Heat kernel of supercritical nonlocal operators with unbounded drifts
Journal de l’École polytechnique — Mathématiques, Volume 9 (2022), pp. 537-579.

Let α(0,2) and d. Consider the following stochastic differential equation (SDE) in d :

dX t =b(t,X t )dt+a(t,X t- )dL t (α) ,X 0 =x,

where L (α) is a d-dimensional rotationally invariant α-stable process, b: + × d d and a: + × d d d are Hölder continuous functions in space, with respective order β,γ(0,1) such that (βγ)+α>1, uniformly in t. Here b may be unbounded. When a is bounded and uniformly elliptic, we show that the unique solution X t (x) of the above SDE admits a continuous density, which enjoys sharp two-sided estimates. We also establish sharp upper-bound for the logarithmic derivative. In particular, we cover the whole supercritical range α(0,1). Our proof is based on ad hoc parametrix expansions and probabilistic techniques.

Soit α(0,2) et d. Considérons l’équation différentielle stochastique (EDS) suivante dans d  :

dX t =b(t,X t )dt+a(t,X t- )dL t (α) ,X 0 =x,

L (α) est un processus α-stable isotrope de dimension d, b: + × d d et a: + × d d d sont des fonctions Hölder continues en espace, d’indices respectifs β,γ(0,1) tels que (βγ)+α>1, uniformément en t. En particulier b peut être non bornée. Lorsque a est bornée et uniformément elliptique, nous montrons que la solution X t (x) de l’EDS admet une densité continue, que l’on peut encadrer, à constante multiplicative près, par une même quantité. Nous obtenons également une borne supérieure précise pour la dérivée logarithmique de la densité. En particulier, nous traitons complètement le régime surcritique α(0,1). Notre approche se base sur des développements parametrix ad hoc et des techniques probabilistes.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.189
Classification: 35K08, 60H10, 60G52
Keywords: Supercritical stable SDE, heat kernel estimates, logarithmic derivative, parametrix, regularized flows
Mot clés : EDS stable surcritique, estimées de noyau de la chaleur, dérivée logarithmique, parametrix, flots régularisés

Stéphane Menozzi 1; Xicheng Zhang 2

1 Laboratoire de Modélisation Mathématique d’Evry (LaMME), UMR CNRS 8071, Université d’Evry Val d’Essonne (Université Paris Saclay) 23 Boulevard de France 91037 Evry, France & Laboratory of Stochastic Analysis, HSE Pokrovsky Blvd, 11, Moscow, Russian Federation
2 School of Mathematics and Statistics, Wuhan University Wuhan, Hubei 430072, P.R. China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2022__9__537_0,
     author = {St\'ephane Menozzi and Xicheng Zhang},
     title = {Heat kernel of supercritical nonlocal operators with unbounded drifts},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {537--579},
     publisher = {\'Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.189},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.189/}
}
TY  - JOUR
AU  - Stéphane Menozzi
AU  - Xicheng Zhang
TI  - Heat kernel of supercritical nonlocal operators with unbounded drifts
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 537
EP  - 579
VL  - 9
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.189/
DO  - 10.5802/jep.189
LA  - en
ID  - JEP_2022__9__537_0
ER  - 
%0 Journal Article
%A Stéphane Menozzi
%A Xicheng Zhang
%T Heat kernel of supercritical nonlocal operators with unbounded drifts
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 537-579
%V 9
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.189/
%R 10.5802/jep.189
%G en
%F JEP_2022__9__537_0
Stéphane Menozzi; Xicheng Zhang. Heat kernel of supercritical nonlocal operators with unbounded drifts. Journal de l’École polytechnique — Mathématiques, Volume 9 (2022), pp. 537-579. doi : 10.5802/jep.189. https://jep.centre-mersenne.org/articles/10.5802/jep.189/

[1] R. F. Bass - Stochastic processes, Cambridge Series in Statistical and Probabilistic Math., vol. 33, Cambridge University Press, Cambridge, 2011 | DOI

