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GLOBAL PLURIPOTENTIAL THEORY ON
HYBRID SPACES

BY LioNArD PILLE-SCHNEIDER

Asstract. — Let (X, L) be a polarized scheme over a Banach ring A. We define and study a class
PSH(X, L) of plurisubharmonic metrics on the Berkovich analytification X?2*. We focus mainly
on the case where A is a hybrid ring of power series, so that X?" is the hybrid space associated
to a degeneration of complex manifolds X. We then prove that any plurisubharmonic metric on
(X, L) with logarithmic growth at zero admits a canonical plurisubharmonic extension to the
hybrid space XPYP. We also discuss the continuity of the family of Monge-Ampére measures
associated to a continuous plurisubharmonic hybrid metric.

Résumi (Théorie du pluripotentiel global sur les espaces hybrides). — Soit (X, L) un schéma
polarisé sur un anneau de Banach A. Nous définissons et étudions la classe des métriques
plurisousharmoniques PSH(X, L) sur 'analytifié de Berkovich X?®. Nous nous intéressons en
particulier au cas ou A est ’anneau hybride des séries convergentes, et X 2" est I’espace hybride
associé & une dégénérescence de variétés complexes X. Nous démontrons alors que toute mé-
trique plurisousharmonique sur (X, L) & croissance logarithmique en zéro admet une extension
plurisousharmonique canonique & Pespace hybride X™P. Nous discutons aussi de la continuité
de la famille de mesures de Monge-Ampére associée & une métrique hybride plurisousharmo-
nique continue.
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InT RODUCTION

The study of plurisubharmonic functions and positive currents on complex
manifolds—referred to as pluripotential theory—has proved itself over the past
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decades to be a central tool in complex Kéhler and algebraic geometry. The heuristic
idea that one should be able to develop a pluripotential theory on Berkovich analytic
spaces over a non-Archimedean field K, similar to the classical one over the complex
numbers, is by now well-established, see for instance [Thu05], [CLD12] [BFJ16],
[BE21], [BJ22] in chronological order.

To be more precise, let K be a complete non-Archimedean field, and X/K a proper
algebraic variety. In this setting, Berkovich’s theory of K-analytic spaces [Ber90] asso-
ciates to the variety X/K its Berkovich analytification X", in a similar spirit to how
one associates to a variety over C its complex analytification. One may then define
in this setting a class PSH(X, L) of plurisubharmonic—or semi-positive—metrics on
L?", whose properties mimic those of plurisubharmonic metrics in the complex case.

While the work of Chambert-Loir—Ducros [CLD12] provides a local definition of
semi-positivity, we will adopt a global point of view throughout this paper, following
the approach initiated by Boucksom-Favre-Jonsson in [BFJ16] and further developed
in [BJ18], [BJ22]. The basic idea is as follows: for m > 1, given a non-zero global
section s € H°(X,mL), the singular metric (using additive notation for metrics)
¢ = m~1log|s| should be plurisubharmonic, as follows in the complex world from the
Lelong-Poincaré formula. It moreover follows from Demailly’s seminal work [Dem92]
on regularization of plurisubharmonic functions that on a smooth polarized complex
variety (X, L), the class PSH(X, L) is the smallest class of singular metrics containing
the metrics of the form ¢ = m~!log|s| as above, and that is furthermore stable by
addition of constants, finite maxima and decreasing limits (see Theorem 2.24). It is
thus natural to take this characterization as the definition of PSH(X, L) in the non-
Archimedean setting, which turns out to be consistent with the more local, Chambert-
Loir-Ducros approach, by the results from [BE21].

One of the upsides of Berkovich’s construction of analytic spaces is that it works
over more general bases than non-Archimedean fields: given a Banach ring (4, |-|),
one can define its Berkovich spectrum .# (A), and for any scheme X/A of finite type,
a Berkovich analytic space X** - .#(A) equipped with a continuous structure map
to 4 (A). Each point © € .#(A) has a residue field 5#(z) in a natural sense, which
is a complete valued field, and the fiber 7—1(x) of the structure map is naturally
homeomorphic to Berkovich analytification of the base change X 5 (,). One may thus

an

view the A-analytic space X" as the family of analytic spaces (X %(z))xe J(A) over
different base fields, in a similar manner to which one views a scheme over a ring A as
a family of varieties over different base fields, parametrized by Spec A. More general
Berkovich analytic spaces over Banach rings were studied more extensively recently
in [LP20], where it is for instance proved that A-analytic spaces form a category in a
natural way, under certain assumptions on A.

At this point, pluripotential theory on Berkovich spaces over a Banach ring remains
a vastly unexplored territory. In this paper, assuming that the base ring A is integral,
we define a class PSH(X, L) of plurisubharmonic metrics on the analytification of

a scheme X/A of finite type, endowed with a semi-ample line bundle L. Roughly

JIEP. — M., 2023, tome 10
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speaking, a singular plurisubharmonic metric ¢ € PSH(X, L) can be seen as a family
of psh metrics ¢, € PSH(X y(5, Ly (x)) on the fibers of the structure map, varying in
a plurisubharmonic way with respect to x € .#(A) as well. Note however that it can
happen that ¢, = —oo for some x € .#(A), as one would expect in the complex world.
The class PSH(X, L) is defined following the global approach of [BFJ16], [BE21]: it is
the smallest class of singular metrics on L that contains metrics of the form m~! log|s|
whenever s € H°(X, mL) is a non-zero global section, and is stable under addition of
constants, finite maxima and decreasing limits.

Our main concern is the case where A is a hybrid ring (see Section 1.3 for the
definitions) and X — D* is a projective degeneration of complex manifolds—we will
always assume the degeneration to be meromorphic at ¢ = 0, which means that we
may view X as a projective scheme over the field K = C((t)) of complex Laurent
series—so that X" = X™P is the associated hybrid space, as studied for instance in
[BJ17], [Fav20]. The hybrid space X™" - D, comes with a continuous structure
map to the closed disk of radius r € (0, 1), such that 7=1(0) = X" is the Berkovich
analytification of X with respect to the non-Archimedean t-adic absolute value on K,
while 771 (ﬁ:) can be naturally identified with the restriction of the degeneration X to
the closed punctured disk ﬁ:—up to rescaling the absolute value on the fiber X; by a
factor log r/log|t|. As a result, this provides a natural way to see the (suitably rescaled)
complex manifolds (X;):ep~ degenerate to a non-Archimedean analytic space X"
as t — 0. In this setting, if L is a semi-ample line bundle on X, then a psh metric
on (XMWP [BYD) corresponds to the data of a family of psh metrics ¢, € PSH(X¢, L;)
varying in a subharmonic way with respect to t, together with a non-Archimedean
metric ¢pg € PSH(X?", L),

In the case where the line bundle L is ample on X, given a plurisubharmonic
metric ¢ on L which has logarithmic growth at ¢ = 0 (see Definition 3.9), one can
associate to it a psh metric N4 € PSH(X?", L*") on the non-Archimedean analytic
space X" encoding the generic Lelong numbers of ¢ along the centrals fibers of
models of (X, L) over the disk. In the case where X =Y x D* is a product and ¢
is an Sl-invariant metric on p{L for an ample line bundle L on Y, one can view
¢ :Rso — PSH(Y, L) as a psh ray on Y, and the non-Archimedean limit was defined
by Berman-Boucksom-Jonsson [BBJ21] in the context of their proof of the Yau-Tian-
Donaldson conjecture; while the general case was treated in [Reb23].

Our main result states that given a psh metric ¢ € PSH(X, L) with logarithmic
growth at zero, then the associated non-Archimedean metric ¢N* induces a canonical
semi-positive extension of ¢ to the hybrid space:

Taeorem A. Let (X,L) — D* be a polarized degeneration of complex manifolds,
and ¢ € PSH(X, L) a psh metric with logarithmic growth at t = 0. Then the singular
metric "2 on (X LWP) such that

hyb NA hyb
¢oy :¢ 5 ‘)}étzéﬁt

is plurisubharmonic.
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Note that not all psh metrics on the hybrid space arise in this way: the point 0 € D,
is pluripolar—non-negligible in the sense of hybrid pluripotential theory—so that psh
hybrid metrics are not uniquely recovered by their restriction to the punctured disk.
This subtlety however disappears when restricting our attention to continuous psh
metrics, as 0 € D, has empty interior, so that every continuous psh metric on LMP is
of the form described in Theorem A.

We now move on to discuss Monge-Ampeére measures in this context. We start with
the case where X/K is an n-dimensional projective variety over a complete valued
field K, endowed with n ample line bundles (Lq,...,L,). When K = C, it follows
from the work of Bedford-Taylor [BT76] that the complex Monge-Ampére operator

(¢17--~7¢n) — ddc¢1 AREN Addc¢na

defined a priori on tuples of smooth, positive-definite metrics ¢; on L;, extends to con-
tinuous psh metrics. When the field K is non-Archimedean, it is possible to define in a
similar way a measure-valued Monge-Ampére operator, denoted by MA(¢1, ..., dn),
where (¢1,...,¢y) is a tuple of continuous psh metrics on the L;, this was done in
[CLO06], [BFJ15] when K is discretely-valued of equicharacteristic zero, and extended
to the general case in [BE21]. As a result, if ¢ is a continuous psh metric on a rela-
tively polarized scheme (X, L)/A over a Banach ring A, it induces a family of Monge-
Ampere measures (MA(¢,))ze.n(a) on X" — #(A), where ¢, is the restriction
of ¢ to X33, =~ 7 (z), and MA(¢,) := MA(¢s, .., ds). Assuming that X is flat
over A, it is a natural question to wonder whether or not the family of Monge-Ampeére
measures (MA(¢.))zc.z(a) is weakly continuous with respect to x € .#(A).

In the case where A is a hybrid ring, we compare our formalism with the set-up of
Favre [Fav20] for continuous psh metrics on the hybrid space, which yields a continuity
result for the family of Monge-Ampére measures on the hybrid space associated to a
continuous psh hybrid metric (Theorem 4.11):

Tueorewm 0.1 ([Fav20, Th. 4.2]). Let X — D* be a projective degeneration of com-
plex manifolds, polarized by an ample line bundle L. If ¢ is a continuous plurisubhar-
monic metric on (X™P LMY then the family of Monge-Ampére measures (i)
on X defined by

teﬁr

He = MA(¢t)v

where ¢y = ¢|x, fort e D: and ¢g = ¢|xa», is weakly continuous.

Finally, we apply our setup to refine our previous work [PS22a] bearing on degen-
erations of canonically polarized manifolds X — D*. Writing L = Kx p-, it follows
from the classical Aubin-Yau theorem that each fiber X; admits a unique Ké&hler-
Einstein metric ¢; on L;, whose curvature form w; = dd°¢; has negative constant
Ricci curvature:

Ric(wy) = —wy.
Moreover, it follows from the results of Schumacher [Sch12] that the family of Kéahler-
Einstein metrics ¢ = (¢¢)tep+ also has positive curvature in the direction of the base
and has logarithmic growth at ¢t = 0, so that ¢ € PSH(X, L).

JIEP. — M., 2023, tome 10
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The machinery of the Minimal Model Program (see Section 5.2) furthermore im-
plies that after a finite base change, the family admits a unique canonical model
Z/D, which has ample relative canonical bundle K 4 /p. Moreover, by the results of
Song-Sturm-Wang [Sonl7], [SSW20], the Kéhler-Einstein metrics converge in a nat-
ural sense to a unique Kéhler-Einstein current wgx g o on the special fiber 2, and
even though this current does not have bounded potentials, its singularities are milder
than any log poles. We are thus able to show that the non-Archimedean limit of the
Kéhler-Einstein metrics is the model metric ¢k, ,, (see Example 2.12) associated to
the canonical model (2%, Ko, /p):

Tueorem B. — Let X - D* be a degeneration of canonically polarized manifolds,
L = Kxp-, and let ¢xg € PSH(X, L) be the family of Kihler-Einstein metrics.
We assume that the family X has semi-stable reduction over D (which can always be
achieved after finite base change). Then the metric on L™ defined by

P|x = OkE; G0 = PK 4 n

s continuous and plurisubharmonic.

In particular, using Favre’s theorem mentioned above, this recovers the convergence
of associated Monge-Ampére measures, which was previously obtained in [PS22a,
Th. A].

In the paper [PS22b], we furthermore study in detail the case of toric metrics on
the hybrid space associated to a complex toric variety Z, and provide a combinatorial
description thereof, in the spirit of [BGPS14]. This allows us to describe the solution
to the non-Archimedean Monge-Ampeére equation on the Fermat family of Calabi-Yau
hypersurfaces, as studied in [Li22] in relation with the SYZ conjecture.

Notation and conventions. — All rings are assumed to be unitary and commutative.

We will use additive notation for line bundles: if L, M are two line bundles on a
variety X, we write L + M := L ® M, and kL := L®* for k € Z.

If X is a complex manifold and ¢ a smooth function on X, we set dd°¢ = £99¢.
We extend the notation to Hermitian metrics on line bundles, so that if L is a holomor-
phic line bundle on X and ¢ a smooth metric on L, the curvature form dd®¢ € ¢1(L)—
and similarly for singular psh metrics.

Throughout this text, whenever we say that X —— D* is a degeneration of complex
manifolds, we mean that X is a smooth complex manifold and 7 a holomorphic
submersion (which will often be omitted from notation). We will furthermore always
assume that the degeneration is meromorphic at 0, i.e., that there exists a normal
complex analytic space 2~ — I such that Zp- = X.

Organization of the paper. In Section 1, we recall some general facts about
Berkovich analytic spaces over Banach rings, and in Section 2 we define and prove
basic properties of the class PSH(X, L) of plurisubharmonic singular metrics on a
polarized scheme (X, L)/A over an integral Banach ring; we also give some explicit
examples along the way. We then move on to the case of hybrid spaces: Section 3 is

JIP — M., 2023, tome 10
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devoted to the statement and the proof of Theorem A, and Section 4 is a discussion
on families of Monge-Ampeére measures, where we explain the proof of Theorem 0.1.
Finally, in Section 5, we restrict our attention to degenerations of canonically
polarized manifolds and prove Theorem B.

Acknowledgements. — 1 am grateful to my adviser S. Boucksom for his constant en-
couragement and for many helpful conversations, and to A.Ducros for helpful com-
ments on a preliminary version of this paper. I would also like to thank Y.Odaka,
R. Reboulet and the anonymous referee for various comments on a preliminary version
of this paper.

1. BERK()VICH ANALYTIC SPACES

1.1. DErFINITIONS

Derinirion 1.1, — Let A # 0 be a ring. A (submultiplicative) semi-norm ||| on A is
amap ||| : A — Ry such that:

— [t =1 and [|0]} =0,

~Va,be A, fla+b] < lafl + (o],

~Va,b e A, [labl| < [ [[b]-

Its kernel Ker||| = {a € A | ||a|| = 0} is an ideal of A, which is prime when ||-|| is
multiplicative. A submultiplicative semi-norm on A whose kernel is reduced to zero
is called a norm on A.

Finally, a Banach ring A is a non-zero ring equipped with a submultiplicative norm
|I|| such that A is complete with respect to |||

For example, any non-zero ring A endowed with the trivial norm ||-||o (such that
lallo = 1 for any non-zero a € A) is a Banach ring.

Derinition 1.2, — Let A be a Banach ring.

The Berkovich spectrum .# (A) is the set whose points z € .# (A) are multiplicative
semi-norms |-|, : A — Ry satisfying ||, < ||-]].

It is equipped with the topology of pointwise convergence on A, which makes it
into a non-empty Hausdorff compact topological space by [Ber90], and with a map
q: ||z = ps = Ker(|-|s) to Spec(A) which is continuous.

For instance, if A = k is a complete valued field, then .Z (k) is reduced to the
point ||-]].

Examere 1.3. Let A = Z be the ring of integers, endowed with the usual
Archimedean absolute value ||o. Let zg = |-|o € .#(Z) be the trivial absolute value
on Z, and let z;, = ||, be the p-adic absolute value, normalized setting [p|, = p~*.
It follows from Ostrowski’s theorem that any point = € .#(Z) is of the following
form: either there exists € € [0, +oc] and p a prime number such that x = |-|7, or there
exists € € [0,1] such that z = |-|5,; where we denote || = |-|p the trivial absolute

oo
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value for any x € .#(Z), while |-|>° is the absolute value such that [n[>° = 0 if p
divides n, and |n[3° = 1 otherwise.

Topologically, the Berkovich spectrum . (Z) is thus an infinite wedge of segments
parametrized by the prime numbers and oo, glued together at the trivial absolute
value zg. Note that for each neighbourhood V' of g in .#(Z), the set of branches not
contained in V is finite.

The map .#(Z) %+ Spec(Z) maps the outer end |-|5° of the p-adic branch to the
prime ideal (p), and any other point to the generic point of Spec(Z).

The analytification of an A-scheme of finite type is now defined as follows:

Derinition 1.4. — Let B be a finitely generated A-algebra. The analytification Y2
of Y = Spec(B) is the set of multiplicative semi-norms |-|, on B whose restriction to A
belong to .#(A). It is endowed with the coarsest topology making the maps y — |f/,
continuous, for f € B, and comes with a continuous structure map Y?2* — .Z(A),
sending a semi-norm to its restriction to A.

If X is a scheme of finite type over A, one can then glue the analytifications of affine
charts of X in order to define the analytic space X", together with the structure map
o X — HM(A).

The space X°" satisfies nice topological properties: if X/A is separated, then X?»
is Hausdorff; and X" is compact whenever X/A is projective.

Any A-analytic space comes with a sheaf of analytic functions, as defined in [Ber90,
Def. 1.5.3]. One can then show that the above definition induces an analytification
functor X — X?" from the category of A-schemes of finite type to the category of
A-analytic spaces, that was defined in [LP20].

Examrre 1.5. — Let A = C endowed with the Euclidean absolute value, and B be
a complex Banach algebra of finite type. Then the classical Gelfan’d-Mazur theorem
implies that Y" = (Spec B)*" is the set of maximal ideals of B. As a result, Y*"
is the set Y(C) of closed points of the affine complex algebraic variety Y, and the
induced topology on Y is the Euclidean one. More generally, if Y is a reduced scheme
of finite type over C, then the analytification Y2" of Y with respect to the Euclidean
absolute value on C is homeomorphic to the complex variety Y endowed with the
Euclidean topology.

Examrere 1.6. — Let A = K be a complete non-Archimedean field, and let X/K be
an integral, separated scheme of finite type. Then the Berkovich space X?" can be
described more explicitly as the set of pairs z = (£, v, ), where £ = £, is a scheme-
theoretic point of X and v, is a real valuation on the function field of ¢, extending
the valuation on K.

Moreover, the map z — &, from X2 to X5 is continuous, surjective, and induces
a bijection between the respective sets of connected components; the closed subscheme
Y := £, will be called the support of x € X2

JIP — M., 2023, tome 10
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Derintrion 1.7. Let A be a Banach ring, and = € .#(A). Write p, = ¢q(z) =
Ker(]:|.), (x) = Frac(A/p.) the schematic residue field of A at p,. The semi-norm |-|,,
descends to an absolute value on x(z), we write J#(x) for the associated completion
of k(z) and call it the residue field of .Z(A) at x.

Assume given two Banach rings A and B, together with a bounded ring homomor-
phism A — B. This induces a continuous map

p:M(B) — M(A),

which simply sends a semi-norm on B to its pull-back to A.

If X/A is a scheme of finite type and Xp := X x4 B, we additionally have a
continuous map F : X% — X", defined explicitly by restriction of semi-norms on
an open cover of X by affine schemes (see Definition 1.4); and which fits into the
commutative diagram

X%ﬂ F Xan

o b
M(B) L w(A).
The following proposition allows us to view—at least topologically—a Berkovich space

over a Banach ring A as a family of Berkovich spaces over complete valued fields,
parametrized by .# (A):

Prorosition 1.8. — Let A be a Banach ring, X a scheme of finite type over A, and
7 X — #(A) the associated analytic space. If x € .# (A), then T7=1(x) is canon-
ically homeomorphic to the analytification of the base change X yp(z) = X x4 H(x)
with respect to the absolute value |-|; on J€(x). Moreover, the base change map
Fy: X5 ) = X is the inclusion 7 1(x) C X under this homeomorphism.

Proof. We treat the case where X = Spec B, with B an A-algebra of finite type,
as the general case will follow from gluing. By definition of X®" and the structure
map 7, the fiber 7=1(x) is the set of multiplicative semi-norms on B that restrict to
||z on A—or equivalently the set of (equivalence classes of) morphisms B — K to
a complete valued field extension K/ #(x), restricting to the morphism A — 52 (x)
on A.

By the universal property of the tensor product of algebras, this is the same as
a morphism B ®4 J¢(x) — K inducing on J#(x) the given embedding of 7 (x)
into K. Such a morphism then produces a semi-norm on B ®,4 J(x) restricting
to ||z on J(x), hence a point in X% . It is then straightforward to see that this
bijection is compatible with the weak topologies and thus induces a homeomorphism
between 7~ 1(z) and X j?,(x), compatible with the inclusion and base change map
respectively. O

Remark 1.9. — When A, B are geometric base rings in the sense of Lemanissier-
Poineau [LP20, Def. 3.3.8] (which is the case of all Banach rings considered in this

JIEP. — M., 2023, tome 10
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paper), the base change X3 is indeed the fiber product X*" x_4(4) .#(B) in the
category of A-analytic spaces, see [LP20, §§4.2, 4.3].

Derinirion 1.10. — Let A be an integral Banach ring, and write 4 for the generic
point of Spec(A4). We say a point « € .#(A) is Zariski-dense if and only the kernel
of |-, is reduced to zero.

We write .4 (A)" = q~(na) C .#(A) for the subset of Zariski-dense points.

As the name suggests, those are indeed the points of .#(A) which are dense for
the Zariski topology, where the Zariski topology on .# (A) is the coarsest making the
map q : .#(A) — Spec(A) continuous.

1.2. DiscreTELY-VALUED FIELDS. — Let K be a complete, discretely-valued field, with
valuation v. We denote by R = {v > 0} its valuation ring, m = {v > 0} its max-
imal ideal and & = R/m the residue field. We will furthermore assume that K has
equicharacteristic zero, i.e., £k and K both have characteristic zero. In this case, it
follows from Cohen’s structure theorem that K is isomorphic to the field K = k((t))
of Laurent series over its residue field, endowed with the valuation v = ordy.

We let X be an integral, separated K-scheme of finite type, and write n = dim(X).
The purpose of this section is to explain how one can understand the topological
space X?" more concretely using piecewise-affine geometry. The basic idea is that for
a large enough class of integral R-models 2~ of X, there exists a finite-dimensional cell
complex Sk(2Z") C X?" which we may view as a tropicalization of the model 2 . As
a matter of fact, by [KS06, Th. 10], the space X?" can be realized as the inverse limit
of all such Sk(Z"), so that X" is homeomorphic to a tower of simplicial complexes.

We start with a definition.

Derinirion 1.11. — A model of X is a flat, separated R-scheme 2, together with
an isomorphism of K-schemes 2" xp K ~ X.

We will denote 2y := 2" x g k the special fiber of 2", and by Div((Z") the group
of Weil divisors on 2" supported on the special fiber.

If 2, Z' are two models of X, a morphism of models f : 27 — £ is an R-
morphism whose base change to K induces the identity on X. We will say that 2
dominates 2" if there exists such a morphism, in which case it is unique.

Assume that X/K is proper, and let 2°/R be a proper model of X. By the
valuative criterion of properness, for any x = (§;,v,) € X*", the K-morphism
Spec #(x) — X—whose image is the point £,—Ilifts in a unique way to an R-mor-
phism from the valuation ring ¢ (z)° to 2

Spec . (x) ———— X

I ]

Spec S (x)° —— Spec R.
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The image of the closed point of Spec 57 (x)° under the extended morphism is called
the center of z and denoted by cg (z). The map cg : X?** — 25 turns out to be
surjective and anticontinuous, i.e., the preimage of a closed subset of Zy by cq is
open in X?2".

In the case where X /K is smooth, we say a model £ /R has simple normal crossing
singularities if 2" is regular, and the special fiber 2y is a divisor with simple normal
crossing support inside 2. Such models always exists when K has equicharacteristic
zero and X /K is projective, by Hironaka’s theorem on resolution of singularities. More
precisely, any model 2"/R can be dominated by an snc model.

To every snc model 2" of X, with special fiber 24 =}, ; a;D;, we can associate
a cell complex encoding the combinatorics of the intersections of the irreducible com-
ponents of Zy. We say Y C 2 is a stratum if there exists a non-empty J C I such
that Y is a connected component of D := NjecsD;. The dual complex of £ is now
defined as follows.

Derinirion 1.12. Let 2 be an snc model of X. To each stratum Y of 2y which
is a connected component of D ;, we associate a simplex:

J
Ty = {w c R;O‘ | Zjejajwj = 1}.

We define the cell complex D(Zy) by the following incidence relations: 7y is a face
of 7y if and only if Y/ C Y.

Given any snc model 2 of X over R, there exists a natural embedding i4 of
the dual complex D(Zp) into X", given as follows. The vertices v; of D(Zp) are
in one-to-one correspondence with irreducible components D; of the special fiber
Zo = > ,eraiDy, so that we set

i (v;) = vp, := a; *ordp,,

where the valuation ordp, associates to a meromorphic function f € K(X) ~ K(2")
its vanishing order along D;—the normalization by a; ! ensuring that vp,(t) = 1.

Derinition 1.13. — A valuation given in this way, for some snc model 2~ of X,
is called divisorial. We write X9 ¢ X2" for the set of divisorial valuations, it is a
dense subset of X2,

One can now interpolate between those divisorial valuations using quasi-monomial
valuations, in order to embed D(Zp) into X",

Prorosition 1.14 ([MN15, Prop. 2.4.4]). — Let Z" be an snc model of 2", with special
fiber Zo = Ziel a;D;. Let J C I such that Dy = NjcD; is non-empty, and Y a con-
nected component of Dy, with generic point . We furthermore fix a local equation
z; € Og y for D;, forany j € J.
Then, for any w € v = {w € Rg(l) | 2jesaw; = 1}, there exists a unique
valuation
Vw 1 Oy — Ry U {400}
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such that for every f € Qg 4, with expansion f = Z,@eNW cﬁzﬁ (with cg either zero
or unit), we have:
v (f) = min{(w, B) | B € NI, ¢ # 0},
where ( , ) is the usual scalar product on RII.
The above valuation is called the quasi-monomial valuation associated with the
data (Y, w). Then:

i D(ZH) — X
Ty D W — Uy

gives a well-defined continuous injective map from D(Zp) to X?".

Derinirion 1.15. — We call the image of D(Zp) by i2 the skeleton of £, written
as Sk(27) C X It is a cell complex of dimension at most dim X.

By compactness of D(2p), i 2 induces a homeomorphism between D(.2Zp) and Sk(.2"),
so that we will sometimes abusively identify D(Zp) with Sk(.2").

We can now define a retraction for the inclusion Sk(Z") C X" as follows: for any
v € X?, there exists a minimal stratum Y C Njec;D; of Zp such that the center
ca (v) of v is contained in Y. We now associate to v the quasi-monomial valuation
pa (v) corresponding to the data (Y, w) with w; = v(z;), where z; is a local equation
of D; at the generic point of ¢4 (v). This should be seen as a monomial approximation
of the valuation v at the generic point of Y, with respect to the model 2 .

Derinrrion 1.16. — The above map pg @ X** — Sk(Z) is the Berkovich retraction
associated with the model 2" /R.

The Berkovich retraction is continuous, restricts to the identity on Sk(.2"), and
by [Thu07] [Ber99], po is a strong deformation retraction, i.e., there exists a homo-
topy between pg and the identity on X2 that fixes the points of Sk(.Z"). It follows
that X2* and Sk(Z") are homotopy equivalent.

Let 2°/R be a model of X, and let .# be a coherent ideal sheaf on 2. It induces
a function

¢y X — R,

sometimes denoted by ¢4 = log|.#|, as follows. For z € X", we set
¢r = Sup log| f ()],

where the supremum runs over the f € .., (,)—or equivalently, over the finitely
many generators of & at cg ().

If .71, 5 are vertical ideal sheaves on 2", 2" respectively (i.e., cosupported on the
special fiber), then the equality ¢.», = ¢, holds if and only there exists a model 2"
dominating both £~ and 2" such that the pullbacks

O%//~j1:O%//-j2
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agree on £ . In particular, when working with a function of the form ¢, for a
vertical ideal sheaf, we may choose a log-resolution of the ideal .#, so that we may
assume that there exists a model 2" such that % = Qg (D) for a vertical divisor
D € Divo(Z"). This implies for instance the following.

Lemvia 1.17. — Let . be a vertical ideal sheaf on a model Z of X, and ¢y : X** — R
the associated function. Then for any snc model 2" of X, the restriction of ¢4 to
the skeleton Sk(Z') is integral piecewise-affine.

Note that the converse also holds. This motivates the following terminology.

Derintrion 1.18. — A function ¢ : X*® — R is integral piecewise-affine (Z-PA for
short) if there exists an snc model 2~ and a vertical ideal sheaf .# on £ such that

o=09y.

1.3. Hysrip spaces. — Let (k,|-|) be a non-trivially valued field, either Archimedean
or non-Archimedean. The following Banach ring was introduced by Berkovich [Ber09],
and further studied for instance by Boucksom-Jonsson [BJ17, App. A].

Derinirion 1.19. — Let E™P be the Banach ring obtained by equipping the field k
with the norm ||-||nyn, defined for non-zero z € k by

[[2][byb = max{1, |z|}.

One can show [LP20, Ex. 1.1.15] that the elements of .# (k™P) are of the form |-|*,
for A € [0,1], where |-|° = |-|o denotes the trivial absolute value on k. This yields a
homeomorphism A : .7 (k™) — [0, 1].

Thus, if Z is a scheme of finite type over k, its analytification with respect to
|Inyb, which we denote by Z™P comes with a structure morphism 7 : 2" — [0, 1].
If Z = Spec(A) is affine, the fiber over A # 0 is by definition of 7 the set of semi-norms
extending the absolute value |-|* on k, so that by rescaling, this is easily seen to be
homeomorphic to the analytification Z*" of Z with respect to the absolute value |-|.
One can in fact show that for any Z of finite type, we have a homeomorphism

prat((0,1]) —= (0,1] x Z°",

compatible with the projections to (0, 1].

On the other hand, the fiber 7=1(0) consists of the semi-norms extending the trivial
absolute value on k, so that this is homeomorphic to the analytification Z§" of Z with
respect to the trivial absolute value on k.

Hence, the space Z™" allows us to see the analytic space Z*" degenerate to its
trivially-valued counterpart.

In the case where k = C with the Euclidean absolute value, the analytification Z2"
is homeomorphic to the usual complex analytification Z"°! of Z, by Example 1.5. Thus,
the space Z™P provides a natural way to degenerate the complex manifold Z"! to
the non-Archimedean analytic space Z§".
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We now want to perform a similar construction for degenerations of complex va-
rieties. Let X — ID* be a holomorphic family of n-dimensional complex manifolds,
where D* = {|t| < 1} is the punctured unit disk in C. We will furthermore assume
that the family is quasi-projective and meromorphic at zero, i.e., that there exists a
relatively algebraic embedding ¢ : X <+ P x D* such that m = pr, o, and the equa-
tions of X have meromorphic singularity at ¢ = 0. This allows us to view (the base
change of) X as a quasi-projective scheme over the non-Archimedean field K = C((t))
of Laurent series, we will write X 2" for the Berkovich analytification of X with respect
to the t-adic absolute value on K, normalized such that |t| = 7.

We fix a radius r € (0,1), and consider the following Banach ring, which we call
the hybrid ring:

A ={f =2 ez ant™ € K| ||fllnyn = 3, lan/lnyn ™ < 0o}

The purpose of the above Banach ring is to provide a presentation of the closed
complex disk as an affine non-Archimedean analytic space: we denote by C™P(r) :=
A (A,) the Berkovich spectrum of A, and call it the hybrid circle, the terminology
stems from the fact that C™P(r) is homeomorphic to the circle {|T| = r} inside
the Berkovich affine line over C™? [Poi10]. We now have the following more explicit
description of the hybrid circle.

Levmva 1.20 ([BJ17, Prop. A.4]). The map 7 : t — |-|¢ defined, for f € A, by

P ift=0,
¢ rloglf(t)]/ log|t| ift #0,

induces a homeomorphism from D, to C™WP(r) = .4 (A,).

The upshot of this construction is that if f € A,., then:

log| f(2)]|
1 t))| =1 T
og|f(7(1))| = logr Toglt]
for t # 0—we are viewing the point ¢ as a rescaling of the Euclidean absolute value
composed with the evaluation map at ¢. Additionally, as ¢ — 0 these rescaled absolute
values converge to the non-Archimedean t-adic absolute value 7°*% on A, C C((t)).

This motivates the following definition.

Derizition 1.21. — Let X - D* be a quasi-projective degeneration of complex
manifolds as above, and view it as a scheme of finite type over the ring of convergent
power series. We write X4, its base change to the ring A,. We define the hybrid
space X¥P associated to X as the analytification of X4, over A,, which comes with
a structure map:

Thygh : X2 — CMYP ().

The hybrid space allows us to see the complex space X degenerate to its non-
Archimedean analytification, as a consequence of the following.
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Prorosirion 1.22 ([Fav20, Th. 1.2]). Let X be a degeneration of complex manifolds,
Xa, the associated A,-scheme, and denote the associated hybrid space by Ty, :
Xhyb s CWP(p). Then:

- 7r1:y1b (0) can be canonically identified with X,
~ there exists a homeomorphism § : X|p: — ﬂgylb(T(D,’f)), satisfying Ty 0 B =
Tom,
_ g ; ; ; _ log r/log|t| .
if ¢ is a rational function on X4, then |¢p(8(2))| = |o(2)| for z not in

the indeterminacy locus of ¢.

Thus, heuristically, the hybrid space allows us to see the scalings of the usual
modulus on C given by |-|'°87/198ltl degenerate to the non-Archimedean absolute value
on K, and hence to see the complex manifolds {X;}:ep- degenerate to the non-
Archimedean analytification X2,

Assume for instance that (p)iep~ is a continuous family of probability measures on
X, such that p; is supported on X; for each ¢t € D*. Since the hybrid space provides
a canonical compactification of X over the puncture, it is a natural question to ask
whether or not the family of measures converges on X™P, at least in a weak sense—
more concrete examples of such situations will be given in Sections 4.3 and 5.1; see
also [Shi20a], [Shi20b].

1.4. Tue 1sorriviaL HYBRID spacE. — We set K = C((t)). Let X be a projective com-
plex variety, and write X := X x D* the associated trivial degeneration of complex
varieties, as well as X = X x¢ K. We thus have two hybrid spaces associated to X:
the hybrid space X(})l P obtained by viewing X as a scheme over C™? and the hybrid
space X?g b associated to the degeneration X. The goal of this section is to com-
pare both hybrid spaces, so that results established for hybrid spaces associated to
degenerations will naturally yield similar statements for spaces over C™P, simply by
specializing to a trivial degeneration.

We start by comparing the non-Archimedean fibers. We write X% for the ana-
lytification of X, and X§" for the analytification of X with respect to the trivial
absolute value on C. The t-adic absolute value on C((t)) restricts to the trivial abso-
lute value on C, so that there exists a base change morphism f : X% — X§", that
can be described as follows. If K(X) is the function field of X, then the function field
of X is simply K(X k) = K(X)((t)) = K(X)®c K. Hence, any valuation v on K(X )
induces by restriction a valuation f(v) on X(X), and similarly for semi-valuations.

We now compare the base rings: for r € (0, 1), the inclusion C"™P < A, is com-
patible with the hybrid norms, so that it induces a continuous map

i M(A) — (TP,

obtained by restricting semi-norms from A, to C™P. It is straightforward to check
that under the homeomorphisms .#(A,) ~ D, and .#(C™P) ~ [0,1], we have

At) = logr/loglt| for t € D,.. We furthermore have the following description of
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the base change of X from C™P to A,, which is a straightforward consequence of
transitivity of base change:

Prorosirion 1.23. Let v € (0,1), and let A : D, — [0,1] be the map defined by
A(t) = logr/log|t|. We have a commutative diagram

F
X?(yb th)iyb

x| |mo

A

D, —=— [0,1]

where F is the base change of X from C™® to A,., and such that F‘ﬂ;(o) = f. More-

over, for anyt € ﬁ:, Flw;(l(t) induces the identity on X" under the homeomorphisms
from Section 1.3.

The map f : X3 — X§" furthermore admits a continuous section, called the Gauss
section, defined in the following way. In the terminology of [Poil3, Def. 3.2], every point
of X&" is universal (peaked point, in the terminology of Berkovich) as C is algebraically
closed, so that any x € X" admits a canonical lift to X%", denoted by v(x); we call
the map v : X§" — X the Gauss section. More concretely, if ¢ = v, € X§" is a
valuation on X(X), it is extended as a valuation

Y(v) : K(X)(#) — RU{—o0},
such that y(v)(t) = 1. For instance, if S = 3 ;s,t" an element of X(X)[t], the
canonical extension is defined by the formula

Y(0)(S) = min(v(sn) +n).

n

2. GLOBAL PLURIPOTENTIAL THEORY

Let A be an integral Banach ring, and let X be a projective A-scheme of finite type.
Following common practice, we will call line bundle on X any locally free O x-module
of rank 1. We will use additive notation for the group law on the set of isomorphism
classes of line bundles.

Let L be a semi-ample line bundle on X, and write X** — .#(A) the Berkovich
analytification of X. The purpose of this section is to define a class of plurisubharmonic
metrics PSH(X, L) on L, in a similar way to the case where A = K is a complete
valued field. For instance when K = C, and (X, L) is a smooth polarized variety, then
the class PSH(X, L) we define is nothing but the usual class of plurisubharmonic
metrics on L, which is one of the central objects of pluripotential theory, and has
been extensively studied at this point. When K is a non-Archimedean field, a similar
class of plurisubharmonic metrics has been defined in increasing order of generality
in [Zha95], [Gub98], [BFJ16], [BE21], and our definition is built so that it generalizes
the latter.
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In our setting, the basic idea is that a metric ¢ € PSH(X, L) can be viewed as
a family of semi-positive metrics (¢z)rc.z(a), Where ¢, € PSH(X sp(5), Ly (s)), that
also varies in a plurisubharmonic way with respect to « € .Z(A).

The main case of interest for us will be when A = A, is a hybrid ring, so that
Xan — XWb g the hybrid space associated to a degeneration X of complex vari-
eties. In this setting, our main result, Theorem 3.13, states that any psh metric ¢ €
PSH(X, L) on a polarized degeneration X of complex manifolds satisfying a certain
growth condition, induces naturally a psh metric on (X™P L®P) whose restriction
to the non-Archimedean fiber X®" is the non-Archimedean metric ¢N* constructed
in [BBJ21], [Reb23], and encodes the logarithmic singularities of ¢ along the special
fibers of models of X.

We also compare our definition with the setting of [Fav20], and obtain the conti-
nuity on X™P of the family of Monge-Ampeére measures associated to a continuous,
semi-positive metric on LMP.

2.1. Merrics oN Berkovicn spaces. — We start with some very general definition of
metrics on line bundles on Berkovich analytic spaces.

Derinition 2.1. — Let L be a line bundle on X. A continuous metric ¢ on L*"
consists of the following data: for any Zariski open subset U C X and s € H°(U, Liy)
a trivializing section, a continuous function

Isllg : U — R
such that [|fs||s = |f|||s|ls for any regular function f € H°(U,Op), and compatible
with restriction of sections.

This allows us to define, for any open subset V C X?" and any analytic section s
of L*" on V', a continuous function

Isllg = V' — Rxo,

as follows: cover X by Zariski open subsets U;,i € I such that Ly, = s; - Oy,, and
write, on V NU;,,

s = fz © Si,
with f; an analytic function on V. Then we set
Isllg == 1filllsllo

on V NU. It is straightforward to check that this is independent on the choice of
trivializations, compatible with restrictions and that the equality

1fslle = 1fllslls

holds for any section s and any analytic function f on V.

From now on, we will use additive notation for metrics, i.e., identify the metric |-||4
with ¢ = —log||-||4 (more precisely, the collection of local functions ¢; = —log||s;/4
associated to local trivializations of L). In particular, if Ly, Lo are two line bundles
on X and ¢; is a continuous metric on L; for ¢ = 1,2, then ¢; + ¢- is a continuous
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metric on L; + Lo. Moreover, if ¢ : X?® — R is a continuous function and ¢ a
continuous metric on L, then ¢ + 1) is also a continuous metric on L.

ExamrerLe 2.2, — Let A = C with the Euclidean absolute value, and X/C a smooth
variety endowed with a line bundle. Then our definition matches the standard defini-
tion of a continuous Hermitian metric on L.

Exampere 2.3. — Let A = k be a trivially-valued field, X/k a proper variety and L
a line bundle on X. Then the trivial metric ¢V on L is the unique metric on L®®
such that for any pair (U, s), with U C X a Zariski open and s € H°(U, L) a nowhere-
vanishing section of L, the equality

|$(2) |eriv = 1

holds whenever the center c(v,) is contained in U.

Exawrere 2.4. — Let X =P and L = O(1). Then the Fubini-Study metric ¢ps on L
is defined by the formula

[s(2)]

max(|xol, ..., |zN])’

||S(:C)||¢FS =

where the z;’s are standard coordinates on PY. We will write
= 1 il
Prs max og|z;|
Note that while this definition is well-suited for the case when A is a non-Archimedean

field, it does not recover the usual Fubini-Study metric on CPY when A = C, so that
we will sometimes call the metric above the tropical Fubini-Study metric.

In order to define a large enough class of semi-positive metrics, we need to allow
metrics with some singularities.

DeriNtTION 2.5. Let L be a line bundle on X. A singular metric ¢ on L** (or simply
on L when the norm is clear from the context) consists of the following data: for any
Zariski open subset U C X and s € H(U, Lyy) a trivializing section, an upper semi-
continuous (usc) function

6, = —log|lslly : U™ — RU {—oc}

not identically —oo, such that ||fs||s = |f| x ||s||s for any regular function f €
H°(U, Oy), and compatible with restriction of sections.

ExamprLe 2.6. — The following example will be particularly relevant for our purposes.
Let m > 1, and s € H%(X, L™) be a global (algebraic) section of some positive power
of L; we associate to it the metric on L given by

¢ =m™" log|so,

i.e., for s a local section of L, we have:

lIs]lg(x) = (’ ‘j:((j)) Dl/m.

This metric is singular precisely along the zero locus of sg.
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Derintrion 2.7. Let X, Y be two A-schemes of finite type, and f : Y — X be
an A-morphism. If L is a line bundle on X endowed with a (singular) metric ¢,
we define the pull-back metric f*¢ on f*L as follows: cover X = |J,.; U; by Zariski
open subsets, and choose a trivialization s; of L on each Us;.

This induces an open cover Y = J,o; V; with V; = f~1(U;), and local trivializations
of f*L by the sections f*s; on V;. We now set

I1fsil

icl

¢ = llsillg o f-

It is straightforward to check that this is independent on the choice of open cover
and trivializations, and thus defines a metric f*¢ on f*L.

We conclude this section with a discussion on the behaviour on metrics under base
change. We assume that A and B are two Banach rings, together with a bounded ring
homomorphism A — B, so that we have a continuous map F' : X3 — X*" for any
scheme X/A of finite type, see Section 1.1.

Let L be a line bundle on X, and Lp = L ®9, Ox, the induced line bundle on
Xp. Given a continuous metric ¢ on L*") we want to define a continuous metric ¢p
on Lp by a base change operation. To that purpose, cover X = J,.; U; by Zariski
open subsets trivializing L, and set Up ; = U; x 4 B, which yields an open cover of Xp.
If s; is a generator of the free O x (U;)-module H°(U;, L), then s; ® 1 is a generator of
H°(Ug,i, L) over Ox,(Ug;), so that we naturally set, for z € Ugs

I(s @ D)()llg5 = s(F(x))llo-

It is now a straightforward verification that ¢ +— ¢p defines a base change map
from the set of continuous metrics on (X", L") to the set of continuous metrics
on (X2, L3'), which commutes with the usual operations of addition and scaling of
metrics, as well as finite maxima.

ExawrrLe 2.8. — Let A be a Banach ring, and let z € .#(A). Then we have a canonical
morphism of Banach rings A — J#(x), so that any continuous metric ¢ on L induces

by base change a continuous metric ¢, on (X ;;( Laj‘é(m)). The metric ¢, can also be

x)’
seen as the restriction of ¢ to the fiber 771 (x) of the structure map 7 : X" — #(A),

by Proposition 1.8.

2.2, PLURIPOTENTIAL THEORY OVER A FIELD. Let (X, L) be a smooth polarized va-
riety over C. The class PSH(X, L) of semi-positive metrics on L lies at the heart of
(global) complex pluripotential theory, it is the class of singular metrics ¢ on L whose
curvature form dd®¢ is semi-positive in the sense of currents. We refer the reader for
instance to [Dem12], [GZ17] for a more thorough introduction.

Let m > 1 such that mL is globally generated. Given a family (sq, ..., sxy) of global
sections of mL without commons zeroes, one can associate to them the continuous
semi-positive metric

1
6= 5 log(lsol” + -+ + [sn]?),
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which is none other than the pull-back of the standard Fubini-Study metric on
(CPY,0(1)) via the holomorphic map

x+— [so(x) - sy(x)].

We call such a metric on L a Fubini-Study metric. The following theorem, due to
Demailly [Dem92] when X is smooth and L ample, highlights the importance of such
metrics as basic building blocks of complex pluripotential theory.

Tueorewm 2.9 ([BE21, Th.7.1]). — Let X be a complex projective variety, L a semi-
ample line bundle on X, and ¢ € PSH(X, L) a semi-positive singular metric on L.
Then there exists a decreasing sequence (¢;)jen of Fubini-Study metrics on L, con-
verging pointwise to ¢.

In particular, the class PSH(X, L) is the smallest class of singular metrics contain-
ing all Fubini-Study metrics, and that is stable under addition of constants, finite
maxima and decreasing limits.

We now move to the case of a non-Archimedean field (K, |-|), and assume as above
that X is a variety over K endowed with a semi-ample line bundle L, with mL globally
generated. Following the general heuristic of replacing sums of squares with maxima
in the non-Archimedean world, a (tropical) Fubini-Study metric on L is a continuous
metric of the form

-1
p=m Om@égv( oglsi| + i),
where (sg, ..., sn) is a family of global sections of m L without common zeroes and the

Ai’s are real constants—unlike in the Archimedean case, the valuation vy : K* — R
need not be surjective, so we are allowing these constants to ensure the class of
Fubini-Study metrics is stable by addition of constants. The constants are in fact not
necessary when K is non-trivially valued, but will be convenient for us to treat the
case of trivial and non-trivial valuation in an uniform way.

Continuous, plurisubharmonic metrics ¢ on L can now be defined, as in the complex
case, by the positivity of their curvature current dd®¢p, this is the approach taken in
[CLD12], where Chambert-Loir and Ducros develop a theory of real differential forms
and currents on Berkovich spaces, paralleling the complex case. We will not use this
approach in this paper, and rather plurisubharmonic metrics on L in a way such that
Demailly’s regularization theorem still holds:

Derintrion 2.10. — Let X be a variety over a non-Archimedean field K, and L a
semi-ample line bundle on X. A singular metric ¢ on L is semi-positive if and only if
it can be written as the pointwise decreasing limit of a net (¢;); of tropical Fubini-
Study metrics.

This is consistent with the approach of Chambert-Loir-Ducros by [BE21, Th. 7.14].
In the sequel, we will define a class of semi-positive metrics on analytifications of
schemes over a Banach ring A, and the Berkovich spectrum .# (A) will have both an
(open) Archimedean part and a non-Archimedean part—that is , for x € #(A), the
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complete residue field 52 (x) may be Archimedean or not. As a result, it is desirable
to have a more uniform definition of Fubini-Study metrics, independent of the nature
of the residue field. To that extent, if X is a projective variety over either R or C
and L a semi-ample line bundle on X, we say a continuous metric ¢ on L is a tropical
Fubini-Study metric if it can written as

¢ =m"! max (10g|8i| + )\i)v

0<i<N
where (sg,...,sn) is a family of global sections of mL without common zeroes and
(Mo, - - -, An) are real constants—which can always be absorbed in the s;, so that they

are allowed only for convenience. Note that over the complex numbers, any tropi-
cal Fubini-Study metric is psh in the usual sense. In fact, Demailly’s regularization
theorem still holds after replacing Fubini-Study metrics by tropical ones:

Tarorem 2.11. — Let X be a projective complex variety, and L a semi-ample line
bundle on X. Then any semi-positive metric ¢ € PSH(X, L) can be written as the
decreasing limit of a net of tropical Fubini-Study metrics.

The converse is an immediate consequence of the usual properties of PSH(X, L):
any decreasing limit of tropical Fubini-Study metrics is psh. As a result, given any
complete valued field K, we have the following uniform characterization of the class
psh metrics on L: it is the smallest class of metrics that contains tropical Fubini-Study
metrics, and that is stable under addition of constants, finite maxima and decreasing
limits.

Proof. — We set PSH" (X, L) for the class of singular metrics that can be written as
the decreasing limit of a net of tropical Fubini-Study metrics. The class PSH" (X, L)
is closed under decreasing limits by the proof of [BJ18, Prop. 5.6].

Let (Sq)aca be a finite family of sections of mL without common zeroes, and ¢ be
the associated L2-Fubini-Study metric

1
¢ = o log(ZQeA|3a|2),

and set ¢, = m lloglsy| € PSH(X,L). Then we have ¢ = X((¢a)aca), With
x(z) = % log(zaeA 62”“”&). It now follows from the proof of lemma 3.6 that ¢ is a
decreasing limit of a sequence of tropical Fubini-Study metrics, hence ¢ € PSH™ (X, L).
By Demailly’s regularization theorem when X is smooth and L ample, and [BE21,
Th. 7.1] in the general case, any metric ¢ in PSH(X, L) can be written as the decreas-
ing limit of metrics in PSH” (X, L). Since the latter is closed under decreasing limits,
we infer that ¢ € PSH" (X, L), which concludes. a

The following example provides an alternative description of tropical Fubini-Study
metrics over a discretely-valued field K of equicharacteristic zero.

Examere 2.12. — Assume that A = K is a non-trivially valued non-Archimedean
field, with valuation ring R and residue field k. If (X, L) is a polarized variety over K,
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one can define the class of model metrics on L as follows: for any normal, projective

R-model Z'/R of X and £ a model of mL on & for m > 1, define
bz (x) =m ™ loglse(z)|,
where s is a trivialization of .Z at the center cg (v;) of x. One directly checks that

this defines a continuous metric on L, such that the lattice H*(2", m.¥) C H°(X, mL)
is the unit ball for the induced supnorm

Il sy = sup [Is(2)]lp
zeXan

whenever 2 is reduced. It then follows from [BE21, Th.5.14] that model metrics
associated to semi-ample models are the same as pure Fubini-Study metrics on L,
i.e., Fubini-Study metrics where the constants are taken to be zero in the definition.
As an easy consequence, model metrics are the same as differences of pure Fubini-
Study metrics.

2.3. Tropicar Fusini-Stupy meTrics. — Throughout this section, X is a (not neces-
sarily proper) A-scheme of finite type over a Banach ring A, and L is a semi-ample
line bundle on X.

The discussion from the previous section motivates the definition of the following
class of metrics, that will be the building blocks for our class of semi-positive metrics.

Derinition 2.13. — Let L be a line bundle on X, and let m > 1 be an integer. A
tropical Fubini-Study metric on L is a (continuous) metric of the form:

¢ =m~ ' max(log|s;| + a;),
jeJ

where (s;);es is a finite family of sections of mL without common zeroes and a; € R.
We write F'S™ (L) for the set of tropical Fubini-Study metrics on L. If L=0x, we will
simply say that ¢ is a Fubini-Study function on X, and write FS"(X)=FS"(Ox).
Finally, if the constants a; are all zero in the above definition, we will say that ¢
is a pure Fubini-Study metric.

It follows from the definition that FS™ (L) is non-empty if and only L is semi-ample.
The following properties of FS™ (L) are straightforward consequences of the definition.

Prorosition 2.14. — Let X be an A-scheme of finite type and L a line bundle on X.
Then:

(1) if € FS(L) and c € R, then ¢+ c € FS™(L);

(2) if 1,02 € FST(L), then max{(bh ¢2} S FST(L),

(3) if p; € FST<LZ‘) fori1=1,2 then ¢1 + @2 € FST(Ll + Lg),’

(4) if ¢ is a metric on L such that m¢ € FS™(mL) form > 1, then ¢ € FS™(L);

(5) if¢1, ¢2 € FST(L) and c1,C2 € Q>0 with c1+co = 1, then Cl¢1+02¢2 S FST(L),

(6) if f:Y — X is a morphism of A-schemes of finite type and ¢ € FST(L), then
6 € FST(fL).

(7) if B is a Banach ring together with a bounded homomorphism A — B and
¢ € FST(X, L), then the base change metric ¢ € FS™(Xp, Lp).
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We now introduce the following class of metrics, which usually play the role of
smooth metrics in the non-Archimedean case.

Derintrion 2.15. Let L be a line bundle on X. A DFS (difference of Fubini-Study)
metric on L is a metric of the form ¢ = ¢1 — ¢g, where ¢; € FS(L;) for i = 1,2, with
L=1,—-L,.

We write DFS(L) for the set of DFS metrics on L, and DFS(X) C €°(X?21) for the
set of DFS functions on Oy, i.e., DFS metrics on Ox.

Tueorem 2.16. — Assume that X/A is projective. Then the Q-vector space DFS(X)
is dense in CO(X21).

Proof. This is essentially the same proof as in [BJ18, Th.2.7].

It follows easily from Proposition 2.14 that DFS(X) is a Q-subvector space of
C%(X), stable under max and containing constant functions. Hence, since X" is com-
pact, by the Stone-Weierstrass theorem, it is enough to prove that DFS(X) separates
points.

Since DFS is stable by pullback, we may assume that X = P%. Let  # y €
X3 then by considering a hyperplane not containing either x or y, we may assume
z,y € AY™, which is by definition the set of semi-norms on Alty,...,t,] whose
restriction A belongs to .#(A). As a result, |-|, # ||, implies that there exists a
polynomial f € Alty,...,t,] such that | f(x)] # | f(y)|; we will assume |f(z)| < |f(y)]-

Take homogeneous coordinates 2o, ...,z, € H°(P%,O(1)) on P%, such that t; =
2i/70 on A™. We may write f(t1,...,t,) = 2y %s, with s € HO(P%, 0(d)). Let N € Z,
and Ag,..., A\, € Z, and set

Y=d rgagn(loglzj\ = Aj);

which is an FS metric on O(d), so that
u = max{log|s|,¥» — N} — ¢ = max{log|s| — ¥, —N}

is a DFS function on P’. Then for Ay = 0 and A; large enough, we have ¥(z) =
dlog|zo(z)| and 1 (y) = dlog|zo(y)|. Thus, for N > —log|f(y)|, we have

u(x) = max{log|s(x)| — dlog|to(z)|, —N} = max{log|f(z)[, - N}
< max{log|f(y)], —N} = u(y),

whence the result. O

Exawpere 2.17. — Let Y = Spec A, so that Y** = #(A). Then a Fubini-Study
function on Y?" is a continuous function of the following form

-1
n=m gleag(log\fal +Aa),

where B is a finite set, the f, € A have no common zeroes and A\, € R.

Now, if X/A is a scheme of finite type and X* " #(A) is its analytification,
the function n o 7 (that we will still write as n : X** — R) is also an FS function
on X.
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2.4. SEMI-POSITIVE METRICS. From now on, we will assume that A is an integral
Banach ring. Recall that .#(A)" is the subset of .#Z(A) whose elements |-|, have
trivial kernel. In particular, the residue field #(x) of #(A) at = is the completion
of the fraction ring x of A with respect to ||, so that X 4-(,) is the flat base change
of X to J(x).

Derinition 2.18. — Let X be a scheme of finite type over A, and L a semi-ample
line bundle on X. A plurisubharmonic (or semi-positive) metric ¢ on L is a singular
metric on L that is the pointwise limit of a decreasing net of tropical Fubini-Study
metrics on L, and such that ¢, #£ —oo, for all x € .#(A)", where ¢, is the restriction
of ¢ to X 3;( )

We write PSH(X, L) or PSH(L) for the set of semi-positive metrics on L, and
PSH(X) for the set of PSH functions on X?2".

Note that since our base ring A is arbitrary, the space PSH(X) could be very
large; for instance even for X = Spec A, every non-zero element a € A induces a PSH
function ¢, = logla] € PSH(X) on X*" = .#(A). Indeed, we have ¢ = lim;(¢,);,
with

¢; = max(loglal, log|1 — a| — j),
and ¢(z) = logla(x)| > —oo whenever z € .Z(A)".

Let us point out that while the condition ¢, # —oo for all x € .#(A)" is natural
in the setting of hybrid spaces (we will see later that it translates into finiteness
of Lelong numbers) and spaces over .#(Z), it might be too strong in general—the
analytification of P2 over a trivially valued field contains points that are pluripolar
and Zariski dense. Such a point lies in an affinoid domain .#(A), which will then
admit a psh function in the sense of [BJ18] that is —oco at a Zariski-dense point.

Derinirion 2.19. — We write CPSH(X, L) for the set of continuous, plurisubhar-
monic metrics on L. It is endowed with the topology of uniform convergence on X.

Note that FST(X, L) C CPSH(X, L) by definition.

Prorosition 2.20. — The following properties hold:

(1) if ¢ € PSH(L) and c € R, ¢ + ¢ € PSH(L);

(2) if ¢; € PSH(L;) fori=1,2, ¢1 + ¢2 € PSH(L; + Lo);

(3) if 61, 2 € PSH(L), then max{¢1, ¢»} € PSH(L);

(4) if ¢ is a singular metric on L such that m¢ € PSH(mL) for m > 1, then
¢ € PSH(L);

(5) Zf ¢1, P2 € PSH(L) and c1,co € R20 with ¢1 + co = 1, then C1(]51 + copo €
PSH(L);

(6) if (¢;); is a decreasing net in PSH(L) and ¢ = lim; ¢; is such that ¢, # —oo
for all x € A (A)", then ¢ € PSH(L);

(7) if X/A is proper and (¢;); is a net in PSH(L) converging uniformly to ¢, then
¢ € PSH(L).
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Note that the difference of two singular psh metrics does not make sense as a func-
tion in general, so that the last item means the following: if (¢;); is a net in PSH(L),
such that there exists a net of continuous functions (f;); in €°(X®") converging uni-
formly to zero and such that ¢; = ¢ + f;, then ¢ € PSH(L).

Proof. — The first 5 items are straightforward consequences of the corresponding
properties for FS”, stated in Proposition 2.14; while (6) and (7) follows from [BJ18,
Lem. 4.6], (i) and (ii) respectively. O

The subset CPSH(X, L) C PSH(X, L) is naturally endowed with the topology of
uniform convergence; the next proposition states that for this topology, FS™(L) is
dense in CPSH.

Prorosition 2.21 ([BJ18, Prop. 5.20]). — Assume that X/A is proper, and let ¢ be a
continuous metric on L. Then ¢ € CPSH(X, L) if and only if there exists a net (¢;);
in FST(L) converging uniformly to ¢.

Note that the natural topology of uniform convergence on the subset of continuous
PSH metrics does not extend to PSH(L), so that it is unclear in this generality how
to put a reasonable topology on PSH(L). It is however know how to put a topology
on PSH(L) when A is a discretely or trivially-valued field, see [BFJ16], [BJ22].

While the Fubini-Study metrics considered above are always continuous—hence
bounded—one can also consider FS metrics with singularities:

Exawrre 2.22. — Assume that L is a semi-ample, and let s € H°(X, mL) for some
m > 1 be a non-zero global section. Then ¢ = m~!log|s| € PSH(X, L), since we may
write ¢ as the decreasing limit of the following

L —1 d .
¢; = (md)™" max(log|s |, max(log]sal 7))

where (Sq)aca is a family of sections of mdL without common zeroes. Moreover,
if z € .#(A) is a Zariski-dense point, the base change of s to X s (, is non-zero by
flatness, so that ¢, #Z —oo.

More generally, by Proposition 2.20, for semi-ample L and any finite family (s4)aca
of sections of mL, the metric

p=m""! ggic(logbd + ¢a)
is semi-positive, i.e., ¢ € PSH(X, L).

Remark 2.23. — Let us point out that unlike the class FS7, the class of plurisubhar-
monic metrics is not—strictly speaking—stable under base change. Indeed, if the ring
homomorphism A — B is not flat and s € H°(X, mL) is a non-zero global section, it
could very well happen that the section sp € H%(Xp, mLp) is the zero section. As a
result, the base change to Xp of the psh metric ¢ = m~!log|s| satisfies ¢ = —occ.
For instance, if ¢ € PSH(X, L) and z € .#(A) is not a Zariski-dense point, then the
restriction ¢, to X ;;(w) may be identically —oo. This occurs in the complex world as
well, as a psh metric on a the total space of a holomorphic fibration X — B may be
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identically —oo on certain fibers X3. One easy way to remedy this is for instance to al-
low psh metrics to be identically —co, we choose not to as this psh metric would have
to be treated separately in several proofs, making the exposition more cumbersome.

2.5. ExaMPLES. We start with the case where A = C with the usual absolute value.
The following statement is a mere reformulation of Theorem 2.11.

Tarorem 2.24. — Let X be a projective complex variety, and let L be a semi-ample
line bundle on X.

Then PSH(X, L) is the space of plurisubharmonic metrics on L in the sense of
usual pluripotential theory.

As mentioned above, for any Banach ring A, the above definitions for X = Spec A
and L = Ox yield a space PSH(X) of plurisubharmonic functions on .Z(A). We will
compute this space in simple examples.

We start with the case where A = k™P is a hybrid field. Since k is non-trivially
valued, we may assume (up to scaling) that log|k™| O Z. In that case, the homeomor-
phism

A (A) = 0,1]

is in fact such that A is a Fubini-Study function on X, since A(z) = log|a|, for any
a € k* such that logla| = 1.
Conversely, any Fubini-Study function on X is of the form

-1
¢(x) = m™" max(loglay|. + ¢;)

for a; € k* and ¢; € Z. Since log|a;|. = A(z)log|a;|, ¢ is a finite maximum of affine
functions, hence convex, and FS(X) contains all finite maxima of affine functions with
rational coefficients. Taking decreasing limits (which have finite values everywhere
since all points in .# (k") are Zariski-dense), we conclude that the homeomorphism A
identifies the space PSH(.# (k"")) with the space of real-valued convex functions on
the segment [0, 1]. In particular, plurisubharmonic functions on X are continuous away
from the boundary of the interval. Note however that the function ¢ : .# (k™P) — R
defined by ¢(0) =1, ¢(A) = 0 for A > 0 is also psh.

We now move on to the case A = A,, the ring of Laurent series that are convergent
for the hybrid norm on C; recall that we have a canonical homeomorphism from the
hybrid circle C"™P(r) := .#(A,) ~ D, to the closed Euclidean disk. The following
proposition asserts that away from the boundary of the closed disk, we may, after
rescaling, identify psh functions on the hybrid circle with subharmonic functions on
the punctured disk that have logarithmic growth at the puncture.

Prorosition 2.25. — Let

A ={f = Lnez ant™ € C(1) | | fllnyp = X, llan]lngn 7™ < o0},

and write T : D, — C™P(r) the homeomorphism from Proposition 1.20.
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There exists an order-preserving, injective map
pr : PSH(C™P(r)) — SH(D,.) + Rlog|t|
¢ — (t — log,.|t| x (¢(T(t)))
for t # 0. Moreover, if ¢ is continuous, then ¢$(0) = logr x vo(pr-(@)) is a negative

multiple of the (generalized) Lelong number of p.(¢) at 0.
Conwersely, for any v’ > r, there exists an order-preserving, injective map

prr 2 SH(D,) + Rlog|t| — PSH(C™P(r)),
¢(T‘1(t)))

¢ (G5t S

with a(O) = vy(¢)/logr. Finally, the composition p, o p.r , is (up to a scaling factor)
the usual restriction map.

Proof. — Let ¢ € FST(C™P(r)), and write
_ -1
¢ =m”" max(log|fa| + ca),

with f, € A,, so that in particular the formal series f, induces a holomorphic func-
tion F, on D,. Moreover, we have log|f,|(7(t)) = (logr/log|t|)log|Fa(t)| for t # 0.
Up to shifting ¢ by a constant, we may assume that ¢ < 0 on C"P(r), so that each
term in the maximum is nonpositive.

Thus, defining p.(¢)(t) = log,.|t| x ¢(7(t)) for ¢ # 0, we have
pr()(t) = max(log| Fa (£)] + ca log, [t]),

since all the terms in the maximum have the same sign. This implies that p,(¢)
extends at ¢ = 0 as the sum of a subharmonic function on D, and a multiple of log|¢|,
and with Lelong number at zero:

Ca ) 6(0) > 0.

logr - logr =

o(pr (6)) = maxx(ordo (fa) +

Now if ¢ € PSH(C"P®(r)), it is finitely-valued at the Zariski-dense point 0, so that
up to shifting by a constant, we may assume that ¢(0) = —1. We now write ¢ as
the decreasing limit of a net (¢;); in FS", with ¢;(0) < 0 for all j large enough.
By the computations above, the latter condition means precisely that p,(¢;) extends
over zero as a subharmonic function. We then define the function p,(¢) € SH(D,) as
the decreasing limit of the p,(¢;), which is independent of the choice of decreasing
sequence, since p,(¢) is determined uniquely by ¢ outside 0. If ¢ is furthermore
continuous, then:

0(0) = fim o(()) = Jiy 222
Conversely, let ' > r and let ¢ € SH(D, ). The fact that (logr/log|t]) - ¢ €
PSH(C™P® (7)) follows from the more general Theorem 3.13.

= logr x vo((pr(¢))-
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Finally it is clear that from the constructions that if ¢ € SH(ID,) + Rlog|t|, then
pr(pr +(9)) = b, - O

We furthermore expect that the image of the restriction of p, to CPSH(C™P(r)) is
the space of continuous subharmonic functions on D}, extending continuously to the
boundary of the disk and with finite Lelong number at zero.

Remark 2.26. — Let n: C"™P(r) — R be such that 7(0) = 1 and 7 = 0 outside zero.
Then unsatisfyingly, n € PSH(C™P®(r)); we interpret this as the non-Archimedean
realization of the following phenomenon. Let

¥; = max(logt|, —j),

which decrease to 1 = log|t|. We have vy(¢;) = 0 since 9, is bounded near 0, while
v(y) = 1 > lim; vy(ep;). Writing w?yb and ¢"™P the associated psh functions on
C™P(r) for some r € (0, 1), the jump of Lelong numbers along this decreasing sequence
means that the non-Archimedean data v (1) attached to 1) differs from the restriction
PP (0) = lim; w?yb(O) = lim; (1)) to the origin of the hybrid data associated to .
The point 0 € C™P(r) is in fact non-pluripolar (as it is Zariski-dense), and thus is
not negligible in the sense of hybrid pluripotential theory.

We also describe subharmonic functions on the Berkovich spectrum .# (Z):

Provosirion 2.27. — Let X = #(Z), and write X =
p-adic and Archimedean branches.
Then a continuous function ¢ : X — RU {—oo} is psh if and only:

epuoo Ip as the union of the

— for every prime number p, its restriction ¢, to the branch I, is convex, with neg-
ative outgoing slopes sp, 5, at 0 and 400 respectively, and value at infinity ¢,(|-[5°) €
R U {-o0},

— 1its restriction to the branch I, is convex and increasing, with positive slope at 0,

— the sum of slopes at zero 3~ Sp+Seo is = 0; in particular, the sum 3 o (—sp)
18 < +o00.

In other words, the function ¢ is psh on M (Z) if and only it is subharmonic in the
usual sense on the R-tree M (Z).

As a consequence, a point & € .#(7Z) is polar (that is, contained in {¢ = —oco} for
some ¢ € CPSH(X)) if and only if it is the outer end of a p-adic branch.

Proof. — Let ¢ € FS(X) be a Fubini-Study function, then there exists a family of
integers (nq)aca, with mingea v,(ng) = 0 for every prime p, such that

¢ = m™! max(log|na| + ca),
with ¢; € R. Denoting 0 € X the trivial absolute value, we have ¢(0) = m ™! max, cq,
and we write A’ C A the set of indices realizing the maximum. Set n; = ged, ¢ 47 Nas
and N9 = 1CmaeA/ Ney-
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Under the homeomorphism I, ~ [0, +0o0], we have
¢p(e) = m™~ max(—v,(ny)logp - € + cq),
a€cA
which shows that ¢, is a piecewise-affine convex function, and with slope at zero
sp = (—log p) min v,(n,) = log|ni|, <0,
acA’

and constant for € > 1 since there exists a n, with v,(ne) = 0, so that the slope at
infinity s, = 0. A similar computation on the Archimedean branch shows that ¢ is
also convex, with

S0 = ) logp (maxuy(na)) = =Y log|naf, = log|na|sc >0,
peP o peP

so that the sum of slopes

Soo + Z sp = log|na /N1 s
peP

is positive. Now if ¢ is a continuous psh function on X (with possibly infinite values),
then it is the uniform limit of Fubini-Study functions near zero, hence the only if part
by taking decreasing—hence locally uniform by Dini’s lemma—Ilimits.

Conversely, let ¢ : X — R U {—oc} be a function satisfying the above properties.
We assume that ¢(0) = 0, so that ¢, < 0 for every prime p, and ¢ > 0. We divide
the argument in several steps.

Step 1. — Assume that ¢, = 0 for every prime p, and ¢ : [0,1] — R is a continuous,
increasing convex function, with ¢,(0) = 0. For any a > 0 and b < 0 two real
numbers, the function ¢ = ¢, on X defined by ¢oo(z) = az + b and ¢, = 0 for
every prime p is psh (although not necessarily continuous at 0). Indeed, choosing a
prime ¢ and writing a = lim; r; log ¢ as the decreasing limit of rational multiples of
log ¢, we see that ¢ = lim; max{r;log|q| + b,0} as a decreasing limit—the max is
realized by 0 on every p-adic branch, even when p = ¢ due to the assumption on a, b.

As a result, writing ¢, as a decreasing limit of piecewise affine convex functions
of the form max,ea; (@a + ba) as above (recall that ming, a, > 0, and max, by = 0
since ¢ (0) = 0), we get that

= lim max
¢ J acA, ¢aa,ba

as a decreasing limit, and ¢ € PSH(X).

Step 2. We now regularize the ¢,. By our assumptions on the slopes s,, sp, for
every prime p, we may find a decreasing sequence (¢, ,) of convex functions on I, of
the form

Gjple) = m~! gglx(—éa logp-e+cq)

converging to ¢,, where the ¢,’s are positive integers and such that ¢(0) = ¢,(0) =
max, ¢q = 0. Write s, , = min, ., —o(—%s logp) the slope at zero of ¢, ,,; by continuity

JIEP. — M., 2023, tome 10



(GLOBAL PLURIPOTENTIAL THEORY ON HYBRID SPACES G‘l()

near zero, the s; , decrease to s,. We use the same notation for the (singular) Fubini-
Study function

bip= m~! max(log|p£”| + Ca),
acA

by straightforward computation we see that the restriction of ¢;, to the branch I,
is linear:

Gip(llo) = =85 pT-

For k € N, let P, = {2,...,pi} be the k smallest primes. We set

k=Y b

pEP

which is psh on X, and such that (@), decreases to ¢ on each p-adic branch.

Step 3. — This does not yield the desired outcome on the Archimedean branch: the
restrictions of ¢, to the Archimedean branch are increasing to x — sx, where we
have set s := — Zp $p < Soo. However, the convergence is uniform on I, ~ [0,1],
so that (after extraction of a subsequence) we may find a decreasing sequence (e ) of
constants going to zero, such that on I, the (b%’oo = @k 00 + £k decrease to x — sz.
As a result, the psh functions ¢), = ¢p + &1 decrease on X, and the limit ¢’ satisifies
¢, = dp, and ¢ () = sz for z € [0, 1].

Step 4. — By Step 1, the function ¢ : X — R such that 1, = 0 for every prime p,
and Yoo () = doo(x) — sz is psh, since s < So. As a result, ¢ = ¢ + ¢ is indeed
subharmonic on . (Z). O

3. PSH METRICS ON HYBRID SPACES

Throughout this section, we let X —— D* be a degeneration of projective complex
manifolds, endowed with a semi-ample line bundle L. We fix » € (0,1), and write
Xhyb T8 D, the associated hybrid space, which is the analytification of X viewed as
an A,-scheme, see Section 1.3.

We will use the t-adic valuation on K = C((¢)) normalized so that |¢t| = r, and write

logt|
log,.|t| = ——
g, [t] Tog 7
which is non-negative on D).
Derinition 3.1. — Let X — D* be a degeneration of projective complex manifolds,

and let L be a line bundle on X. A hybrid (continuous) metric ¢ on L is a singular
(resp. continuous) metric on L"" in the sense of the previous section, viewing X as
an A,-scheme.

We write PSH(L"™P) for the set of hybrid semi-positive metrics on L.

Using the explicit description of the hybrid space from Proposition 1.22, we are
able to describe more concretely continuous hybrid metrics on L.
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Prorosition 3.2. Let X be a degeneration of complex manifolds, and L be a line
bundle on X. A continuous hybrid metric ¢ on L is equivalent to the data of a con-
tinuous family of metrics (d)t)teﬁj on the L;’s, together with a continuous metric ¢g
on L, such that the following holds: for every Zariski open subset U C X and any
non-vanishing section s € H°(U, Liyy), the function

log||s(2)|lg.
log, [¢|

on UM (with the Buclidean topology) extends as a continuous function to U™P via
z € U™ > log]ls(2) 4,

Proof. — 1If |t| > 0, we have a canonical homeomorphism 8 : X; —~» X" such that
for any (local) regular function on X, we have

[F(B())| = | f(z)]' 87/ 18l

and a homeomorphism 3y : X% ’/T}Tylb(()).

Hence, if ¢ is a continuous hybrid metric on L, it induces a continuous family
{d+} tem, Of metrics ¢ on Ly, obtained as follows: if U C X is a Zariski open and s a
trivialization of L on U, set

Is(2)llg, = lIs(Be(2)) |51/ 108 T,

for z € U N X;. The fact that this defines a continuous metric on L; is an easy
consequence of the above equality for functions.

Similarly, the formula

log||s(z)ll¢, = loglls(Bo(x))ll¢

defines a continuous metric ¢9 on L*'. The fact that the data of ¢y and {¢t}teﬁ*
recovers ¢ uniquely is clear. |

We will sometimes write the above relation more loosely as

log|t|
b= Q|x, = Togr Pl xhoes

where the left-hand side of the second equality lives on the complex fiber X; and the
right-hand side lives on the Berkovich analytic space X™P.

Exavrre 3.3, — Let s € H°(X,mL) be a global section of mL, and let
¢ =m 1 log|s| € PSH(LM™P)

be the associated (singular) hybrid metric. Then one checks directly that for any
t # 0 such that s; # 0, the metric ¢, € PSH(Xy, L;) is equal to m~!log|s;|, where
st = s|x, € H'(Xy,mLy).

Now let ¢ € R be a constant, and let

¢ =m ™ *(log|s| + c) € PSH(L™P).
Then we have ¢; = m~'(log|s| + clog,|t|) € PSH(X}, L;).
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Remarxk 3.4. Let ¢ = m~!(log|s| + c/logr) € PSH(L"™P) as in the example above.
Then ¢ is the decreasing limit of the (¢;);ecn, where

¢; =m~ *(log|s| + cj/logr),

where (c;);jen is a sequence of rational numbers decreasing to ¢. Up to replacing m
by a high enough multiple depending on the denominator of c¢;, we may furthermore
assume that c; € Z, so that
;= mj_1 log|t% s|

is a pure Fubini-Study metric. Since finite maxima commute with decreasing lim-
its, any tropical Fubini-Study metric can be written as a decreasing limit of pure
Fubini-Study metrics. As a consequence, any psh metric on L™ can be written as a
decreasing limit of pure Fubini-Study metrics.

Let us emphasize that the key point here is that the constant function c¢/logr for
¢ € Q can be written as log| f| for some non-zero f € A,., which need not hold over a
general Banach ring A—it fails for instance for A = Z.

3.1. BERGMAN METRICS ON THE HYBRID SPACE. Let X — D* be a degeneration of
complex manifolds, and L a semi-ample line bundle on X. In the sequel, it will some-
times be convenient for us to work with singular L?-Bergman metrics in the complex
world, i.e., metrics on L of the form

1
6 = 5= 105(Saealsal?),

where (84 )aca is a finite set of non-zero sections in H(X, mL), possibly with common
zeroes. It is clear that ¢ € PSH(X, L), and the following proposition asserts that ¢
extends naturally as a metric ¢ € PSH(L"™P), replacing the square-norm with maxima
at the non-Archimedean limit.

Prorosition 3.5. Let (sa)aca be finite family of global sections of mL for m > 1,
and set

1
Py = % IOg(ZaeA\sa,t

Then this data defines a semi-positive metric ¢ € PSH(X™P LWP) which we call the
hybrid Bergman metric associated to the family (So)acA-

%), dpo=m""! maxlog|sa-

Proof. — We may and will assume that mL is basepoint-free, up to replacing mL by
dmL and the s,’s by their d-th power, for d large enough.

We thus choose a basepoint-free set (sq)aep of sections of mL, where B = AU A'.
Set

1 ) -1
it = %1095(2&@3 ebai |5a’t|2) and  ¢jo:=m ggg(log\sd +baj),

where b, ; = 0 if « € A and b, ; = —j for a € A’. Then the fact that this defines a
continuous psh metric ¢; on LPP follows from the following lemma, applied to the
convex function x(z) = 3 log(}",, €2*= "), Finally, the ¢;’s clearly decrease to ¢ by

construction, so that ¢ € PSH(L"™P) by Proposition 2.20. O
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Lemma 3.6. Let 0 C RYN be the standard simplex, i.e.,
o= {(xl,...,zN) € (R>0)N | Zf\;l T, = 1},
and write 1 = (1,...,1) € RN, We let x : RN — R>g be a convex function, such that:
—x(x+ecl)=x(x) +c foranyc € R, x € RV,
— the function (X — max(z,... ,mN)) is bounded on RY.
For any set s1,. .., sy of sections of mL without common zeroes and ¢; = m~"log|s;|,
the hybrid metric ¢, on L defined, using Proposition 3.2, by

Oyt = xX(P1,65 -, On,e) € CPSH(Xy, Ly)

and byo=m"" ng\)fdog\sﬂ € FS7(X*, L"),
11X
is a semi-positive continuous hybrid metric on L.

Proof. — The assumption x(x + c1) = x(z) + ¢ ensures that ¢, is compatible with
multiplication of sections by functions, hence each ¢, ; defines a continuous metric
on Ly, for t € D,. We now prove that @y is continuous on X hyb y15ing Proposition 3.2,
we assume that m = 1 for convenience. Given a nowhere-vanishing section s of L on
a Zariski open U C X, we have

log|s(z,t)|¢, ., _ log|s(z,t)| — x(log|s1(z,t)], ..., log|sn(z,t)|)
log, |t| log, [¢|

b

so that writing f; = log|s;/s|, the condition x(z + ¢1) = x(x) + ¢ implies that

logls(2,t)lg,.. _ x(fi(zt),--, fn(2t) — max{fi,..., fn}
= = +
log, |t| log, |t| log, |t]

e(t)

by our assumption on x, where |e(t)| < C'/log, |t| for some constant C' > 0. As a result,
since away from the zero locus of s; the function f;/log,|t| extends continuously to
UMY via s log|s;/s|(z) on US¥?, we infer that ¢y is indeed a continuous metric on
(thb’ Lhyb).

We now prove that ¢, is semi-positive. Using [PS22b, Prop. 2.6], there exists a
sequence (x;);en of piecewise-affine convex functions decreasing to x, written as

Xj = max (ta + ca),

with ug € ¢ N QY and ¢, € R, and such that the convex hull Conv(ua)aeA]. = 0.
We write ¢ = (¢1,...,0n) € FS(LMP)N | and set

65 = X;j(¢) = max((ua, ¢) + calogle|/logr),

where e € A, is exp(1) viewed a constant power series. Since the u,, are rational and
lie in the standard simplex, the (uq, ¢) are tropical Fubini-Study metrics on LWb ag
convex linear combinations thereof, so that ¢; € FS™(LMP), and

Gji = (%af((um@) + ¢a),
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while

Pj0 = ggj«uav@»v

since logle] = 0 on X?" = Wgylb(O). Moreover, the (¢;:); decrease to ¢; by the
choice of (x;);, while for all j, ¢;0 = max;<y ¢;, as the formula maxaea, (o, ) =
max(zy,...,zy) holds for all z € RV since Conv(ua)aca; = 0.

All in all, (¢;); is a decreasing sequence in FS™(L™P) converging pointwise to ¢,
whence ¢, € PSH(LWP). O

Exampre 3.7. — Let X = CPY x D* with the standard polarization, and let ¢; = ¢rs
be the usual complex analytic Fubini-Study metric on X4, i.e.,

¢rs = log(|zo* + - + [z ),
where the z; are standard homogeneous coordinates on P". Let furthermore

¢0 = ma‘X{|Z0|7 RS |ZN|}

be the non-Archimedean Fubini-Study metric on P7*".

Then the metric ¢rg on O(1) on X™P obtained by gluing the two above metrics
is a continuous semi-positive metric. Note that with our definition, this metric is not
a Fubini-Study metric on O(1), since we would have to work with the max instead of
the square norm on the complex fibers.

Exawrre 3.8. — Let (X, L) be a complex polarized variety, and set V = H%(X, mL),
for some m > 0 such that mL is globally generated. We let N(V') be the space of
Hermitian norms of V', which is a symmetric space, as fixing a reference norm yields
an identification

N(V) =GL(V)/U(V).
Let N =dimV,and e = (eq,...,en) be a basis of V. Then for each tuple (A1, ..., An)
of real numbers, define the associated hermitian norm:

N 2 N

2 _—2);
E aeill = E |a;|“e™=M.
i=1 i=1

This yields an embedding

le : RN «— N(V),
whose image consists precisely of the norms diagonalized by the basis e. The image
Ao(RY) 1= 1o(RY) is called the apartment associated to the basis e. We let I C R
be an interval (not necessarily bounded), and v : I — N(V') a geodesic. Then there
exists a basis e of V such that (1) C A, and an affine map o : I — RY such that

Y= leoau

More concretely, writing a(y) = (a1y + B1, - .., any + Brn), we have:

N
E ;€4
i=1

2 N

— Z\ai|26_2ﬂi_2aw.

Yy i=1
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Assume that I = (yo,+00) for some yo € R, so that v is a geodesic ray. Then we
see easily that for any non-zero v € V, the limit —log||v||,/y exists and is equal to

—log||v||,~a, where YN4 is the non-Archimedean norm defined by

N
E i€
i=1

where |-|o is the trivial norm on C. Furthermore, two geodesic rays induce the same

Iy

= max(|aglo e~ ),

ax
ANA iSN

non-Archimedean norm at infinity if and only they are parallel, i.e., (a«—a’) is constant.
Thus, the space N(V)N4 of non-Archimedean norms on V can be interpreted as the
space of asymptotic directions in N(V).

We now explain how each geodesic ray v : [0,400) — N(V) gives rise to a psh
hybrid metric on L, which we call the associated Bergman metric. More generally, let
W C V be a basepoint-free subspace, i.e., a vector subspace such that the sections
in W have no common basepoints, and let v : [0,400) — N(W) be a geodesic ray.
By the above discussion, there exists a basis e = (s1,...,sn) of W, and tuples
a, € RN such that

N 2 N

2 72&1
E a;S; = E |al\ (& Y,
i=1 i=1

The hybrid Bergman metric associated to -y, defined by
- N v
ox = (2m)~* (log Zi:1|5i|262a7'/)‘),

where ¢y is the pull-back to X! of ¢| b Via the rescaling of the absolute value (see
A

the proof of Proposition 3.2), and

1
p— 1 . .
P =m r}g\){(( ogls;| + «;),

is a continuous psh metric on L™" as follows from Proposition 3.6 applied to the
convex function x(z1,...,zy5) = (2m) ' log(},_, e¥™).

Note that ¢ is the classical Bergman metric associated to the norm ||-||,,, while ¢y is
the non-Archimedean Bergman metric associated to the non-Archimedean norm N4,

3.2. THE NON-ARCHIMEDEAN LIMIT OF A psH FamirLy. — We still let X — D* be a
degeneration of complex varieties, but now assume that our line bundle L on X is
relatively ample. We let ¢ € PSH(X, L) be a semipositive metric on L. Following
the general heuristic of viewing non-Archimedean geometry as the asymptotic limit
of Kéhler geometry, we will explain how under a reasonable growth condition on ¢,
the family of generic Lelong numbers of ¢ along prime vertical divisors on models
of X naturally induces a non-Archimedean psh metric ¢N* € PSH(X?", L*"). This
construction is due to [BBJ21] in the isotrivial case and [Reb23] in the general case.
Let us start with a definition.

Dermvition 3.9 ([Reb23, Lem. 2.3.2]). — The metric ¢ € PSH(X, L) has logarithmic
growth at ¢ = 0 if one of the following equivalent conditions are satisfied:

— there exists a normal model (£,.%) such that ¢ extends as a psh metric on .,
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— for any normal model (£,.%), there exists a € R such that ¢ + alog|t| extends
as a psh metric on .2,

— there exists a normal model (2", %) and a smooth metric ¢y on £ such that
supy, (¢ — ¢o) < Clog|t|/logr for some constant C' > 0.

We will now explain how each psh ray ¢ on (X, L) with logarithmic growth induces
a psh metric N4 on (X2*, L*"). We fix a model (2", %) of (X, L) with .Z nef, so that
the associated model metric ¢ € PSH(L®") is semi-positive.

Let v € X" be a divisorial valuation, so that there exists a model 2”7 of X
and a prime divisor E € Divo(2”) such that v = vg = (—logr) x by' ordg, with
brg = ordg(t). We may furthermore assume that 2~ dominates 2", via a morphism
p: X = Z.

By logarithmic growth, there exists a € R such that the metric ¢, := ¢ + aloglt|
extends as a psh metric on (27, p*(.Z)). We choose a psh metric ¢ on £~ with
divisorial singularities along E, i.e., ¢ = log|zg| + O(1) locally, where zg is an
equation of E. We define the generic Lelong number

ve(¢) =sup{c ER | ¢o < cdp+O(1)} —a
of ¢ along E [BFJ08]—which is easily seen to be independent of a—and set

__logr
=

VN (v) - ve(9).

Throrem 3.10 ([BBJ21, Th. 6.2], [Reb23, Th.3.3.1]). — The function N4 : X4V — R
admits a unique lower semi-continuous extension to X", still denoted by YN*, and
the metric oNA on L defined by

¢NA .— (¢$ + wNA) c PSH(Xan,Lan),
18 a semi-positive metric on L®".
Examere 3.11. — Let ¢ € PSH(X, L) be a locally bounded psh metric, and assume
that there exists a normal model (£°,.%) of (X, L) with .Z nef, such that ¢ extends
to 2 as a locally bounded, psh metric on .#. Then we have ¥)xa = 0, so that
¢NA = ¢ . In other words, the non-Archimedean limit of a metric extending without
singularities as a semi-positive metric on a nef model (27, %) is simply the associated
model metric.
Examrre 3.12. — Let
= 1
¢ = max(loglsa| + o)
be a tropical Fubini-Study metric on L™, and let v € X4V be a divisorial valuation.

We let (27,.%) be a model of (X, L) such that v = vg for some E C %, and the
Sa’s extend as holomorphic sections of £ on 2. Then

ve(¢) = (9o — ¢2)(ve),
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where ¢q is the induced FS metric on X?". Indeed, since the s,’s are holomorphic
sections of .Z, we have

(60— 62)(vr) = max(vp(sa/s.2) + ca)
where s¢ is a trivialization of .Z at the generic point of F, while
¢1 = max(log|sq| + ca log, [¢])
is easily seen to have Lelong number
ve(¢) = gleig(ordE(sa/Sg) + cabg/logT)

along E. We infer from this that ¥N4 = (¢g — ¢.«), so that when ¢ is a tropical
Fubini-Study metric on L™P ¢NA = ¢ is simply its restriction to X",

We are now ready to prove Theorem A: the metric $N* in fact extends ¢ as a semi-
positive metric on the hybrid space, and up to shrinking the disk, every continuous
semi-positive metric on L' arises in this way.

Turorem 3.13. — Let (X, L) be a polarized degeneration of complex polarized vari-
eties over D*, and ¢ = (¢1)ten- € PSH(X, L) be a semipositive metric on L, with
logarithmic growth at t = 0. Then the metric ¢™° on L™P defined by setting

hyb hyb NA
‘pr}ét = ¢; oy =¢ ",

is semi-positive, i.e., PP € PSH(XMWP, [hyb),
Conversely, let ¢™> € CPSH(X™P LWP) and ¢ > 0, and set

Ot = P|x,
for |[t| <r—e. Then (¢1)tep=__ is a psh metric on the restriction of L to Xpx__, with

logarithmic growth at 0, and such that pN* = ¢]8yb.

The proof of the theorem will be provided in Section 3.3. Note that the continuity
assumption cannot be removed: in the case where X is a point, the function n such
that n(0) = 1 and = 0 on C™P \ 0 is psh on the hybrid circle, but 7(0) is not the
Lelong number at zero of the induced subharmonic function on the punctured disk.
This says essentially that the point 0 € C™P® is non-pluripolar, so that it is "large" in
the sense of pluripotential theory: psh metrics are not uniquely determined by their
restriction outside zero. It has however dense complement, so that it is negligible
topologically, and thus continuous psh metrics are determined by their restriction
outside zero.

The next proposition characterizes, given ¢ € PSH(X, L), the set of semi-positive
metrics on L?" that arise as restrictions to X" of hybrid metrics extending ¢, under
a finite-energy assumption. Let ¢ € PSH(L?"), and assume that ¢ lies in the class
EL(L*) of finite-energy metrics on L—we won’t give the definition here, and refer
to [BFJ15, §6], note however that '(L*") contains all continuous psh metrics on L.
Then it follows from [Reb23] that after a suitable choice of boundary data, there
exists a canonical extension ¢"™? € PSH(L"™P) of ¢ to the hybrid space, which also

JIP. — M., 2023, tome 10



(GLOBAL PLURIPOTENTIAL THEORY ON HYBRID SPACES 6%7

lies in the class &(L) € PSH(X, L) of fiberwise-finite energy metrics—for all ¢ # 0,
¢; is a finite-energy metric on L;. The extension is canonical in the sense that it
is relatively maximal in the sense of pluripotential theory [K1i91], and the maximal
extension mapping: (L) — &1(L) defined this way is an isometric embedding for
the Darvas metric [Darl15] on (L) and its non-Archimedean analog on &!(L*).

Prorosirion 3.14. — Let ¢ € PSH(L™P), write ¢ € PSH(L") its restriction to X"
and ¢NA € PSH(L*) the non-Archimedean metric associated to ¢|x, as defined by
Theorem 3.10. Then the inequality

o = PNa

holds on X?".

Conversely, let ¢ € EX(L) be a psh metric of fiberwise-finite energy. Then for any
Y € EN(LA™) such that 1 > ¢N?, there exists a psh extension % € EN(LMP) of ¢ to
LMY satisfying ;50 = 1.

Proof. — Write ¢ = lim; ¢; as the decreasing limit of a net in FST(L"WP). It follows
from Example 3.12 that for all j, the equality (b? = d)yA holds, hence ¢q is the
decreasing limit of the ¢§A. Since ¢o and ¢NA are psh on L?", they are determined
by their (finite) values on divisorial points, so that it is enough to prove that if vg is
a divisorial valuation on X, the inequality

lijr_n(dJ}\IA (ve)) < YN (vp)

holds, which follows from semi-continuity of Lelong numbers.
Conversely, assume that ¢ € EY(L) and ¢ € (L), with 1 > ¢NA. By [Reb23]
and Theorem 3.13, there exists Y™P € EL(LMP) such that w(})lyb = 1. We set

n; = max(y"™", g™ — jloglel),

then the decreasing limit of the (n;); is a psh hybrid metric, restricting to ¢ on X"
and to ¢ on X. O

Examrre 3.15. Let (A, L) — D* be a polarized, maximal degeneration of abelian
varieties. We let w; € ¢1(L¢) be the flat Kéhler metric on Ly, then there exists a family
of smooth metrics ¢, € PSH(X}, L;)—called the cubic metrics—such that w; = dd®¢;.
Then it follows from the proof of [GO22, Th.4.13] that ¢ € PSH(X,L) and has
logarithmic growth at ¢ = 0. Moreover, the associated non-Archimedean metric ¢pN4
is computed explicitly in [Liull, Th.4.3], and [GO22, Th. 4.13] states that the induced
hybrid metric ™ is in fact continuous, i.e., p"P € CPSH(AMP, Lhvb),

We also prove that given a continuous hybrid metric, it is enough to test its
plurisubharmonicity outside zero.

Prorosition 3.16. — Let ¢ € PSH(X, L), and assume ¢ extends as a continuous

metric on L™P, that we still denote ¢. Then the extension is semi-positive, i.e., ¢ €
CPSH(L™P).
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Proof. By Theorem 3.13, it is enough to prove that ¢y = ¢N*. By continuity of ¢
and the following lemma, we have

po(vp) = ¢"*(vp)

for every divisorial valuation vy € X9V, Thus, after fixing a reference model met-
ric ¢ o, for every snc model 2" on which ¢ o is determined, we have (¢pg—d»)opa =
(¢nA — dz) 0 pgr since those two continuous functions agree on the rational points of
Sk(Z"), and the result follows from [BFJ16, Prop. 7.6]. O

Levmva 3.17. — Let ¢ € PSH(X, L) with logarithmic growth and vg € X4 a divi-
sorial valuation. Let (Z,.£) be an snc model of (X, L) such that vg is determined
on 4, and ¢ extends as a psh metric on L. We fix a bounded reference metric ¢g
on L, and write N = po + PNA as in Theorem 3.10.

There ezists a sequence (zj)jen in X converging to vg in Xbybsuch that the

sequence ((¢ — ¢o)(z;)/1og,|t]); converges to YN*(vg).

Proof. — Recall that up to a negative scaling factor, N4 (vg) is the generic Lelong
number of the psh function (¢ — ¢g) along E, hence is equal to the Lelong number of
(¢ — o) at a very general point of E [BFJ08]. Thus, we may choose a point z,, € E
such that z,, is not contained in any other irreducible component of 2, and such

that
_logr

PN wg) = BT (6~ d0).
E
Choose a sequence (z;); in X converging to 2z inside £". Then by construction
((¢ — ¢0)(2j)/log,|t]); converges to YN*(vE), and (z;); converges to vp in 2P (see
[BJ17, Def. 2.3]), hence in X™P_ which concludes the proof. O

The following question is taken from Favre [Fav20, Quest. 1].

Question 3.18. — Let ¢ € CPSH(L) be a continuous, semi-positive metric on L, and
assume that ¢N* is a continuous metric on L2".
Then is it true that ¢™® € CPSH(LMP)?

In view of the proof of Theorem 3.13, this amounts to proving that assuming
oA € CPSH, we have an estimate of the form

-1
¢m_¢<5m‘10g|t|| )
on X where ¢,, are the Bergman kernels regularizing ¢, and ¢,, — 0 is indepen-
m—0o0

dent of t. Such a bound seems difficult to attain without a uniform estimate on the
oscillation of ¢.

3.3. Proor or Tueorem 3.13. — If p > 0, we will write D, := {|t| < p} the open disk
of radius p, and if 2" is a model of X, 2, := Zp,.

We let ¢ € PSH(X,L) be a psh metric on L with logarithmic growth, so that
after choosing an ample model (£27,.%) of (X, L), there exists ¢ € R such that
¢ = ¢ + clogl|t| extends as a psh metric on .£—to alleviate notation, we will still
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denote ¢, by ¢. The basic idea of the proof of Theorem 3.10 is that if .#,, := #(md) is
the multiplier ideal of the psh metric m¢ on m.Z, then the sequence of piecewise-affine
functions m~1¢ 7 (mg) on X*" decrease pointwise to the relative potential (PNA — )
on X", However for m >> 1, up to a controlled error term, the sheaf O (ML ®.%,;,) is
relatively globally generated on 2, so that the m™'¢ #(mg¢) are a sequence of ¢ z-psh
functions on X2*, hence ¢ € PSH(X?" [2").

We will roughly apply the same idea here, except we will also have to regular-
ize ¢ itself by a sequence of psh metrics with analytic singularities along .# (m¢) (see
Definition A.2). The procedure we apply to produce such a sequence is standard in
complex pluripotential theory and goes back to the work of Demailly [Dem92], so that
we merely outline the proof here and rather refer the reader to the appendix A for
the technical details.

We let ¢ € PSH(2Z", %) be a smooth metric, whose curvature form w := dd“y is a
Kahler form on 2. We choose ¢ € (0,1 —r) and mg € N such that for all m > 0, the
sheaf O o ((m + mo)-Z ® S,,) is globally generated over 2, (see Proposition A.4).
We write

Vm,mo = (Mm@ +motp) € PSH(Z', (m +mo)-ZL),
so that &, = Z(me@) = & (Ym,m,) is the multiplier ideal of the psh metric ¥, m, on
(2, (m+mg)ZL).

We will regularize ¢ by the Bergman metrics associated to the multiplier ideal .#,,.
More explicitly, set Viy.mo := H(Zrie, (Mm+mo) L ®.7,,) and define 7, mg C Vin.me
as the following Hilbert space

Honamg = {5 € Ving | 1812 1= [ _IsP2, ™1 < o0},
For every pair (m,mg), we may choose a Hilbert basis & me = (Sm,mo,e)een of
Hn,me> and we now set

1083 peny|Sm.mo.el?)

Pmms = 3+ mo)
and
oy = Gz + (m+mo) ' d, .

It is clear that ¢y, m, € PSH(2,.%), and ¢NA € PSH(X?, L[*"). We claim that

m,mo
this defines a semi-positive hybrid metric on L:

Prorosition 3.19. For every m € N, the hybrid metric ¢ on L defined by

m,mo
hyb o hyb _ NA
d)m,mo,t - (¢m7m0)\Xt and ¢m,m0,0 - ¥Y'm,mo
is semi-positive, i.e., plYb € PSH(XMP Lhvb),

Proof. For q € N, set

Pm.mo.g = 10g(2e<q|5m,mo,£‘2)a

2(m + myg)
NA

and mmo.g = (M 1m0) ! max(log| s, mo,¢])-
mo: t<q
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It follows from Proposition 3.5 that this defines a semi-positive hybrid metric
pyb € PSH(XMWP Lhvb) we will prove that the (¢ ) en converge uniformly

m,mo,q m,mo,q
hyb hyb
t0 @y 2, On XV
By Proposition A.5, the ¢ m,,q converge uniformly to ¢m m, on Z;1c as ¢ = oo,
so that it remains to prove uniform convergence over X2".

We have that

gémo,q =z +(m ero)ilqsfq’

where ¢, = J((smmoyg)g@) = 4, over Z,.. for ¢ > 1 by the strong noetherian
property for coherent sheaves and global generation (see the proof of Proposition A.5),
which concludes by Dini’s lemma. O

We now conclude the proof of Theorem 3.13. After extracting a subsequence, the
(m 4+ mo) " dm.m, decrease to ¢ on Z;.4. by Theorem A.3 and its proof, while the
N, decrease to ¢N4 on X by the proof of [Reb23, Th.3.3.1]. This proves that
AP € PSH(XMP [hvb),
For the (partial) converse, if ¢ € CPSH(L™P), and s € H°(U, L) is a local trivial-

ization, then the function on U
log|s(2)]g,
logt|

extends continuously to X™P by Proposition 3.2, hence is bounded. This proves that ¢

induces a psh metric with logarithmic growth on L, hence we can define $N* as above.

By Proposition 3.14, we have ¢N* < ¢, while the semi-continuity of the hybrid metric
induced by (¢, oN*) implies ¢o = lim;_o ¢y < $N?, which concludes.
This can also be deduced using the following.

Lemma 3.20. — The map
(-)NA L CPSH(L™P) — CPSH(L™)

is well-defined and continuous with respect to the topologies of uniform convergence
on both spaces.

Proof. — This follows from the fact that (-)N4 is order-preserving [Reb23, Th. 3.3.1],
and that (¢ + c)N* = ¢NA + ¢ for c € R.

Indeed, writing ¢ € CPSH(L™P?) as the uniform limit of a net (¢;); in FS”, the
fact that (-)N4 is order-preserving implies that the (qﬁyA) ; converge uniformly to ¢NA,
which is then continuous. ]

It now follows that (-)N* and the restriction map to X"
(-)o : CPSH(L™") — CPSH(L™)
are both continuous, and coincide on the dense set FS™ by Example 3.12, and thus

coincide on PSH(L"P®). This concludes the proof of Theorem 3.13.
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3.4. THE ISOTRIVIAL CASE. Let (X, L) be a projective complex variety, and write
(X§&", Lg™) the associated Berkovich space obtained by endowing the field of complex
numbers with the trivial absolute value. The latter analytic space has proved itself to
be a powerful tool in Kéhler geometry, and in particular has been central in the vari-
ational proof of the Yau-Tian-Donaldson conjecture by Berman-Boucksom-Jonsson
[BBJ21].

Without going into the details, the proof involves the study of various convex func-
tionals on the space PSH(X, L), and relating their slopes at infinity on geodesic rays
with the corresponding non-Archimedean functionals on the space PSH(X§", L5").

Derinition 3.21. — Let (X, L) be a normal projective complex variety. A family
(¢y)y>0 of psh metrics on L is called a psh ray if and only the S'-invariant metric

(I)(i, t) = d)—log\tl(x)
on (X x D* piL) is psh.

Let ¢o be a smooth, positively curved reference metric on L. If (¢,),>0 is a psh
ray on X, then the function y — sup y (¢, — ¢o) is convex, so that its slope at infinity
P = i HPxPy — P0) (d;y %0)
exists in R U {+o0} and is independent of the choice of ¢¢. It is immediate that
Pmax < +00 if and only there exists C' > 0 such that supy ¢, < Cy (with slight abuse
of notation), in which case we will say that the ray (¢y)ye(yo,+00) has linear growth.
This is easily seen to be equivalent to the fact that the psh metric ® on X x D* has

logarithmic growth at zero.

Following the general heuristic of viewing non-Archimedean geometry as the
asymptotic limit of Kéhler geometry, each psh ray (¢,), on (X, L) with linear growth
induces a psh metric $N* on (X§*, L3"), defined as follows. We fix a smooth reference
metric ¢g on L, whose curvature form wg = dd®¢q is a Kéahler form on X, and write
Py = (¢y — ¢0) € PSH(X, wp).

By linear growth, there exists a € R such that the function

\Ija(zv t) =1_ log|t| (‘T) +a 10g|t\

on X x D* is bounded from above near X x {0}, hence extends as a quasi-psh function
on X x D, that we still denote by ¥,. Now if v € X" is a divisorial valuation
on X, and w = y(v) € (Xk)* denotes the Gauss extension of v to the base change
Xk := X x¢ K, one defines w(¥,) as the generic Lelong number of ¥, along the
center of w, as in Section 3.2. In other words, if ¢ is a psh ray on X and v € X4V,
then

¢ (v) = 2N (y(v)).
Tueorewm 3.22 ([BBJ21, Th. 6.2]). The function YNA : XU 5 R extends continu-
ously to X?", and the metric N on L* defined by

¢NA — (,(/)NA 4 (btriv) c PSH(Xan,Lan)

s plurisubharmonic.
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This is essentially a special case of Theorem 3.10, since the trivial metric @'V
is the restriction to the Gauss section (see Section 1.4) of the model metric ¢po €
PSH(X%", L3?), where .2 = piL is the trivial model, living on 2" = X x D.

Prorosition 3.23. — Let r € (0,1). Then the metric $™P on L™ defined by
hyb hyb
S = oM, G = g
is semi-positive on X(}leb, Moreover, we have
q)hyb _ };v=k¢hyb7
where F : X?(yb — X(})lyb is the base change map from Proposition 1.23.

Proof. — The equality ®™P = F*¢"P is straightforward from the construction
of ¢Pvb.

