We prove that under certain mild moment and continuity assumptions, the -dimensional continuum Gaussian free field is the only stochastic process satisfying the usual domain Markov property and a scaling assumption. Our proof is based on a decomposition of the underlying functional space in terms of radial processes and spherical harmonics.
Nous montrons que, sous de faibles hypothèses de moment et de continuité, le champ libre gaussien dans le continu à dimensions est le seul processus stochastique satisfaisant à la propriété habituelle de Markov sur le domaine et une propriété d’échelle. Notre preuve est basée sur une décomposition de l’espace fonctionnel sous-jacent en termes de processus radiaux et d’harmoniques sphériques.
Accepted:
Published online:
Keywords: Gaussian free field, Gaussian fields, Markov property, Brownian motion, characterisation theorem
Mots-clés : Champ libre gaussien, champs gaussiens, propriété de Markov, mouvement brownien, théorème de caractérisation
Juhan Aru 1; Ellen Powell 2

@article{JEP_2022__9__1101_0, author = {Juhan Aru and Ellen Powell}, title = {A characterisation of the continuum {Gaussian} free field in arbitrary dimensions}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1101--1120}, publisher = {\'Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.201}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.201/} }
TY - JOUR AU - Juhan Aru AU - Ellen Powell TI - A characterisation of the continuum Gaussian free field in arbitrary dimensions JO - Journal de l’École polytechnique — Mathématiques PY - 2022 SP - 1101 EP - 1120 VL - 9 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.201/ DO - 10.5802/jep.201 LA - en ID - JEP_2022__9__1101_0 ER -
%0 Journal Article %A Juhan Aru %A Ellen Powell %T A characterisation of the continuum Gaussian free field in arbitrary dimensions %J Journal de l’École polytechnique — Mathématiques %D 2022 %P 1101-1120 %V 9 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.201/ %R 10.5802/jep.201 %G en %F JEP_2022__9__1101_0
Juhan Aru; Ellen Powell. A characterisation of the continuum Gaussian free field in arbitrary dimensions. Journal de l’École polytechnique — Mathématiques, Volume 9 (2022), pp. 1101-1120. doi : 10.5802/jep.201. https://jep.centre-mersenne.org/articles/10.5802/jep.201/
[ABR01] - Harmonic function theory, Graduate Texts in Math., vol. 137, Springer-Verlag, New York, 2001 | DOI
[BLR19] - “The dimer model on Riemann surfaces, I”, 2019 | arXiv
[BLR20] - “Dimers and imaginary geometry”, Ann. Probab. 48 (2020) no. 1, p. 1-52 | DOI | MR | Zbl
[BPR20] - “A characterisation of the Gaussian free field”, Probab. Theory Related Fields 176 (2020) no. 3, p. 1259-1301 | DOI | MR | Zbl
[BPR21] - “-moments suffice to characterise the Gaussian free field”, Electron. J. Probab. 26 (2021), p. 1-25 | DOI
[Bur86] - “Brownian excursions from hyperplanes and smooth surfaces”, Trans. Amer. Math. Soc. 295 (1986) no. 1, p. 35-57 | DOI | MR | Zbl
[DCHL + 19] - “Logarithmic variance for the height function of square-ice”, 2019 | arXiv
[DCKK + 20] - “Rotational invariance in critical planar lattice models”, 2020 | arXiv
[DKRV16] - “Liouville quantum gravity on the Riemann sphere”, Comm. Math. Phys. 342 (2016) no. 3, p. 869-907 | DOI | MR | Zbl
[DS11] - “Liouville quantum gravity and KPZ”, Invent. Math. 185 (2011) no. 2, p. 333-393 | DOI | MR | Zbl
[Dub09] - “SLE and the free field: partition functions and couplings”, J. Amer. Math. Soc. 22 (2009) no. 4, p. 995-1054 | DOI | MR | Zbl
[GM21] - “Uniform Lipschitz functions on the triangular lattice have logarithmic variations”, Comm. Math. Phys. 381 (2021) no. 3, p. 1153-1221 | DOI | MR | Zbl
[Kal97] - Foundations of modern probability, Probability and its Appl., Springer-Verlag, New York, 1997
[Ken01] - “Dominos and the Gaussian free field”, Ann. Probab. 29 (2001) no. 3, p. 1128-1137 | DOI | MR | Zbl
[MS16] - “Imaginary geometry III: reversibility of SLE(;) for ”, Ann. of Math. (2) 184 (2016) no. 2, p. 455-486 | DOI
[NS97] - “On homogenization and scaling limit of some gradient perturbations of a massless free field”, Comm. Math. Phys. 183 (1997) no. 1, p. 55-84 | DOI | MR | Zbl
[RV07] - “The noise in the circular law and the Gaussian free field”, Internat. Math. Res. Notices 2 (2007), article ID rnm006, 33 pages | DOI | Zbl
[She07] - “Gaussian free fields for mathematicians”, Probab. Theory Related Fields 139 (2007) no. 3-4, p. 521-541 | DOI | MR | Zbl
[SW71] - Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Series, vol. 32, Princeton University Press, Princeton, NJ, 1971
[WP22] - Lecture notes on the Gaussian free field, Cours Spécialisés, vol. 28, Société Mathématique de France, Paris, 2022
Cited by Sources: