Let be a finite extension of . The field of norms of a -adic Lie extension is a local field of characteristic which comes equipped with an action of . When can we lift this action to characteristic , along with a compatible Frobenius map? In this note, we formulate precisely this question, explain its relevance to the theory of -modules, and give a condition for the existence of certain types of lifts.
Soit une extension finie de . Le corps des normes d’une extension de Lie -adique est un corps local de caractéristique muni d’une action de . Quand peut-on relever cette action en caractéristique nulle, en même temps qu’une application de Frobenius compatible ? Dans cette note, nous formulons de manière précise cette question, expliquons son intérêt pour la théorie des -modules et donnons une condition pour l’existence de certains types de relèvements.
Accepted:
Published online:
DOI: 10.5802/jep.2
Keywords: Field of norms, $(\phi ,\Gamma )$-module, $p$-adic representation, anticyclotomic extension, Cohen ring, non-Archimedean dynamical system
Mot clés : Corps des normes, $(\phi ,\Gamma )$-module, représentation $p$-adique, extension anticyclotomique, anneau de Cohen, système dynamique non archimédien
Laurent Berger 1
@article{JEP_2014__1__29_0, author = {Laurent Berger}, title = {Lifting the field of norms}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {29--38}, publisher = {\'Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.2}, mrnumber = {3322781}, zbl = {1317.11121}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.2/} }
Laurent Berger. Lifting the field of norms. Journal de l’École polytechnique — Mathématiques, Volume 1 (2014), pp. 29-38. doi : 10.5802/jep.2. https://jep.centre-mersenne.org/articles/10.5802/jep.2/
[CE14] - “A note on Fontaine theory using different Lubin-Tate groups”, Kodai Math. J. 37 (2014) no. 1, p. 196-211 | DOI | MR | Zbl
[Fon90] - “Représentations -adiques des corps locaux. I”, in The Grothendieck Festschrift, Vol. II, Progress in Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, p. 249-309 | Zbl
[Fon94a] - “Le corps des périodes -adiques”, in Périodes -adiques (Bures-sur-Yvette, 1988), Astérisque, vol. 223, Société Mathématique de France, 1994, p. 59-111, With an appendix by Pierre Colmez
[Fon94b] - “Représentations -adiques semi-stables”, in Périodes -adiques (Bures-sur-Yvette, 1988), Astérisque, vol. 223, Société Mathématique de France, 1994, p. 113-184 | Zbl
[FW79a] - “Le “corps des normes” de certaines extensions algébriques de corps locaux”, C. R. Acad. Sci. Paris Sér. A-B 288 (1979) no. 6, p. A367-A370 | Zbl
[FW79b] - “Extensions algébriques et corps des normes des extensions APF des corps locaux”, C. R. Acad. Sci. Paris Sér. A-B 288 (1979) no. 8, p. A441-A444 | Zbl
[FX13] - “Triangulable -analytic -modules of rank ”, Algebra Number Theory 7 (2013) no. 10, p. 2545-2592
[KR09] - “Galois representations and Lubin-Tate groups”, Doc. Math. 14 (2009), p. 441-461 | MR | Zbl
[Lub94] - “Non-Archimedean dynamical systems”, Compositio Math. 94 (1994) no. 3, p. 321-346 | MR
[Sch06] - “Higher fields of norms and -modules”, Doc. Math. (2006), p. 685-709, Extra Volume: John H. Coates’ Sixtieth Birthday | MR
[Sen72] - “Ramification in -adic Lie extensions”, Invent. Math. 17 (1972), p. 44-50 | DOI | MR | Zbl
[Win83] - “Le corps des normes de certaines extensions infinies de corps locaux; applications”, Ann. Sci. École Norm. Sup. (4) 16 (1983) no. 1, p. 59-89 | DOI | Numdam | MR | Zbl
Cited by Sources: