Nous montrons que, sous de faibles hypothèses de moment et de continuité, le champ libre gaussien dans le continu à dimensions est le seul processus stochastique satisfaisant à la propriété habituelle de Markov sur le domaine et une propriété d’échelle. Notre preuve est basée sur une décomposition de l’espace fonctionnel sous-jacent en termes de processus radiaux et d’harmoniques sphériques.
We prove that under certain mild moment and continuity assumptions, the -dimensional continuum Gaussian free field is the only stochastic process satisfying the usual domain Markov property and a scaling assumption. Our proof is based on a decomposition of the underlying functional space in terms of radial processes and spherical harmonics.
Accepté le :
Publié le :
Keywords: Gaussian free field, Gaussian fields, Markov property, Brownian motion, characterisation theorem
Mot clés : Champ libre gaussien, champs gaussiens, propriété de Markov, mouvement brownien, théorème de caractérisation
Juhan Aru 1 ; Ellen Powell 2
@article{JEP_2022__9__1101_0, author = {Juhan Aru and Ellen Powell}, title = {A characterisation of the continuum {Gaussian} free field in arbitrary dimensions}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1101--1120}, publisher = {\'Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.201}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.201/} }
TY - JOUR AU - Juhan Aru AU - Ellen Powell TI - A characterisation of the continuum Gaussian free field in arbitrary dimensions JO - Journal de l’École polytechnique — Mathématiques PY - 2022 SP - 1101 EP - 1120 VL - 9 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.201/ DO - 10.5802/jep.201 LA - en ID - JEP_2022__9__1101_0 ER -
%0 Journal Article %A Juhan Aru %A Ellen Powell %T A characterisation of the continuum Gaussian free field in arbitrary dimensions %J Journal de l’École polytechnique — Mathématiques %D 2022 %P 1101-1120 %V 9 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.201/ %R 10.5802/jep.201 %G en %F JEP_2022__9__1101_0
Juhan Aru; Ellen Powell. A characterisation of the continuum Gaussian free field in arbitrary dimensions. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1101-1120. doi : 10.5802/jep.201. https://jep.centre-mersenne.org/articles/10.5802/jep.201/
[ABR01] - Harmonic function theory, Graduate Texts in Math., vol. 137, Springer-Verlag, New York, 2001 | DOI
[BLR19] - “The dimer model on Riemann surfaces, I”, 2019 | arXiv
[BLR20] - “Dimers and imaginary geometry”, Ann. Probab. 48 (2020) no. 1, p. 1-52 | DOI | MR | Zbl
[BPR20] - “A characterisation of the Gaussian free field”, Probab. Theory Related Fields 176 (2020) no. 3, p. 1259-1301 | DOI | MR | Zbl
[BPR21] - “-moments suffice to characterise the Gaussian free field”, Electron. J. Probab. 26 (2021), p. 1-25 | DOI
[Bur86] - “Brownian excursions from hyperplanes and smooth surfaces”, Trans. Amer. Math. Soc. 295 (1986) no. 1, p. 35-57 | DOI | MR | Zbl
[DCHL + 19] - “Logarithmic variance for the height function of square-ice”, 2019 | arXiv
[DCKK + 20] - “Rotational invariance in critical planar lattice models”, 2020 | arXiv
[DKRV16] - “Liouville quantum gravity on the Riemann sphere”, Comm. Math. Phys. 342 (2016) no. 3, p. 869-907 | DOI | MR | Zbl
[DS11] - “Liouville quantum gravity and KPZ”, Invent. Math. 185 (2011) no. 2, p. 333-393 | DOI | MR | Zbl
[Dub09] - “SLE and the free field: partition functions and couplings”, J. Amer. Math. Soc. 22 (2009) no. 4, p. 995-1054 | DOI | MR | Zbl
[GM21] - “Uniform Lipschitz functions on the triangular lattice have logarithmic variations”, Comm. Math. Phys. 381 (2021) no. 3, p. 1153-1221 | DOI | MR | Zbl
[Kal97] - Foundations of modern probability, Probability and its Appl., Springer-Verlag, New York, 1997
[Ken01] - “Dominos and the Gaussian free field”, Ann. Probab. 29 (2001) no. 3, p. 1128-1137 | DOI | MR | Zbl
[MS16] - “Imaginary geometry III: reversibility of SLE(;) for ”, Ann. of Math. (2) 184 (2016) no. 2, p. 455-486 | DOI
[NS97] - “On homogenization and scaling limit of some gradient perturbations of a massless free field”, Comm. Math. Phys. 183 (1997) no. 1, p. 55-84 | DOI | MR | Zbl
[RV07] - “The noise in the circular law and the Gaussian free field”, Internat. Math. Res. Notices 2 (2007), article ID rnm006, 33 pages | DOI | Zbl
[She07] - “Gaussian free fields for mathematicians”, Probab. Theory Related Fields 139 (2007) no. 3-4, p. 521-541 | DOI | MR | Zbl
[SW71] - Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Series, vol. 32, Princeton University Press, Princeton, NJ, 1971
[WP22] - Lecture notes on the Gaussian free field, Cours Spécialisés, vol. 28, Société Mathématique de France, Paris, 2022
Cité par Sources :