[2] R. F. Bass & Z.-Q. Chen - “Systems of equations driven by stable processes”, Probab. Theory Relat. Fields 134 (2006) no. 2, p. 175-214 | DOI | MR

[3] A. Bendikov - “Asymptotic formulas for symmetric stable semigroups”, Exposition. Math. 12 (1994) no. 4, p. 381-384 | MR | Zbl

[4] K. Bogdan & T. Jakubowski - “Estimates of heat kernel of fractional Laplacian perturbed by gradient operators”, Comm. Math. Phys. 271 (2007) no. 1, p. 179-198 | DOI | MR | Zbl

[5] B. Böttcher, R. Schilling & J. Wang - Lévy matters. III. Lévy-type processes: construction, approximation and sample path properties, Lect. Notes in Math., vol. 2099, Springer, Cham, 2013 | DOI

[6] P.-É. Chaudru de Raynal, S. Menozzi & E. Priola - “Schauder estimates for drifted fractional operators in the supercritical case”, J. Funct. Anal. 278 (2020) no. 8, article ID 108425, 57 pages | DOI | MR | Zbl

[7] Z.-Q. Chen, Z. Hao & X. Zhang - “Hölder regularity and gradient estimates for SDEs driven by cylindrical α-stable processes”, Electron. J. Probab. 25 (2020), p. Paper No. 137, 23 | DOI

[8] Z.-Q. Chen, E. Hu, L. Xie & X. Zhang - “Heat kernels for non-symmetric diffusion operators with jumps”, J. Differential Equations 263 (2017) no. 10, p. 6576-6634 | DOI | MR

[9] Z.-Q. Chen & X. Zhang - “Heat kernels and analyticity of non-symmetric jump diffusion semigroups”, Probab. Theory Relat. Fields 165 (2016) no. 1-2, p. 267-312 | DOI | MR | Zbl

[10] Z.-Q. Chen & X. Zhang - “Heat kernels for time-dependent non-symmetric mixed Lévy-type operators”, 2016 | arXiv

[11] Z.-Q. Chen & X. Zhang - “Heat kernels for time-dependent non-symmetric stable-like operators”, J. Math. Anal. Appl. 465 (2018) no. 1, p. 1-21 | DOI | MR | Zbl

[12] Z.-Q. Chen, X. Zhang & G. Zhao - “Supercritical SDEs driven by multiplicative stable-like Lévy processes”, Trans. Amer. Math. Soc. 374 (2021) no. 11, p. 7621-7655 | DOI | Zbl

[13] A. Debussche & N. Fournier - “Existence of densities for stable-like driven SDE’s with Hölder continuous coefficients”, J. Funct. Anal. 264 (2013) no. 8, p. 1757-1778 | DOI | Zbl

[14] F. Delarue & S. Menozzi - “Density estimates for a random noise propagating through a chain of differential equations”, J. Funct. Anal. 259 (2010) no. 6, p. 1577-1630 | DOI | MR

[15] K. Du & X. Zhang - “Optimal gradient estimates of heat kernels of stable-like operators”, Proc. Amer. Math. Soc. 147 (2019) no. 8, p. 3559-3565 | DOI | MR | Zbl

[16] A. Friedman - Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964

[17] L. Huang - “Density estimates for sdes driven by tempered stable processes”, 2015 | arXiv

[18] J. Jacod & A. N. Shiryaev - Limit theorems for stochastic processes, Grundlehren Math. Wiss., vol. 288, Springer-Verlag, Berlin, 2003 | DOI

[19] V. Knopova & A. M. Kulik - “Parametrix construction of the transition probability density of the solution to an SDE driven by α-stable noise”, Ann. Inst. H. Poincaré Probab. Statist. 54 (2018) no. 1, p. 100-140 | DOI | MR

[20] V. Knopova, A. M. Kulik & R. Schilling - “Construction and heat kernel estimates of general stable-like Markov processes”, 2020 | arXiv

