Measure equivalence classification of transvection-free right-angled Artin groups
[Classification des groupes d’Artin à angles droits sans transvections pour l’équivalence mesurée]
Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1021-1067.

Nous démontrons que si deux groupes d’Artin à angles droits sans transvections sont mesurablement équivalents, alors ils ont des graphes d’extension isomorphes. En conséquence, deux groupes d’Artin à angles droits ayant des groupes d’automorphismes extérieurs finis sont mesurablement équivalents si et seulement s’ils sont isomorphes. Ceci coïncide avec la classification pour la quasi-isométrie. Par contre, contrairement au cas de la quasi-isométrie, un groupe d’Artin à angles droits ne peut jamais être super-rigide pour l’équivalence mesurée, pour deux raisons. D’abord, un groupe d’Artin à angles droits G est toujours mesurablement équivalent à tout produit graphé de groupes moyennables infinis dénombrables sur le même graphe sous-jacent. Ensuite, lorsque G est non abélien, le groupe d’automorphismes du revêtement universel du complexe de Salvetti de G contient toujours des réseaux (non uniformes) qui ne sont pas de type fini.

We prove that if two transvection-free right-angled Artin groups are measure equivalent, then they have isomorphic extension graphs. As a consequence, two right-angled Artin groups with finite outer automorphism groups are measure equivalent if and only if they are isomorphic. This matches the quasi-isometry classification. However, in contrast with the quasi-isometry question, we observe that no right-angled Artin group is superrigid for measure equivalence in the strongest possible sense, for two reasons. First, a right-angled Artin group G is always measure equivalent to any graph product of infinite countable amenable groups over the same defining graph. Second, when G is nonabelian, the automorphism group of the universal cover of the Salvetti complex of G always contains infinitely generated (non-uniform) lattices.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.199
Classification : 20F36, 20F65, 37A20, 46L36
Keywords: Right-angled Artin groups, measure equivalence
Mot clés : Groupes d’Artin à angles droits, équivalence mesurée

Camille Horbez 1 ; Jingyin Huang 2

1 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay 91405, Orsay, France
2 Department of Mathematics, The Ohio State University 100 Math Tower, 231 W 18th Ave, Columbus, OH 43210, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2022__9__1021_0,
     author = {Camille Horbez and Jingyin Huang},
     title = {Measure equivalence classification of transvection-free right-angled {Artin} groups},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1021--1067},
     publisher = {\'Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.199},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.199/}
}
TY  - JOUR
AU  - Camille Horbez
AU  - Jingyin Huang
TI  - Measure equivalence classification of transvection-free right-angled Artin groups
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 1021
EP  - 1067
VL  - 9
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.199/
DO  - 10.5802/jep.199
LA  - en
ID  - JEP_2022__9__1021_0
ER  - 
%0 Journal Article
%A Camille Horbez
%A Jingyin Huang
%T Measure equivalence classification of transvection-free right-angled Artin groups
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 1021-1067
%V 9
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.199/
%R 10.5802/jep.199
%G en
%F JEP_2022__9__1021_0
Camille Horbez; Jingyin Huang. Measure equivalence classification of transvection-free right-angled Artin groups. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1021-1067. doi : 10.5802/jep.199. https://jep.centre-mersenne.org/articles/10.5802/jep.199/

[Ada94] S. Adams - “Indecomposability of equivalence relations generated by word hyperbolic groups”, Topology 33 (1994) no. 4, p. 785-798 | DOI | MR | Zbl

[AG12] A. Alvarez & D. Gaboriau - “Free products, orbit equivalence and measure equivalence rigidity”, Groups Geom. Dyn. 6 (2012) no. 1, p. 53-82 | DOI | MR | Zbl

[AM15] Y. Antolín & A. Minasyan - “Tits alternatives for graph products”, J. reine angew. Math. 2015 (2015) no. 704, p. 55-83 | DOI | MR | Zbl

[Aus16] T. Austin - “Integrable measure equivalence for groups of polynomial growth”, Groups Geom. Dyn. 10 (2016) no. 1, p. 117-154, With Appendix B by Lewis Bowen | DOI | MR | Zbl

[BC12] J. A. Behrstock & R. Charney - “Divergence and quasimorphisms of right-angled Artin groups”, Math. Ann. 352 (2012) no. 2, p. 339-356 | DOI | MR | Zbl

[BCG + 09] J. Brodzki, S. J. Campbell, E. Guentner, G. A. Niblo & N. Wright - “Property A and CAT(0) cube complexes”, J. Funct. Anal. 256 (2009) no. 5, p. 1408-1431 | DOI | MR | Zbl

[BE04] L. Bartholdi & A. Erschler - “Groups of given intermediate word growth”, Ann. Inst. Fourier (Grenoble) 64 (2004) no. 5, p. 2003-2036 | DOI | MR

[BFS13] U. Bader, A. Furman & R. Sauer - “Integrable measure equivalence and rigidity of hyperbolic lattices”, Invent. Math. 194 (2013) no. 2, p. 313-379 | DOI | MR | Zbl

[BFS20] U. Bader, A. Furman & R. Sauer - “Lattice envelopes”, Duke Math. J. 169 (2020) no. 2, p. 213-278 | DOI | MR | Zbl

[BH99] M. Bridson & A. Haefliger - Metric spaces of non-positive curvature, Grundlehren Math. Wiss., vol. 319, Springer-Verlag, Berlin, 1999 | DOI

[BJN10] J. A. Behrstock, T. Januszkiewicz & W. D. Neumann - “Quasi-isometric classification of some high dimensional right-angled Artin groups”, Groups Geom. Dyn. 4 (2010) no. 4, p. 681-692 | DOI | MR | Zbl

[BKS08] M. Bestvina, B. Kleiner & M. Sageev - “The asymptotic geometry of right-angled Artin groups. I.”, Geom. Topol. 12 (2008) no. 3, p. 1653-1699 | DOI | MR | Zbl

[BL01] H. Bass & A. Lubotzky - Tree lattices, Progress in Math., vol. 176, Birkhäuser Boston, Inc., Boston, MA, 2001 | DOI

[BN08] J. A. Behrstock & W. D. Neumann - “Quasi-isometric classification of graph manifold groups”, Duke Math. J. 141 (2008) no. 2, p. 217-240 | DOI | MR | Zbl

[CCV07] R. Charney, J. Crisp & K. Vogtmann - “Automorphisms of 2–dimensional right-angled Artin groups”, Geom. Topol. 11 (2007) no. 4, p. 2227-2264 | DOI | MR | Zbl

[CdlH16] Y. Cornulier & P. de la Harpe - Metric geometry of locally compact groups, EMS Tracts in Math., vol. 25, European Mathematical Society, Zürich, 2016 | DOI

[CFI16] I. Chatterji, T. Fernós & A. Iozzi - “The median class and superrigidity of actions on CAT(0) cube complexes”, J. Topology 9 (2016) no. 2, p. 349-400 | DOI | MR | Zbl

[Cha07] R. Charney - “An introduction to right-angled Artin groups”, Geom. Dedicata 125 (2007) no. 1, p. 141-158 | DOI | MR | Zbl

[CK15] I. Chifan & Y. Kida - “OE and W * rigidity results for actions by surface braid groups”, Proc. London Math. Soc. (3) 111 (2015) no. 6, p. 1431-1470 | DOI | Zbl

[CKE21] I. Chifan & S. Kunnawalkam Elayavalli - “Cartan subalgebras in von Neumann algebras associated to graph product groups”, 2021 | arXiv

[DKR07] A. J. Duncan, I. V. Kazachkov & V. N. Remeslennikov - “Parabolic and quasiparabolic subgroups of free partially commutative groups”, J. Algebra 318 (2007) no. 2, p. 918-932 | DOI | MR | Zbl

[DL03] M. W. Davis & I. Leary - “The 2 -cohomology of Artin groups”, J. London Math. Soc. (2) 68 (2003) no. 2, p. 493-510 | DOI | MR

[Dro87] C. Droms - “Isomorphisms of graph groups”, Proc. Amer. Math. Soc. 100 (1987) no. 3, p. 407-408 | DOI | MR | Zbl

[Duc18] B. Duchesne - “Groups acting on spaces of non-positive curvature”, in Handbook of group actions. Vol. III, Adv. Lect. Math., vol. 40, International Press, Sommerville, MA, 2018, p. 101-141 | MR | Zbl

[Dye59] H. Dye - “On groups of measure preserving transformation. I”, Amer. J. Math. 81 (1959), p. 119-159 | DOI | MR

[Dye63] H. Dye - “On groups of measure preserving transformations. II”, Amer. J. Math. 85 (1963), p. 551-576 | DOI | MR

[Fer18] T. Fernós - “The Furstenberg-Poisson boundary and CAT(0) cube complexes”, Ergodic Theory Dynam. Systems 38 (2018) no. 6, p. 2180-2223 | DOI | MR | Zbl

[FLM18] T. Fernós, J. Lécureux & F. Mathéus - “Random walks and boundaries of CAT(0) cubical complexes”, Comment. Math. Helv. 93 (2018) no. 2, p. 291-333 | DOI | MR | Zbl

[FM77] J. Feldman & C. Moore - “Ergodic equivalence relations, cohomology, and von Neumann algebras”, Trans. Amer. Math. Soc. 234 (1977) no. 2, p. 325-359 | DOI | MR

[FSZ89] J. Feldman, C. E. Sutherland & R. J. Zimmer - “Subrelations of ergodic equivalence relations”, Ergodic Theory Dynam. Systems 9 (1989) no. 2, p. 239-269 | DOI | MR | Zbl

[Fur99a] A. Furman - “Gromov’s measure equivalence and rigidity of higher-rank lattices”, Ann. of Math. (2) 150 (1999), p. 1059-1081 | DOI | MR | Zbl

[Fur99b] A. Furman - “Orbit equivalence rigidity”, Ann. of Math. (2) 150 (1999) no. 3, p. 1083-1108 | DOI | MR | Zbl

[Fur11] A. Furman - “A survey of measured group theory”, in Geometry, rigidity, and group actions, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011, p. 296-374 | MR | Zbl

[Gab00] D. Gaboriau - “Coût des relations d’équivalence et des groupes”, Invent. Math. 139 (2000) no. 1, p. 41-98 | DOI | Zbl

[Gab02a] D. Gaboriau - “Invariants 2 de relations d’équivalence et de groupes”, Publ. Math. Inst. Hautes Études Sci. 95 (2002), p. 93-150 | DOI

[Gab02b] D. Gaboriau - “On orbit equivalence of measure preserving actions”, in Rigidity in dynamics and geometry (Cambridge, 2000), Springer, Berlin, 2002, p. 167-186 | DOI | MR | Zbl

[Gab05] D. Gaboriau - “Examples of groups that are measure equivalent to the free group”, Ergodic Theory Dynam. Systems 25 (2005) no. 6, p. 1809-1827 | DOI | MR | Zbl

[Gab10] D. Gaboriau - “Orbit equivalence and measured group theory”, in Proceedings of the ICM (Hyderabad, 2010), Vol. III, Hindustan Book Agency, New Dehli, 2010, p. 1501-1527

[Gen20] A. Genevois - “Contracting isometries of CAT(0) cube complexes and acylindrical hyperbolicity of diagram groups”, Algebraic Geom. Topol. 20 (2020) no. 1, p. 49-134 | DOI | MR | Zbl

[GH21] V. Guirardel & C. Horbez - “Measure equivalence rigidity of Out(F N ), 2021 | arXiv

[GHL20] V. Guirardel, C. Horbez & J. Lécureux - “Cocycle superrigidity from higher-rank lattices to Out(F N ), 2020 | arXiv

[God03] E. Godelle - “Parabolic subgroups of Artin groups of type FC”, Pacific J. Math. 208 (2003) no. 3, p. 243-254 | DOI | MR | Zbl

[Gre90] E. R. Green - Graph products of groups, Ph. D. Thesis, University of Leeds, 1990

[Gro93] M. Gromov - “Asymptotic invariants of infinite groups”, in Geometric group theory, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 182, Cambridge University Press, Cambridge, 1993, p. 1-295 | MR

[Hag08] F. Haglund - “Finite index subgroups of graph products”, Geom. Dedicata 135 (2008) no. 1, p. 167 | DOI | MR | Zbl

[HH20] C. Horbez & J. Huang - “Boundary amenability and measure equivalence rigidity among two-dimensional Artin groups of hyperbolic type”, 2020 | arXiv

[HHL20] C. Horbez, J. Huang & J. Lécureux - “Proper proximality in non-positive curvature”, 2020 | arXiv

[HM95] S. Hermiller & J. Meier - “Algorithms and geometry for graph products of groups”, J. Algebra 171 (1995) no. 1, p. 230-257 | DOI | MR | Zbl

[HR15] C. Houdayer & S. Raum - “Baumslag-Solitar groups, relative profinite completions and measure equivalence rigidity”, J. Topology 8 (2015) no. 1, p. 295-313 | DOI | MR | Zbl

[HS20] M. F. Hagen & T. Susse - “On hierarchical hyperbolicity of cubical groups”, Israel J. Math. 236 (2020) no. 1, p. 45-89 | DOI | MR | Zbl

[Hua16] J. Huang - “Quasi-isometry classification of right-angled Artin groups II: several infinite out cases”, 2016 | arXiv

[Hua17a] J. Huang - “Quasi-isometric classification of right-angled Artin groups I: the finite out case”, Geom. Topol. 21 (2017) no. 6, p. 3467-3537 | DOI | MR | Zbl

[Hua17b] J. Huang - “Top-dimensional quasiflats in CAT(0) cube complexes”, Geom. Topol. 21 (2017) no. 4, p. 2281-2352 | DOI | MR | Zbl

[Hua18] J. Huang - “Commensurability of groups quasi-isometric to RAAGs”, Invent. Math. 213 (2018) no. 3, p. 1179-1247 | DOI | MR | Zbl

[HW08] F. Haglund & D. T. Wise - “Special cube complexes”, Geom. Funct. Anal. 17 (2008) no. 5, p. 1551-1620 | DOI | MR | Zbl

[Kec95] A. Kechris - Classical descriptive set theory, Graduate Texts in Math., vol. 156, Springer-Verlag, New York, 1995 | DOI

[KH18] B. Kleiner & J. Huang - “Groups quasi-isometric to right-angled Artin groups”, Duke Math. J. 167 (2018) no. 3, p. 537-602 | MR | Zbl

[Kid08] Y. Kida - The mapping class group from the viewpoint of measure equivalence theory, Mem. Amer. Math. Soc., vol. 196, no. 916, American Mathematical Society, Providence, RI, 2008

[Kid09] Y. Kida - “Introduction to measurable rigidity of mapping class groups”, in Handbook of Teichmüller theory, II, IRMA Lect. Math. Theor. Phys., vol. 13, European Mathematical Society, Zürich, 2009, p. 297-367 | DOI | MR | Zbl

[Kid10] Y. Kida - “Measure equivalence rigidity of the mapping class group”, Ann. of Math. (2) 171 (2010) no. 3, p. 1851-1901 | DOI | MR | Zbl

[Kid11] Y. Kida - “Rigidity of amalgamated free products in measure equivalence”, J. Topology 4 (2011) no. 3, p. 687-735 | DOI | MR | Zbl

[Kid14] Y. Kida - “Invariants of orbit equivalence relations and Baumslag-Solitar groups”, Tôhoku Math. J. (2) 66 (2014) no. 2, p. 205-258 | MR | Zbl

[KK13] S.-h. Kim & T. Koberda - “Embedability between right-angled Artin groups”, Geom. Topol. 17 (2013) no. 1, p. 493-530 | DOI | MR

[KK14] S.-h. Kim & T. Koberda - “The geometry of the curve graph of a right-angled Artin group”, Internat. J. Algebra Comput. 24 (2014) no. 2, p. 121-169 | DOI | MR | Zbl

[Lau95] M. R. Laurence - “A generating set for the automorphism group of a graph group”, J. London Math. Soc. (2) 52 (1995) no. 2, p. 318-334 | DOI | MR | Zbl

[Mar20] A. Margolis - “Quasi-isometry classification of right-angled Artin groups that split over cyclic subgroups”, Groups Geom. Dyn. 14 (2020) no. 4, p. 1351-1417

[Min12] A. Minasyan - “Hereditary conjugacy separability of right-angled Artin groups and its applications”, Groups Geom. Dyn. 6 (2012) no. 2, p. 335-388 | DOI | MR | Zbl

[MS06] N. Monod & Y. Shalom - “Orbit equivalence rigidity and bounded cohomology”, Ann. of Math. (2) 164 (2006) no. 3, p. 825-878 | DOI | MR | Zbl

[NS13] A. Nevo & M. Sageev - “The Poisson boundary of CAT(0) cube complex groups”, Groups Geom. Dyn. 7 (2013) no. 3, p. 653-695 | DOI | MR | Zbl

[OP10a] N. Ozawa & S. Popa - “On a class of II 1 factors with at most one Cartan subalgebra”, Ann. of Math. (2) 172 (2010) no. 1, p. 713-749 | DOI | MR

[OP10b] N. Ozawa & S. Popa - “On a class of II 1 factors with at most one Cartan subalgebra, II”, Amer. J. Math. 132 (2010) no. 3, p. 841-866 | DOI | MR | Zbl

[OW80] D. S. Ornstein & B. Weiss - “Ergodic theory of amenable group actions. I. The Rohlin lemma”, Bull. Amer. Math. Soc. (N.S.) 2 (1980) no. 1, p. 161-164 | DOI | MR | Zbl

[PV10] S. Popa & S. Vaes - “Group measure space decomposition of II 1 factors and W * -superrigidity”, Invent. Math. 182 (2010) no. 2, p. 371-417 | DOI | MR | Zbl

[PV14] S. Popa & S. Vaes - “Unique Cartan decomposition for II 1 factors arising from arbitrary actions of free groups”, Acta Math. 212 (2014) no. 1, p. 141-198 | DOI | Zbl

[Rol98] M. A. Roller - “Poc sets, median algebras and group actions. An extended study of Dunwoody’s construction and Sageev’s theorem” (1998), preprint

[Sag12] M. Sageev - “CAT(0) cube complexes and groups”, in Geometric group theory, IAS/Park City Math. Ser., vol. 21, American Mathematical Society, Providence, RI, 2012, p. 7-54 | DOI | Zbl

[Ser71] J.-P. Serre - “Cohomologie des groupes discrets”, in Séminaire Bourbaki, Lect. Notes in Math., vol. 244, Springer, Berlin, 1971, p. 337-350 | Numdam | MR | Zbl

[Ser89] H. Servatius - “Automorphisms of graph groups”, J. Algebra 126 (1989) no. 1, p. 34-60 | DOI | MR | Zbl

[Sha05] Y. Shalom - “Measurable group theory”, in Proceedings ECM, European Mathematical Society, Zürich, 2005, p. 391-423 | MR | Zbl

[Why99] K. Whyte - “Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture”, Duke Math. J. 99 (1999) no. 1, p. 93-112 | DOI | MR | Zbl

[Zim80] R. J. Zimmer - “Strong rigidity for ergodic actions of semisimple groups”, Ann. of Math. (2) 112 (1980) no. 3, p. 511-529 | DOI | MR | Zbl

[Zim91] R. J. Zimmer - “Groups generating transversals to semisimple Lie group actions”, Israel J. Math. 73 (1991) no. 2, p. 151-159 | DOI | MR | Zbl

Cité par Sources :