17], [Fav20]. The hybrid space Xhyb π−→ Dr comes with a continuous structure
map to the closed disk of radius r ∈ (0, 1), such that π−1(0) = Xan

K is the Berkovich
analytification of X with respect to the non-Archimedean t-adic absolute value on K,
while π−1(D∗

r) can be naturally identified with the restriction of the degeneration X to
the closed punctured disk D∗

r—up to rescaling the absolute value on the fiber Xt by a
factor log r/log|t|. As a result, this provides a natural way to see the (suitably rescaled)
complex manifolds (Xt)t∈D∗ degenerate to a non-Archimedean analytic space Xan

K

as t → 0. In this setting, if L is a semi-ample line bundle on X, then a psh metric
on (Xhyb, Lhyb) corresponds to the data of a family of psh metrics ϕt ∈ PSH(Xt, Lt)

varying in a subharmonic way with respect to t, together with a non-Archimedean
metric ϕ0 ∈ PSH(Xan, Lan).

In the case where the line bundle L is ample on X, given a plurisubharmonic
metric ϕ on L which has logarithmic growth at t = 0 (see Definition 3.9), one can
associate to it a psh metric ϕNA ∈ PSH(Xan, Lan) on the non-Archimedean analytic
space Xan, encoding the generic Lelong numbers of ϕ along the centrals fibers of
models of (X,L) over the disk. In the case where X = Y × D∗ is a product and ϕ

is an S1-invariant metric on p∗1L for an ample line bundle L on Y , one can view
ϕ : R⩾0 → PSH(Y,L) as a psh ray on Y , and the non-Archimedean limit was defined
by Berman-Boucksom-Jonsson [BBJ21] in the context of their proof of the Yau-Tian-
Donaldson conjecture; while the general case was treated in [Reb23].

Our main result states that given a psh metric ϕ ∈ PSH(X,L) with logarithmic
growth at zero, then the associated non-Archimedean metric ϕNA induces a canonical
semi-positive extension of ϕ to the hybrid space:

Theorem A. — Let (X,L) → D∗ be a polarized degeneration of complex manifolds,
and ϕ ∈ PSH(X,L) a psh metric with logarithmic growth at t = 0. Then the singular
metric ϕhyb on (Xhyb, Lhyb) such that

ϕhyb0 = ϕNA, ϕhyb|Xt
= ϕt

is plurisubharmonic.
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Note that not all psh metrics on the hybrid space arise in this way: the point 0 ∈ Dr
is pluripolar—non-negligible in the sense of hybrid pluripotential theory—so that psh
hybrid metrics are not uniquely recovered by their restriction to the punctured disk.
This subtlety however disappears when restricting our attention to continuous psh
metrics, as 0 ∈ Dr has empty interior, so that every continuous psh metric on Lhyb is
of the form described in Theorem A.

We now move on to discuss Monge-Ampère measures in this context. We start with
the case where X/K is an n-dimensional projective variety over a complete valued
field K, endowed with n ample line bundles (L1, . . . , Ln). When K = C, it follows
from the work of Bedford-Taylor [BT76] that the complex Monge-Ampère operator

(ϕ1, . . . , ϕn) 7−→ ddcϕ1 ∧ · · · ∧ ddcϕn,

defined a priori on tuples of smooth, positive-definite metrics ϕi on Li, extends to con-
tinuous psh metrics. When the field K is non-Archimedean, it is possible to define in a
similar way a measure-valued Monge-Ampère operator, denoted by MA(ϕ1, . . . , ϕn),
where (ϕ1, . . . , ϕn) is a tuple of continuous psh metrics on the Li, this was done in
[CL06], [BFJ15] when K is discretely-valued of equicharacteristic zero, and extended
to the general case in [BE21]. As a result, if ϕ is a continuous psh metric on a rela-
tively polarized scheme (X,L)/A over a Banach ring A, it induces a family of Monge-
Ampère measures (MA(ϕx))x∈M (A) on Xan π−→ M (A), where ϕx is the restriction
of ϕ to Xan

H (x) ≃ π−1(x), and MA(ϕx) := MA(ϕx, . . . , ϕx). Assuming that X is flat
over A, it is a natural question to wonder whether or not the family of Monge-Ampère
measures (MA(ϕx))x∈M (A) is weakly continuous with respect to x ∈ M (A).

In the case where A is a hybrid ring, we compare our formalism with the set-up of
Favre [Fav20] for continuous psh metrics on the hybrid space, which yields a continuity
result for the family of Monge-Ampère measures on the hybrid space associated to a
continuous psh hybrid metric (Theorem 4.11):

Theorem 0.1 ([Fav20, Th. 4.2]). — Let X → D∗ be a projective degeneration of com-
plex manifolds, polarized by an ample line bundle L. If ϕ is a continuous plurisubhar-
monic metric on (Xhyb, Lhyb), then the family of Monge-Ampère measures (µt)t∈Dr

on Xhyb, defined by
µt = MA(ϕt),

where ϕt = ϕ|Xt
for t ∈ D∗

r and ϕ0 = ϕ|Xan
K

, is weakly continuous.

Finally, we apply our setup to refine our previous work [PS22a] bearing on degen-
erations of canonically polarized manifolds X → D∗. Writing L = KX/D∗ , it follows
from the classical Aubin-Yau theorem that each fiber Xt admits a unique Kähler-
Einstein metric ϕt on Lt, whose curvature form ωt = ddcϕt has negative constant
Ricci curvature:

Ric(ωt) = −ωt.
Moreover, it follows from the results of Schumacher [Sch12] that the family of Kähler-
Einstein metrics ϕ = (ϕt)t∈D∗ also has positive curvature in the direction of the base
and has logarithmic growth at t = 0, so that ϕ ∈ PSH(X,L).
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The machinery of the Minimal Model Program (see Section 5.2) furthermore im-
plies that after a finite base change, the family admits a unique canonical model
Xc/D, which has ample relative canonical bundle KXc/D. Moreover, by the results of
Song-Sturm-Wang [Son17], [SSW20], the Kähler-Einstein metrics converge in a nat-
ural sense to a unique Kähler-Einstein current ωKE,0 on the special fiber Xc,0, and
even though this current does not have bounded potentials, its singularities are milder
than any log poles. We are thus able to show that the non-Archimedean limit of the
Kähler-Einstein metrics is the model metric ϕKXc/D

(see Example 2.12) associated to
the canonical model (Xc,KXc/D):

Theorem B. — Let X π−→ D∗ be a degeneration of canonically polarized manifolds,
L = KX/D∗ , and let ϕKE ∈ PSH(X,L) be the family of Kähler-Einstein metrics.
We assume that the family X has semi-stable reduction over D (which can always be
achieved after finite base change). Then the metric on Lhyb defined by

ϕ|X = ϕKE, ϕ0 = ϕKXc/R

is continuous and plurisubharmonic.

In particular, using Favre’s theorem mentioned above, this recovers the convergence
of associated Monge-Ampère measures, which was previously obtained in [PS22a,
Th. A].

In the paper [PS22b], we furthermore study in detail the case of toric metrics on
the hybrid space associated to a complex toric variety Z, and provide a combinatorial
description thereof, in the spirit of [BGPS14]. This allows us to describe the solution
to the non-Archimedean Monge-Ampère equation on the Fermat family of Calabi-Yau
hypersurfaces, as studied in [Li22] in relation with the SYZ conjecture.

Notation and conventions. — All rings are assumed to be unitary and commutative.
We will use additive notation for line bundles: if L, M are two line bundles on a

variety X, we write L+M := L⊗M , and kL := L⊗k for k ∈ Z.
If X is a complex manifold and ϕ a smooth function on X, we set ddcϕ = i

π∂∂ϕ.
We extend the notation to Hermitian metrics on line bundles, so that if L is a holomor-
phic line bundle on X and ϕ a smooth metric on L, the curvature form ddcϕ ∈ c1(L)—
and similarly for singular psh metrics.

Throughout this text, whenever we say that X π−→ D∗ is a degeneration of complex
manifolds, we mean that X is a smooth complex manifold and π a holomorphic
submersion (which will often be omitted from notation). We will furthermore always
assume that the degeneration is meromorphic at 0, i.e., that there exists a normal
complex analytic space X

π−→ D such that X|D∗ = X.

Organization of the paper. — In Section 1, we recall some general facts about
Berkovich analytic spaces over Banach rings, and in Section 2 we define and prove
basic properties of the class PSH(X,L) of plurisubharmonic singular metrics on a
polarized scheme (X,L)/A over an integral Banach ring; we also give some explicit
examples along the way. We then move on to the case of hybrid spaces: Section 3 is
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606 L. Pille-Schneider

devoted to the statement and the proof of Theorem A, and Section 4 is a discussion
on families of Monge-Ampère measures, where we explain the proof of Theorem 0.1.
Finally, in Section 5, we restrict our attention to degenerations of canonically
polarized manifolds and prove Theorem B.

Acknowledgements. — I am grateful to my adviser S. Boucksom for his constant en-
couragement and for many helpful conversations, and to A. Ducros for helpful com-
ments on a preliminary version of this paper. I would also like to thank Y. Odaka,
R. Reboulet and the anonymous referee for various comments on a preliminary version
of this paper.

1. Berkovich analytic spaces

1.1. Definitions

Definition 1.1. — Let A ̸= 0 be a ring. A (submultiplicative) semi-norm ∥·∥ on A is
a map ∥·∥ : A→ R⩾0 such that:

– ∥1∥ = 1 and ∥0∥ = 0,
– ∀a, b ∈ A, ∥a+ b∥ ⩽ ∥a∥+ ∥b∥,
– ∀a, b ∈ A, ∥ab∥ ⩽ ∥a∥∥b∥.

Its kernel Ker∥·∥ = {a ∈ A | ∥a∥ = 0} is an ideal of A, which is prime when ∥·∥ is
multiplicative. A submultiplicative semi-norm on A whose kernel is reduced to zero
is called a norm on A.

Finally, a Banach ring A is a non-zero ring equipped with a submultiplicative norm
∥·∥ such that A is complete with respect to ∥·∥.

For example, any non-zero ring A endowed with the trivial norm ∥·∥0 (such that
∥a∥0 = 1 for any non-zero a ∈ A) is a Banach ring.

Definition 1.2. — Let A be a Banach ring.
The Berkovich spectrum M (A) is the set whose points x ∈ M (A) are multiplicative

semi-norms |·|x : A→ R⩾0 satisfying |·|x ⩽ ∥·∥.
It is equipped with the topology of pointwise convergence on A, which makes it

into a non-empty Hausdorff compact topological space by [Ber90], and with a map
q : |·|x 7→ px = Ker(|·|x) to Spec(A) which is continuous.

For instance, if A = k is a complete valued field, then M (k) is reduced to the
point ∥·∥.

Example 1.3. — Let A = Z be the ring of integers, endowed with the usual
Archimedean absolute value |·|∞. Let x0 = |·|0 ∈ M (Z) be the trivial absolute value
on Z, and let xp = |·|p be the p-adic absolute value, normalized setting |p|p = p−1.

It follows from Ostrowski’s theorem that any point x ∈ M (Z) is of the following
form: either there exists ε ∈ [0,+∞] and p a prime number such that x = |·|εp, or there
exists ε ∈ [0, 1] such that x = |·|ε∞; where we denote |·|0x = |·|0 the trivial absolute
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value for any x ∈ M (Z), while |·|∞p is the absolute value such that |n|∞p = 0 if p
divides n, and |n|∞p = 1 otherwise.

Topologically, the Berkovich spectrum M (Z) is thus an infinite wedge of segments
parametrized by the prime numbers and ∞, glued together at the trivial absolute
value x0. Note that for each neighbourhood V of x0 in M (Z), the set of branches not
contained in V is finite.

The map M (Z) q−→ Spec(Z) maps the outer end |·|∞p of the p-adic branch to the
prime ideal (p), and any other point to the generic point of Spec(Z).

The analytification of an A-scheme of finite type is now defined as follows:

Definition 1.4. — Let B be a finitely generated A-algebra. The analytification Y an

of Y = Spec(B) is the set of multiplicative semi-norms |·|y on B whose restriction to A
belong to M (A). It is endowed with the coarsest topology making the maps y 7→ |f |y
continuous, for f ∈ B, and comes with a continuous structure map Y an → M (A),
sending a semi-norm to its restriction to A.

If X is a scheme of finite type over A, one can then glue the analytifications of affine
charts of X in order to define the analytic space Xan, together with the structure map
π : Xan → M (A).

The space Xan satisfies nice topological properties: if X/A is separated, then Xan

is Hausdorff; and Xan is compact whenever X/A is projective.
Any A-analytic space comes with a sheaf of analytic functions, as defined in [Ber90,

Def. 1.5.3]. One can then show that the above definition induces an analytification
functor X 7→ Xan from the category of A-schemes of finite type to the category of
A-analytic spaces, that was defined in [LP20].

Example 1.5. — Let A = C endowed with the Euclidean absolute value, and B be
a complex Banach algebra of finite type. Then the classical Gelfan’d-Mazur theorem
implies that Y an = (SpecB)an is the set of maximal ideals of B. As a result, Y an

is the set Y (C) of closed points of the affine complex algebraic variety Y , and the
induced topology on Y is the Euclidean one. More generally, if Y is a reduced scheme
of finite type over C, then the analytification Y an of Y with respect to the Euclidean
absolute value on C is homeomorphic to the complex variety Y endowed with the
Euclidean topology.

Example 1.6. — Let A = K be a complete non-Archimedean field, and let X/K be
an integral, separated scheme of finite type. Then the Berkovich space Xan can be
described more explicitly as the set of pairs x = (ξ, vx), where ξ = ξx is a scheme-
theoretic point of X and vx is a real valuation on the function field of ξx, extending
the valuation on K.

Moreover, the map x 7→ ξx from Xan to Xsch is continuous, surjective, and induces
a bijection between the respective sets of connected components; the closed subscheme
Y := ξx will be called the support of x ∈ Xan.
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Definition 1.7. — Let A be a Banach ring, and x ∈ M (A). Write px = q(x) =

Ker(|·|x), κ(x) = Frac(A/px) the schematic residue field of A at px. The semi-norm |·|x
descends to an absolute value on κ(x), we write H (x) for the associated completion
of κ(x) and call it the residue field of M (A) at x.

Assume given two Banach rings A and B, together with a bounded ring homomor-
phism A→ B. This induces a continuous map

ρ : M (B) −→ M (A),

which simply sends a semi-norm on B to its pull-back to A.
If X/A is a scheme of finite type and XB := X ×A B, we additionally have a

continuous map F : Xan
B → Xan, defined explicitly by restriction of semi-norms on

an open cover of X by affine schemes (see Definition 1.4); and which fits into the
commutative diagram

Xan
B Xan

M (B) M (A).

F

πB πA
ρ

The following proposition allows us to view—at least topologically—a Berkovich space
over a Banach ring A as a family of Berkovich spaces over complete valued fields,
parametrized by M (A):

Proposition 1.8. — Let A be a Banach ring, X a scheme of finite type over A, and
π : Xan → M (A) the associated analytic space. If x ∈ M (A), then π−1(x) is canon-
ically homeomorphic to the analytification of the base change XH (x) = X ×A H (x)

with respect to the absolute value |·|x on H (x). Moreover, the base change map
Fx : Xan

H (x) → Xan is the inclusion π−1(x) ⊂ Xan under this homeomorphism.

Proof. — We treat the case where X = SpecB, with B an A-algebra of finite type,
as the general case will follow from gluing. By definition of Xan and the structure
map π, the fiber π−1(x) is the set of multiplicative semi-norms on B that restrict to
|·|x on A—or equivalently the set of (equivalence classes of) morphisms B → K to
a complete valued field extension K/H (x), restricting to the morphism A → H (x)

on A.
By the universal property of the tensor product of algebras, this is the same as

a morphism B ⊗A H (x) → K inducing on H (x) the given embedding of H (x)

into K. Such a morphism then produces a semi-norm on B ⊗A H (x) restricting
to |·|x on H (x), hence a point in Xan

H (x). It is then straightforward to see that this
bijection is compatible with the weak topologies and thus induces a homeomorphism
between π−1(x) and Xan

H (x), compatible with the inclusion and base change map
respectively. □

Remark 1.9. — When A, B are geometric base rings in the sense of Lemanissier-
Poineau [LP20, Def. 3.3.8] (which is the case of all Banach rings considered in this
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paper), the base change Xan
B is indeed the fiber product Xan ×M (A) M (B) in the

category of A-analytic spaces, see [LP20, §§4.2, 4.3].

Definition 1.10. — Let A be an integral Banach ring, and write ηA for the generic
point of Spec(A). We say a point x ∈ M (A) is Zariski-dense if and only the kernel
of |·|x is reduced to zero.

We write M (A)η = q−1(ηA) ⊂ M (A) for the subset of Zariski-dense points.

As the name suggests, those are indeed the points of M (A) which are dense for
the Zariski topology, where the Zariski topology on M (A) is the coarsest making the
map q : M (A) → Spec(A) continuous.

1.2. Discretely-valued fields. — Let K be a complete, discretely-valued field, with
valuation v. We denote by R = {v ⩾ 0} its valuation ring, m = {v > 0} its max-
imal ideal and k = R/m the residue field. We will furthermore assume that K has
equicharacteristic zero, i.e., k and K both have characteristic zero. In this case, it
follows from Cohen’s structure theorem that K is isomorphic to the field K = k((t))

of Laurent series over its residue field, endowed with the valuation v = ord0.
We let X be an integral, separated K-scheme of finite type, and write n = dim(X).

The purpose of this section is to explain how one can understand the topological
space Xan more concretely using piecewise-affine geometry. The basic idea is that for
a large enough class of integral R-models X of X, there exists a finite-dimensional cell
complex Sk(X ) ⊂ Xan, which we may view as a tropicalization of the model X . As
a matter of fact, by [KS06, Th. 10], the space Xan can be realized as the inverse limit
of all such Sk(X ), so that Xan is homeomorphic to a tower of simplicial complexes.

We start with a definition.

Definition 1.11. — A model of X is a flat, separated R-scheme X , together with
an isomorphism of K-schemes X ×R K ≃ X.

We will denote X0 := X ×R k the special fiber of X , and by Div0(X ) the group
of Weil divisors on X supported on the special fiber.

If X , X ′ are two models of X, a morphism of models f : X ′ → X is an R-
morphism whose base change to K induces the identity on X. We will say that X ′

dominates X if there exists such a morphism, in which case it is unique.
Assume that X/K is proper, and let X /R be a proper model of X. By the

valuative criterion of properness, for any x = (ξx, vx) ∈ Xan, the K-morphism
SpecH (x) → X—whose image is the point ξx—lifts in a unique way to an R-mor-
phism from the valuation ring H (x)◦ to X :

SpecH (x) X

SpecH (x)◦ SpecR.

ξx
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The image of the closed point of SpecH (x)◦ under the extended morphism is called
the center of x and denoted by cX (x). The map cX : Xan → X0 turns out to be
surjective and anticontinuous, i.e., the preimage of a closed subset of X0 by cX is
open in Xan.

In the case where X/K is smooth, we say a model X /R has simple normal crossing
singularities if X is regular, and the special fiber X0 is a divisor with simple normal
crossing support inside X . Such models always exists when K has equicharacteristic
zero and X/K is projective, by Hironaka’s theorem on resolution of singularities. More
precisely, any model X /R can be dominated by an snc model.

To every snc model X of X, with special fiber X0 =
∑
i∈I aiDi, we can associate

a cell complex encoding the combinatorics of the intersections of the irreducible com-
ponents of X0. We say Y ⊂ X0 is a stratum if there exists a non-empty J ⊂ I such
that Y is a connected component of DJ := ∩j∈JDj . The dual complex of X is now
defined as follows.

Definition 1.12. — Let X be an snc model of X. To each stratum Y of X0 which
is a connected component of DJ , we associate a simplex:

τY =
{
w ∈ R|J|

⩾0 |
∑
j∈J ajwj = 1

}
.

We define the cell complex D(X0) by the following incidence relations: τY is a face
of τY ′ if and only if Y ′ ⊂ Y .

Given any snc model X of X over R, there exists a natural embedding iX of
the dual complex D(X0) into Xan, given as follows. The vertices vi of D(X0) are
in one-to-one correspondence with irreducible components Di of the special fiber
X0 =

∑
i∈I aiDi, so that we set

iX (vi) = vDi := a−1
i ordDi ,

where the valuation ordDi
associates to a meromorphic function f ∈ K(X) ≃ K(X )

its vanishing order along Di—the normalization by a−1
i ensuring that vDi

(t) = 1.

Definition 1.13. — A valuation given in this way, for some snc model X of X,
is called divisorial. We write Xdiv ⊂ Xan for the set of divisorial valuations, it is a
dense subset of Xan.

One can now interpolate between those divisorial valuations using quasi-monomial
valuations, in order to embed D(X0) into Xan.

Proposition 1.14 ([MN15, Prop. 2.4.4]). — Let X be an snc model of X , with special
fiber X0 =

∑
i∈I aiDi. Let J ⊂ I such that DJ = ∩j∈JDj is non-empty, and Y a con-

nected component of DJ , with generic point η. We furthermore fix a local equation
zj ∈ OX ,η for Dj, for any j ∈ J .

Then, for any w ∈ τY = {w ∈ R|J|
⩾0 |

∑
j∈J ajwj = 1}, there exists a unique

valuation
vw : OX ,η −→ R⩾0 ∪ {+∞}
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such that for every f ∈ OX ,η, with expansion f =
∑
β∈N|J| cβz

β (with cβ either zero
or unit), we have:

vw(f) = min{⟨w, β⟩ | β ∈ N|J|, cβ ̸= 0},
where ⟨ , ⟩ is the usual scalar product on R|J|.

The above valuation is called the quasi-monomial valuation associated with the
data (Y,w). Then:

iX : D(X0) −→ Xan

τY ∋ w 7−→ vw

gives a well-defined continuous injective map from D(X0) to Xan.

Definition 1.15. — We call the image of D(X0) by iX the skeleton of X , written
as Sk(X ) ⊂ Xan. It is a cell complex of dimension at most dimX.

By compactness of D(X0), iX induces a homeomorphism between D(X0) and Sk(X ),
so that we will sometimes abusively identify D(X0) with Sk(X ).

We can now define a retraction for the inclusion Sk(X ) ⊂ Xan as follows: for any
v ∈ Xan, there exists a minimal stratum Y ⊆ ∩j∈JDj of X0 such that the center
cX (v) of v is contained in Y . We now associate to v the quasi-monomial valuation
ρX (v) corresponding to the data (Y,w) with wj = v(zj), where zj is a local equation
of Dj at the generic point of cX (v). This should be seen as a monomial approximation
of the valuation v at the generic point of Y , with respect to the model X .

Definition 1.16. — The above map ρX : Xan → Sk(X ) is the Berkovich retraction
associated with the model X /R.

The Berkovich retraction is continuous, restricts to the identity on Sk(X ), and
by [Thu07] [Ber99], ρX is a strong deformation retraction, i.e., there exists a homo-
topy between ρX and the identity on Xan that fixes the points of Sk(X ). It follows
that Xan and Sk(X ) are homotopy equivalent.

Let X /R be a model of X, and let I be a coherent ideal sheaf on X . It induces
a function

ϕI : Xan −→ R,
sometimes denoted by ϕI = log|I |, as follows. For x ∈ Xan, we set

ϕI = sup
f

log|f(x)|,

where the supremum runs over the f ∈ IcX (x)—or equivalently, over the finitely
many generators of I at cX (x).

If I1, I2 are vertical ideal sheaves on X , X ′ respectively (i.e., cosupported on the
special fiber), then the equality ϕI1

= ϕI2
holds if and only there exists a model X ′′

dominating both X and X ′ such that the pullbacks

OX ′′ · I1 = OX ′′ · I2
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agree on X ′′. In particular, when working with a function of the form ϕI for a
vertical ideal sheaf, we may choose a log-resolution of the ideal I , so that we may
assume that there exists a model X such that I = OX (D) for a vertical divisor
D ∈ Div0(X ). This implies for instance the following.

Lemma 1.17. — Let I be a vertical ideal sheaf on a model X of X, and ϕI : Xan → R
the associated function. Then for any snc model X ′ of X, the restriction of ϕI to
the skeleton Sk(X ′) is integral piecewise-affine.

Note that the converse also holds. This motivates the following terminology.

Definition 1.18. — A function ϕ : Xan → R is integral piecewise-affine (Z-PA for
short) if there exists an snc model X and a vertical ideal sheaf I on X such that
ϕ = ϕI .

1.3. Hybrid spaces. — Let (k, |·|) be a non-trivially valued field, either Archimedean
or non-Archimedean. The following Banach ring was introduced by Berkovich [Ber09],
and further studied for instance by Boucksom-Jonsson [BJ17, App. A].

Definition 1.19. — Let khyb be the Banach ring obtained by equipping the field k

with the norm ∥·∥hyb, defined for non-zero z ∈ k by

∥z∥hyb = max{1, |z|}.

One can show [LP20, Ex. 1.1.15] that the elements of M (khyb) are of the form |·|λ,
for λ ∈ [0, 1], where |·|0 = |·|0 denotes the trivial absolute value on k. This yields a
homeomorphism λ : M (khyb)

∼−→ [0, 1].
Thus, if Z is a scheme of finite type over k, its analytification with respect to

|·|hyb, which we denote by Zhyb, comes with a structure morphism π : Zhyb → [0, 1].
If Z = Spec(A) is affine, the fiber over λ ̸= 0 is by definition of π the set of semi-norms
extending the absolute value |·|λ on k, so that by rescaling, this is easily seen to be
homeomorphic to the analytification Zan of Z with respect to the absolute value |·|.
One can in fact show that for any Z of finite type, we have a homeomorphism

p : π−1((0, 1])
∼−−−→ (0, 1]× Zan,

compatible with the projections to (0, 1].
On the other hand, the fiber π−1(0) consists of the semi-norms extending the trivial

absolute value on k, so that this is homeomorphic to the analytification Zan
0 of Z with

respect to the trivial absolute value on k.
Hence, the space Zhyb allows us to see the analytic space Zan degenerate to its

trivially-valued counterpart.
In the case where k = C with the Euclidean absolute value, the analytification Zan

is homeomorphic to the usual complex analytification Zhol of Z, by Example 1.5. Thus,
the space Zhyb provides a natural way to degenerate the complex manifold Zhol to
the non-Archimedean analytic space Zan

0 .
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We now want to perform a similar construction for degenerations of complex va-
rieties. Let X π−→ D∗ be a holomorphic family of n-dimensional complex manifolds,
where D∗ = {|t| < 1} is the punctured unit disk in C. We will furthermore assume
that the family is quasi-projective and meromorphic at zero, i.e., that there exists a
relatively algebraic embedding ι : X ↪→ PN × D∗ such that π = pr2 ◦ι, and the equa-
tions of X have meromorphic singularity at t = 0. This allows us to view (the base
change of) X as a quasi-projective scheme over the non-Archimedean field K = C((t))
of Laurent series, we will write Xan for the Berkovich analytification of X with respect
to the t-adic absolute value on K, normalized such that |t| = r.

We fix a radius r ∈ (0, 1), and consider the following Banach ring, which we call
the hybrid ring:

Ar =
{
f =

∑
n∈Z ant

n ∈ K | ∥f∥hyb :=
∑
n∥an∥hyb rn <∞

}
.

The purpose of the above Banach ring is to provide a presentation of the closed
complex disk as an affine non-Archimedean analytic space: we denote by Chyb(r) :=

M (Ar) the Berkovich spectrum of Ar and call it the hybrid circle, the terminology
stems from the fact that Chyb(r) is homeomorphic to the circle {|T | = r} inside
the Berkovich affine line over Chyb [Poi10]. We now have the following more explicit
description of the hybrid circle.

Lemma 1.20 ([BJ17, Prop. A.4]). — The map τ : t 7→ |·|t defined, for f ∈ Ar, by

|f |t =

{
rord0(f) if t = 0,

rlog|f(t)|/ log|t| if t ̸= 0,

induces a homeomorphism from Dr to Chyb(r) = M (Ar).

The upshot of this construction is that if f ∈ Ar, then:

log|f(τ(t))| = log r · log|f(t)|
log|t|

for t ̸= 0—we are viewing the point t as a rescaling of the Euclidean absolute value
composed with the evaluation map at t. Additionally, as t→ 0 these rescaled absolute
values converge to the non-Archimedean t-adic absolute value rord0 on Ar ⊂ C((t)).
This motivates the following definition.

Definition 1.21. — Let X π−→ D∗ be a quasi-projective degeneration of complex
manifolds as above, and view it as a scheme of finite type over the ring of convergent
power series. We write XAr

its base change to the ring Ar. We define the hybrid
space Xhyb

r associated to X as the analytification of XAr over Ar, which comes with
a structure map:

πhyb : Xhyb
r −→ Chyb(r).

The hybrid space allows us to see the complex space X degenerate to its non-
Archimedean analytification, as a consequence of the following.
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Proposition 1.22 ([Fav20, Th. 1.2]). — Let X be a degeneration of complex manifolds,
XAr the associated Ar-scheme, and denote the associated hybrid space by πhyb :

Xhyb
r → Chyb(r). Then:

– π−1
hyb(0) can be canonically identified with Xan,

– there exists a homeomorphism β : X|D∗
r

∼−→ π−1
hyb(τ(D∗

r)), satisfying πhyb ◦ β =

τ ◦ π,
– if ϕ is a rational function on XAr

, then |ϕ(β(z))| = |ϕ(z)|log r/log|t| for z not in
the indeterminacy locus of ϕ.

Thus, heuristically, the hybrid space allows us to see the scalings of the usual
modulus on C given by |·|log r/log|t| degenerate to the non-Archimedean absolute value
on K, and hence to see the complex manifolds {Xt}t∈D∗ degenerate to the non-
Archimedean analytification Xan.

Assume for instance that (µt)t∈D∗ is a continuous family of probability measures on
X, such that µt is supported on Xt for each t ∈ D∗. Since the hybrid space provides
a canonical compactification of X over the puncture, it is a natural question to ask
whether or not the family of measures converges on Xhyb, at least in a weak sense—
more concrete examples of such situations will be given in Sections 4.3 and 5.1; see
also [Shi20a], [Shi20b].

1.4. The isotrivial hybrid space. — We set K = C((t)). Let X be a projective com-
plex variety, and write X̃ := X × D∗ the associated trivial degeneration of complex
varieties, as well as XK = X ×CK. We thus have two hybrid spaces associated to X:
the hybrid space Xhyb

0 obtained by viewing X as a scheme over Chyb, and the hybrid
space Xhyb

K associated to the degeneration X̃. The goal of this section is to com-
pare both hybrid spaces, so that results established for hybrid spaces associated to
degenerations will naturally yield similar statements for spaces over Chyb, simply by
specializing to a trivial degeneration.

We start by comparing the non-Archimedean fibers. We write Xan
K for the ana-

lytification of XK , and Xan
0 for the analytification of X with respect to the trivial

absolute value on C. The t-adic absolute value on C((t)) restricts to the trivial abso-
lute value on C, so that there exists a base change morphism f : Xan

K → Xan
0 , that

can be described as follows. If K(X) is the function field of X, then the function field
of XK is simply K(XK) = K(X)((t)) = K(X)⊗CK. Hence, any valuation v on K(XK)

induces by restriction a valuation f(v) on K(X), and similarly for semi-valuations.
We now compare the base rings: for r ∈ (0, 1), the inclusion Chyb ↪→ Ar is com-

patible with the hybrid norms, so that it induces a continuous map

λ : M (Ar) −→ M (Chyb),

obtained by restricting semi-norms from Ar to Chyb. It is straightforward to check
that under the homeomorphisms M (Ar) ≃ Dr and M (Chyb) ≃ [0, 1], we have
λ(t) = log r/log|t| for t ∈ Dr. We furthermore have the following description of
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the base change of X from Chyb to Ar, which is a straightforward consequence of
transitivity of base change:

Proposition 1.23. — Let r ∈ (0, 1), and let λ : Dr → [0, 1] be the map defined by
λ(t) = log r/log|t|. We have a commutative diagram

Xhyb
K Xhyb

0

Dr
[
0, 1

]
F

πK π0

λ

where F is the base change of X from Chyb to Ar, and such that F|π−1
K (0) = f . More-

over, for any t ∈ D∗
r, F|π−1

K (t) induces the identity on Xhol under the homeomorphisms
from Section 1.3.

The map f : Xan
K → Xan

0 furthermore admits a continuous section, called the Gauss
section, defined in the following way. In the terminology of [Poi13, Def. 3.2], every point
ofXan

0 is universal (peaked point, in the terminology of Berkovich) as C is algebraically
closed, so that any x ∈ Xan

0 admits a canonical lift to Xan
K , denoted by γ(x); we call

the map γ : Xan
0 → Xan

K the Gauss section. More concretely, if x = vx ∈ Xan
0 is a

valuation on K(X), it is extended as a valuation

γ(v) : K(X)((t)) −→ R ∪ {−∞},

such that γ(v)(t) = 1. For instance, if S =
∑
n⩾0 snt

n an element of K(X)[t], the
canonical extension is defined by the formula

γ(v)(S) = min
n

(v(sn) + n).

2. Global pluripotential theory

Let A be an integral Banach ring, and let X be a projective A-scheme of finite type.
Following common practice, we will call line bundle on X any locally free OX -module
of rank 1. We will use additive notation for the group law on the set of isomorphism
classes of line bundles.

Let L be a semi-ample line bundle on X, and write Xan → M (A) the Berkovich
analytification ofX. The purpose of this section is to define a class of plurisubharmonic
metrics PSH(X,L) on L, in a similar way to the case where A = K is a complete
valued field. For instance when K = C, and (X,L) is a smooth polarized variety, then
the class PSH(X,L) we define is nothing but the usual class of plurisubharmonic
metrics on L, which is one of the central objects of pluripotential theory, and has
been extensively studied at this point. When K is a non-Archimedean field, a similar
class of plurisubharmonic metrics has been defined in increasing order of generality
in [Zha95], [Gub98], [BFJ16], [BE21], and our definition is built so that it generalizes
the latter.
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In our setting, the basic idea is that a metric ϕ ∈ PSH(X,L) can be viewed as
a family of semi-positive metrics (ϕx)x∈M (A), where ϕx ∈ PSH(XH (x), LH (x)), that
also varies in a plurisubharmonic way with respect to x ∈ M (A).

The main case of interest for us will be when A = Ar is a hybrid ring, so that
Xan = Xhyb is the hybrid space associated to a degeneration X of complex vari-
eties. In this setting, our main result, Theorem 3.13, states that any psh metric ϕ ∈
PSH(X,L) on a polarized degeneration X of complex manifolds satisfying a certain
growth condition, induces naturally a psh metric on (Xhyb, Lhyb), whose restriction
to the non-Archimedean fiber Xan is the non-Archimedean metric ϕNA constructed
in [BBJ21], [Reb23], and encodes the logarithmic singularities of ϕ along the special
fibers of models of X.

We also compare our definition with the setting of [Fav20], and obtain the conti-
nuity on Xhyb of the family of Monge-Ampère measures associated to a continuous,
semi-positive metric on Lhyb.

2.1. Metrics on Berkovich spaces. — We start with some very general definition of
metrics on line bundles on Berkovich analytic spaces.

Definition 2.1. — Let L be a line bundle on X. A continuous metric ϕ on Lan

consists of the following data: for any Zariski open subset U ⊂ X and s ∈ H0(U,L|U )

a trivializing section, a continuous function
∥s∥ϕ : Uan −→ R>0

such that ∥fs∥ϕ = |f |∥s∥ϕ for any regular function f ∈ H0(U,OU ), and compatible
with restriction of sections.

This allows us to define, for any open subset V ⊂ Xan and any analytic section s

of Lan on V , a continuous function
∥s∥ϕ : V −→ R⩾0,

as follows: cover X by Zariski open subsets Ui, i ∈ I such that L|Ui
= si · OUi

, and
write, on V ∩ Ui,

s = fi · si,
with fi an analytic function on V . Then we set

∥s∥ϕ := |fi|∥s∥ϕ

on V ∩ Uan
i . It is straightforward to check that this is independent on the choice of

trivializations, compatible with restrictions and that the equality

∥fs∥ϕ = |f |∥s∥ϕ

holds for any section s and any analytic function f on V .
From now on, we will use additive notation for metrics, i.e., identify the metric ∥·∥ϕ

with ϕ = − log∥·∥ϕ (more precisely, the collection of local functions ϕi = − log∥si∥ϕ
associated to local trivializations of L). In particular, if L1, L2 are two line bundles
on X and ϕi is a continuous metric on Li for i = 1, 2, then ϕ1 + ϕ2 is a continuous
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metric on L1 + L2. Moreover, if ψ : Xan → R is a continuous function and ϕ a
continuous metric on L, then ϕ+ ψ is also a continuous metric on L.

Example 2.2. — Let A = C with the Euclidean absolute value, and X/C a smooth
variety endowed with a line bundle. Then our definition matches the standard defini-
tion of a continuous Hermitian metric on L.

Example 2.3. — Let A = k be a trivially-valued field, X/k a proper variety and L

a line bundle on X. Then the trivial metric ϕtriv on L is the unique metric on Lan

such that for any pair (U, s), with U ⊂ X a Zariski open and s ∈ H0(U,L) a nowhere-
vanishing section of L, the equality

|s(x)|triv = 1

holds whenever the center c(vx) is contained in U .

Example 2.4. — Let X = PNA , and L = O(1). Then the Fubini-Study metric ϕFS on L
is defined by the formula

∥s(x)∥ϕFS =
|s(x)|

max(|x0|, . . . , |xN |)
,

where the xi’s are standard coordinates on PNA . We will write
ϕFS = max

i⩽N
log|xi|.

Note that while this definition is well-suited for the case when A is a non-Archimedean
field, it does not recover the usual Fubini-Study metric on CPN when A = C, so that
we will sometimes call the metric above the tropical Fubini-Study metric.

In order to define a large enough class of semi-positive metrics, we need to allow
metrics with some singularities.

Definition 2.5. — Let L be a line bundle on X. A singular metric ϕ on Lan (or simply
on L when the norm is clear from the context) consists of the following data: for any
Zariski open subset U ⊂ X and s ∈ H0(U,L|U ) a trivializing section, an upper semi-
continuous (usc) function

ϕs = − log∥s∥ϕ : Uan −→ R ∪ {−∞}

not identically −∞, such that ∥fs∥ϕ = |f | × ∥s∥ϕ for any regular function f ∈
H0(U,OU ), and compatible with restriction of sections.

Example 2.6. — The following example will be particularly relevant for our purposes.
Let m ⩾ 1, and s0 ∈ H0(X,Lm) be a global (algebraic) section of some positive power
of L; we associate to it the metric on L given by

ϕ = m−1 log|s0|,

i.e., for s a local section of L, we have:

∥s∥ϕ(x) =
(∣∣sm(x)

s0(x)

∣∣)1/m

.

This metric is singular precisely along the zero locus of s0.
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Definition 2.7. — Let X, Y be two A-schemes of finite type, and f : Y → X be
an A-morphism. If L is a line bundle on X endowed with a (singular) metric ϕ,
we define the pull-back metric f∗ϕ on f∗L as follows: cover X =

⋃
i∈I Ui by Zariski

open subsets, and choose a trivialization si of L on each Ui.
This induces an open cover Y =

⋃
i∈I Vi with Vi = f−1(Ui), and local trivializations

of f∗L by the sections f∗si on Vi. We now set

∥f∗si∥f∗ϕ := ∥si∥ϕ ◦ f.

It is straightforward to check that this is independent on the choice of open cover
and trivializations, and thus defines a metric f∗ϕ on f∗L.

We conclude this section with a discussion on the behaviour on metrics under base
change. We assume that A and B are two Banach rings, together with a bounded ring
homomorphism A → B, so that we have a continuous map F : Xan

B → Xan for any
scheme X/A of finite type, see Section 1.1.

Let L be a line bundle on X, and LB = L ⊗OX
OXB

the induced line bundle on
XB . Given a continuous metric ϕ on Lan, we want to define a continuous metric ϕB
on LB by a base change operation. To that purpose, cover X =

⋃
i∈I Ui by Zariski

open subsets trivializing L, and set UB,i = Ui×AB, which yields an open cover of XB .
If si is a generator of the free OX(Ui)-module H0(Ui, L), then si⊗ 1 is a generator of
H0(UB,i, LB) over OXB

(UB,i), so that we naturally set, for x ∈ Uan
B,i,

∥(s⊗ 1)(x)∥ϕB
:= ∥s(F (x))∥ϕ.

It is now a straightforward verification that ϕ 7→ ϕB defines a base change map
from the set of continuous metrics on (Xan, Lan) to the set of continuous metrics
on (Xan

B , Lan
B ), which commutes with the usual operations of addition and scaling of

metrics, as well as finite maxima.

Example 2.8. — Let A be a Banach ring, and let x ∈ M (A). Then we have a canonical
morphism of Banach rings A→ H (x), so that any continuous metric ϕ on L induces
by base change a continuous metric ϕx on (Xan

H (x), L
an
H (x)). The metric ϕx can also be

seen as the restriction of ϕ to the fiber π−1(x) of the structure map π : Xan → M (A),
by Proposition 1.8.

2.2. Pluripotential theory over a field. — Let (X,L) be a smooth polarized va-
riety over C. The class PSH(X,L) of semi-positive metrics on L lies at the heart of
(global) complex pluripotential theory, it is the class of singular metrics ϕ on L whose
curvature form ddcϕ is semi-positive in the sense of currents. We refer the reader for
instance to [Dem12], [GZ17] for a more thorough introduction.

Let m ⩾ 1 such that mL is globally generated. Given a family (s0, . . . , sN ) of global
sections of mL without commons zeroes, one can associate to them the continuous
semi-positive metric

ϕ =
1

2m
log(|s0|2 + · · ·+ |sN |2),
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which is none other than the pull-back of the standard Fubini-Study metric on
(CPN ,O(1)) via the holomorphic map

x 7−→ [s0(x) : · · · : sN (x)].

We call such a metric on L a Fubini-Study metric. The following theorem, due to
Demailly [Dem92] when X is smooth and L ample, highlights the importance of such
metrics as basic building blocks of complex pluripotential theory.

Theorem 2.9 ([BE21, Th. 7.1]). — Let X be a complex projective variety, L a semi-
ample line bundle on X, and ϕ ∈ PSH(X,L) a semi-positive singular metric on L.
Then there exists a decreasing sequence (ϕj)j∈N of Fubini-Study metrics on L, con-
verging pointwise to ϕ.

In particular, the class PSH(X,L) is the smallest class of singular metrics contain-
ing all Fubini-Study metrics, and that is stable under addition of constants, finite
maxima and decreasing limits.

We now move to the case of a non-Archimedean field (K, |·|), and assume as above
that X is a variety over K endowed with a semi-ample line bundle L, with mL globally
generated. Following the general heuristic of replacing sums of squares with maxima
in the non-Archimedean world, a (tropical) Fubini-Study metric on L is a continuous
metric of the form

ϕ = m−1 max
0⩽i⩽N

(
log|si|+ λi

)
,

where (s0, . . . , sN ) is a family of global sections of mL without common zeroes and the
λi’s are real constants—unlike in the Archimedean case, the valuation vK : K× → R
need not be surjective, so we are allowing these constants to ensure the class of
Fubini-Study metrics is stable by addition of constants. The constants are in fact not
necessary when K is non-trivially valued, but will be convenient for us to treat the
case of trivial and non-trivial valuation in an uniform way.

Continuous, plurisubharmonic metrics ϕ on L can now be defined, as in the complex
case, by the positivity of their curvature current ddcϕ, this is the approach taken in
[CLD12], where Chambert-Loir and Ducros develop a theory of real differential forms
and currents on Berkovich spaces, paralleling the complex case. We will not use this
approach in this paper, and rather plurisubharmonic metrics on L in a way such that
Demailly’s regularization theorem still holds:

Definition 2.10. — Let X be a variety over a non-Archimedean field K, and L a
semi-ample line bundle on X. A singular metric ϕ on L is semi-positive if and only if
it can be written as the pointwise decreasing limit of a net (ϕj)j of tropical Fubini-
Study metrics.

This is consistent with the approach of Chambert-Loir–Ducros by [BE21, Th. 7.14].
In the sequel, we will define a class of semi-positive metrics on analytifications of
schemes over a Banach ring A, and the Berkovich spectrum M (A) will have both an
(open) Archimedean part and a non-Archimedean part—that is , for x ∈ M (A), the
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complete residue field H (x) may be Archimedean or not. As a result, it is desirable
to have a more uniform definition of Fubini-Study metrics, independent of the nature
of the residue field. To that extent, if X is a projective variety over either R or C
and L a semi-ample line bundle on X, we say a continuous metric ϕ on L is a tropical
Fubini-Study metric if it can written as

ϕ = m−1 max
0⩽i⩽N

(
log|si|+ λi

)
,

where (s0, . . . , sN ) is a family of global sections of mL without common zeroes and
(λ0, . . . , λN ) are real constants—which can always be absorbed in the si, so that they
are allowed only for convenience. Note that over the complex numbers, any tropi-
cal Fubini-Study metric is psh in the usual sense. In fact, Demailly’s regularization
theorem still holds after replacing Fubini-Study metrics by tropical ones:

Theorem 2.11. — Let X be a projective complex variety, and L a semi-ample line
bundle on X. Then any semi-positive metric ϕ ∈ PSH(X,L) can be written as the
decreasing limit of a net of tropical Fubini-Study metrics.

The converse is an immediate consequence of the usual properties of PSH(X,L):
any decreasing limit of tropical Fubini-Study metrics is psh. As a result, given any
complete valued field K, we have the following uniform characterization of the class
psh metrics on L: it is the smallest class of metrics that contains tropical Fubini-Study
metrics, and that is stable under addition of constants, finite maxima and decreasing
limits.

Proof. — We set PSHτ (X,L) for the class of singular metrics that can be written as
the decreasing limit of a net of tropical Fubini-Study metrics. The class PSHτ (X,L)

is closed under decreasing limits by the proof of [BJ18, Prop. 5.6].
Let (sα)α∈A be a finite family of sections of mL without common zeroes, and ϕ be

the associated L2-Fubini-Study metric

ϕ =
1

2m
log

(∑
α∈A|sα|2

)
,

and set ϕα = m−1 log|sα| ∈ PSH(X,L). Then we have ϕ = χ((ϕα)α∈A), with
χ(x) = 1

2m log
(∑

α∈A e
2mxα

)
. It now follows from the proof of lemma 3.6 that ϕ is a

decreasing limit of a sequence of tropical Fubini-Study metrics, hence ϕ ∈ PSHτ (X,L).
By Demailly’s regularization theorem when X is smooth and L ample, and [BE21,
Th. 7.1] in the general case, any metric ϕ in PSH(X,L) can be written as the decreas-
ing limit of metrics in PSHτ (X,L). Since the latter is closed under decreasing limits,
we infer that ϕ ∈ PSHτ (X,L), which concludes. □

The following example provides an alternative description of tropical Fubini-Study
metrics over a discretely-valued field K of equicharacteristic zero.

Example 2.12. — Assume that A = K is a non-trivially valued non-Archimedean
field, with valuation ring R and residue field k. If (X,L) is a polarized variety over K,
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one can define the class of model metrics on L as follows: for any normal, projective
R-model X /R of X and L a model of mL on X for m ⩾ 1, define

ϕL (x) = m−1 log|sL (x)|,

where sL is a trivialization of L at the center cX (vx) of x. One directly checks that
this defines a continuous metric on L, such that the latticeH0(X ,mL ) ⊂ H0(X,mL)

is the unit ball for the induced supnorm
∥s∥L∞(ϕL ) := sup

x∈Xan

∥s(x)∥ϕL

whenever X0 is reduced. It then follows from [BE21, Th. 5.14] that model metrics
associated to semi-ample models are the same as pure Fubini-Study metrics on L,
i.e., Fubini-Study metrics where the constants are taken to be zero in the definition.
As an easy consequence, model metrics are the same as differences of pure Fubini-
Study metrics.

2.3. Tropical Fubini-Study metrics. — Throughout this section, X is a (not neces-
sarily proper) A-scheme of finite type over a Banach ring A, and L is a semi-ample
line bundle on X.

The discussion from the previous section motivates the definition of the following
class of metrics, that will be the building blocks for our class of semi-positive metrics.

Definition 2.13. — Let L be a line bundle on X, and let m ⩾ 1 be an integer. A
tropical Fubini-Study metric on L is a (continuous) metric of the form:

ϕ = m−1 max
j∈J

(log|sj |+ aj),

where (sj)j∈J is a finite family of sections of mL without common zeroes and aj ∈ R.
We write FSτ (L) for the set of tropical Fubini-Study metrics on L. If L=OX , we will

simply say that ϕ is a Fubini-Study function on X, and write FSτ (X)=FSτ (OX).
Finally, if the constants aj are all zero in the above definition, we will say that ϕ

is a pure Fubini-Study metric.

It follows from the definition that FSτ (L) is non-empty if and only L is semi-ample.
The following properties of FSτ (L) are straightforward consequences of the definition.

Proposition 2.14. — Let X be an A-scheme of finite type and L a line bundle on X.
Then:

(1) if ϕ ∈ FSτ (L) and c ∈ R, then ϕ+ c ∈ FSτ (L);
(2) if ϕ1, ϕ2 ∈ FSτ (L), then max{ϕ1, ϕ2} ∈ FSτ (L);
(3) if ϕi ∈ FSτ (Li) for i = 1, 2 then ϕ1 + ϕ2 ∈ FSτ (L1 + L2);
(4) if ϕ is a metric on L such that mϕ ∈ FSτ (mL) for m ⩾ 1, then ϕ ∈ FSτ (L);
(5) if ϕ1, ϕ2 ∈ FSτ (L) and c1, c2 ∈ Q⩾0 with c1+c2 = 1, then c1ϕ1+c2ϕ2 ∈ FSτ (L);
(6) if f : Y → X is a morphism of A-schemes of finite type and ϕ ∈ FSτ (L), then

f∗ϕ ∈ FSτ (f∗L).
(7) if B is a Banach ring together with a bounded homomorphism A → B and

ϕ ∈ FSτ (X,L), then the base change metric ϕB ∈ FSτ (XB , LB).
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We now introduce the following class of metrics, which usually play the role of
smooth metrics in the non-Archimedean case.

Definition 2.15. — Let L be a line bundle on X. A DFS (difference of Fubini-Study)
metric on L is a metric of the form ϕ = ϕ1 − ϕ2, where ϕi ∈ FS(Li) for i = 1, 2, with
L = L1 − L2.

We write DFS(L) for the set of DFS metrics on L, and DFS(X) ⊂ C0(Xan) for the
set of DFS functions on OX , i.e., DFS metrics on OX .

Theorem 2.16. — Assume that X/A is projective. Then the Q-vector space DFS(X)

is dense in C0(Xan).

Proof. — This is essentially the same proof as in [BJ18, Th. 2.7].
It follows easily from Proposition 2.14 that DFS(X) is a Q-subvector space of

C0(X), stable under max and containing constant functions. Hence, since Xan is com-
pact, by the Stone-Weierstrass theorem, it is enough to prove that DFS(X) separates
points.

Since DFS is stable by pullback, we may assume that X = PnA. Let x ̸= y ∈
Xan, then by considering a hyperplane not containing either x or y, we may assume
x, y ∈ An,anA , which is by definition the set of semi-norms on A[t1, . . . , tn] whose
restriction A belongs to M (A). As a result, |·|x ̸= |·|y implies that there exists a
polynomial f ∈ A[t1, . . . , tn] such that |f(x)| ≠ |f(y)|; we will assume |f(x)| < |f(y)|.

Take homogeneous coordinates z0, . . . , zn ∈ H0(PnA,O(1)) on PnA, such that ti =
zi/z0 on An. We may write f(t1, . . . , tn) = z−d0 s, with s ∈ H0(PnA,O(d)). Let N ∈ Z,
and λ0, . . . , λn ∈ Z, and set

ψ = d max
0⩽j⩽n

(log|zj | − λj),

which is an FS metric on O(d), so that

u = max{log|s|, ψ −N} − ψ = max{log|s| − ψ,−N}

is a DFS function on PnA. Then for λ0 = 0 and λj large enough, we have ψ(x) =

d log|z0(x)| and ψ(y) = d log|z0(y)|. Thus, for N > − log|f(y)|, we have

u(x) = max{log|s(x)| − d log|t0(x)|,−N} = max{log|f(x)|,−N}
< max{log|f(y)|,−N} = u(y),

whence the result. □

Example 2.17. — Let Y = SpecA, so that Y an = M (A). Then a Fubini-Study
function on Y an is a continuous function of the following form

η = m−1 max
α∈B

(log|fα|+ λα),

where B is a finite set, the fα ∈ A have no common zeroes and λα ∈ R.
Now, if X/A is a scheme of finite type and Xan π−→ M (A) is its analytification,

the function η ◦ π (that we will still write as η : Xan → R) is also an FS function
on X.
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2.4. Semi-positive metrics. — From now on, we will assume that A is an integral
Banach ring. Recall that M (A)η is the subset of M (A) whose elements |·|x have
trivial kernel. In particular, the residue field H (x) of M (A) at x is the completion
of the fraction ring κ of A with respect to |·|x, so that XX (x) is the flat base change
of X to H (x).

Definition 2.18. — Let X be a scheme of finite type over A, and L a semi-ample
line bundle on X. A plurisubharmonic (or semi-positive) metric ϕ on L is a singular
metric on L that is the pointwise limit of a decreasing net of tropical Fubini-Study
metrics on L, and such that ϕx ̸≡ −∞, for all x ∈ M (A)η, where ϕx is the restriction
of ϕ to Xan

H (x).
We write PSH(X,L) or PSH(L) for the set of semi-positive metrics on L, and

PSH(X) for the set of PSH functions on Xan.

Note that since our base ring A is arbitrary, the space PSH(X) could be very
large; for instance even for X = SpecA, every non-zero element a ∈ A induces a PSH
function ϕa = log|a| ∈ PSH(X) on Xan = M (A). Indeed, we have ϕ = limj(ϕj)j ,
with

ϕj = max(log|a|, log|1− a| − j),

and ϕ(x) = log|a(x)| > −∞ whenever x ∈ M (A)η.
Let us point out that while the condition ϕx ̸≡ −∞ for all x ∈ M (A)η is natural

in the setting of hybrid spaces (we will see later that it translates into finiteness
of Lelong numbers) and spaces over M (Z), it might be too strong in general—the
analytification of P2 over a trivially valued field contains points that are pluripolar
and Zariski dense. Such a point lies in an affinoid domain M (A), which will then
admit a psh function in the sense of [BJ18] that is −∞ at a Zariski-dense point.

Definition 2.19. — We write CPSH(X,L) for the set of continuous, plurisubhar-
monic metrics on L. It is endowed with the topology of uniform convergence on X.

Note that FSτ (X,L) ⊂ CPSH(X,L) by definition.