[21] A. N. Kochubej - “Parabolic pseudodifferential equations, hypersingular integrals, and Markov processes”, Math. USSR-Izv. 33 (1989) no. 2, p. 233-259 | DOI | Zbl

[22] V. Kolokoltsov - “Symmetric stable laws and stable-like jump-diffusions”, Proc. London Math. Soc. (3) 80 (2000) no. 3, p. 725-768 | DOI | MR | Zbl

[23] V. Konakov, S. Menozzi & S. Molchanov - “Explicit parametrix and local limit theorems for some degenerate diffusion processes”, Ann. Inst. H. Poincaré Probab. Statist. 46 (2010) no. 4, p. 908--923 | DOI | Numdam | MR | Zbl

[24] F. Kühn - “Interior Schauder estimates for elliptic equations associated with Lévy operators”, Potential Anal. 56 (2022) no. 3, p. 459-481 | DOI

[25] T. Kulczycki, A. M. Kulik & M. Ryznar - “On weak solution of SDE driven by inhomogeneous singular Lévy noise”, 2021 | arXiv

[26] T. Kulczycki & M. Ryznar - “Semigroup properties of solutions of SDEs driven by Lévy processes with independent coordinates”, Stochastic Process. Appl. 130 (2020) no. 12, p. 7185-7217 | DOI

[27] T. Kulczycki, M. Ryznar & P. Sztonyk - “Strong Feller property for SDEs driven by multiplicative cylindrical stable noise”, Potential Anal. 55 (2021) no. 1, p. 75-126 | DOI | MR | Zbl

[28] A. M. Kulik - “On weak uniqueness and distributional properties of a solution to an SDE with α-stable noise”, Stochastic Process. Appl. 129 (2019) no. 2, p. 473-506 | DOI | MR

[29] A. M. Kulik, S. Peszat & E. Priola - “Gradient formula for transition semigroup corresponding to stochastic equation driven by a system of independent Lévy processes”, 2020 | arXiv

[30] E. E. Levi - “Sulle equazioni lineari totalmente ellittiche alle derivate parziali”, Rend. Circ. Mat. Palermo 24 (1907) no. 1, p. 275-317 | DOI | Zbl

[31] W. Liu, R. Song & L. Xie - “Gradient estimates for the fundamental solution of Lévy type operator”, Adv. in Nonlinear Anal. 9 (2020) no. 1, p. 1453-1462 | DOI | Zbl

[32] A. J. Majda & A. L. Bertozzi - Vorticity and incompressible flow, Cambridge Texts in Applied Math., vol. 27, Cambridge University Press, Cambridge, 2002

[33] H. P. McKean & I. M. Singer - “Curvature and the eigenvalues of the Laplacian”, J. Differential Geom. 1 (1967) no. 1, p. 43-69 | MR

[34] S. Menozzi, A. Pesce & X. Zhang - “Density and gradient estimates for non degenerate Brownian SDEs with unbounded measurable drift”, J. Differential Equations 272 (2021), p. 330-369 | DOI | MR | Zbl

[35] R. Mikulevicius & H. Pragarauskas - “On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem”, Potential Anal. 40 (2014) no. 4, p. 539-563 | DOI

[36] H. Tanaka, M. Tsuchiya & S. Watanabe - “Perturbation of drift-type for Lévy processes”, J. Math. Kyoto Univ. 14 (1974), p. 73-92 | DOI | Zbl

[37] F.-Y. Wang, L. Xu & X. Zhang - “Gradient estimates for SDEs driven by multiplicative Lévy noise”, J. Funct. Anal. 269 (2015) no. 10, p. 3195-3219 | DOI | Zbl

[38] T. Watanabe - “Asymptotic estimates of multi-dimensional stable densities and their applications”, Trans. Amer. Math. Soc. 359 (2007) no. 6, p. 2851-2879 | DOI | MR

[39] X. Zhang & G. Zhao - “Dirichlet problem for supercritical non-local operators”, 2018 | arXiv

Cited by Sources: