Lifting the field of norms
Journal de l’École polytechnique — Mathématiques, Volume 1 (2014), pp. 29-38.

Let K be a finite extension of Q p . The field of norms of a p-adic Lie extension K /K is a local field of characteristic p which comes equipped with an action of Gal(K /K). When can we lift this action to characteristic 0, along with a compatible Frobenius map? In this note, we formulate precisely this question, explain its relevance to the theory of (ϕ,Γ)-modules, and give a condition for the existence of certain types of lifts.

Soit K une extension finie de Q p . Le corps des normes d’une extension de Lie p-adique K /K est un corps local de caractéristique p muni d’une action de Gal(K /K). Quand peut-on relever cette action en caractéristique nulle, en même temps qu’une application de Frobenius compatible ? Dans cette note, nous formulons de manière précise cette question, expliquons son intérêt pour la théorie des (ϕ,Γ)-modules et donnons une condition pour l’existence de certains types de relèvements.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.2
Classification: 11S15, 11S20, 11S25, 11S31, 11S82, 13F25
Keywords: Field of norms, $(\phi ,\Gamma )$-module, $p$-adic representation, anticyclotomic extension, Cohen ring, non-Archimedean dynamical system
Mot clés : Corps des normes, $(\phi ,\Gamma )$-module, représentation $p$-adique, extension anticyclotomique, anneau de Cohen, système dynamique non archimédien

Laurent Berger 1

1 UMPA de l’ENS de Lyon, UMR 5669 du CNRS, IUF 46 allée d’Italie, 69007 Lyon, France
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2014__1__29_0,
     author = {Laurent Berger},
     title = {Lifting the field of norms},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {29--38},
     publisher = {\'Ecole polytechnique},
     volume = {1},
     year = {2014},
     doi = {10.5802/jep.2},
     mrnumber = {3322781},
     zbl = {1317.11121},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.2/}
}
TY  - JOUR
AU  - Laurent Berger
TI  - Lifting the field of norms
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2014
SP  - 29
EP  - 38
VL  - 1
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.2/
DO  - 10.5802/jep.2
LA  - en
ID  - JEP_2014__1__29_0
ER  - 
%0 Journal Article
%A Laurent Berger
%T Lifting the field of norms
%J Journal de l’École polytechnique — Mathématiques
%D 2014
%P 29-38
%V 1
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.2/
%R 10.5802/jep.2
%G en
%F JEP_2014__1__29_0
Laurent Berger. Lifting the field of norms. Journal de l’École polytechnique — Mathématiques, Volume 1 (2014), pp. 29-38. doi : 10.5802/jep.2. https://jep.centre-mersenne.org/articles/10.5802/jep.2/

[CE14] B. Chiarellotto & F. Esposito - “A note on Fontaine theory using different Lubin-Tate groups”, Kodai Math. J. 37 (2014) no. 1, p. 196-211 | DOI | MR | Zbl

[Fon90] J.-M. Fontaine - “Représentations p-adiques des corps locaux. I”, in The Grothendieck Festschrift, Vol. II, Progress in Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, p. 249-309 | Zbl

[Fon94a] J.-M. Fontaine - “Le corps des périodes p-adiques”, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque, vol. 223, Société Mathématique de France, 1994, p. 59-111, With an appendix by Pierre Colmez

[Fon94b] J.-M. Fontaine - “Représentations p-adiques semi-stables”, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque, vol. 223, Société Mathématique de France, 1994, p. 113-184 | Zbl

[FW79a] J.-M. Fontaine & J.-P. Wintenberger - “Le “corps des normes” de certaines extensions algébriques de corps locaux”, C. R. Acad. Sci. Paris Sér. A-B 288 (1979) no. 6, p. A367-A370 | Zbl

[FW79b] J.-M. Fontaine & J.-P. Wintenberger - “Extensions algébriques et corps des normes des extensions APF des corps locaux”, C. R. Acad. Sci. Paris Sér. A-B 288 (1979) no. 8, p. A441-A444 | Zbl

[FX13] L. Fourquaux & B. Xie - “Triangulable 𝒪 F -analytic (ϕ q ,Γ)-modules of rank 2, Algebra Number Theory 7 (2013) no. 10, p. 2545-2592

[KR09] M. Kisin & W. Ren - “Galois representations and Lubin-Tate groups”, Doc. Math. 14 (2009), p. 441-461 | MR | Zbl

[Lub94] J. Lubin - “Non-Archimedean dynamical systems”, Compositio Math. 94 (1994) no. 3, p. 321-346 | MR

[Sch06] A. J. Scholl - “Higher fields of norms and (φ,Γ)-modules”, Doc. Math. (2006), p. 685-709, Extra Volume: John H. Coates’ Sixtieth Birthday | MR

[Sen72] S. Sen - “Ramification in p-adic Lie extensions”, Invent. Math. 17 (1972), p. 44-50 | DOI | MR | Zbl

[Win83] J.-P. Wintenberger - “Le corps des normes de certaines extensions infinies de corps locaux; applications”, Ann. Sci. École Norm. Sup. (4) 16 (1983) no. 1, p. 59-89 | DOI | Numdam | MR | Zbl

Cited by Sources: