Soit une variété arithmétique projective régulière munie d’un fibré en droites hermitien ample . On montre que la proportion des sections globales avec de dont le diviseur n’a pas de point singulier sur la fibre pour tout nombre premier tend vers quand .
Let be a regular projective arithmetic variety equipped with an ample Hermitian line bundle . We prove that the proportion of global sections with of whose divisor does not have a singular point on the fiber over any prime tends to as .
Accepté le :
Publié le :
Keywords: Bertini theorem, Arakelov geometry, arithmetic ampleness
Mot clés : Théorème de Bertini, géométrie d’Arakelov, amplitude arithmétique
Xiaozong Wang 1
@article{JEP_2022__9__601_0, author = {Xiaozong Wang}, title = {On the {Bertini} regularity theorem for arithmetic varieties}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {601--670}, publisher = {\'Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.191}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.191/} }
TY - JOUR AU - Xiaozong Wang TI - On the Bertini regularity theorem for arithmetic varieties JO - Journal de l’École polytechnique — Mathématiques PY - 2022 SP - 601 EP - 670 VL - 9 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.191/ DO - 10.5802/jep.191 LA - en ID - JEP_2022__9__601_0 ER -
%0 Journal Article %A Xiaozong Wang %T On the Bertini regularity theorem for arithmetic varieties %J Journal de l’École polytechnique — Mathématiques %D 2022 %P 601-670 %V 9 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.191/ %R 10.5802/jep.191 %G en %F JEP_2022__9__601_0
Xiaozong Wang. On the Bertini regularity theorem for arithmetic varieties. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 601-670. doi : 10.5802/jep.191. https://jep.centre-mersenne.org/articles/10.5802/jep.191/
[AB95] - “Théorème de Hilbert-Samuel “arithmétique””, Ann. Inst. Fourier (Grenoble) 45 (1995) no. 2, p. 375-401 | DOI | Numdam | Zbl
[Aut01] - “Points entiers et théorèmes de Bertini arithmétiques”, Ann. Inst. Fourier (Grenoble) 51 (2001) no. 6, p. 1507-1523, Corrigendum: Ibid. 52 (2002), no. 1, p. 303–304 | DOI | Numdam | MR | Zbl
[BSW16] - “Squarefree values of polynomial discriminants I”, 2016 | arXiv
[BV19] - “Irreducibility of random polynomials of large degree”, Acta Math. 223 (2019) no. 2, p. 195-249 | DOI | MR | Zbl
[Cha21] - “Arithmetic ampleness and an arithmetic Bertini theorem”, Ann. Sci. École Norm. Sup. (4) 54 (2021) no. 6, p. 1541-1590 | DOI | MR
[CP16] - “Bertini irreducibility theorems over finite fields”, J. Amer. Math. Soc. 29 (2016) no. 1, p. 81-94, Erratum: Ibid. 32 (2019), no. 2, p. 605–607 | DOI | MR | Zbl
[Ful84] - Introduction to intersection theory in algebraic geometry, CBMS Regional Conference Series in Math., vol. 54, American Mathematical Society, Providence, RI, 1984 | DOI | MR
[Gra98] - “ allows us to count squarefrees”, Internat. Math. Res. Notices (1998) no. 19, p. 991-1009 | DOI | MR | Zbl
[GS91] - “On the number of lattice points in convex symmetric bodies and their duals”, Israel J. Math. 74 (1991) no. 2-3, p. 347-357, Erratum: Ibid. 171 (2009), p. 443–444 | DOI | MR | Zbl
[GS92] - “An arithmetic Riemann-Roch theorem”, Invent. Math. 110 (1992) no. 3, p. 473-543 | DOI | MR | Zbl
[Jou83] - Théorèmes de Bertini et applications, Progress in Math., vol. 42, Birkhäuser Boston, Inc., Boston, MA, 1983 | MR
[Laz04] - Positivity in algebraic geometry. I, Ergeb. Math. Grenzgeb. (3), vol. 48, Springer-Verlag, Berlin, 2004 | DOI
[LW54] - “Number of points of varieties in finite fields”, Amer. J. Math. 76 (1954), p. 819-827 | DOI | MR | Zbl
[Poo03] - “Squarefree values of multivariable polynomials”, Duke Math. J. 118 (2003) no. 2, p. 353-373 | DOI | MR | Zbl
[Poo04] - “Bertini theorems over finite fields”, Ann. of Math. (2) 160 (2004) no. 3, p. 1099-1127 | DOI | MR | Zbl
[Ser12] - Lectures on , Chapman & Hall/CRC Research Notes in Math., vol. 11, CRC Press, Boca Raton, FL, 2012
[Yua08] - “Big line bundles over arithmetic varieties”, Invent. Math. 173 (2008) no. 3, p. 603-649 | DOI | MR | Zbl
[Zha92] - “Positive line bundles on arithmetic surfaces”, Ann. of Math. (2) 136 (1992) no. 3, p. 569-587 | DOI | MR | Zbl
[Zha95] - “Positive line bundles on arithmetic varieties”, J. Amer. Math. Soc. 8 (1995) no. 1, p. 187-221 | DOI | MR | Zbl
Cité par Sources :