Proposition 2.20. — The following properties hold:
(1) if ϕ ∈ PSH(L) and c ∈ R, ϕ+ c ∈ PSH(L);
(2) if ϕi ∈ PSH(Li) for i = 1, 2, ϕ1 + ϕ2 ∈ PSH(L1 + L2);
(3) if ϕ1, ϕ2 ∈ PSH(L), then max{ϕ1, ϕ2} ∈ PSH(L);
(4) if ϕ is a singular metric on L such that mϕ ∈ PSH(mL) for m ⩾ 1, then

ϕ ∈ PSH(L);
(5) if ϕ1, ϕ2 ∈ PSH(L) and c1, c2 ∈ R⩾0 with c1 + c2 = 1, then c1ϕ1 + c2ϕ2 ∈

PSH(L);
(6) if (ϕj)j is a decreasing net in PSH(L) and ϕ = limj ϕj is such that ϕx ̸≡ −∞

for all x ∈ M (A)η, then ϕ ∈ PSH(L);
(7) if X/A is proper and (ϕj)j is a net in PSH(L) converging uniformly to ϕ, then

ϕ ∈ PSH(L).
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Note that the difference of two singular psh metrics does not make sense as a func-
tion in general, so that the last item means the following: if (ϕj)j is a net in PSH(L),
such that there exists a net of continuous functions (fj)j in C0(Xan) converging uni-
formly to zero and such that ϕj = ϕ+ fj , then ϕ ∈ PSH(L).

Proof. — The first 5 items are straightforward consequences of the corresponding
properties for FSτ , stated in Proposition 2.14; while (6) and (7) follows from [BJ18,
Lem. 4.6], (i) and (ii) respectively. □

The subset CPSH(X,L) ⊂ PSH(X,L) is naturally endowed with the topology of
uniform convergence; the next proposition states that for this topology, FSτ (L) is
dense in CPSH.

Proposition 2.21 ([BJ18, Prop. 5.20]). — Assume that X/A is proper, and let ϕ be a
continuous metric on L. Then ϕ ∈ CPSH(X,L) if and only if there exists a net (ϕj)j
in FSτ (L) converging uniformly to ϕ.

Note that the natural topology of uniform convergence on the subset of continuous
PSH metrics does not extend to PSH(L), so that it is unclear in this generality how
to put a reasonable topology on PSH(L). It is however know how to put a topology
on PSH(L) when A is a discretely or trivially-valued field, see [BFJ16], [BJ22].

While the Fubini-Study metrics considered above are always continuous—hence
bounded—one can also consider FS metrics with singularities:

Example 2.22. — Assume that L is a semi-ample, and let s ∈ H0(X,mL) for some
m ⩾ 1 be a non-zero global section. Then ϕ = m−1 log|s| ∈ PSH(X,L), since we may
write ϕ as the decreasing limit of the following

ϕj = (md)−1 max
(
log|sd|,max

α∈A
(log|sα| − j)

)
,

where (sα)α∈A is a family of sections of mdL without common zeroes. Moreover,
if x ∈ M (A) is a Zariski-dense point, the base change of s to XH (x) is non-zero by
flatness, so that ϕx ̸≡ −∞.

More generally, by Proposition 2.20, for semi-ample L and any finite family (sα)α∈A
of sections of mL, the metric

ϕ = m−1 max
α∈A

(log|sα|+ cα)

is semi-positive, i.e., ϕ ∈ PSH(X,L).

Remark 2.23. — Let us point out that unlike the class FSτ , the class of plurisubhar-
monic metrics is not—strictly speaking—stable under base change. Indeed, if the ring
homomorphism A→ B is not flat and s ∈ H0(X,mL) is a non-zero global section, it
could very well happen that the section sB ∈ H0(XB ,mLB) is the zero section. As a
result, the base change to XB of the psh metric ϕ = m−1 log|s| satisfies ϕB ≡ −∞.
For instance, if ϕ ∈ PSH(X,L) and x ∈ M (A) is not a Zariski-dense point, then the
restriction ϕx to Xan

H (x) may be identically −∞. This occurs in the complex world as
well, as a psh metric on a the total space of a holomorphic fibration X → B may be
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identically −∞ on certain fibers Xb. One easy way to remedy this is for instance to al-
low psh metrics to be identically −∞, we choose not to as this psh metric would have
to be treated separately in several proofs, making the exposition more cumbersome.

2.5. Examples. — We start with the case where A = C with the usual absolute value.
The following statement is a mere reformulation of Theorem 2.11.

Theorem 2.24. — Let X be a projective complex variety, and let L be a semi-ample
line bundle on X.

Then PSH(X,L) is the space of plurisubharmonic metrics on L in the sense of
usual pluripotential theory.

As mentioned above, for any Banach ring A, the above definitions for X = SpecA

and L = OX yield a space PSH(X) of plurisubharmonic functions on M (A). We will
compute this space in simple examples.

We start with the case where A = khyb is a hybrid field. Since k is non-trivially
valued, we may assume (up to scaling) that log|k×| ⊇ Z. In that case, the homeomor-
phism

λ : M (A)
∼−−−→ [0, 1]

is in fact such that λ is a Fubini-Study function on X, since λ(x) = log|a|x for any
a ∈ k× such that log|a| = 1.

Conversely, any Fubini-Study function on X is of the form

ϕ(x) = m−1 max
j∈J

(
log|aj |x + cj

)
for aj ∈ k× and cj ∈ Z. Since log|aj |x = λ(x) log|aj |, ϕ is a finite maximum of affine
functions, hence convex, and FS(X) contains all finite maxima of affine functions with
rational coefficients. Taking decreasing limits (which have finite values everywhere
since all points in M (khyb) are Zariski-dense), we conclude that the homeomorphism λ

identifies the space PSH(M (khyb)) with the space of real-valued convex functions on
the segment [0, 1]. In particular, plurisubharmonic functions on X are continuous away
from the boundary of the interval. Note however that the function ϕ : M (khyb) → R
defined by ϕ(0) = 1, ϕ(λ) = 0 for λ > 0 is also psh.

We now move on to the case A = Ar, the ring of Laurent series that are convergent
for the hybrid norm on C; recall that we have a canonical homeomorphism from the
hybrid circle Chyb(r) := M (Ar) ≃ Dr to the closed Euclidean disk. The following
proposition asserts that away from the boundary of the closed disk, we may, after
rescaling, identify psh functions on the hybrid circle with subharmonic functions on
the punctured disk that have logarithmic growth at the puncture.

Proposition 2.25. — Let

Ar =
{
f =

∑
n∈Z ant

n ∈ C((t)) | ∥f∥hyb =
∑
n∥an∥hyb rn <∞

}
,

and write τ : Dr
∼−→ Chyb(r) the homeomorphism from Proposition 1.20.
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There exists an order-preserving, injective map

ρr : PSH(Chyb(r)) −→ SH(Dr) + R log|t|
ϕ 7−→

(
t 7→ logr|t| × (ϕ(τ(t))

)
for t ̸= 0. Moreover, if ϕ is continuous, then ϕ(0) = log r × ν0(ρr(ϕ)) is a negative
multiple of the (generalized) Lelong number of ρr(ϕ) at 0.

Conversely, for any r′ > r, there exists an order-preserving, injective map

ρr′,r : SH(Dr′) + R log|t| −→ PSH(Chyb(r)),

ϕ 7−→
(
ϕ̃ : t 7→ ϕ(τ−1(t))

logr|t|

)
with ϕ̃(0) = ν0(ϕ)/log r. Finally, the composition ρr ◦ ρr′,r is (up to a scaling factor)
the usual restriction map.

Proof. — Let ϕ ∈ FSτ (Chyb(r)), and write

ϕ = m−1 max
α∈A

(log|fα|+ cα),

with fα ∈ Ar, so that in particular the formal series fα induces a holomorphic func-
tion Fα on Dr. Moreover, we have log|fα|(τ(t)) = (log r/log|t|) log|Fα(t)| for t ̸= 0.
Up to shifting ϕ by a constant, we may assume that ϕ ⩽ 0 on Chyb(r), so that each
term in the maximum is nonpositive.

Thus, defining ρr(ϕ)(t) = logr|t| × ϕ(τ(t)) for t ̸= 0, we have

ρr(ϕ)(t) = max
α∈A

(
log|Fα(t)|+ cα logr|t|

)
,

since all the terms in the maximum have the same sign. This implies that ρr(ϕ)
extends at t = 0 as the sum of a subharmonic function on Dr and a multiple of log|t|,
and with Lelong number at zero:

ν0(ρr(ϕ)) = max
α∈A

(
ord0(fα) +

cα
log r

)
=
ϕ(0)

log r
⩾ 0.

Now if ϕ ∈ PSH(Chyb(r)), it is finitely-valued at the Zariski-dense point 0, so that
up to shifting by a constant, we may assume that ϕ(0) = −1. We now write ϕ as
the decreasing limit of a net (ϕj)j in FSτ , with ϕj(0) ⩽ 0 for all j large enough.
By the computations above, the latter condition means precisely that ρr(ϕj) extends
over zero as a subharmonic function. We then define the function ρr(ϕ) ∈ SH(Dr) as
the decreasing limit of the ρr(ϕj), which is independent of the choice of decreasing
sequence, since ρr(ϕ) is determined uniquely by ϕ outside 0. If ϕ is furthermore
continuous, then:

ϕ(0) = lim
t→0

ϕ(τ(t)) = lim
t→0

ρr(ϕ)(t)

logr|t|
= log r × ν0((ρr(ϕ)).

Conversely, let r′ > r and let ϕ ∈ SH(Dr′). The fact that (log r/log|t|) · ϕ ∈
PSH(Chyb(r)) follows from the more general Theorem 3.13.
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Finally it is clear that from the constructions that if ϕ ∈ SH(Dr′) + R log|t|, then
ρr(ρr′,r(ϕ)) = ϕ|Dr

. □

We furthermore expect that the image of the restriction of ρr to CPSH(Chyb(r)) is
the space of continuous subharmonic functions on D∗

r , extending continuously to the
boundary of the disk and with finite Lelong number at zero.

Remark 2.26. — Let η : Chyb(r) → R be such that η(0) = 1 and η ≡ 0 outside zero.
Then unsatisfyingly, η ∈ PSH(Chyb(r)); we interpret this as the non-Archimedean
realization of the following phenomenon. Let

ψj = max(log|t|,−j),

which decrease to ψ = log|t|. We have ν0(ψj) ≡ 0 since ψj is bounded near 0, while
ν0(ψ) = 1 > limj ν0(ψj). Writing ψhyb

j and ψhyb the associated psh functions on
Chyb(r) for some r ∈ (0, 1), the jump of Lelong numbers along this decreasing sequence
means that the non-Archimedean data ν0(ψ) attached to ψ differs from the restriction
ψhyb(0) := limj ψ

hyb
j (0) = limj ν0(ψj) to the origin of the hybrid data associated to ψ.

The point 0 ∈ Chyb(r) is in fact non-pluripolar (as it is Zariski-dense), and thus is
not negligible in the sense of hybrid pluripotential theory.

We also describe subharmonic functions on the Berkovich spectrum M (Z):

Proposition 2.27. — Let X = M (Z), and write X =
⋃
p∈P∪∞ Ip as the union of the

p-adic and Archimedean branches.
Then a continuous function ϕ : X → R ∪ {−∞} is psh if and only:
– for every prime number p, its restriction ϕp to the branch Ip is convex, with neg-

ative outgoing slopes sp, s̃p at 0 and +∞ respectively, and value at infinity ϕp(|·|∞p ) ∈
R ∪ {−∞},

– its restriction to the branch I∞ is convex and increasing, with positive slope at 0,
– the sum of slopes at zero

∑
p∈P sp+s∞ is ⩾ 0; in particular, the sum

∑
p∈P(−sp)

is < +∞.
In other words, the function ϕ is psh on M (Z) if and only it is subharmonic in the
usual sense on the R-tree M (Z).

As a consequence, a point x ∈ M (Z) is polar (that is, contained in {ϕ = −∞} for
some ϕ ∈ CPSH(X)) if and only if it is the outer end of a p-adic branch.

Proof. — Let ϕ ∈ FS(X) be a Fubini-Study function, then there exists a family of
integers (nα)α∈A, with minα∈A vp(nα) = 0 for every prime p, such that

ϕ = m−1 max
α∈A

(log|nα|+ cα),

with cj ∈ R. Denoting 0 ∈ X the trivial absolute value, we have ϕ(0) = m−1 maxα cα,
and we write A′ ⊂ A the set of indices realizing the maximum. Set n1 = gcdα∈A′ nα,
and n2 = lcmα∈A′ nα.
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Under the homeomorphism Ip ≃ [0,+∞], we have

ϕp(ε) = m−1 max
α∈A

(−vp(nα) log p · ε+ cα),

which shows that ϕp is a piecewise-affine convex function, and with slope at zero

sp = (− log p) min
α∈A′

vp(nα) = log|n1|p ⩽ 0,

and constant for ε ≫ 1 since there exists a nα with vp(nα) = 0, so that the slope at
infinity s̃p = 0. A similar computation on the Archimedean branch shows that ϕ∞ is
also convex, with

s∞ =
∑
p∈P

log p ·
(
max
α∈A′

vp(nα)
)
= −

∑
p∈P

log|n2|p = log|n2|∞ ⩾ 0,

so that the sum of slopes

s∞ +
∑
p∈P

sp = log|n2/n1|∞

is positive. Now if ϕ is a continuous psh function on X (with possibly infinite values),
then it is the uniform limit of Fubini-Study functions near zero, hence the only if part
by taking decreasing—hence locally uniform by Dini’s lemma—limits.

Conversely, let ϕ : X → R ∪ {−∞} be a function satisfying the above properties.
We assume that ϕ(0) = 0, so that ϕp ⩽ 0 for every prime p, and ϕ∞ ⩾ 0. We divide
the argument in several steps.

Step 1. — Assume that ϕp ≡ 0 for every prime p, and ϕ∞ : [0, 1] → R is a continuous,
increasing convex function, with ϕ∞(0) = 0. For any a ⩾ 0 and b ⩽ 0 two real
numbers, the function ψ = ψa,b on X defined by ψ∞(x) = ax + b and ψp ≡ 0 for
every prime p is psh (although not necessarily continuous at 0). Indeed, choosing a
prime q and writing a = limj rj log q as the decreasing limit of rational multiples of
log q, we see that ψ = limj max{rj log|q| + b, 0} as a decreasing limit—the max is
realized by 0 on every p-adic branch, even when p = q due to the assumption on a, b.

As a result, writing ϕ∞ as a decreasing limit of piecewise affine convex functions
of the form maxα∈Aj

(aαx+ bα) as above (recall that minα aα ⩾ 0, and maxα bα = 0

since ϕ∞(0) = 0), we get that

ϕ = lim
j

max
α∈Aj

ψaα,bα

as a decreasing limit, and ϕ ∈ PSH(X).

Step 2. — We now regularize the ϕp. By our assumptions on the slopes sp, s̃p, for
every prime p, we may find a decreasing sequence (ϕj,p) of convex functions on Ip of
the form

ϕj,p(ε) = m−1 max
α∈Ap

(−ℓα log p · ε+ cα)

converging to ϕp, where the ℓα’s are positive integers and such that ϕ(0) = ϕp(0) =

maxα cα = 0. Write sj,p = minα,cα=0(−ℓα log p) the slope at zero of ϕj,p; by continuity
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near zero, the sj,p decrease to sp. We use the same notation for the (singular) Fubini-
Study function

ϕj,p = m−1 max
α∈A

(log|pℓα |+ cα),

by straightforward computation we see that the restriction of ϕj,p to the branch I∞
is linear:

ϕj,p(|·|x∞) = −sj,px.
For k ∈ N, let Pk = {2, . . . , pk} be the k smallest primes. We set

ϕk =
∑
p∈Pk

ϕp,k,

which is psh on X, and such that (ϕk)k decreases to ϕ on each p-adic branch.

Step 3. — This does not yield the desired outcome on the Archimedean branch: the
restrictions of ϕk to the Archimedean branch are increasing to x 7→ sx, where we
have set s := −

∑
p sp ⩽ s∞. However, the convergence is uniform on I∞ ≃ [0, 1],

so that (after extraction of a subsequence) we may find a decreasing sequence (εk)k of
constants going to zero, such that on I∞, the ϕ′k,∞ = ϕk,∞ + εk decrease to x 7→ sx.
As a result, the psh functions ϕ′k = ϕk + εk decrease on X, and the limit ϕ′ satisifies
ϕ′p = ϕp, and ϕ′∞(x) = sx for x ∈ [0, 1].

Step 4. — By Step 1, the function ψ : X → R such that ψp ≡ 0 for every prime p,
and ψ∞(x) = ϕ∞(x) − sx is psh, since s ⩽ s∞. As a result, ϕ = ϕ′ + ψ is indeed
subharmonic on M (Z). □

3. PSH metrics on hybrid spaces

Throughout this section, we let X π−→ D∗ be a degeneration of projective complex
manifolds, endowed with a semi-ample line bundle L. We fix r ∈ (0, 1), and write
Xhyb πhyb−→ Dr the associated hybrid space, which is the analytification of X viewed as
an Ar-scheme, see Section 1.3.

We will use the t-adic valuation on K = C((t)) normalized so that |t| = r, and write

logr|t| =
log|t|
log r

,

which is non-negative on Dr.

Definition 3.1. — Let X π−→ D∗ be a degeneration of projective complex manifolds,
and let L be a line bundle on X. A hybrid (continuous) metric ϕ on L is a singular
(resp. continuous) metric on Lhyb in the sense of the previous section, viewing X as
an Ar-scheme.

We write PSH(Lhyb) for the set of hybrid semi-positive metrics on L.

Using the explicit description of the hybrid space from Proposition 1.22, we are
able to describe more concretely continuous hybrid metrics on L.
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Proposition 3.2. — Let X be a degeneration of complex manifolds, and L be a line
bundle on X. A continuous hybrid metric ϕ on L is equivalent to the data of a con-
tinuous family of metrics (ϕt)t∈D∗

r
on the Lt’s, together with a continuous metric ϕ0

on Lan, such that the following holds: for every Zariski open subset U ⊂ X and any
non-vanishing section s ∈ H0(U,L|U ), the function

z 7−→ log∥s(z)∥ϕt

logr|t|

on Uhol (with the Euclidean topology) extends as a continuous function to Uhyb via
x ∈ Uan 7→ log∥s(x)∥ϕ0

.

Proof. — If |t| > 0, we have a canonical homeomorphism βt : Xt
∼−→ Xhyb

t , such that
for any (local) regular function on X, we have

|f(β(z))| = |f(z)|log r/log|t|,

and a homeomorphism β0 : Xan ∼−→ π−1
hyb(0).

Hence, if ϕ is a continuous hybrid metric on L, it induces a continuous family
{ϕt}t∈Dr

of metrics ϕt on Lt, obtained as follows: if U ⊂ X is a Zariski open and s a
trivialization of L on U , set

∥s(z)∥ϕt := ∥s(βt(z))∥log|t|/log rϕ ,

for z ∈ U ∩ Xt. The fact that this defines a continuous metric on Lt is an easy
consequence of the above equality for functions.

Similarly, the formula

log∥s(x)∥ϕ0 := log∥s(β0(x))∥ϕ
defines a continuous metric ϕ0 on Lan. The fact that the data of ϕ0 and {ϕt}t∈D∗

r

recovers ϕ uniquely is clear. □

We will sometimes write the above relation more loosely as

ϕt = ϕ|Xt
=

log|t|
log r

ϕ|Xhyb
t
,

where the left-hand side of the second equality lives on the complex fiber Xt and the
right-hand side lives on the Berkovich analytic space Xhyb.

Example 3.3. — Let s ∈ H0(X,mL) be a global section of mL, and let

ϕ = m−1 log|s| ∈ PSH(Lhyb)

be the associated (singular) hybrid metric. Then one checks directly that for any
t ̸= 0 such that st ̸≡ 0, the metric ϕt ∈ PSH(Xt, Lt) is equal to m−1 log|st|, where
st = s|Xt

∈ H0(Xt,mLt).
Now let c ∈ R be a constant, and let

ϕ = m−1(log|s|+ c) ∈ PSH(Lhyb).

Then we have ϕt = m−1(log|s|+ c logr|t|) ∈ PSH(Xt, Lt).
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Remark 3.4. — Let ϕ = m−1(log|s|+ c/log r) ∈ PSH(Lhyb) as in the example above.
Then ϕ is the decreasing limit of the (ϕj)j∈N, where

ϕj = m−1(log|s|+ cj/log r),

where (cj)j∈N is a sequence of rational numbers decreasing to c. Up to replacing m
by a high enough multiple depending on the denominator of cj , we may furthermore
assume that cj ∈ Z, so that

ϕj = m−1
j log|tcjs|

is a pure Fubini-Study metric. Since finite maxima commute with decreasing lim-
its, any tropical Fubini-Study metric can be written as a decreasing limit of pure
Fubini-Study metrics. As a consequence, any psh metric on Lhyb can be written as a
decreasing limit of pure Fubini-Study metrics.

Let us emphasize that the key point here is that the constant function c/log r for
c ∈ Q can be written as log|f | for some non-zero f ∈ Ar, which need not hold over a
general Banach ring A—it fails for instance for A = Z.

3.1. Bergman metrics on the hybrid space. — Let X → D∗ be a degeneration of
complex manifolds, and L a semi-ample line bundle on X. In the sequel, it will some-
times be convenient for us to work with singular L2-Bergman metrics in the complex
world, i.e., metrics on L of the form

ϕ =
1

2m
log

(∑
α∈A|sα|2

)
,

where (sα)α∈A is a finite set of non-zero sections in H0(X,mL), possibly with common
zeroes. It is clear that ϕ ∈ PSH(X,L), and the following proposition asserts that ϕ
extends naturally as a metric ϕ ∈ PSH(Lhyb), replacing the square-norm with maxima
at the non-Archimedean limit.

Proposition 3.5. — Let (sα)α∈A be finite family of global sections of mL for m ⩾ 1,
and set

ϕt =
1

2m
log

(∑
α∈A|sα,t|2

)
, ϕ0 = m−1 max

α∈A
log|sα|.

Then this data defines a semi-positive metric ϕ ∈ PSH(Xhyb, Lhyb), which we call the
hybrid Bergman metric associated to the family (sα)α∈A.

Proof. — We may and will assume that mL is basepoint-free, up to replacing mL by
dmL and the sα’s by their d-th power, for d large enough.

We thus choose a basepoint-free set (sα)α∈B of sections of mL, where B = A⊔A′.
Set

ϕj,t :=
1

2m
log

(∑
α∈B e

bα,j |sα,t|2
)

and ϕj,0 := m−1 max
α∈B

(log|sα|+ bα,j),

where bα,j = 0 if α ∈ A and bα,j = −j for α ∈ A′. Then the fact that this defines a
continuous psh metric ϕj on Lhyb follows from the following lemma, applied to the
convex function χ(x) = 1

2 log
(∑

α e
2xα+bα

)
. Finally, the ϕj ’s clearly decrease to ϕ by

construction, so that ϕ ∈ PSH(Lhyb) by Proposition 2.20. □
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Lemma 3.6. — Let σ ⊂ RN be the standard simplex, i.e.,

σ =
{
(x1, . . . , xN ) ∈ (R⩾0)

N |
∑N
i=1 xi = 1

}
,

and write 1 = (1, . . . , 1) ∈ RN . We let χ : RN → R⩾0 be a convex function, such that:
– χ(x+ c1) = χ(x) + c for any c ∈ R, x ∈ RN ,
– the function

(
χ−max(x1, . . . , xN )

)
is bounded on RN .

For any set s1, . . . , sN of sections of mL without common zeroes and ϕi = m−1 log|si|,
the hybrid metric ϕχ on L defined, using Proposition 3.2, by

ϕχ,t = χ(ϕ1,t, . . . , ϕN,t) ∈ CPSH(Xt, Lt)

ϕχ,0 = m−1 max
i⩽N

log|si| ∈ FSτ (Xan, Lan),and

is a semi-positive continuous hybrid metric on L.

Proof. — The assumption χ(x + c1) = χ(x) + c ensures that ϕχ is compatible with
multiplication of sections by functions, hence each ϕχ,t defines a continuous metric
on Lt, for t ∈ Dr. We now prove that ϕχ is continuous on Xhyb using Proposition 3.2,
we assume that m = 1 for convenience. Given a nowhere-vanishing section s of L on
a Zariski open U ⊂ X, we have

log|s(z, t)|ϕχ,t

logr|t|
=

log|s(z, t)| − χ(log|s1(z, t)|, . . . , log|sN (z, t)|)
logr|t|

,

so that writing fi = log|si/s|, the condition χ(x+ c1) = χ(x) + c implies that

log|s(z, t)|ϕχ,t

logr|t|
=
χ
(
f1(z, t), . . . , fN (z, t)

)
logr|t|

=
max{f1, . . . , fN}

logr|t|
+ ε(t)

by our assumption on χ, where |ε(t)| ⩽ C/logr|t| for some constant C > 0. As a result,
since away from the zero locus of si the function fi/logr|t| extends continuously to
Uhyb via x 7→ log|si/s|(x) on Uhyb

0 , we infer that ϕχ is indeed a continuous metric on
(Xhyb, Lhyb).

We now prove that ϕχ is semi-positive. Using [PS22b, Prop. 2.6], there exists a
sequence (χj)j∈N of piecewise-affine convex functions decreasing to χ, written as

χj = max
α∈Aj

(
uα + cα

)
,

with uα ∈ σ ∩ QN and cα ∈ R, and such that the convex hull Conv(uα)α∈Aj = σ.
We write ϕ = (ϕ1, . . . , ϕN ) ∈ FS(Lhyb)N , and set

ϕj = χj(ϕ) = max
α∈A

(
⟨uα, ϕ⟩+ cαlog|e|/log r

)
,

where e ∈ Ar is exp(1) viewed a constant power series. Since the uα are rational and
lie in the standard simplex, the ⟨uα, ϕ⟩ are tropical Fubini-Study metrics on Lhyb as
convex linear combinations thereof, so that ϕj ∈ FSτ (Lhyb), and

ϕj,t = max
α∈Aj

(
⟨uα, ϕt⟩+ cα

)
,
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while
ϕj,0 = max

α∈Aj

(
⟨uα, ϕ0⟩

)
,

since log|e| ≡ 0 on Xan = π−1
hyb(0). Moreover, the (ϕj,t)j decrease to ϕt by the

choice of (χj)j , while for all j, ϕj,0 = maxi⩽N ϕi, as the formula maxα∈Aj
⟨uα, x⟩ =

max(x1, . . . , xN ) holds for all x ∈ RN since Conv(uα)α∈Aj
= σ.

All in all, (ϕj)j is a decreasing sequence in FSτ (Lhyb) converging pointwise to ϕχ,
whence ϕχ ∈ PSH(Lhyb). □

Example 3.7. — Let X = CPN ×D∗ with the standard polarization, and let ϕt = ϕFS
be the usual complex analytic Fubini-Study metric on Xt, i.e.,

ϕFS = log(|z0|2 + · · ·+ |zN |2),

where the zi are standard homogeneous coordinates on Pn. Let furthermore

ϕ0 = max{|z0|, . . . , |zN |}

be the non-Archimedean Fubini-Study metric on Pn,anK .
Then the metric ϕFS on O(1) on Xhyb obtained by gluing the two above metrics

is a continuous semi-positive metric. Note that with our definition, this metric is not
a Fubini-Study metric on O(1), since we would have to work with the max instead of
the square norm on the complex fibers.

Example 3.8. — Let (X,L) be a complex polarized variety, and set V = H0(X,mL),
for some m > 0 such that mL is globally generated. We let N(V ) be the space of
Hermitian norms of V , which is a symmetric space, as fixing a reference norm yields
an identification

N(V ) = GL(V )/U(V ).

Let N = dimV , and e = (e1, . . . , eN ) be a basis of V . Then for each tuple (λ1, . . . , λN )

of real numbers, define the associated hermitian norm:∥∥∥∥ N∑
i=1

aiei

∥∥∥∥2 =

N∑
i=1

|ai|2e−2λi .

This yields an embedding
ιe : RN ↪−→ N(V ),

whose image consists precisely of the norms diagonalized by the basis e. The image
Ae(RN ) := ιe(RN ) is called the apartment associated to the basis e. We let I ⊂ R
be an interval (not necessarily bounded), and γ : I → N(V ) a geodesic. Then there
exists a basis e of V such that γ(I) ⊂ Ae, and an affine map α : I → RN such that

γ = ιe ◦ α.

More concretely, writing α(y) = (α1y + β1, . . . , αny + βn), we have:∥∥∥∥ N∑
i=1

aiei

∥∥∥∥2
y

=

N∑
i=1

|ai|2e−2βi−2αiy.
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Assume that I = (y0,+∞) for some y0 ∈ R, so that γ is a geodesic ray. Then we
see easily that for any non-zero v ∈ V , the limit −log∥v∥y/y exists and is equal to
− log∥v∥γNA , where γNA is the non-Archimedean norm defined by∥∥∥∥ N∑

i=1

aiei

∥∥∥∥
γNA

= max
i⩽N

(|ai|0 e−αi),

where |·|0 is the trivial norm on C. Furthermore, two geodesic rays induce the same
non-Archimedean norm at infinity if and only they are parallel, i.e., (α−α′) is constant.
Thus, the space N(V )NA of non-Archimedean norms on V can be interpreted as the
space of asymptotic directions in N(V ).

We now explain how each geodesic ray γ : [0,+∞) → N(V ) gives rise to a psh
hybrid metric on L, which we call the associated Bergman metric. More generally, let
W ⊂ V be a basepoint-free subspace, i.e., a vector subspace such that the sections
in W have no common basepoints, and let γ : [0,+∞) → N(W ) be a geodesic ray.
By the above discussion, there exists a basis e = (s1, . . . , sN ) of W , and tuples
α, β ∈ RN such that ∥∥∥∥ N∑

i=1

aisi

∥∥∥∥2 =

N∑
i=1

|ai|2e−2αiy.

The hybrid Bergman metric associated to γ, defined by

ϕλ = (2m)−1
(
log

∑N
i=1|si|2e2αi/λ

)
,

where ϕλ is the pull-back to Xhol of ϕ|Xhyb
λ

via the rescaling of the absolute value (see
the proof of Proposition 3.2), and

ϕ0 = m−1 max
i⩽N

(log|si|+ αi),

is a continuous psh metric on Lhyb, as follows from Proposition 3.6 applied to the
convex function χ(x1, . . . , xN ) = (2m)−1 log

(∑
i=1 e

2mxi
)
.

Note that ϕλ is the classical Bergman metric associated to the norm ∥·∥y, while ϕ0 is
the non-Archimedean Bergman metric associated to the non-Archimedean norm γNA.

3.2. The non-Archimedean limit of a psh family. — We still let X → D∗ be a
degeneration of complex varieties, but now assume that our line bundle L on X is
relatively ample. We let ϕ ∈ PSH(X,L) be a semipositive metric on L. Following
the general heuristic of viewing non-Archimedean geometry as the asymptotic limit
of Kähler geometry, we will explain how under a reasonable growth condition on ϕ,
the family of generic Lelong numbers of ϕ along prime vertical divisors on models
of X naturally induces a non-Archimedean psh metric ϕNA ∈ PSH(Xan, Lan). This
construction is due to [BBJ21] in the isotrivial case and [Reb23] in the general case.
Let us start with a definition.

Definition 3.9 ([Reb23, Lem. 2.3.2]). — The metric ϕ ∈ PSH(X,L) has logarithmic
growth at t = 0 if one of the following equivalent conditions are satisfied:

– there exists a normal model (X ,L ) such that ϕ extends as a psh metric on L ,
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– for any normal model (X ,L ), there exists a ∈ R such that ϕ+ a log|t| extends
as a psh metric on L ,

– there exists a normal model (X ,L ) and a smooth metric ϕ0 on L such that
supXt

(ϕ− ϕ0) ⩽ Clog|t|/log r for some constant C > 0.

We will now explain how each psh ray ϕ on (X,L) with logarithmic growth induces
a psh metric ϕNA on (Xan, Lan). We fix a model (X ,L ) of (X,L) with L nef, so that
the associated model metric ϕL ∈ PSH(Lan) is semi-positive.

Let v ∈ Xan be a divisorial valuation, so that there exists a model X ′ of X
and a prime divisor E ∈ Div0(X ′) such that v = vE = (− log r) × b−1

E ordE , with
bE = ordE(t). We may furthermore assume that X ′ dominates X , via a morphism
ρ : X ′ → X .

By logarithmic growth, there exists a ∈ R such that the metric ϕa := ϕ + a log|t|
extends as a psh metric on (X ′, ρ∗(L )). We choose a psh metric ϕE on X ′ with
divisorial singularities along E, i.e., ϕE = log|zE | + O(1) locally, where zE is an
equation of E. We define the generic Lelong number

νE(ϕ) = sup{c ∈ R | ϕa ⩽ cϕE +O(1)} − a

of ϕ along E [BFJ08]—which is easily seen to be independent of a—and set

ψNA(v) :=
log r

bE
νE(ϕ).

Theorem 3.10 ([BBJ21, Th. 6.2], [Reb23, Th. 3.3.1]). — The function ψNA : Xdiv → R
admits a unique lower semi-continuous extension to Xan, still denoted by ψNA, and
the metric ϕNA on Lan defined by

ϕNA := (ϕL + ψNA) ∈ PSH(Xan, Lan),

is a semi-positive metric on Lan.

Example 3.11. — Let ϕ ∈ PSH(X,L) be a locally bounded psh metric, and assume
that there exists a normal model (X ,L ) of (X,L) with L nef, such that ϕ extends
to X as a locally bounded, psh metric on L . Then we have ψNA ≡ 0, so that
ϕNA = ϕL . In other words, the non-Archimedean limit of a metric extending without
singularities as a semi-positive metric on a nef model (X ,L ) is simply the associated
model metric.

Example 3.12. — Let
ϕ = max

α∈A

(
log|sα|+ cα

)
be a tropical Fubini-Study metric on Lhyb, and let v ∈ Xdiv be a divisorial valuation.
We let (X ,L ) be a model of (X,L) such that v = vE for some E ⊂ X0, and the
sα’s extend as holomorphic sections of L on X . Then

νE(ϕ) = (ϕ0 − ϕL )(vE),
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where ϕ0 is the induced FS metric on Xan. Indeed, since the sα’s are holomorphic
sections of L , we have

(ϕ0 − ϕL )(vE) = max
α∈A

(
vE(sα/sL ) + cα),

where sL is a trivialization of L at the generic point of E, while

ϕt = max
α∈A

(
log|sα|+ cα logr|t|

)
is easily seen to have Lelong number

νE(ϕ) = min
α∈A

(
ordE(sα/sL ) + cαbE/log r

)
along E. We infer from this that ψNA = (ϕ0 − ϕL ), so that when ϕ is a tropical
Fubini-Study metric on Lhyb, ϕNA = ϕ0 is simply its restriction to Xan.

We are now ready to prove Theorem A: the metric ϕNA in fact extends ϕ as a semi-
positive metric on the hybrid space, and up to shrinking the disk, every continuous
semi-positive metric on Lhyb arises in this way.

Theorem 3.13. — Let (X,L) be a polarized degeneration of complex polarized vari-
eties over D∗, and ϕ = (ϕt)t∈D∗ ∈ PSH(X,L) be a semipositive metric on L, with
logarithmic growth at t = 0. Then the metric ϕhyb on Lhyb defined by setting

ϕhyb|Xt
= ϕt; ϕhyb0 = ϕNA,

is semi-positive, i.e., ϕhyb ∈ PSH(Xhyb, Lhyb).
Conversely, let ϕhyb ∈ CPSH(Xhyb, Lhyb) and ε > 0, and set

ϕt = ϕ|Xt

for |t| < r− ε. Then (ϕt)t∈D∗
r−ε

is a psh metric on the restriction of L to X|D∗
r−ε

, with
logarithmic growth at 0, and such that ϕNA = ϕhyb0 .

The proof of the theorem will be provided in Section 3.3. Note that the continuity
assumption cannot be removed: in the case where X is a point, the function η such
that η(0) = 1 and η ≡ 0 on Chyb ∖ 0 is psh on the hybrid circle, but η(0) is not the
Lelong number at zero of the induced subharmonic function on the punctured disk.
This says essentially that the point 0 ∈ Chyb is non-pluripolar, so that it is "large" in
the sense of pluripotential theory: psh metrics are not uniquely determined by their
restriction outside zero. It has however dense complement, so that it is negligible
topologically, and thus continuous psh metrics are determined by their restriction
outside zero.

The next proposition characterizes, given ϕ ∈ PSH(X,L), the set of semi-positive
metrics on Lan that arise as restrictions to Xan of hybrid metrics extending ϕ, under
a finite-energy assumption. Let ϕ ∈ PSH(Lan), and assume that ϕ lies in the class
E1(Lan) of finite-energy metrics on L—we won’t give the definition here, and refer
to [BFJ15, §6], note however that E1(Lan) contains all continuous psh metrics on L.
Then it follows from [Reb23] that after a suitable choice of boundary data, there
exists a canonical extension ϕhyb ∈ PSH(Lhyb) of ϕ to the hybrid space, which also
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lies in the class E1(L) ⊂ PSH(X,L) of fiberwise-finite energy metrics—for all t ̸= 0,
ϕt is a finite-energy metric on Lt. The extension is canonical in the sense that it
is relatively maximal in the sense of pluripotential theory [Kli91], and the maximal
extension mapping: E1(Lan) → E1(L) defined this way is an isometric embedding for
the Darvas metric [Dar15] on E1(L) and its non-Archimedean analog on E1(Lan).

Proposition 3.14. — Let ϕ ∈ PSH(Lhyb), write ϕ0 ∈ PSH(Lan) its restriction to Xan

and ϕNA ∈ PSH(Lan) the non-Archimedean metric associated to ϕ|X , as defined by
Theorem 3.10. Then the inequality

ϕ0 ⩾ ϕNA

holds on Xan.
Conversely, let ϕ ∈ E1(L) be a psh metric of fiberwise-finite energy. Then for any

ψ ∈ E1(Lan) such that ψ ⩾ ϕNA, there exists a psh extension ϕ̃ ∈ E1(Lhyb) of ϕ to
Lhyb satisfying ϕ̃0 = ψ.

Proof. — Write ϕ = limj ϕj as the decreasing limit of a net in FSτ (Lhyb). It follows
from Example 3.12 that for all j, the equality ϕ0j = ϕNA

j holds, hence ϕ0 is the
decreasing limit of the ϕNA

j . Since ϕ0 and ϕNA are psh on Lan, they are determined
by their (finite) values on divisorial points, so that it is enough to prove that if vE is
a divisorial valuation on X, the inequality

lim
j
(ψNA
j (vE)) ⩽ ψNA(vE)

holds, which follows from semi-continuity of Lelong numbers.
Conversely, assume that ϕ ∈ E1(L) and ψ ∈ E1(Lan), with ψ ⩾ ϕNA. By [Reb23]

and Theorem 3.13, there exists ψhyb ∈ E1(Lhyb) such that ψhyb
0 = ψ. We set

ηj = max(ψhyb, ϕhyb − j log|e|),

then the decreasing limit of the (ηj)j is a psh hybrid metric, restricting to ψ on Xan

and to ϕ on X. □

Example 3.15. — Let (A,L) → D∗ be a polarized, maximal degeneration of abelian
varieties. We let ωt ∈ c1(Lt) be the flat Kähler metric on Lt, then there exists a family
of smooth metrics ϕt ∈ PSH(Xt, Lt)—called the cubic metrics—such that ωt = ddcϕt.
Then it follows from the proof of [GO22, Th. 4.13] that ϕ ∈ PSH(X,L) and has
logarithmic growth at t = 0. Moreover, the associated non-Archimedean metric ϕNA

is computed explicitly in [Liu11, Th. 4.3], and [GO22, Th. 4.13] states that the induced
hybrid metric ϕhyb is in fact continuous, i.e., ϕhyb ∈ CPSH(Ahyb, Lhyb).

We also prove that given a continuous hybrid metric, it is enough to test its
plurisubharmonicity outside zero.

Proposition 3.16. — Let ϕ ∈ PSH(X,L), and assume ϕ extends as a continuous
metric on Lhyb, that we still denote ϕ. Then the extension is semi-positive, i.e., ϕ ∈
CPSH(Lhyb).
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Proof. — By Theorem 3.13, it is enough to prove that ϕ0 = ϕNA. By continuity of ϕ
and the following lemma, we have

ϕ0(vE) = ϕNA(vE)

for every divisorial valuation vE ∈ Xdiv. Thus, after fixing a reference model met-
ric ϕL , for every snc model X on which ϕL is determined, we have (ϕ0−ϕL )◦ρX =

(ϕNA−ϕL ) ◦ ρX since those two continuous functions agree on the rational points of
Sk(X ), and the result follows from [BFJ16, Prop. 7.6]. □

Lemma 3.17. — Let ϕ ∈ PSH(X,L) with logarithmic growth and vE ∈ Xdiv a divi-
sorial valuation. Let (X ,L ) be an snc model of (X,L) such that vE is determined
on X , and ϕ extends as a psh metric on L . We fix a bounded reference metric ϕ0
on L , and write ϕNA = ϕL + ψNA as in Theorem 3.10.

There exists a sequence (zj)j∈N in X converging to vE in Xhyb, such that the
sequence ((ϕ− ϕ0)(zj)/logr|t|)j converges to ψNA(vE).

Proof. — Recall that up to a negative scaling factor, ψNA(vE) is the generic Lelong
number of the psh function (ϕ− ϕ0) along E, hence is equal to the Lelong number of
(ϕ− ϕ0) at a very general point of E [BFJ08]. Thus, we may choose a point z∞ ∈ E

such that z∞ is not contained in any other irreducible component of X0, and such
that

ψNA(vE) =
log r

bE
νz∞(ϕ− ϕ0).

Choose a sequence (zj)j in X converging to z∞ inside X . Then by construction
((ϕ− ϕ0)(zj)/logr|t|)j converges to ψNA(vE), and (zj)j converges to vE in X hyb (see
[BJ17, Def. 2.3]), hence in Xhyb, which concludes the proof. □

The following question is taken from Favre [Fav20, Quest. 1].

Question 3.18. — Let ϕ ∈ CPSH(L) be a continuous, semi-positive metric on L, and
assume that ϕNA is a continuous metric on Lan.

Then is it true that ϕhyb ∈ CPSH(Lhyb)?

In view of the proof of Theorem 3.13, this amounts to proving that assuming
ϕNA ∈ CPSH, we have an estimate of the form

ϕm − ϕ ⩽ εm
∣∣log|t|∣∣−1

,

on X where ϕm are the Bergman kernels regularizing ϕ, and εm −−−−→
m→∞

0 is indepen-
dent of t. Such a bound seems difficult to attain without a uniform estimate on the
oscillation of ϕ.

3.3. Proof of Theorem 3.13. — If ρ > 0, we will write Dρ := {|t| < ρ} the open disk
of radius ρ, and if X is a model of X, Xρ := X|Dρ

.
We let ϕ ∈ PSH(X,L) be a psh metric on L with logarithmic growth, so that

after choosing an ample model (X ,L ) of (X,L), there exists c ∈ R such that
ϕc = ϕ + c log|t| extends as a psh metric on L —to alleviate notation, we will still
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denote ϕc by ϕ. The basic idea of the proof of Theorem 3.10 is that if Im := I (mϕ) is
the multiplier ideal of the psh metric mϕ on mL , then the sequence of piecewise-affine
functions m−1ϕI (mϕ) on Xan decrease pointwise to the relative potential (ϕNA−ϕL )

on Xan. However for m≫ 1, up to a controlled error term, the sheaf OX (mL ⊗Im) is
relatively globally generated on X , so that the m−1ϕI (mϕ) are a sequence of ϕL -psh
functions on Xan, hence ϕ ∈ PSH(Xan, Lan).

We will roughly apply the same idea here, except we will also have to regular-
ize ϕ itself by a sequence of psh metrics with analytic singularities along I (mϕ) (see
Definition A.2). The procedure we apply to produce such a sequence is standard in
complex pluripotential theory and goes back to the work of Demailly [Dem92], so that
we merely outline the proof here and rather refer the reader to the appendix A for
the technical details.

We let ψ ∈ PSH(X ,L ) be a smooth metric, whose curvature form ω := ddcψ is a
Kähler form on X . We choose ε ∈ (0, 1− r) and m0 ∈ N such that for all m ⩾ 0, the
sheaf OX ((m+m0)L ⊗Im) is globally generated over Xr+ε (see Proposition A.4).
We write

ψm,m0 =
(
mϕ+m0ψ

)
∈ PSH(X , (m+m0)L ),

so that Im = I (mϕ) = I (ψm,m0
) is the multiplier ideal of the psh metric ψm,m0

on
(X , (m+m0)L ).

We will regularize ϕ by the Bergman metrics associated to the multiplier ideal Im.
More explicitly, set Vm,m0 := H0(Xr+ε, (m+m0)L ⊗Im) and define Hm,m0 ⊂ Vm,m0

as the following Hilbert space

Hm,m0
=

{
s ∈ Vm,m0

| ∥s∥2 :=
∫

Xr+ε
|s|2ψm,m0

ωn+1 <∞
}
.

For every pair (m,m0), we may choose a Hilbert basis Bm,m0
= (sm,m0,ℓ)ℓ∈N of

Hm,m0 , and we now set

ϕm,m0
=

1

2(m+m0)
log

(∑
ℓ∈N|sm,m0,ℓ|2

)
,

and
ϕNA
m,m0

= ϕL + (m+m0)
−1ϕIm

.

It is clear that ϕm,m0 ∈ PSH(X ,L ), and ϕNA
m,m0

∈ PSH(Xan, Lan). We claim that
this defines a semi-positive hybrid metric on L:

Proposition 3.19. — For every m ∈ N>0, the hybrid metric ϕhybm,m0
on L defined by

ϕhybm,m0,t = (ϕm,m0
)|Xt

and ϕhybm,m0,0
= ϕNA

m,m0

is semi-positive, i.e., ϕhybm,m0
∈ PSH(Xhyb, Lhyb).

Proof. — For q ∈ N, set

ϕm,m0,q =
1

2(m+m0)
log

(∑
ℓ⩽q|sm,m0,ℓ|2

)
,

ϕNA
m,m0,q = (m+m0)

−1 max
ℓ⩽q

(log|sm,m0,ℓ|).and
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It follows from Proposition 3.5 that this defines a semi-positive hybrid metric
ϕhybm,m0,q ∈ PSH(Xhyb, Lhyb), we will prove that the (ϕhybm,m0,q)q∈N converge uniformly
to ϕhybm,m0

on Xhyb.
By Proposition A.5, the ϕm,m0,q converge uniformly to ϕm,m0

on Xr+ε as q → ∞,
so that it remains to prove uniform convergence over Xan.

We have that
ϕNA
m,m0,q = ϕL + (m+m0)

−1ϕJq
,

where Jq = I
(
(sm,m0,ℓ)ℓ⩽q

)
≡ Im over Xr+ε for q ≫ 1 by the strong noetherian

property for coherent sheaves and global generation (see the proof of Proposition A.5),
which concludes by Dini’s lemma. □

We now conclude the proof of Theorem 3.13. After extracting a subsequence, the
(m +m0)

−1ϕm,m0 decrease to ϕ on Xr+ε by Theorem A.3 and its proof, while the
ϕNA
m,m0

decrease to ϕNA on Xan by the proof of [Reb23, Th. 3.3.1]. This proves that
ϕhyb ∈ PSH(Xhyb, Lhyb).

For the (partial) converse, if ϕ ∈ CPSH(Lhyb), and s ∈ H0(U,L) is a local trivial-
ization, then the function on U

z 7−→ log|s(z)|ϕt

log|t|

extends continuously to Xhyb by Proposition 3.2, hence is bounded. This proves that ϕ
induces a psh metric with logarithmic growth on L, hence we can define ϕNA as above.
By Proposition 3.14, we have ϕNA ⩽ ϕ0, while the semi-continuity of the hybrid metric
induced by (ϕ, ϕNA) implies ϕ0 = limt→0 ϕt ⩽ ϕNA, which concludes.

This can also be deduced using the following.

Lemma 3.20. — The map

(·)NA : CPSH(Lhyb) −→ CPSH(Lan)

is well-defined and continuous with respect to the topologies of uniform convergence
on both spaces.

Proof. — This follows from the fact that (·)NA is order-preserving [Reb23, Th. 3.3.1],
and that (ϕ+ c)NA = ϕNA + c for c ∈ R.

Indeed, writing ϕ ∈ CPSH(Lhyb) as the uniform limit of a net (ϕj)j in FSτ , the
fact that (·)NA is order-preserving implies that the (ϕNA

j )j converge uniformly to ϕNA,
which is then continuous. □

It now follows that (·)NA and the restriction map to Xan

(·)0 : CPSH(Lhyb) −→ CPSH(Lan)

are both continuous, and coincide on the dense set FSτ by Example 3.12, and thus
coincide on PSH(Lhyb). This concludes the proof of Theorem 3.13.
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3.4. The isotrivial case. — Let (X,L) be a projective complex variety, and write
(Xan

0 , Lan
0 ) the associated Berkovich space obtained by endowing the field of complex

numbers with the trivial absolute value. The latter analytic space has proved itself to
be a powerful tool in Kähler geometry, and in particular has been central in the vari-
ational proof of the Yau-Tian-Donaldson conjecture by Berman-Boucksom-Jonsson
[BBJ21].

Without going into the details, the proof involves the study of various convex func-
tionals on the space PSH(X,L), and relating their slopes at infinity on geodesic rays
with the corresponding non-Archimedean functionals on the space PSH(Xan

0 , Lan
0 ).

Definition 3.21. — Let (X,L) be a normal projective complex variety. A family
(ϕy)y>0 of psh metrics on L is called a psh ray if and only the S1-invariant metric

Φ(x, t) := ϕ− log|t|(x)

on (X × D∗, p∗1L) is psh.

Let ϕ0 be a smooth, positively curved reference metric on L. If (ϕy)y>0 is a psh
ray on X, then the function y 7→ supX(ϕy−ϕ0) is convex, so that its slope at infinity

pmax := lim
y→∞

supX(ϕy − ϕ0)

y

exists in R ∪ {+∞} and is independent of the choice of ϕ0. It is immediate that
pmax < +∞ if and only there exists C > 0 such that supX ϕy ⩽ Cy (with slight abuse
of notation), in which case we will say that the ray (ϕy)y∈(y0,+∞) has linear growth.
This is easily seen to be equivalent to the fact that the psh metric Φ on X × D∗ has
logarithmic growth at zero.

Following the general heuristic of viewing non-Archimedean geometry as the
asymptotic limit of Kähler geometry, each psh ray (ϕy)y on (X,L) with linear growth
induces a psh metric ϕNA on (Xan

0 , Lan
0 ), defined as follows. We fix a smooth reference

metric ϕ0 on L, whose curvature form ω0 = ddcϕ0 is a Kähler form on X, and write
ψy := (ϕy − ϕ0) ∈ PSH(X,ω0).

By linear growth, there exists a ∈ R such that the function
Ψa(x, t) = ψ− log|t|(x) + a log|t|

on X×D∗ is bounded from above near X×{0}, hence extends as a quasi-psh function
on X × D, that we still denote by Ψa. Now if v ∈ Xan

0 is a divisorial valuation
on X, and w = γ(v) ∈ (XK)an denotes the Gauss extension of v to the base change
XK := X ×C K, one defines w(Ψa) as the generic Lelong number of Ψa along the
center of w, as in Section 3.2. In other words, if ϕ is a psh ray on X and v ∈ Xdiv,
then

ϕNA(v) = ΦNA(γ(v)).

Theorem 3.22 ([BBJ21, Th. 6.2]). — The function ψNA : Xdiv → R extends continu-
ously to Xan, and the metric ϕNA on Lan defined by

ϕNA = (ψNA + ϕtriv) ∈ PSH(Xan, Lan)

is plurisubharmonic.
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This is essentially a special case of Theorem 3.10, since the trivial metric ϕtriv

is the restriction to the Gauss section (see Section 1.4) of the model metric ϕL ∈
PSH(Xan

K , Lan
K ), where L = p∗1L is the trivial model, living on X = X × D.

Proposition 3.23. — Let r ∈ (0, 1). Then the metric ϕhyb on Lhyb defined by

ϕhyb0 = ϕNA, ϕhyb|Xλ
= λϕ1/λ

is semi-positive on Xhyb
0 . Moreover, we have

Φhyb = F ∗ϕhyb,

where F : Xhyb
K → Xhyb

0 is the base change map from Proposition 1.23.

Proof. — The equality Φhyb = F ∗ϕhyb is straightforward from the construction
of ϕhyb.

To prove that ϕhyb is psh, the argument is the same as in the proof of Theorem 3.13,
except we need the sections sm,m0

from the proof of Proposition 3.19 to be equivariant
with respect to the S1-action on X × D. To achieve this, with the notation of the
previous section for ℓ ∈ Z, we let Hm,m0,ℓ ⊂ Hm,m0 be the space of ℓ-equivariant
sections, i.e., sections s such that (eiθ)∗s = eiℓθ · s. Then Hm,m0

is the completion of⊕
ℓ∈Z Hm,m0,ℓ, so that we may choose a Hilbert basis of Hm,m0

adapted to the weight
decomposition. The rest of the proof of Theorem 3.13 carries out without changes after
replacing log|sm,m0,ℓ| on Xan

0 by (log|sm,m0,ℓ| − ℓ) for sm,m0,ℓ ∈ Hm,m0,ℓ, so that we
omit the details. □

4. The Monge-Ampère operator

In this section, we discuss families of Monge-Ampère measures associated to a
continuous psh metric on an analytic space over a Banach ring, and explain how to
deduce Theorem 0.1 from [Fav20].

4.1. The case of a valued field. — Let K be a complete valued field, X an n-
dimensional projective scheme over K, and let L1, . . . , Ln be semi-ample line bundles
on X. By Ostrowski’s theorem, either K = R or C with (a power of) the usual absolute
value, or K is non-Archimedean.

Let us start by assuming that K = C and that X is smooth. It then follows from
the seminal work of Bedford-Taylor [BT76] that the mixed Monge-Ampère pairing

(ϕ1, . . . , ϕn) 7−→ ddcϕ1 ∧ · · · ∧ ddcϕn,

a priori defined when each ϕi is a smooth Hermitian metric on Li, actually extends
in a unique way to semi-positive, locally bounded metrics. The pairing was then
further extended to semi-positive singular metrics by Boucksom-Eyssidieux-Guedj-
Zeriahi [BEGZ10]. More precisely, there exists a class E1(X,L) ⊂ PSH(X,L) of finite-
energy metrics on (X,L), such that the above mixed Monge-Ampère pairing extends
uniquely to a multilinear, measure-valued pairing on E1(X,L1)×· · ·×E1(X,Ln). Note
that the space E1(X,L) contains in particular CPSH(X,L).
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We now assume K is non-Archimedean, and that ϕi ∈ DFS(X,Li) for every i =

1, . . . , n are differences of Fubini-Study metrics. One can then associate to the ϕi’s
a signed Radon measure, the mixed Monge-Ampère measure MA(ϕ1, . . . , ϕn), with
similar properties as in the complex analytic case.

Example 4.1. — Assume that K = k((t)) is a discretely-valued field of characteristic
zero. Then pure Fubini-Study metrics on Li are the same as model metrics on Li, so
that by multilinearity we may assume that ϕi = ϕLi , where (Xi,Li) is a nef model
of (X,Li). Up to passing to a higher model, we may assume X1 = · · · = Xn. Then
the Monge-Ampère measure has the following explicit description [CL06]

MA(ϕ1, . . . , ϕn) =
∑
E

bE(L1 · · ·Ln · E)δvE ,

where the sum ranges over the irreducible components E of X0, bE = ordE(t) and
δvE is the Dirac mass at the associated divisorial point vE = b−1

E ordE .

In general, the mixed Monge-Ampère measure satisfies the following basic proper-
ties.

Proposition 4.2 ([BE21, Prop. 8.3]). — Let ϕi ∈ DFS(Li) for i = 1, . . . , n.
– The pairing (ϕ1, . . . , ϕn) 7→ MA(ϕ1, . . . , ϕn) is symmetric and multilinear;
– if ϕi ∈ FS(Li) for all i, then MA(ϕ1, . . . , ϕn) is a positive Radon measure;
– the total mass

∫
Xan MA(ϕ1, . . . , ϕn) = (L1 · · ·Ln);

– if L0 = L1 = OX and ϕ0, ϕ1 ∈ DFS(X), then∫
X

ϕ0 MA(ϕ1, . . . , ϕn) =

∫
X

ϕ1 MA(ϕ0, ϕ2, . . . , ϕn).

The Monge-Ampère measure can then be extended by density to more general
metrics:

Theorem 4.3 ([BE21, Th. 8.4]). — Let K be a complete valued field, X/K an n-dimen-
sional projective scheme and L1,. . . ,Ln line bundles on X. Then the Monge-Ampère
operator

(ϕ1, . . . , ϕn) 7−→ ddcϕ1 ∧ · · · ∧ ddcϕn
admits a unique extension to continuous psh metrics on the Li. The extension is
furthermore continuous with respect to the topology of uniform convergence and the
weak topology of Radon measures.

Remark 4.4. — While the class E1(X,L) of finite-energy psh metrics on L is defined
over any non-Archimedean field K, it is unclear in general how to extend the Monge-
Ampère operator on the latter. Note however that in the case where K is discretely-
valued of characteristic zero, this extension was constructed in [BFJ16], and the
trivially-valued case was handled in [BJ22].
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Remark 4.5. — The Chambert-Loir–Ducros [CLD12] approach to pluripotential the-
ory on Berkovich spaces makes sense of the curvature current ddcϕ of a continu-
ous psh metric, and its wedge products, in a spirit close to the work of Bedford-
Taylor in the complex case. Notably, [CLD12, Th. 6.9.3] states that the wedge product
ddcϕ1 ∧ · · · ∧ ddcϕn coincides with the mixed Monge-Ampère measure as described in
Example 4.1 when ϕ1, . . . , ϕn are psh model metrics, whence the notation.

4.2. The Monge-Ampère equation. — Let X be a smooth n-dimensional complex
manifold, and L an ample line bundle on X. Then Yau’s celebrated solution to the
Calabi conjecture asserts the following.

Theorem 4.6 ([Yau78]). — Let µ be a smooth volume form on X, normalized to have
total mass 1. Then there exists a unique (up to an additive constant) smooth, positive
definite metric ϕ on L such that

(ddcϕ)n = (Ln)µ.

The main motivation for this theorem was the case where X is a Calabi-Yau mani-
fold, and µ = in

2

Ω∧Ω is the square-norm of a nowhere-vanishing holomorphic n-form
on X: in that case, the curvature form ω = ddcϕ is a smooth Kähler Ricci-flat metric
on X.

Throughout the years, various generalizations of the above theorem in a more sin-
gular setting have appeared in the literature: let us simply mention Kołodziej’s result
[Koł98], that states that under the same assumptions on (X,L), then the statement
of the above theorem holds for a much wider range of probability measures on X (for
instance, measures µ with Lp-density for some p > 1), when we don’t require for the
solution to be smooth—here the solution is a continuous psh metric ϕ ∈ CPSH(X,L),
and the equality (ddcϕ)n = µ is understood in the sense of Bedford-Taylor.

We now let K = k((t)) be a discretely-valued field of equicharacteristic zero. The
following result can be understood as an analog of Kołodziej’s result over K.

Theorem 4.7 ([BFJ15, Th. A], [BGGJ+20]). — Let (X,L) be a smooth polarized vari-
ety over K. Let µ be a probability measure on Xan, supported on the skeleton of an snc
R-model of X. Then there exists a unique (up to an additive constant) continuous,
semi-positive metric ϕ on L satisfying the non-Archimedean Monge-Ampère equation

MA(ϕ) = µ.

The above theorem was proved when X is defined over the function field of a curve
over k in [BFJ15], and then extended to varieties over non-Archimedean fields of
residual characteristic zero in [BGGJ+20].

4.3. Family of Monge-Ampère measures. — Let A be an integral Banach ring, and
X/A a projective scheme. Since we may view Xan as the family of analytic spaces
{Xan

Hx
}x∈M (A), which are analytic spaces over fields, one may define a Monge-Ampère

operator on each fiber.
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Definition 4.8. — LetA be an integral Banach ring,X/A an n-dimensional projective
scheme, and L1, . . . , Ln semi-ample line bundles on X. If (ϕ1, . . . , ϕn) is a tuple of
continuous psh metrics on the Li, we define the associated family of Monge-Ampère
measures as follows. For x ∈ M (A), write Xx = π−1(x) ≃ Xan

H (x), and ιx : Xx ↪→ Xan

the inclusion. Then we set(
MA(ϕ1, . . . , ϕn)

)
x
:= (ιx)∗

(
MA((ϕ1)|Xx

, . . . , (ϕn)|Xx
)
)
.

This is a family of measures on Xan parametrized by M (A).

A natural question is to ask whether or not this family of measures is continuous,
at least in the weak sense:

Question 4.9. — Let X be a flat, projective A-scheme, L1, . . . , Ln as above, and let
ϕi ∈ CPSH(Li) for each i. Is it true that for ψ ∈ C0(Xan), the function

x 7−→
∫
Xan

ψ(MA(ϕ1, . . . , ϕn))x

is continuous on M (A)?

The flatness assumption on X is necessary to ensure that the total mass of the
measure (

MA(ϕ1, . . . , ϕn)
)
x
(Xan) =

(
(L1)|XH (x)

· · · (Ln)|XH (x)

)
is indeed independent of x ∈ M (A).

By density of DFS(X) ⊂ C0(Xan) and FS(Li) ⊂ CPSH(Li), and by using the
following very general Chern-Levine-Nirenberg estimate, it is enough to prove the
above statement for ψ ∈ DFS(X) and ϕi ∈ FS(Li).

Lemma 4.10 ([BE21, Lem. 8.6]). — Let K be a non-Archimedean field, and X/K. Let
L0, . . . , Ln be line bundles on X, and ϕi, ϕ′i ∈ FS(Li) for each i. Then∣∣∣∣∫
Xan

(ϕ0−ϕ′0)MA(ϕ1, . . . , ϕn)−
∫
Xan

(ϕ0−ϕ′0)MA(ϕ′1, . . . , ϕ
′
n)

∣∣∣∣ ⩽ C

n∑
i=1

sup
Xan

|ϕi−ϕ′i|.

While the answer to the above question seems unclear without further assumptions
over the Banach ring A, we are able to provide an affirmative answer in the case of
hybrid spaces in the next section. We also expect the statement to hold when A

is the ring of integers of a number field, we mention for instance the work [Poi22]
which proves a special case of the above statement for A = Z and provides further
applications.

4.4. Hybrid metrics and admissible data

Throughout this section, we let X π−→ D∗ be a smooth degeneration of complex
manifolds, relatively polarized by an ample line bundle L; and write Xhyb the asso-
ciated hybrid space. In this set-up, after fixing a reference Fubini-Study metric on
(X,L), Favre [Fav20] defines a certain class of model functions ϕF : Xhyb → R as-
sociated to admissible data on X; and uniform functions which are uniform limits of
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model functions. We will explain how those are nothing but hybrid Fubini-Study and
hybrid cpsh metrics on L. In particular, the following result is a mere reformulation
of [Fav20, Th. 4.2].

Theorem 4.11. — Let (X,L) be as above, and ϕ ∈ CPSH(Xhyb, Lhyb). Then the
associated family of Monge-Ampère measures is continuous on Xhyb in the weak sense:
for any f ∈ C0(Xhyb), we have∫

Xt

f(ddcϕt)
n −−−→

t→0

∫
Xan

fMA(ϕ0).

Recall that DFS(Xhyb) is dense in C0(Xhyb), while FSτ (Lhyb) ⊂ CPSH(Lhyb) is
dense for the topology of uniform convergence. As a result, by lemma 4.10, it is enough
to prove the above convergence with f ∈ DFS(Xhyb), ϕ ∈ FSτ (Lhyb).

As in [Fav20], we fix an snc model X of X such that L has an ample model L

on X , so that we get a relative embedding ι : X ↪→ CPN × D by sections of mL

for m ⩾ 1, and write ϕref = m−1ι∗ϕFS. By Example 3.7 and pullback, we have
ϕref ∈ CPSH(Lhyb).

Then a regular admissible datum F = {X ′, d,D, s1, . . . , sℓ} consists of the follow-
ing: p : X ′ → X is an snc model dominating X , D ∈ Div0(X ′) is a vertical divisor
on X ′, and (s1, . . . , sℓ) is a tuple of sections of p∗(L d)(D) without common zeroes.
An regular admissible datum defines a model function ϕF : Xhyb → R as follows:

ϕF = max
i=1,...,ℓ

log∥si∥ϕref
= max
i=1,...,ℓ

(ϕi − ϕref),

with ϕi = d−1 log|si|.
Thus, we naturally define

ψF = ϕref + ϕF = max
i⩽ℓ

ϕi,

which is a Fubini-Study metric on Lhyb, since the si’s have no common zeroes.
Conversely, any pure Fubini-Study metric on Lhyb, i.e., a metric of the form

ϕ = d−1 max
i⩽ℓ

log|si|

for d ⩾ 1 and s1, . . . , sℓ ∈ H0(X, dL) without common zeroes, defines a regular
admissible datum. Indeed, we may extend s1, . . . , sℓ to meromorphic sections of dL
on X , and set

I = ⟨s1, . . . , sℓ⟩,
which is a vertical fractional ideal sheaf on X . It follows from [Fav20, Prop. 2.2] that
if p : X ′ → X is a log-resolution of X , this yields an admissible datum

F = {X ′, d,D, p∗s1, . . . , p
∗sℓ},

where D ∈ Div0(X ′) is such that p∗(L d ⊗ I ) = (p∗L )d ⊗ OX ′(D), and it follows
from the previous computation that the associated model function ϕF satisfies

ϕF = max
i=1,...,ℓ

log∥si∥ϕref
= ϕ− ϕref ,
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with ϕ = d−1 maxi⩽ℓ log|si|. As a result, model functions on Xhyb in the sense of
[Fav20] are precisely the continuous functions ψ : Xhyb → R such that (ϕref + ψ) ∈
FSτ (Lhyb) is a pure Fubini-Study metric, so that by remark 3.4, uniform functions
are those such that (ϕref + ψ) ∈ CPSH(Lhyb). This proves that the statement of
Theorem 4.11 is equivalent to the statement [Fav20, Th. 4.2].

5. Degenerations of canonically polarized manifolds

5.1. The set-up. — In this section, X π−→ D∗ will denote a meromorphic degenera-
tion of canonically polarized manifolds, and we will write L = KX/D∗ the polarization.
It follows from the seminal work of Aubin and Yau ([Aub78], [Yau78]) that every
fiber Xt admits a unique negatively curved Kähler-Einstein metric ωt ∈ −c1(Xt),
satisfying the equation Ric(ωt) = −ωt. The Kähler form ωt can be written as the
curvature form of a smooth Hermitian metric ϕt on Lt = KXt

, i.e.,
ωt = ddcϕt.

The metric ϕt is unique up to addition of a constant. In this situation, the family
of Hermitian metrics (ϕt)t∈D∗ turns out to also have plurisubharmonic variation in
the horizontal direction by the work of Schumacher [Sch12], and has logarithmic
growth at t = 0 by [Sch12, Th. 3]. Thus, the family of metrics (ϕt)t∈D∗ induces an
element ϕ ∈ CPSH(X,L), and it is a natural question to try and determine the non-
Archimedean limit ϕNA of this family, as it provides a non-Archimedean analog of the
Kähler-Einstein metric.

As we will explain more thoroughly in Section 5.2, after a finite base change t 7→ td

on the punctured disk, that we omit from notation, the family X/D∗ admits a canoni-
cal model Xc/D such that the canonical bundle KXc/D is relatively ample; the model
Xc/D is furthermore unique for this property (although it is more singular than an
snc model). This in turn yields a canonical model metric ϕKXc/R

∈ CPSH(Xan,Kan
X ),

which we will prove to be the non-Archimedean Kähler-Einstein metric—the following
statement is Theorem B from the introduction.

Theorem 5.1. — Let X π−→ D∗ be a degeneration of canonically polarized mani-
folds, L = KX , and let ϕKE ∈ CPSH(X,L) be the family of Kähler-Einstein metrics.
We assume that the family X has semi-stable reduction over D. Then the metric
on Lhyb defined by

ϕ|X = ϕKE, ϕ0 = ϕKXc/R

is continuous and semipositive, i.e., ϕ ∈ CPSH(Xhyb, Lhyb).

If the family of Kähler-Einstein metrics ϕ were to extend as a bounded metric
ϕ ∈ PSH(Xc,KXc/D), then it would follow from Example 3.11 that ϕNA = ϕKXc/R

.
We will see that this is however not the case, but the singularities of ϕKE along the
special fiber of the canonical model are mild enough for the result to still hold—they
are milder than any log poles.

Using Theorem 4.11, we have the following immediate consequence.
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Corollary 5.2. — Let X → D∗ be a meromorphic degeneration of n-dimensional
canonically polarized manifolds, and let ωt ∈ −c1(Xt) be the unique Kähler-Einstein
metric with negative curvature on Xt.

The Kähler-Einstein measures µt = ωnt converge weakly on Xhyb to µ0 =

MA(ϕKXc
), the non-Archimedean Monge-Ampère measure of the canonical model

metric.
More explicitly, writing Xc,0 =

∑
i∈I biDi as the sum of its irreducible components,

the measure µ0 is a sum of Dirac masses supported at the divisorial valuations vDi
,

and we have
µ0 =

∑
i∈I

bi
(
(KXc

)n ·Di

)
δvi .

This was proved in [PS22a, Th. A] in a direct way, without using Theorem 4.11.

5.2. The canonical model. — Let X π−→ D∗ be a degeneration of smooth, canoni-
cally polarized varieties. In this case, the Minimal Model Program provides us with
a unique canonical model Xc of X over the disk, at the cost of going out of the class
of simple normal crossing models, and allowing some slightly worse singularities. The
appropriate class of varieties for the central fiber is a higher-dimensional analog of
the stable curves, the correct notion being that of semi-log canonical models.

If X is a normal model of X, saying that X0 is semi-log canonical (see for instance
[Kol13]) is a condition on the singularities of the normalization of X0, which can be
seen as a mild generalization of the simple normal crossing condition; in particular
we require X0 to be reduced and simple normal crossing in codimension 1. More
precisely, the normalization morphism ν : X ν

0 → X0 is required to yield a disjoint
union X ν

0 =
⊔
i∈I(D̃i, Ci) of log canonical pairs, Ci being the restriction of the

conductor C of ν to D̃i. This is a Weil divisor on X ν
0 , whose support is precisely the

locus where the normalization ν fails to be an isomorphism, and which is simply given
here by the inverse image by ν of the codimension one nodes of X0. It furthermore
satisfies the formula: ν∗KX0 = KX ν

0
+C (note that the canonical divisor of a semi-log

canonical variety is assumed to be Q-Cartier).
A semi-log canonical model (or stable variety) is now by definition a proper semi-

log canonical variety, with ample canonical divisor. For instance, one-dimensional
semi-log canonical models are nothing but Deligne-Mumford’s stable curves.

The compactness theorem for moduli of stable varieties of higher dimension is now
as follows.

Theorem 5.3 ([BCHM10], [KNX18]). — Let X → D∗ be an algebraic degeneration
of canonically polarized manifolds. There exists (possibly after a finite base change)
a unique canonical model Xc of X over the disk, satisfying the following properties:

(i) the total space Xc has at worst canonical singularities, while the central fiber
Xc,0 is reduced and has at worst semi-log canonical singularities;

(ii) the relative canonical divisor KXc/D is relatively ample.
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The canonical model is constructed as follows: by the semi-stable reduction theorem
[KKMSD73], there exists a finite base change t = (t′)d on the punctured disk such
that the family X ′ = X×D∗

t
D∗
t′ admits a semi-stable model over D∗, i.e., an snc model

with reduced special fiber. Omitting the base change from notation and starting from
a semi-stable model X /D of X, we set Xc = ProjD

⊕
m⩾0H

0(X ,mKX /D), the main
difficulty being to prove finite-generatedness of the relative canonical algebra. This is
established in [BCHM10] when X/D∗ is defined over an algebraic curve, and extended
to families over the disk in [KNX18]. The uniqueness of the canonical model is now a
straightforward consequence of the birational invariance of the relative canonical ring
R =

⊕
m⩾0H

0(X ,mKX /D)—as the notation suggests, R does not depend on the
choice of the model X .

Remark 5.4. — If X is any semi-stable model of X, then the natural rational map
h : X Xc is in fact a rational contraction—this means that its inverse does not
contract any divisors.

5.3. Metric convergence and proof of Theorem 5.1. — The understanding of the
Gromov-Hausdorff convergence of the fibers (Xt, gt), is due to J. Song [Son17] (whose
results were further improved in [SSW20]). The crucial first step, is to show that
there exists on the central fiber Xc,0 =

∑
i∈I Di of the canonical model of X a

unique Kähler-Einstein current ωKE, and to derive some geometric estimates on the
singularities of this current. The current ωKE on the stable variety Xc,0 was first
constructed by Berman-Guenancia [BG14] using a variational method, while it is
reconstructed in [Son17] using the techniques of [EGZ09], [Koł98], in order to obtain
some stronger control on its singularities:

Theorem 5.5 ([Son17, Th. 1.1]). — Let Xc → D be the canonical model of X, with
semi-log canonical central fiber Xc,0. There exists a unique Kähler current ωKE ∈
−c1(Xc,0) on Xc,0, satisfying the following properties:

(i) ωKE is smooth and satisfies the Kähler-Einstein equation on the regular locus
of Xc,0;

(ii) ωKE has locally bounded potentials on the locus where Xc,0 is log terminal;
(iii) ωnKE does not charge mass on the singularities of Xc,0, and

∫
Xc,0

ωnKE =

[KXc,0 ]
n.

Remark 5.6. — The fact that the above Kähler-Einstein current on Xc,0 matches the
one constructed in [BG14], follows from the uniqueness statement in [BG14, Th. A].
Moreover, the construction of [BG14] implies that

∫
Di
ωnKE = (Kn

Xc
·Di).

