A characterisation of the continuum Gaussian free field in arbitrary dimensions
[Une caractérisation du champ libre gaussien dans le continu en toute dimension]
Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1101-1120.

Nous montrons que, sous de faibles hypothèses de moment et de continuité, le champ libre gaussien dans le continu à d dimensions est le seul processus stochastique satisfaisant à la propriété habituelle de Markov sur le domaine et une propriété d’échelle. Notre preuve est basée sur une décomposition de l’espace fonctionnel sous-jacent en termes de processus radiaux et d’harmoniques sphériques.

We prove that under certain mild moment and continuity assumptions, the d-dimensional continuum Gaussian free field is the only stochastic process satisfying the usual domain Markov property and a scaling assumption. Our proof is based on a decomposition of the underlying functional space in terms of radial processes and spherical harmonics.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.201
Classification : 60G15, 60G60, 60J65
Keywords: Gaussian free field, Gaussian fields, Markov property, Brownian motion, characterisation theorem
Mot clés : Champ libre gaussien, champs gaussiens, propriété de Markov, mouvement brownien, théorème de caractérisation

Juhan Aru 1 ; Ellen Powell 2

1 Institute of Mathematics, École Polytechnique Fédérale de Lausanne CH-1015 Lausanne, Switzerland
2 Department of Mathematical and Computing Sciences, Durham University Upper Mountjoy Campus, Stockton Rd, Durham DH1 3LE, UK
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2022__9__1101_0,
     author = {Juhan Aru and Ellen Powell},
     title = {A characterisation of the continuum {Gaussian} free field in arbitrary dimensions},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1101--1120},
     publisher = {\'Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.201},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.201/}
}
TY  - JOUR
AU  - Juhan Aru
AU  - Ellen Powell
TI  - A characterisation of the continuum Gaussian free field in arbitrary dimensions
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 1101
EP  - 1120
VL  - 9
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.201/
DO  - 10.5802/jep.201
LA  - en
ID  - JEP_2022__9__1101_0
ER  - 
%0 Journal Article
%A Juhan Aru
%A Ellen Powell
%T A characterisation of the continuum Gaussian free field in arbitrary dimensions
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 1101-1120
%V 9
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.201/
%R 10.5802/jep.201
%G en
%F JEP_2022__9__1101_0
Juhan Aru; Ellen Powell. A characterisation of the continuum Gaussian free field in arbitrary dimensions. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1101-1120. doi : 10.5802/jep.201. https://jep.centre-mersenne.org/articles/10.5802/jep.201/

[ABR01] S. Axler, P. Bourdon & W. Ramey - Harmonic function theory, Graduate Texts in Math., vol. 137, Springer-Verlag, New York, 2001 | DOI

[BLR19] N. Berestycki, B. Laslier & G. Ray - “The dimer model on Riemann surfaces, I”, 2019 | arXiv

[BLR20] N. Berestycki, B. Laslier & G. Ray - “Dimers and imaginary geometry”, Ann. Probab. 48 (2020) no. 1, p. 1-52 | DOI | MR | Zbl

[BPR20] N. Berestycki, E. Powell & G. Ray - “A characterisation of the Gaussian free field”, Probab. Theory Related Fields 176 (2020) no. 3, p. 1259-1301 | DOI | MR | Zbl

[BPR21] N. Berestycki, E. Powell & G. Ray - “(1+ε)-moments suffice to characterise the Gaussian free field”, Electron. J. Probab. 26 (2021), p. 1-25 | DOI

[Bur86] K. Burdzy - “Brownian excursions from hyperplanes and smooth surfaces”, Trans. Amer. Math. Soc. 295 (1986) no. 1, p. 35-57 | DOI | MR | Zbl

[DCHL + 19] H. Duminil-Copin, M. Harel, B. Laslier, A. Raoufi & G. Ray - “Logarithmic variance for the height function of square-ice”, 2019 | arXiv

[DCKK + 20] H. Duminil-Copin, K. K. Kozlowski, D. Krachun, I. Manolescu & M. Oulamara - “Rotational invariance in critical planar lattice models”, 2020 | arXiv

[DKRV16] F. David, A. Kupiainen, R. Rhodes & V. Vargas - “Liouville quantum gravity on the Riemann sphere”, Comm. Math. Phys. 342 (2016) no. 3, p. 869-907 | DOI | MR | Zbl

[DS11] B. Duplantier & S. Sheffield - “Liouville quantum gravity and KPZ”, Invent. Math. 185 (2011) no. 2, p. 333-393 | DOI | MR | Zbl

[Dub09] J. Dubédat - “SLE and the free field: partition functions and couplings”, J. Amer. Math. Soc. 22 (2009) no. 4, p. 995-1054 | DOI | MR | Zbl

[GM21] A. Glazman & I. Manolescu - “Uniform Lipschitz functions on the triangular lattice have logarithmic variations”, Comm. Math. Phys. 381 (2021) no. 3, p. 1153-1221 | DOI | MR | Zbl

[Kal97] O. Kallenberg - Foundations of modern probability, Probability and its Appl., Springer-Verlag, New York, 1997

[Ken01] R. Kenyon - “Dominos and the Gaussian free field”, Ann. Probab. 29 (2001) no. 3, p. 1128-1137 | DOI | MR | Zbl

[MS16] J. Miller & S. Sheffield - “Imaginary geometry III: reversibility of SLE κ (ρ 1 ;ρ 2 ) for κ(4,8), Ann. of Math. (2) 184 (2016) no. 2, p. 455-486 | DOI

[NS97] A. Naddaf & T. Spencer - “On homogenization and scaling limit of some gradient perturbations of a massless free field”, Comm. Math. Phys. 183 (1997) no. 1, p. 55-84 | DOI | MR | Zbl

[RV07] B. Rider & B. Virág - “The noise in the circular law and the Gaussian free field”, Internat. Math. Res. Notices 2 (2007), article ID rnm006, 33 pages | DOI | Zbl

[She07] S. Sheffield - “Gaussian free fields for mathematicians”, Probab. Theory Related Fields 139 (2007) no. 3-4, p. 521-541 | DOI | MR | Zbl

[SW71] E. M. Stein & G. Weiss - Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Series, vol. 32, Princeton University Press, Princeton, NJ, 1971

[WP22] W. Werner & E. Powell - Lecture notes on the Gaussian free field, Cours Spécialisés, vol. 28, Société Mathématique de France, Paris, 2022

Cité par Sources :