Étant donné un quotient périodique d’un groupe hyperbolique sans torsion, nous donnons une estimation inférieure fine de la fonction de croissance pour chacun de tous ses sous-semi-groupes. Cet énoncé généralise des résultats de Razborov et Safin pour les groupes libres.
Given a periodic quotient of a torsion-free hyperbolic group, we provide a fine lower estimate of the growth function of any sub-semi-group. This generalizes results of Razborov and Safin for free groups.
Accepté le :
Publié le :
Keywords: Product sets, growth, hyperbolic groups, acylindrical actions, small cancellation, infinite periodic groups, Burnside problem
Mot clés : Ensemble produit, croissance, groupes hyperboliques, actions cylindriques, théorie de la petite simplification, groupes périodiques infinis, problème de Burnside
Rémi Coulon 1 ; Markus Steenbock 2
@article{JEP_2022__9__463_0, author = {R\'emi Coulon and Markus Steenbock}, title = {Product set growth in {Burnside} groups}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {463--504}, publisher = {\'Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.187}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.187/} }
TY - JOUR AU - Rémi Coulon AU - Markus Steenbock TI - Product set growth in Burnside groups JO - Journal de l’École polytechnique — Mathématiques PY - 2022 SP - 463 EP - 504 VL - 9 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.187/ DO - 10.5802/jep.187 LA - en ID - JEP_2022__9__463_0 ER -
%0 Journal Article %A Rémi Coulon %A Markus Steenbock %T Product set growth in Burnside groups %J Journal de l’École polytechnique — Mathématiques %D 2022 %P 463-504 %V 9 %I École polytechnique %U https://jep.centre-mersenne.org/articles/10.5802/jep.187/ %R 10.5802/jep.187 %G en %F JEP_2022__9__463_0
Rémi Coulon; Markus Steenbock. Product set growth in Burnside groups. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 463-504. doi : 10.5802/jep.187. https://jep.centre-mersenne.org/articles/10.5802/jep.187/
[Adi79] - The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb. (3), vol. 95, Springer-Verlag, Berlin-New York, 1979 | DOI | MR
[AL06] - “A lower bound on the growth of word hyperbolic groups”, J. London Math. Soc. (2) 73 (2006) no. 1, p. 109-125 | DOI | MR | Zbl
[Ata09] - “Uniform nonamenability of subgroups of free Burnside groups of odd period”, Mat. Zametki 85 (2009) no. 4, p. 516-523 | DOI | MR | Zbl
[BF21] - “On the joint spectral radius for isometries of non-positively curved spaces and uniform growth”, Ann. Inst. Fourier (Grenoble) 71 (2021) no. 1, p. 317-391 | DOI | MR | Zbl
[BG08] - “On the spectral gap for finitely-generated subgroups of ”, Invent. Math. 171 (2008) no. 1, p. 83-121 | DOI | MR | Zbl
[BG12] - “A spectral gap theorem in ”, J. Eur. Math. Soc. (JEMS) 14 (2012) no. 5, p. 1455-1511 | DOI | MR | Zbl
[BGT12] - “The structure of approximate groups”, Publ. Math. Inst. Hautes Études Sci. 116 (2012), p. 115-221 | DOI | MR | Zbl
[BH99] - Metric spaces of non-positive curvature, Grundlehren Math. Wiss., vol. 319, Springer-Verlag, Berlin, 1999 | DOI
[Bow08] - “Tight geodesics in the curve complex”, Invent. Math. 171 (2008) no. 2, p. 281-300 | DOI | MR | Zbl
[But13] - “Explicit Helfgott type growth in free products and in limit groups”, J. Algebra 389 (2013), p. 61-77 | DOI | MR | Zbl
[CDP90] - Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov, Lect. Notes in Math., vol. 1441, Springer-Verlag, Berlin, 1990 | DOI
[Cha08] - “Product theorems in and ”, J. Inst. Math. Jussieu 7 (2008) no. 1, p. 1-25 | DOI | MR
[Cou13] - “Growth of periodic quotients of hyperbolic groups”, Algebraic Geom. Topol. 13 (2013) no. 6, p. 3111-3133 | DOI | MR | Zbl
[Cou14] - “On the geometry of Burnside quotients of torsion free hyperbolic groups”, Internat. J. Algebra Comput. 24 (2014) no. 3, p. 251-345 | DOI | MR | Zbl
[Cou16] - “Partial periodic quotients of groups acting on a hyperbolic space”, Ann. Inst. Fourier (Grenoble) 66 (2016) no. 5, p. 1773-1857 | DOI | MR | Zbl
[Cou18a] - “Detecting trivial elements of periodic quotient of hyperbolic groups”, Bull. Soc. math. France 146 (2018) no. 4, p. 745-806 | DOI | MR | Zbl
[Cou18b] - “Infinite periodic groups of even exponents”, 2018 | arXiv
[DG08] - “Courbure mésoscopique et théorie de la toute petite simplification”, J. Topology 1 (2008) no. 4, p. 804-836 | DOI | Zbl
[DGO17] - Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc., vol. 245, no. 1156, American Mathematical Society, Providence, RI, 2017
[DS20] - “Product set growth in groups and hyperbolic geometry”, J. Topology 13 (2020) no. 3, p. 1183-1215 | DOI | MR | Zbl
[FS20] - “The rates of growth in a hyperbolic group”, 2020 | arXiv
[GdlH90] - Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Math. 83 (1990) | DOI
[Gro87] - “Hyperbolic groups”, in Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, p. 75-263 | DOI | MR | Zbl
[Hel08] - “Growth and generation in ”, Ann. of Math. (2) 167 (2008) no. 2, p. 601-623 | DOI | MR
[IO96] - “Hyperbolic groups and their quotients of bounded exponents”, Trans. Amer. Math. Soc. 348 (1996) no. 6, p. 2091-2138 | DOI | MR
[Iva94] - “The free Burnside groups of sufficiently large exponents”, Internat. J. Algebra Comput. 4 (1994) no. 1-2, p. 1-308 | DOI | MR | Zbl
[Ker21] - “Product set growth in mapping class groups”, 2021 | arXiv
[Kou98] - “Croissance uniforme dans les groupes hyperboliques”, Ann. Inst. Fourier (Grenoble) 48 (1998) no. 5, p. 1441-1453 | DOI | MR | Zbl
[Lys96] - “Infinite Burnside groups of even period”, Izv. Akad. Nauk SSSR Ser. Mat. 60 (1996) no. 3, p. 3-224 | DOI
[Nat96] - Additive number theory. Inverse problems and the geometry of sumsets, Graduate Texts in Math., vol. 165, Springer-Verlag, New York, 1996 | DOI
[Ol’82] - “The Novikov-Adyan theorem”, Mat. Sb. (N.S.) 118 (1982) no. 2, p. 203-235, 287 | MR
[Ol’91] - “Periodic quotient groups of hyperbolic groups”, Mat. Sb. (N.S.) 182 (1991) no. 4, p. 543-567
[Osi07] - “Uniform non-amenability of free Burnside groups”, Arch. Math. (Basel) 88 (2007) no. 5, p. 403-412 | DOI | MR | Zbl
[Raz14] - “A product theorem in free groups”, Ann. of Math. (2) 179 (2014) no. 2, p. 405-429 | DOI | MR | Zbl
[Saf11] - “Powers of subsets of free groups”, Mat. Sb. (N.S.) 202 (2011) no. 11, p. 97-102 | DOI
[Sel97] - “Acylindrical accessibility for groups”, Invent. Math. 129 (1997) no. 3, p. 527-565 | DOI | MR | Zbl
[Tao08] - “Product set estimates for non-commutative groups”, Combinatorica 28 (2008) no. 5, p. 547-594 | DOI | MR | Zbl
[Tao10] - “Freiman’s theorem for solvable groups”, Contrib. Discrete Math. 5 (2010) no. 2, p. 137-184 | MR | Zbl
[TV06] - Additive combinatorics, Cambridge Studies in Advanced Math., vol. 105, Cambridge University Press, Cambridge, 2006 | DOI
Cité par Sources :