Indeed, if ν : X ν
c,0 → Xc,0 denotes the normalization morphism, where X ν

c,0 =⊔
i∈I D̃i, then the Kähler-Einstein metric ωKE is obtained by descending the (singular)

Kähler-Einstein metrics ωi ∈ c1(KD̃i
+Ci) on the log canonical pairs (D̃i, Ci), Ci being

the restriction of the conductor C of ν to D̃i.
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Thus by construction, the mass
∫
Di
ωnKE equals the intersection number

(KD̃i
+ Ci)

n = (ν∗KXc,0)
n,

the last intersection number being computed on D̃i. Applying the projection formula,
this is equal to the intersection number Kn

Xc,0
· Di = Kn

Xc
· Di, by adjunction and

principality of Xc,0.

Let us now fix a m > 0 such that mKXc/D is relatively very ample, and a relative
embedding ι : Xc ↪→ PN×D of the canonical model inside projective space by sections
of mKXc/D. We let ϕFS be the hybrid Bergman metric on (PNK)hyb from Example 3.7,
and still write ϕFS ∈ CPSH(Xhyb, Lhyb) its pullback to Xhyb via the embedding ι.
More explicitly, we have that

ϕFS,t = m−1ι∗tϕFS,

where ϕFS is the usual (Euclidean) Fubini-Study metric on CPN ; while

ϕFS,0 = ϕKXc/R
,

since the model (Xc,KXc/R) is ample.
This allows us to write the Kähler-Einstein metric ϕKE,t = ϕFS,t + ψt, with ψt ∈

C∞(Xt). The potential ψt is the unique solution of the Monge-Ampère equation

(ωFS,t + ddcψt)
n = eψtωnFS,t,

with the normalization
∫
Xt
eψtωnFS,t = (KXt

)n. In order to derive uniform estimates
for the family of potentials (ψt)t∈D∗ , it is more convenient to work on a semi-stable
model, as a result we perform an additional base change and consider a diagram of
the form

X X ′
c Xc

D D

p

π′

t 7→ td

where X ′
c is the base change of the canonical model Xc via t 7→ td, and X is a semi-

stable resolution of X ′
c . We write the special fiber X0 =

∑
i∈I D̃i+

∑
j∈J Ej , where D̃i

is the strict transform of Di ⊂ X ′
c,0 = Xc,0 and the Ej ’s are the exceptional divisors

of p. For each i ∈ I, let ϕi be a psh metric on OX (D̃i) with divisorial singularities
along D̃i, i.e., ϕi = log|zi|+O(1) locally, where zi is a local equation for D̃i. Similarly,
we choose ψj with divisorial singularities along Ej , so that∑

i∈I
ϕi +

∑
j∈J

ψj = log|t|+O(1).

In order to apply Cheeger-Colding theory to the Kähler-Einstein metrics on Xt, Song
derives uniform estimates on volumes of small balls, which are obtained via compari-
son lemmas for volume forms. The estimate focuses on a strict transform D̃i0 ⊂ X0,
and shows that the potentials ψt do not blow-up as we approach the interior of D̃i0 :
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Proposition 5.7 ([Son17, Cor. 4.1, Lem. 4.2]). — We have a uniform bound:

sup
Xt

ψt ⩽ C.

Moreover, letting J ′ ⊂ J be the subset of exceptional divisors in X0 that meet D̃i0 ,
the following holds: for any ε > 0, there exists a constant Cε > 0 such that for all
t ̸= 0

ψt ⩾ ε
(∑

i∈I
i̸=i0

ϕi +
∑
j∈J′ ψj

)
− Cε.

This implies smooth convergence of the Kähler-Einstein metrics ωt to the current ωKE

on Xc,0 ∖ Sing(Xc,0) in the following sense:
for any point p ∈ Xc,0 ∖Sing(Xc,0), and any choice of neighbourhood U of p such

that the Ut = U ∩ Xt are all biholomorphic to U0, and such that the (ωFS,t)
n’s are

uniformly equivalent, the pulled-back ψt converge in the C∞-sense to ψ0.

Note that we have made a small abuse of notation, since the object in the right-
hand side of the inequality is a metric and not a function.

Remark 5.8. — Even if we will not need it here, one can show that the previous
theorem combined with a uniform non-collapsing condition implies pointed Gromov-
Hausdorff convergence of Xt to a complete metric space, whose regular part (in the
Cheeger-Colding sense) is precisely (Xc,0\ Sing(Xc,0), ωKE).

We also point out that this holds for degeneration of canonically polarized manifolds
over a higher-dimensional base by the results of [SSW20], building on the semi-stable
reduction theorem from [AK00], [ALT18].

The behaviour of the metrics in the region where the metric collapses is also well-
understood, under the technical assumption that the canonical model is semi-stable,
see [Zha15].

We are now ready to prove Theorem 5.1. We let ϕ0 = ϕKXc/R
∈ CPSH(Xan, Lan),

and ϕKE ∈ CPSH(X,L) the family of Kähler-Einstein metrics. In order to prove
that the hybrid metric ϕ defined by the statement of Theorem 5.1 is continuous and
semi-positive, it is enough to prove that it defines a continuous metric on Lhyb, by
Proposition 3.16.

Subtracting the reference metric hybrid ϕFS, whose restriction to Xan is the model
metric ϕKXc/R

, it is enough to prove that the potential ψt’s converge to zero as t→ 0

in the hybrid topology. In other words, we need to prove that∣∣∣ ψt
log|t|

∣∣∣ −−−→
t→0

0,

which is an easy consequence of the estimates from Proposition 5.7. This concludes
the proof of Theorem 5.1. □
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Appendix

In this appendix, we state and prove a regularization result for psh metrics in the
complex analytic setting, that will be used in the proof of Theorem 3.13. We expect
that the statement below (Theorem A.3) is well-known to experts, as well as the tech-
niques we use in the proof—which are largely due to Demailly [Dem92]. Nevertheless,
since we could not find the precise statement required in the literature, we include a
proof.

We let (Y, ω) be a Kähler manifold, and assume given a proper holomorphic map
π : Y → Ω, where Ω is a bounded open subset of C. We furthermore assume that
there exists a π-relatively ample line bundle L on Y such that ω ∈ c1(L).

Given a semi-positive metric ϕ ∈ PSH(Y, L), we want to write it as a decreasing
limit of a sequence (ϕj)j∈N of psh metrics on L with analytic singularities along the
multiplier ideal sheaf Ij := I (jϕ). We recall the basic definitions.

Definition A.1. — Let ϕ ∈ PSH(Y, L) be a semi-positive metric on L. The multiplier
ideal sheaf I (ϕ) is the ideal generated by the germs of holomorphic functions f such
that |f |2e−2ϕ is locally integrable on Y .

Here locally integrable means locally integrable in any coordinate chart, we also
abusively view ϕ as a psh function this way.

Definition A.2. — Let J ⊂ OY be a coherent ideal sheaf on Y , and ϕ ∈ PSH(Y, L).
We say that ϕ has analytic singularities along J if ϕ can be written locally as

ϕ = log
(
|f1|2 + · · ·+ |fr|2

)
+ χ,

where (f1, . . . , fr) is a family of local generators of J and χ is a smooth function.

Given a coherent ideal sheaf J , one can always produce quasi-psh functions with
analytic singularities along J , using a partition of unity argument.

The rest of this appendix will be devoted to the proof of the following.

Theorem A.3. — Let Ω ⊂ C be a bounded open subset, Y a smooth Kähler manifold
together with a proper holomorphic map π : Y → Ω, and let L a relatively ample line
bundle on Y . We let ψ be a smooth Hermitian metric on L whose curvature form
ω = ddcψ is a Kähler metric on Y .

Let ϕ ∈ PSH(Y,L), and write Im := I (mϕ) the multiplier ideal of mϕ, for
m ∈ N. Then for any relatively compact, open subset Y ′ ⋐ Y , there exists a sequence
(ϕj)j∈N ∈ PSH(Y ′, L) such that:

– the ϕj decrease pointwise to ϕ on Y ′,
– for all j ∈ N, the psh metric 2jϕj on 2jL has analytic singularities of the

form I2j .

Let us fix a psh exhaustion function η : Ω → R, i.e., such that the sublevel sets
Ωc := {η < c} are relatively compact subsets of Ω; note that the Yc := {η ◦ π < c}
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are also relatively compact in Y and weakly pseudoconvex. Since the subset Y ′ ⊂ Y

is relatively compact, we have Y ′ ⊂ Yc for c≫ 1.

Proposition A.4. — For any c ∈ R such that Y ′ ⋐ Yc ⋐ Y , there exists a m0 ≫ 1

such that for all m ⩾ 1, the sheaf OY ((m + m0)L ⊗ Im) is generated by its global
sections on Yc.

Proof. — We argue as in [BBJ21, Lem. 5.6], and write n = dimY .
We let H be a relatively very ample line bundle on Y , and we choose m0 ≫ 1 such

that the line bundle A = m0L−KY − nH is relatively ample on Yc.
By the relative Castelnuovo-Mumford regularity criterion (see [DEL00, Lem. 1.4]),

the sheaf OY ((m+m0)L⊗ Im) is π-globally generated on Yc as soon as:

Rqπ∗(
(
(m+m0)L− qH

)
⊗ Im) = 0

for 1 ⩽ q ⩽ n− 1, which holds by Nadel vanishing [Nad90], [BFJ16, Th. B.8]. □

We will now regularize ϕ by a sequence of psh metrics with analytic singularities of
the form I (mϕ), up to some controlled error term. We mostly follow the argument
from the proof of [GZ05, Th. 8.1]. For m0 large enough so that Proposition A.4 holds,
write

ψm,m0
=

(
mϕ+m0ψ

)
∈ PSH(Y, (m+m0)L),

we have that Im = I (ψm,m0
) = I (mϕ) is the multiplier ideal of the psh metric

ψm,m0 on (Y,L).
We are naturally led to introduce the Bergman metrics associated to the multiplier

ideal Im; for Yc as in Proposition A.4, we set Vm,m0
:= H0(Yc, (m + m0)L ⊗ Im)

and define Hm,m0
⊂ Vm,m0

as the following Hilbert space:

Hm,m0
=

{
s ∈ Vm,m0

| ∥s∥2 :=
∫
Yc
|s|2ψm,m0

ωn <∞
}
.

For every m, we choose a Hilbert basis Bm,m0
= (sm,m0,ℓ)ℓ∈N of Hm,m0

, and we
now set

ϕm,m0 =
1

2(m+m0)
log

(∑
ℓ∈N|sm,m0,ℓ|2

)
.

We have ϕm,m0
∈ PSH(Yc, L).

Proposition A.5. — For q ∈ N, set

ϕm,m0,q =
1

2(m+m0)
log

(∑
ℓ⩽q|sm,m0,ℓ|2

)
.

Then the ϕm,m0,q converge uniformly to ϕm,m0
over Y ′. Moreover, ϕm,m0

has analytic
singularities of the form Im over Y ′.

Proof. — We drop the (m,m0) subscript to alleviate notation. We choose c′ < c such
that let Y ′ ⋐ Yc′ ⋐ Yc, with the freedom to slightly decrease c′ throughout the steps
of the proof.

We set Jq = I
(
(sℓ)ℓ⩽q

)
, and J =

⋃
q⩾0 Jq = I

(
(sℓ)ℓ∈N

)
. Then we have

J = (m +m0)L ⊗ I (mϕ) over Y ′′′ by global generation, which is a coherent ideal
sheaf on Yc′ by Nadel’s theorem [Nad90]. By the strong Noetherian property for
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coherent sheaves, the ascending chain (Jq)q⩾0 of ideals is locally stationary, so that
we have Jq ≡ J for q ≫ 1 on Yc′ after shrinking. We now set

F =
∑
ℓ∈N

|sℓ|2 and Fq =
∑
ℓ⩽q

|sℓ|2.

We will prove that on Y ′, there exists Cq ⩾ 1 such that
Fq ⩽ F ⩽ CqFq

and that Cq −−−→
q→∞

1. We mostly mimic the argument from step 2 of the proof of
[DPS01, Th. 2.2.1]. Up to slightly decreasing c′, we may work locally, so that we
assume that the sℓ are holomorphic functions. By the strong Noetherian property
of coherent ideal sheaves, the sequence of ideal sheaves Kq on Yc × Yc generated by
the (sℓ(z)sℓ(w))ℓ⩽q is locally stationary, so that it is stationary at K =

⋃
q⩾0 Kq on

Yc′ × Yc′ for q ≫ 1. From the bound∑
ℓ⩽q

∣∣sℓ(z)sℓ(w)∣∣ ⩽ ((∑
ℓ∈N

|sℓ(z)|2
)
·
(∑
ℓ∈N

|sℓ(w)|2
))1/2

,

we infer that the series
∑
ℓ⩽q sℓ(z)sℓ(w) converges locally uniformly on Yc′ ×Yc′ , and

thus by closedness of the space of sections of a coherent ideal sheaf, we get that the
holomorphic function on Yc′ × Yc′∑

ℓ∈N
sℓ(z)sℓ(w) ∈ K .

Since K = Kq for q large enough, we get that∑
ℓ∈N

sℓ(z)sℓ(w) ⩽ Cq
∑
ℓ⩽q

sℓ(z)sℓ(w)

on Yc′ × Yc′ for some Cq > 0, and thus
F ⩽ CqFq

over Yc′ for q large enough by restricting to the complex diagonal z = w.
Finally, let us set χq = ϕ − ϕq: then we proved that for any q ≫ 1, there exists

bq > 0 such that 0 ⩽ χq ⩽ bq on Yc′ . As a result ϕq and ϕ have the same singularities,
which are analytic singularities along Jq ≡ J for q ≫ 1.

Moreover, since the sum converges locally uniformly, the χq are continuous and
decrease to zero pointwise, so that from Dini’s lemma the χq’s decrease uniformly to
zero on Y ′, and ϕq converges uniformly to ϕ over Y ′. □

We now want to prove that over Y ′, the ϕm,m0
decrease with respect to m (up to

an error term) to our initial metric ϕ.
We start by proving that the ϕm,m0

converge pointwise to ϕ over Yc. Writing
Bm,m0 ⊂ Hm,m0 the unit ball with respect to the L2-norm, we have

ϕm,m0 =
1

2(m+m0)
log

(∑
ℓ⩾0|sm,m0,ℓ|2

)
=

1

2(m+m0)
sup

s∈Bm,m0

log|s|2,

since for z ∈ Yc, the quantity
∑
ℓ⩾0|sm,m0,ℓ(z)|2 is the operator norm of the evaluation

map evz : Hm,m0
→ L⊗m+m0

z .
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Covering Yc by coordinates charts (Ui)i∈I , we let z ∈ Ui and ρ > 0 such that
B(z, ρ) ⊂ Ui. For s ∈ Hm,m0 , since |s|2 is subharmonic in Ui, we have

|s(z)|2 ⩽
C

ρ2(n+1)

∫
B(z,ρ)

|s|2ωn+1 ⩽ C ′e2 supB(z,ρ) ψm,m0

∫
Yc

|s|2ψm,m0
ωn+1,

so that if s ∈ Bm,m0
, the bound

log|s(z)|2 ⩽ sup
B(z,ρ)

ψm,m0
+ C

holds, hence ϕm,m0
(z) ⩽ supB(z,ρ) ϕ+ (m+m0)

−1C.
The converse inequality follows from the Ohsawa-Takegoshi theorem [Dem16]: there

exists m0 ≫ 1 and a universal constant C > 0 such that for all m ∈ N large enough
and z ∈ Yc, there exists s ∈ Hm,m0

such that∫
Yc

|s|2e−2ψm,m0ωn+1 ⩽ C|s(z)|2e−2ψm,m0
(z),

so that if we choose the right-hand side to be equal to one, we get s ∈ Bm,m0 such
that

log|s(z)| ⩾ ψm,m0
(z)− C,

hence ϕm,m0(z) ⩾ ϕ(z)− (m+m0)
−1C, which proves pointwise convergence on Y ′′.

We now prove that the ϕm,m0 are almost subadditive. We let s ∈ Bm1+m2,m0 ⊂
Hm1+m2,m0

, and set

Hm1,m2,m0

=
{
S ∈ H0

(
Yc × Yc, p

∗
1((m1 +m0/2)L )(Im1)⊗ p∗2((m2 +m0/2)L )(Im2)

)
|∫

Yc×Yc
|S(z1, z2)|2e−2ψm1+m0/2(z1)−2ψm2+m0/2(z2)(ω1 ⊗ ω2)

n <∞
}
,

where we have written ωi = p∗iω.
By the Ohsawa-Takegoshi theorem, there exists S ∈ Hm1,m2,m0 with L2-norm

∥S∥ ⩽ C for a universal constant C, such that S|∆Yc
= s, where ∆Yc ⊂ Yc × Yc is the

diagonal. To be more precise, we let

ξ : Y × Y −→ R ∪ {−∞}

be a quasi-psh function with analytic singularities along I (∆Y ), and we may assume
that ξ ⩽ 0 on Yc. Then in the notation of [Dem16, Th. 1.4] the measure dV∆Y ,ω[ξ] is
uniformly equivalent to ωn on ∆Yc , as ∆Y is a local complete intersection, so that
our estimate follows from the aforementioned theorem with δ = 2.

Since Hm1,m2,m0
= Hm1,m0/2⊗̂Hm2,m0/2, the family of sections

(sm1,m0/2,ℓ1 ⊗ sm2,m0/2,ℓ2)(ℓ1,ℓ2)∈N2

form a Hilbert basis of Hm1,m2,m0
. We may write

S(z1, z2) =
∑

(ℓ1,ℓ2)∈N2

cℓ1,ℓ2sm1,m0/2,ℓ1(z1)⊗ sm2,m0/2,ℓ2(z2),
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with
∑
ℓ1,ℓ2

|cℓ1,ℓ2 |2 ⩽ C. Thus

|s(z)|2 = |S(z, z)|2 ⩽ C
(∑
ℓ1

|sm1,m0/2,ℓ1(z)|
2
)
×

(∑
ℓ2

|sm2,m0/2,ℓ2(z)|
2
)
,

so that

ϕm1+m2,m0 ⩽
C

m1 +m2 +m0
+

(m1 +m0/2)ϕm1,m0/2

m1 +m2 +m0
+

(m2 +m0/2)ϕm2,m0/2

m1 +m2 +m0
.

Since ϕ − ψ is bounded from above over Yc, we may assume without loss of gener-
ality that ϕ − ψ ⩽ 0, so that (m +m0/2)

−1ψm,m0/2 ⩽ (m +m0)
−1ψm,m0 and thus

ϕm1,m0/2 ⩽ ϕm,m0
. This now implies that the sequence

ϕj = ϕ2j−m0,m0
+ 2−j−2C

is decreasing to ϕ over Yc, and has the required singularities over Y ′ by Proposi-
tion A.5. This concludes the proof of Theorem A.3. □
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