To prove that ¢™" is psh, the argument is the same as in the proof of Theorem 3.13,
except we need the sections s, ,, from the proof of Proposition 3.19 to be equivariant
with respect to the S'-action on X x ID. To achieve this, with the notation of the
previous section for ¢ € Z, we let S, my¢ C i .m, be the space of f-equivariant
sections, i.e., sections s such that (e?®)*s = €% . 5. Then %, ,, is the completion of
@eez I, mo.¢, S0 that we may choose a Hilbert basis of 72, ,,,, adapted to the weight
decomposition. The rest of the proof of Theorem 3.13 carries out without changes after
replacing 10g|Sum. mg.¢| on X§® by (108|Sm.mo.e] — £) 10T Spmo.0 € Hon me ¢, SO that we
omit the details. O

4. Tue MoNGE-AMPERE OPERATOR

In this section, we discuss families of Monge-Ampeére measures associated to a
continuous psh metric on an analytic space over a Banach ring, and explain how to
deduce Theorem 0.1 from [Fav20].

4.1. Tur cASE OF A VALUED FIELD. — Let K be a complete valued field, X an n-
dimensional projective scheme over K, and let L1, ..., L, be semi-ample line bundles
on X. By Ostrowski’s theorem, either K = R or C with (a power of) the usual absolute
value, or K is non-Archimedean.

Let us start by assuming that K = C and that X is smooth. It then follows from
the seminal work of Bedford-Taylor [BT76] that the mixed Monge-Ampére pairing

(P15 vy pr) —> ddPy A -+ - AN dd ¢,

a priori defined when each ¢; is a smooth Hermitian metric on L;, actually extends
in a unique way to semi-positive, locally bounded metrics. The pairing was then
further extended to semi-positive singular metrics by Boucksom-Eyssidieux-Guedj-
Zeriahi [BEGZ10]. More precisely, there exists a class (X, L) C PSH(X, L) of finite-
energy metrics on (X, L), such that the above mixed Monge-Ampere pairing extends
uniquely to a multilinear, measure-valued pairing on £!(X, L1) x---x €}(X, L,,). Note
that the space £!(X, L) contains in particular CPSH(X, L).
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We now assume K is non-Archimedean, and that ¢; € DFS(X, L;) for every i =
1,...,n are differences of Fubini-Study metrics. One can then associate to the ¢;’s
a signed Radon measure, the mixed Monge-Ampére measure MA(¢y, ..., ¢,), with
similar properties as in the complex analytic case.

Examere 4.1. — Assume that K = k((t)) is a discretely-valued field of characteristic
zero. Then pure Fubini-Study metrics on L; are the same as model metrics on L;, so
that by multilinearity we may assume that ¢; = ¢.¢,, where (2;,.%;) is a nef model
of (X, L;). Up to passing to a higher model, we may assume 27 = --- = Z£,. Then
the Monge-Ampére measure has the following explicit description [CLO6]

MA(¢1,- -, 6n) = D> bp(Lr -+ Lo B)dyg,
E

where the sum ranges over the irreducible components E of 2y, bg = ordg(t) and

]

vy is the Dirac mass at the associated divisorial point vg = b]fjl ordg.

In general, the mixed Monge-Ampeére measure satisfies the following basic proper-
ties.

Prorosition 4.2 ([BE21, Prop.8.3]). — Let ¢; € DFS(L;) fori=1,...,n.

The pairing (¢1,...,¢n) = MA(P1, ..., ¢n) is symmetric and multilinear;
— if ¢; € FS(L;) for all i, then MA(¢1,...,¢n) is a positive Radon measure;
— the total mass [y, MA(¢1,...,¢n) = (L1--- Ly);

- ’Lf LQ == L1 = OX and ¢07¢1 S DFS(X), then

/(boMA(fbl,---,d)n):/ 1 MA(¢o, b2, - -, On).-
X X

The Monge-Ampére measure can then be extended by density to more general
metrics:

Tueorem 4.3 ([BE21, Th.8.4]). — Let K be a complete valued field, X/K an n-dimen-
sional projective scheme and Ly,. .., Ly, line bundles on X. Then the Monge-Ampére
operator

(1, .y &n) —> ddP1 A -+ A dd®Py,

admits a unique extension to continuous psh metrics on the L;. The extension is
furthermore continuous with respect to the topology of uniform convergence and the
weak topology of Radon measures.

Remark 4.4. While the class €1(X, L) of finite-energy psh metrics on L is defined
over any non-Archimedean field K, it is unclear in general how to extend the Monge-
Ampere operator on the latter. Note however that in the case where K is discretely-
valued of characteristic zero, this extension was constructed in [BFJ16], and the
trivially-valued case was handled in [BJ22].
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Remark 4.5. The Chambert-Loir-Ducros [CLD12] approach to pluripotential the-
ory on Berkovich spaces makes sense of the curvature current dd¢ of a continu-
ous psh metric, and its wedge products, in a spirit close to the work of Bedford-
Taylor in the complex case. Notably, [CLD12, Th. 6.9.3] states that the wedge product
dd®¢y N - - Ndd°¢p, coincides with the mixed Monge-Ampére measure as described in
Example 4.1 when ¢4, ..., ¢, are psh model metrics, whence the notation.

4.2. Tue MoNGe-AmPERE EQUATION. — Let X be a smooth n-dimensional complex
manifold, and L an ample line bundle on X. Then Yau’s celebrated solution to the
Calabi conjecture asserts the following.

Treorem 4.6 ([Yau7s]). Let p be a smooth volume form on X, normalized to have
total mass 1. Then there exists a unique (up to an additive constant) smooth, positive
definite metric ¢ on L such that

(dd°¢)" = (L") p.

The main motivation for this theorem was the case where X is a Calabi-Yau mani-
fold, and p = i QAQ is the square-norm of a nowhere-vanishing holomorphic n-form
on X: in that case, the curvature form w = dd®¢ is a smooth Kéhler Ricci-flat metric
on X.

Throughout the years, various generalizations of the above theorem in a more sin-
gular setting have appeared in the literature: let us simply mention Kotodziej’s result
[Ko198], that states that under the same assumptions on (X, L), then the statement
of the above theorem holds for a much wider range of probability measures on X (for
instance, measures p with LP-density for some p > 1), when we don’t require for the
solution to be smooth—here the solution is a continuous psh metric ¢ € CPSH(X, L),
and the equality (dd°¢)™ = u is understood in the sense of Bedford-Taylor.

We now let K = k((t)) be a discretely-valued field of equicharacteristic zero. The
following result can be understood as an analog of Kolodziej’s result over K.

Tueorewm 4.7 ([BFJ15, Th. A], BGGJT20]). — Let (X, L) be a smooth polarized vari-
ety over K. Let u be a probability measure on X", supported on the skeleton of an snc
R-model of X. Then there exists a unique (up to an additive constant) continuous,
semi-positive metric ¢ on L satisfying the non-Archimedean Monge-Ampére equation

MA(¢) = p.

The above theorem was proved when X is defined over the function field of a curve
over k in [BFJ15], and then extended to varieties over non-Archimedean fields of
residual characteristic zero in [BGGJ*20].

4.3. FamiLy oF MoNGE-AMPERE MEASURES. — Let A be an integral Banach ring, and
X/A a projective scheme. Since we may view X" as the family of analytic spaces
{X %, }ee.n(4), which are analytic spaces over fields, one may define a Monge-Ampeére
operator on each fiber.
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Derinition 4.8. Let A be an integral Banach ring, X/A an n-dimensional projective
scheme, and L, ..., L, semi-ample line bundles on X. If (¢1,...,¢,) is a tuple of
continuous psh metrics on the L;, we define the associated family of Monge-Ampere
measures as follows. For x € .#(A), write X, = 7~ () ~ X‘;{,}(gﬂ), and ¢, 1 X, — X
the inclusion. Then we set

(MA(¢1,. .-, 0n)) = (ta)« (MA((¢1)1x,5 -+ (Dn)1x,))-

This is a family of measures on X®® parametrized by .#(A).

A natural question is to ask whether or not this family of measures is continuous,
at least in the weak sense:

Question 4.9. — Let X be a flat, projective A-scheme, L1, ..., L, as above, and let
¢; € CPSH(L;) for each i. Is it true that for ¢ € C%(X3%), the function

T — YV(MA(1,. .., 0n))a

Xan
is continuous on .Z (A)?

The flatness assumption on X is necessary to ensure that the total mass of the
measure

(MA(D1, -, 6)),(X™) = (), - (L))
is indeed independent of x € .#(A).
By density of DFS(X) C €%(X#) and FS(L;) € CPSH(L;), and by using the
following very general Chern-Levine-Nirenberg estimate, it is enough to prove the
above statement for ¢ € DFS(X) and ¢; € FS(L;).

Lemma 4.10 ([BE21, Lem. 8.6]). — Let K be a non-Archimedean field, and X/K. Let
Ly, ..., L, be line bundles on X, and ¢;, ¢, € FS(L;) for each i. Then

[ MA@ 0= [ (00 ) MAGL 00

an

n
< C’Z?PW%*@\-
i=1 X"

While the answer to the above question seems unclear without further assumptions
over the Banach ring A, we are able to provide an affirmative answer in the case of
hybrid spaces in the next section. We also expect the statement to hold when A
is the ring of integers of a number field, we mention for instance the work [Poi22]
which proves a special case of the above statement for A = Z and provides further
applications.

44 HYBRID METRICS AND ADMISSIBLE DATA

Throughout this section, we let X — D* be a smooth degeneration of complex
manifolds, relatively polarized by an ample line bundle L; and write X™" the asso-
ciated hybrid space. In this set-up, after fixing a reference Fubini-Study metric on
(X, L), Favre [Fav20] defines a certain class of model functions ¢ : X" — R as-
sociated to admissible data on X; and uniform functions which are uniform limits of
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model functions. We will explain how those are nothing but hybrid Fubini-Study and
hybrid cpsh metrics on L. In particular, the following result is a mere reformulation
of [Fav20, Th.4.2].

Turorem 4.11. — Let (X, L) be as above, and ¢ € CPSH(XWP LWP). Then the
associated family of Monge-Ampére measures is continuous on X™P in the weak sense:
for any f € CO(XWP), we have

Fddh)" —= f MA(¢o).
X, -0 Jxan

Recall that DFS(X"P) is dense in CO(X"P) while FST(L™P) ¢ CPSH(L™P) is
dense for the topology of uniform convergence. As a result, by lemma 4.10, it is enough
to prove the above convergence with f € DFS(X™P), ¢ € FS™(LMP).

As in [Fav20], we fix an snc model 2" of X such that L has an ample model &
on 2, so that we get a relative embedding ¢ : 2~ < CPY x D by sections of m.%
for m > 1, and write ¢rer = M *¢pg. By Example 3.7 and pullback, we have
Oret € CPSH(Lhyb).

Then a regular admissible datum F = {27,d, D, s1,...,s¢} consists of the follow-
ing: p: 27 — % is an snc model dominating 2", D € Divo(Z") is a vertical divisor
on 27, and (sq,...,s.) is a tuple of sections of p*(£¢)(D) without common zeroes.
An regular admissible datum defines a model function ¢g : X" — R as follows:

¢ = max log||s;||¢.; = max (@i — Pref),
i=1,...,0 i=1,...,¢

Thus, we naturally define

¢ff = ¢ref + ¢? = max ¢ia
<L

which is a Fubini-Study metric on L™P", since the s;’s have no common zeroes.
Conversely, any pure Fubini-Study metric on L™P® | i.e., a metric of the form

= d~" maxlog|s;
¢ max og|s|

for d > 1 and sy,...,5, € H°(X,dL) without common zeroes, defines a regular
admissible datum. Indeed, we may extend s, ..., sy to meromorphic sections of d.Z
on 4, and set
I =(81,...,80),
which is a vertical fractional ideal sheaf on 2 . It follows from [Fav20, Prop. 2.2] that
if p: 27" — 4 is a log-resolution of 2", this yields an admissible datum
F={2",d,D,p*s1,...,p"se},

where D € Divo(2”) is such that p*(£4 ® &) = (p* L)% @ 04 (D), and it follows
from the previous computation that the associated model function ¢4 satisfies

Gref — ¢ - ¢rcf7

.....
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with ¢ = d~! max;<,log|s;|. As a result, model functions on X™P in the sense of
[Fav20] are precisely the continuous functions ¢ : X™ — R such that (¢ef + 1) €
FS™(L™P) is a pure Fubini-Study metric, so that by remark 3.4, uniform functions
are those such that (¢per + 1) € CPSH(L™P). This proves that the statement of
Theorem 4.11 is equivalent to the statement [Fav20, Th.4.2].

5. DEGENERATIONS OF CANONICALLY POLARIZED MANIFOLDS

5.1. Tue ser-ue. — In this section, X — D* will denote a meromorphic degenera-
tion of canonically polarized manifolds, and we will write L = K xp~ the polarization.
It follows from the seminal work of Aubin and Yau ([Aub78], [Yau78]) that every
fiber X; admits a unique negatively curved Kéhler-Einstein metric w; € —cp(Xy),
satisfying the equation Ric(w;) = —w;. The Kéhler form w; can be written as the
curvature form of a smooth Hermitian metric ¢, on L; = Kx,, i.e.,

Wy = ddcgbt .

The metric ¢; is unique up to addition of a constant. In this situation, the family
of Hermitian metrics (¢¢)iep~ turns out to also have plurisubharmonic variation in
the horizontal direction by the work of Schumacher [Sch12], and has logarithmic
growth at ¢ = 0 by [Sch12, Th.3]. Thus, the family of metrics (¢;)iep- induces an
element ¢ € CPSH(X, L), and it is a natural question to try and determine the non-
Archimedean limit ¢N4
Ké&hler-Einstein metric.

of this family, as it provides a non-Archimedean analog of the

As we will explain more thoroughly in Section 5.2, after a finite base change t + t¢
on the punctured disk, that we omit from notation, the family X/D* admits a canoni-
cal model 2./ such that the canonical bundle K - /p is relatively ample; the model
Z./D is furthermore unique for this property (although it is more singular than an
snc model). This in turn yields a canonical model metric ¢k, ,, € CPSH(X*", K§),
which we will prove to be the non-Archimedean Kéahler-Einstein metric—the following
statement is Theorem B from the introduction.

Tueorem 5.1. — Let X -5 D* be a degeneration of canonically polarized mani-
folds, L = Kx, and let ¢xr € CPSH(X, L) be the family of Kaihler-FEinstein metrics.
We assume that the family X has semi-stable reduction over . Then the metric
on LM defined by

P1x = PkE: 0 = PK o, n

is continuous and semipositive, i.e., ¢ € CPSH(XWP [hb),

If the family of Kéhler-Einstein metrics ¢ were to extend as a bounded metric
¢ € PSH(Z:, K, p), then it would follow from Example 3.11 that PNA = PK o /-
We will see that this is however not the case, but the singularities of ¢k along the
special fiber of the canonical model are mild enough for the result to still hold—they
are milder than any log poles.

Using Theorem 4.11, we have the following immediate consequence.
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CoroLLARY D.2. Let X — D* be a meromorphic degeneration of n-dimensional
canonically polarized manifolds, and let wy € —c1(Xy) be the unique Kdhler-Einstein
metric with negative curvature on X;.

The Kihler-Einstein measures p; = wl converge weakly on X™P to py =
MA(éxk,. ), the non-Archimedean Monge-Ampére measure of the canonical model
metric.

More explicitly, writing Zeo = ,c;
the measure po is a sum of Dirac masses supported at the divisorial valuations vp,,

b;D; as the sum of its irreducible components,

and we have

po = bi((Ka.)" - D;)b,.

icl
This was proved in [PS22a, Th. A] in a direct way, without using Theorem 4.11.

5.2. T cANONICAL MODEL. — Let X —— D* be a degeneration of smooth, canoni-
cally polarized varieties. In this case, the Minimal Model Program provides us with
a unique canonical model 2. of X over the disk, at the cost of going out of the class
of simple normal crossing models, and allowing some slightly worse singularities. The
appropriate class of varieties for the central fiber is a higher-dimensional analog of
the stable curves, the correct notion being that of semi-log canonical models.

If 2 is a normal model of X, saying that 27 is semi-log canonical (see for instance
[Kol13]) is a condition on the singularities of the normalization of 25, which can be
seen as a mild generalization of the simple normal crossing condition; in particular
we require %y to be reduced and simple normal crossing in codimension 1. More
precisely, the normalization morphism v : Zy — Zp is required to yield a disjoint
union 2y = | ;¢ 1(51'701') of log canonical pairs, C; being the restriction of the
conductor C of v to D;. This is a Weil divisor on Zy , whose support is precisely the
locus where the normalization v fails to be an isomorphism, and which is simply given
here by the inverse image by v of the codimension one nodes of Zj. It furthermore
satisfies the formula: v* K g, = Ko v +C (note that the canonical divisor of a semi-log
canonical variety is assumed to be Q-Cartier).

A semi-log canonical model (or stable variety) is now by definition a proper semi-
log canonical variety, with ample canonical divisor. For instance, one-dimensional
semi-log canonical models are nothing but Deligne-Mumford’s stable curves.

The compactness theorem for moduli of stable varieties of higher dimension is now
as follows.

Tueorewm 5.3 ([BCHM10], [KNX18]). — Let X — D* be an algebraic degeneration
of canonically polarized manifolds. There exists (possibly after a finite base change)
a unique canonical model Z. of X owver the disk, satisfying the following properties:
(i) the total space Z. has at worst canonical singularities, while the central fiber
Zeo is reduced and has at worst semi-log canonical singularities;
(ii) the relative canonical divisor K o, p is relatively ample.
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The canonical model is constructed as follows: by the semi-stable reduction theorem
[KKMSD73], there exists a finite base change t = (') on the punctured disk such
that the family X’ = X Xpz D}, admits a semi-stable model over D*, i.e., an snc model
with reduced special fiber. Omitting the base change from notation and starting from
a semi-stable model £ /D of X, we set 2. = Projp @m>0 HY (2, mK o /p), the main
difficulty being to prove finite-generatedness of the relative canonical algebra. This is
established in [BCHM10] when X/D* is defined over an algebraic curve, and extended
to families over the disk in [KNX18]. The uniqueness of the canonical model is now a
straightforward consequence of the birational invariance of the relative canonical ring
R = @m>0 HO(%,ngg/D)—as the notation suggests, R does not depend on the
choice of the model 2.

Remark 5.4. — If 2 is any semi-stable model of X, then the natural rational map
h: Z--» Z. is in fact a rational contraction—this means that its inverse does not
contract any divisors.

5.3. METRIC CONVERGENCE AND PROOF OF TieorREM 5.1. — The understanding of the
Gromov-Hausdorff convergence of the fibers (X, ¢¢), is due to J. Song [Sonl7] (whose
results were further improved in [SSW20]). The crucial first step, is to show that
there exists on the central fiber Z.9 = Ziel D; of the canonical model of X a
unique Kéahler-Einstein current wkg, and to derive some geometric estimates on the
singularities of this current. The current wxg on the stable variety 2.0 was first
constructed by Berman-Guenancia [BG14]| using a variational method, while it is
reconstructed in [Sonl7] using the techniques of [EGZ09], [Kol98], in order to obtain
some stronger control on its singularities:

Tueorewm 5.5 ([Sonl7, Th. 1.1]). Let Z. — D be the canonical model of X, with
semi-log canonical central fiber Z.o. There exists a unique Kdhler current wkg €
—c1(Aeo) on Zeo, satisfying the following properties:

(i) wkg s smooth and satisfies the Kahler-Einstein equation on the regular locus
of Zeyo;

(ii) wke has locally bounded potentials on the locus where 2. is log terminal;

(iii) wity does not charge mass on the singularities of Zco, and f%mo WrE =
[K%c,o}n'

Remark 5.6. — The fact that the above Kéhler-Einstein current on 2. ( matches the
one constructed in [BG14], follows from the uniqueness statement in [BG14, Th. A].
Moreover, the construction of [BG14] implies that || p, Wkg = (K% - D;).

Indeed, if v : 2y — Z.o denotes the normalization morphism, where 2, =
Lics Bi, then the Kdhler-Einstein metric wkg is obtained by descending the (singular)
Kahler-Einstein metrics w; € ¢1 (K B, +C}) on the log canonical pairs (I):, C;), C; being

the restriction of the conductor C of v to l~)i.
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Thus by construction, the mass f D, wgg equals the intersection number
(Kp, +C)" = (V' K ,)",

the last intersection number being computed on 51 Applying the projection formula,
this is equal to the intersection number K% - D; = K% - D;, by adjunction and
principality of %% .

Let us now fix a m > 0 such that mK o p is relatively very ample, and a relative
embedding ¢ : 2, < PN xD of the canonical model inside projective space by sections
of mK g, /p. We let ¢rg be the hybrid Bergman metric on (PP from Example 3.7,
and still write ¢pg € CPSH(X™WP, LhWP) its pullback to X™P via the embedding .
More explicitly, we have that

¢rs,t = m” 1] drs,
where ¢rg is the usual (Euclidean) Fubini-Study metric on CP¥; while

Prs,0 = K 4. /R

since the model (2., K 4,/ r) is ample.
This allows us to write the Ké&hler-Einstein metric ¢xg+ = ¢rs+ + 14, with ¢y €
C>°(X). The potential 1 is the unique solution of the Monge-Ampére equation

(wrs,t + ddr)" = eV wis 4,

with the normalization [ X, ewtwﬁs’t = (Kx,)™. In order to derive uniform estimates
for the family of potentials (¢t)¢cp+, it is more convenient to work on a semi-stable
model, as a result we perform an additional base change and consider a diagram of

the form

PNy 2,

Nl

D———D

where 27/ is the base change of the canonical model 2 via t — t4, and 2 isa semi-
stable resolution of 2. We write the special fiber 20 =3, ; Di+) . ; Ej, where D;
is the strict transform of D; C 3&”0’70 = Z.0 and the E;’s are the exceptional divisors
of p. Fgr each ¢ € I, let ¢; be a psh metric on O g,y(ﬁz) with divisoriaINSingularities
along D;, i.e., ¢; = log|z;|+O(1) locally, where z; is a local equation for D;. Similarly,

we choose 9; with divisorial singularities along F;, so that

Dbty Wy =loglt| + O(1).

i€l jeJ
In order to apply Cheeger-Colding theory to the Kéhler-Einstein metrics on X;, Song
derives uniform estimates on volumes of small balls, which are obtained via compari-
son lemmas for volume forms. The estimate focuses on a strict transform l~)i0 C Zo,
and shows that the potentials ¢; do not blow-up as we approach the interior of l~)i0:
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Prorosition 5.7 ([Sonl7, Cor. 4.1, Lem. 4.2]). We have a uniform bound:

sup ¢y < C.
Xt

Moreover, letting J' C J be the subset of exceptional divisors in Xy that meet 51'0,
the following holds: for any € > 0, there exists a constant Ce > 0 such that for all

t#0

Py = 6(2;‘;{ i + ZjeJ’ w]) - C..

This implies smooth convergence of the Kahler-Einstein metrics w; to the current wgg
on Zeo \Sing(Ze0) in the following sense:

for any point p € Z. 0\ Sing(Zc,0), and any choice of neighbourhood % of p such
that the Uy = % N Xy are all biholomorphic to Uy, and such that the (wpst)™’s are
uniformly equivalent, the pulled-back 1y converge in the C>-sense to 1.

Note that we have made a small abuse of notation, since the object in the right-
hand side of the inequality is a metric and not a function.

Remark 5.8. Even if we will not need it here, one can show that the previous
theorem combined with a uniform non-collapsing condition implies pointed Gromov-
Hausdorff convergence of X; to a complete metric space, whose regular part (in the
Cheeger-Colding sense) is precisely (% 0\ Sing(Z¢,0), WKE)-

We also point out that this holds for degeneration of canonically polarized manifolds
over a higher-dimensional base by the results of [SSW20], building on the semi-stable
reduction theorem from [AKO00], [ALT18].

The behaviour of the metrics in the region where the metric collapses is also well-
understood, under the technical assumption that the canonical model is semi-stable,
see [Zhalb].

We are now ready to prove Theorem 5.1. We let ¢ = ¢k, ,, € CPSH(X?", L*"),
and ¢xr € CPSH(X, L) the family of K&hler-Einstein metrics. In order to prove
that the hybrid metric ¢ defined by the statement of Theorem 5.1 is continuous and
semi-positive, it is enough to prove that it defines a continuous metric on L', by
Proposition 3.16.

Subtracting the reference metric hybrid ¢rs, whose restriction to X" is the model
metric ¢, 5, it is enough to prove that the potential ¢;’s converge to zero as ¢ — 0
in the hybrid topology. In other words, we need to prove that

Y
log|t|

t—0

which is an easy consequence of the estimates from Proposition 5.7. This concludes
the proof of Theorem 5.1. O
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APPENDIX

In this appendix, we state and prove a regularization result for psh metrics in the
complex analytic setting, that will be used in the proof of Theorem 3.13. We expect
that the statement below (Theorem A.3) is well-known to experts, as well as the tech-
niques we use in the proof—which are largely due to Demailly [Dem92]. Nevertheless,
since we could not find the precise statement required in the literature, we include a
proof.

We let (Y,w) be a Kéhler manifold, and assume given a proper holomorphic map
m:Y — Q, where ) is a bounded open subset of C. We furthermore assume that
there exists a m-relatively ample line bundle L on Y such that w € ¢;(L).

Given a semi-positive metric ¢ € PSH(Y, L), we want to write it as a decreasing
limit of a sequence (¢;);jen of psh metrics on L with analytic singularities along the
multiplier ideal sheaf .7; := .7 (j¢). We recall the basic definitions.

Derinirion A1, — Let ¢ € PSH(Y, L) be a semi-positive metric on L. The multiplier
ideal sheaf .7 (¢) is the ideal generated by the germs of holomorphic functions f such
that |f|?e~2? is locally integrable on Y.

Here locally integrable means locally integrable in any coordinate chart, we also
abusively view ¢ as a psh function this way.

Derintrion A2 Let # C Oy be a coherent ideal sheaf on Y, and ¢ € PSH(Y, L).
We say that ¢ has analytic singularities along _# if ¢ can be written locally as

¢ =log(If1l*+-- +1f:]*) +x,

where (f1,..., fr) is a family of local generators of # and x is a smooth function.

Given a coherent ideal sheaf ¢, one can always produce quasi-psh functions with
analytic singularities along _¢#, using a partition of unity argument.
The rest of this appendix will be devoted to the proof of the following.

Turorem A.3. — Let Q C C be a bounded open subset, Y a smooth Kahler manifold
together with a proper holomorphic map m:Y — Q, and let L a relatively ample line
bundle on Y. We let 1 be a smooth Hermitian metric on L whose curvature form
w = dd®y is a Kdhler metric on'Y .

Let ¢ € PSH(Y,L), and write S, := F(me) the multiplier ideal of me, for
m € N. Then for any relatively compact, open subset Y' €Y, there exists a sequence
(¢j)jen € PSH(Y', L) such that:

— the ¢; decrease pointwise to ¢ on'Y’,
— for all j € N, the psh metric 27¢; on 27 as analytic singularities o e
g N, th h tric 27 ¢; 27L h lyt larit th
form ;.

Let us fix a psh exhaustion function 1 : © — R, i.e., such that the sublevel sets
Q. := {n < ¢} are relatively compact subsets of §2; note that the Y, := {nonw < ¢}
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are also relatively compact in Y and weakly pseudoconvex. Since the subset Y’ C Y
is relatively compact, we have Y/ C Y, for ¢ >> 1.

Prorosition A4, — For any ¢ € R such that Y' € Y, € Y, there exists a mg > 1
such that for all m > 1, the sheaf Oy ((m 4+ mo)L ® %) is generated by its global
sections on Y.

Proof. — We argue as in [BBJ21, Lem. 5.6], and write n = dimY".

We let H be a relatively very ample line bundle on Y, and we choose mg > 1 such
that the line bundle A = moL — Ky — nH is relatively ample on Y.

By the relative Castelnuovo-Mumford regularity criterion (see [DEL00, Lem. 1.4]),
the sheaf Oy ((m 4+ mo)L ® .#,,) is m-globally generated on Y. as soon as:

Rim, (((m+mo)L — qH) ® F,) =0
for 1 < ¢ < n— 1, which holds by Nadel vanishing [Nad90], [BFJ16, Th. B.8]. |

We will now regularize ¢ by a sequence of psh metrics with analytic singularities of
the form % (mg), up to some controlled error term. We mostly follow the argument
from the proof of [GZ05, Th. 8.1]. For mg large enough so that Proposition A.4 holds,
write

YVm,mo = (mqi) + mo’(ﬂ) € PSH(Y, (m + mo)L),
we have that %, = 7 (Ym.m,) = F(m¢) is the multiplier ideal of the psh metric
Ym,me o1 (Y, L).

We are naturally led to introduce the Bergman metrics associated to the multiplier
ideal .#,,; for Y, as in Proposition A.4, we set Vi, 1, := H°(Ye, (m + mo)L ® )
and define %, , C Vin m, as the following Hilbert space:

Ao = {5 € Vinamy | 812 = fi, Jsl2, . " < o0},

For every m, we choose a Hilbert basis B me = (Sm,me,e)eeN Of Hnm,, and we

now set
IOg(ZeeN|5m,mo,€|2)-

¢m,mo -

We have @ m, € PSH(Y., L).

2(m + myg)

Prorosition A.5. For q e N, set

_ 2

Pm,mo,q = m log(Zz<q|3m,mol\ )

Then the Gmymgy.q converge uniformly to ¢, m, overY'. Moreover, ¢ m, has analytic
singularities of the form %, over Y'.

Proof. We drop the (m, mg) subscript to alleviate notation. We choose ¢’ < ¢ such
that let Y’ € Y € Y,, with the freedom to slightly decrease ¢’ throughout the steps
of the proof.

We set 7, = 7 ((st)e<q), and 7 = Ugso Ha = 7 ((s¢)een). Then we have
J = (m+my)L ® F(m¢) over Y by global generation, which is a coherent ideal
sheaf on Y, by Nadel’s theorem [Nad90]. By the strong Noetherian property for
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coherent sheaves, the ascending chain (_#;)>0 of ideals is locally stationary, so that
we have 7, = ¢ for ¢>> 1 on Y, after shrinking. We now set

F=>ls® and Fy =) s>

LeN 1<q
We will prove that on Y, there exists C; > 1 such that
F, < F <CyF,

and that C; —— 1. We mostly mimic the argument from step 2 of the proof of

q—o0

[DPSO01, Th.2.2.1]. Up to slightly decreasing ¢/, we may work locally, so that we
assume that the s, are holomorphic functions. By the strong Noetherian property
of coherent ideal sheaves, the sequence of ideal sheaves J#; on Y. x Y. generated by
the (s¢(2)s¢(W))e<q is locally stationary, so that it is stationary at " = {J 5, #4 on
Y. x Yy for ¢ > 1. From the bound

Sl < (et >-<%|se<w>|2>)l/2,

we infer that the series -, s¢(2)s¢(w) converges locally uniformly on Y., x Y./, and
thus by closedness of the space of sections of a coherent ideal sheaf, we get that the
holomorphic function on Y. x Y,

> se(z)se(w) € A

LeN
Since £ = J; for q large enough, we get that

S ()@ < O Y se()se(m)

LeN 1<q
on Yo x Yy for some Cy > 0, and thus
F < CyF,

over Y. for g large enough by restricting to the complex diagonal z = w.

Finally, let us set x4 = ¢ — ¢4: then we proved that for any ¢ > 1, there exists
by > 0 such that 0 < x4 < by on Y. As a result ¢4 and ¢ have the same singularities,
which are analytic singularities along ¢, = ¢ for ¢ > 1.

Moreover, since the sum converges locally uniformly, the x, are continuous and
decrease to zero pointwise, so that from Dini’s lemma the x,’s decrease uniformly to
zero on Y', and ¢, converges uniformly to ¢ over Y. a

We now want to prove that over Y’, the ¢y, m, decrease with respect to m (up to
an error term) to our initial metric ¢.

We start by proving that the ¢g, ., converge pointwise to ¢ over Y,. Writing
By C Honm, the unit ball with respect to the L?-norm, we have

1
) 10g(z€20|5m,m0,f|2) = 2( sup 10g|8|23

1
Qbm,mo - m m SEBm,mO

since for z € Y, the quantity >, o[Sm,mo,e(2) |2 is the operator norm of the evaluation
map ev, : S, m, — LEMT™0,
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Covering Y. by coordinates charts (U;)ies, we let z € U; and p > 0 such that
B(z,p) C U,. For s € 5, m,, since |s|? is subharmonic in U;, we have
C
|S(z)|2 < 7/ |S|2wn+1 < C/eQSupB(z,p) Ym,mq / |S|2 wn+17
= p2(n+1) B(z.p) = Y, Ym,mg
so that if s € B, ,, the bound
10g|s(z)|2 < Sup Ymme +C
B(z,p)

holds, hence ¢ m,(2) < supp, ¢+ (m+mo)~'C.

The converse inequality follows from the Ohsawa-Takegoshi theorem [Dem16]: there
exists mg > 1 and a universal constant C' > 0 such that for all m € N large enough
and z € Y;, there exists s € J4, ,, such that

[ Iofre2im ot < Clae)e ),
Ye

so that if we choose the right-hand side to be equal to one, we get s € By, 1, such
that

log[s(2)[ = tm,m,(2) — C,
hence @u.m,(2) = ¢(2) — (m + mg)~1C, which proves pointwise convergence on Y.
We now prove that the ¢, ,,, are almost subadditive. We let s € By, 4ma,mo C
Sy +ma,me, and set

%mhmz,mo
= {S € HO(Ye x Yo, pi((m1 +mo/2).L)(Im,) @ p3((m2 +1m0/2).L)(Ims)) |
Jyowy, 18 (21, 22) Pem2matmor2(30)=20matmo12(22) (1) @ wo )" < 00}7

where we have written w; = pjw.

By the Ohsawa-Takegoshi theorem, there exists S € J€,, m,.m, With L?-norm
| S]] < C for a universal constant C, such that S|a, = s, where Ay, C Y, x Y. is the
diagonal. To be more precise, we let

£:Y XY — RU{-0c0}

be a quasi-psh function with analytic singularities along .# (Ay ), and we may assume
that £ < 0 on Y. Then in the notation of [Dem16, Th.1.4] the measure dVa, . [&] is
uniformly equivalent to w”™ on Ay,, as Ay is a local complete intersection, so that
our estimate follows from the aforementioned theorem with § = 2.

Since o, ms,me = %m17m0/2<§><%”mZ7m0/2, the family of sections

(sm17m0/27el & sm27mo/2,€2)(€1,€2)6N2

form a Hilbert basis of J%,,, m,,m,. We may write

S(z1,22) = Z Cey,655my,mo /2,01 (21) ® Sma,mo /2,02 (22),
(01,62)€EN?
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with 261,62|C€1,€2|2 < C. Thus

50 = 18(, D < (X lsmamorzs (2)12) 5 (X lsmamo 2. (2)?)
A L2

so that

¢m1 +ma,mo g

C n (m1 +m0/2)Pmy mo/2 + (M2 +m0/2)Prmy.me/2
my + ma + mg my + ma + mg mi+mae+my

Since ¢ — 9 is bounded from above over Y., we may assume without loss of gener-
ality that ¢ — v < 0, so that (m + mo/2) " mg /2 < (M4 mM0) ™ m,m, and thus
Oy mo/2 S Pmomo- This now implies that the sequence

¢] = ¢2j7m0,m0 + 27]726’

is decreasing to ¢ over Y., and has the required singularities over Y’ by Proposi-

tion A.5. This concludes the proof of Theorem A.3. g
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