[Formules algébriques closes explicites pour les fonctions à
Nous présentons une nouvelle formule explicite en termes de sommes sur les graphes pour les fonctions de corrélation à
We derive a new explicit formula in terms of sums over graphs for the
Accepté le :
Publié le :
Keywords: Hurwitz numbers, KP tau functions, Fock space
Mots-clés : Nombres de Hurwitz, tau fonction KP, espace de Fock
Boris Bychkov 1 ; Petr Dunin-Barkowski 2 ; Maxim Kazarian 3 ; Sergey Shadrin 4

@article{JEP_2022__9__1121_0, author = {Boris Bychkov and Petr Dunin-Barkowski and Maxim Kazarian and Sergey Shadrin}, title = {Explicit closed algebraic formulas for {Orlov{\textendash}Scherbin} $n$-point functions}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1121--1158}, publisher = {\'Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.202}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.202/} }
TY - JOUR AU - Boris Bychkov AU - Petr Dunin-Barkowski AU - Maxim Kazarian AU - Sergey Shadrin TI - Explicit closed algebraic formulas for Orlov–Scherbin $n$-point functions JO - Journal de l’École polytechnique — Mathématiques PY - 2022 SP - 1121 EP - 1158 VL - 9 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.202/ DO - 10.5802/jep.202 LA - en ID - JEP_2022__9__1121_0 ER -
%0 Journal Article %A Boris Bychkov %A Petr Dunin-Barkowski %A Maxim Kazarian %A Sergey Shadrin %T Explicit closed algebraic formulas for Orlov–Scherbin $n$-point functions %J Journal de l’École polytechnique — Mathématiques %D 2022 %P 1121-1158 %V 9 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.202/ %R 10.5802/jep.202 %G en %F JEP_2022__9__1121_0
Boris Bychkov; Petr Dunin-Barkowski; Maxim Kazarian; Sergey Shadrin. Explicit closed algebraic formulas for Orlov–Scherbin $n$-point functions. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1121-1158. doi : 10.5802/jep.202. https://jep.centre-mersenne.org/articles/10.5802/jep.202/
[ACEH18a] - “Fermionic approach to weighted Hurwitz numbers and topological recursion”, Comm. Math. Phys. 360 (2018) no. 2, p. 777-826 | DOI | MR | Zbl
[ACEH18b] - “Weighted Hurwitz numbers and topological recursion: an overview”, J. Math. Phys. 59 (2018) no. 8, article ID 081102, 21 pages | DOI | MR | Zbl
[ACEH20] - “Weighted Hurwitz numbers and topological recursion”, Comm. Math. Phys. 375 (2020) no. 1, p. 237-305 | DOI | MR | Zbl
[ALS16] - “Ramifications of Hurwitz theory, KP integrability and quantum curves”, J. High Energy Phys. (2016) no. 5, article ID 124, 30 pages | DOI | MR | Zbl
[BDBKS20] - “Topological recursion for Kadomtsev–Petviashvili tau functions of hypergeometric type”, 2020 | arXiv
[BDBKS21] - “Generalised ordinary vs fully simple duality for
[BDBS20] - “Combinatorics of Bousquet-Mélou–Schaeffer numbers in the light of topological recursion”, European J. Combin. 90 (2020), article ID 103184, 35 pages | DOI | Zbl
[BDK + 20] - “Double Hurwitz numbers: polynomiality, topological recursion and intersection theory”, 2020 | arXiv
[BGF20] - “Simple maps, Hurwitz numbers, and topological recursion”, Comm. Math. Phys. 380 (2020) no. 2, p. 581-654 | DOI | MR | Zbl
[BS17] - “Blobbed topological recursion: properties and applications”, Math. Proc. Cambridge Philos. Soc. 162 (2017) no. 1, p. 39-87 | DOI | MR | Zbl
[Cha09] - “Asymptotic enumeration of constellations and related families of maps on orientable surfaces”, Combin. Probab. Comput. 18 (2009) no. 4, p. 477-516 | DOI | MR | Zbl
[DBKO + 15] - “Polynomiality of Hurwitz numbers, Bouchard-Mariño conjecture, and a new proof of the ELSV formula”, Adv. Math. 279 (2015), p. 67-103 | DOI | Zbl
[DBKP + 20] - “Topological Recursion for the extended Ooguri–Vafa partition function of colored HOMFLY–PT polynomials of torus knots”, 2020 | arXiv
[DBLPS15] - “Polynomiality of orbifold Hurwitz numbers, spectral curve, and a new proof of the Johnson-Pandharipande-Tseng formula”, J. London Math. Soc. (2) 92 (2015) no. 3, p. 547-565 | DOI | MR | Zbl
[DBPSS19] - “Combinatorial structure of colored HOMFLY-PT polynomials for torus knots”, Commun. Number Theory Phys. 13 (2019) no. 4, p. 763-826 | DOI | MR | Zbl
[Har16] - “Weighted Hurwitz numbers and hypergeometric
[Kaz19] - “Topological recursion for generalized Hurwitz numbers” (2019), Talk at Skoltech Center for Advanced Studies, https://youtu.be/Hq7RVZBAsf8
[Kaz20] - “Quasirationality of weighted Hurwitz numbers” (2020), Talk at the National Research University Higher School of Economics, https://youtu.be/Yu1dGgBidr0
[Kaz21]
(2021), Paper in preparation, Preprint[KL15] - “Combinatorial solutions to integrable hierarchies”, Uspekhi Mat. Nauk 70 (2015) no. 3(423), p. 77-106 | DOI
[KLPS19] - “Towards an orbifold generalization of Zvonkine’s
[KLS19] - “Quasi-polynomiality of monotone orbifold Hurwitz numbers and Grothendieck’s dessins d’enfants”, Doc. Math. 24 (2019), p. 857-898 | MR | Zbl
[KMMM95] - “Generalized Kazakov-Migdal-Kontsevich model: group theory aspects”, Internat. J. Modern Phys. A 10 (1995) no. 14, p. 2015-2051 | DOI | MR | Zbl
[KZ15] - “Virasoro constraints and topological recursion for Grothendieck’s dessin counting”, Lett. Math. Phys. 105 (2015) no. 8, p. 1057-1084 | DOI | MR | Zbl
[MJD00] - Solitons, Cambridge Tracts in Math., vol. 135, Cambridge University Press, Cambridge, 2000
[OS01a] - “Hypergeometric solutions of soliton equations”, Teoret. Mat. Fiz. 128 (2001) no. 1, p. 84-108 | DOI | MR
[OS01b] - “Multivariate hypergeometric functions as
[SSZ12] - “On double Hurwitz numbers with completed cycles”, J. London Math. Soc. (2) 86 (2012) no. 2, p. 407-432 | DOI | MR | Zbl
[Sta99] - Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Math., vol. 62, Cambridge University Press, Cambridge, 1999 | DOI
Cité par Sources :