Geometric and probabilistic results for the observability of the wave equation
[Résultats géométriques et probabilistes pour l’observabilité de l’équation des ondes]
Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 431-461.

Étant donné un sous-ensemble mesurable ω d’une variété riemannienne compacte et étant donné T>0, on définit T (ω)[0,1] comme étant le plus petit temps moyen passé par les rayons géodésiques dans ω. Notre premier résultat principal, qui est de nature géométrique, établit que, sous des conditions de régularité, T peut augmenter au maximum de 1/2 en passant à l’adhérence. Notre second résultat principal est de nature probabiliste : considérant un damier régulier sur le tore plat de dimension 2 formé de n 2 carrés blancs, construisant des ensembles aléatoires ω ε n en noircissant les carrés de manière aléatoire avec probabilité ε, on montre que la variable aléatoire T (ω ε n ) converge en probabilité vers ε lorsque n+. Nous discutons les conséquences en termes d’observabilité de l’équation des ondes.

Given any measurable subset ω of a closed Riemannian manifold and given any T>0, we define T (ω)[0,1] as the smallest average time over [0,T] spent by all geodesic rays in ω. Our first main result, which is of geometric nature, states that, under regularity assumptions, 1/2 is the maximal possible discrepancy of T when taking the closure. Our second main result is of probabilistic nature: considering a regular checkerboard on the flat two-dimensional torus made of n 2 square white cells, constructing random subsets ω ε n by darkening cells randomly with a probability ε, we prove that the random law T (ω ε n ) converges in probability to ε as n+. We discuss the consequences in terms of observability of the wave equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.186
Classification : 93B07, 53C22, 60B10
Keywords: Observability, wave equation, Riemannian geometry, random set
Mot clés : Observabilité, équation des ondes, géométrie riemannienne, ensemble aléatoire

Emmanuel Humbert 1 ; Yannick Privat 2 ; Emmanuel Trélat 3

1 Institut Denis Poisson, UFR Sciences et Technologie, Faculté François Rabelais Parc de Grandmont, 37200 Tours, France
2 IRMA, Université de Strasbourg, CNRS UMR 7501 7 rue René Descartes, 67084 Strasbourg, France & Institut Universitaire de France (IUF)
3 Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions (LJLL) F-75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2022__9__431_0,
     author = {Emmanuel Humbert and Yannick Privat and Emmanuel Tr\'elat},
     title = {Geometric and probabilistic results for the~observability of the wave equation},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {431--461},
     publisher = {\'Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.186},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.186/}
}
TY  - JOUR
AU  - Emmanuel Humbert
AU  - Yannick Privat
AU  - Emmanuel Trélat
TI  - Geometric and probabilistic results for the observability of the wave equation
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 431
EP  - 461
VL  - 9
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.186/
DO  - 10.5802/jep.186
LA  - en
ID  - JEP_2022__9__431_0
ER  - 
%0 Journal Article
%A Emmanuel Humbert
%A Yannick Privat
%A Emmanuel Trélat
%T Geometric and probabilistic results for the observability of the wave equation
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 431-461
%V 9
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.186/
%R 10.5802/jep.186
%G en
%F JEP_2022__9__431_0
Emmanuel Humbert; Yannick Privat; Emmanuel Trélat. Geometric and probabilistic results for the observability of the wave equation. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 431-461. doi : 10.5802/jep.186. https://jep.centre-mersenne.org/articles/10.5802/jep.186/

[1] C. Bardos, G. Lebeau & J. Rauch - “Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary”, SIAM J. Control Optim. 30 (1992) no. 5, p. 1024-1065 | DOI | MR | Zbl

[2] M. Berger - A panoramic view of Riemannian geometry, Springer-Verlag, Berlin, 2003 | DOI

[3] N. Burq - “Second microlocalization and stabilization of damped wave equations on tori”, in Shocks, singularities and oscillations in nonlinear optics and fluid mechanics, Springer INdAM Ser., vol. 17, Springer, Cham, 2017, p. 55-73 | DOI | MR | Zbl

[4] N. Burq & P. Gérard - “Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes”, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) no. 7, p. 749-752 | DOI | Zbl

[5] N. Burq & P. Gérard - “Stabilization of wave equations on the torus with rough dampings”, Pure Appl. Anal. 2 (2020) no. 3, p. 627-658 | DOI | MR | Zbl

[6] P. Hébrard & E. Humbert - “The geometrical quantity in damped wave equations on a square”, ESAIM Control Optim. Calc. Var. 12 (2006) no. 4, p. 636-661 | DOI | MR | Zbl

[7] E. Humbert, Y. Privat & E. Trélat - “Observability properties of the homogeneous wave equation on a closed manifold”, Comm. Partial Differential Equations 44 (2019) no. 9, p. 749-772 | DOI | MR | Zbl

[8] G. Lebeau - “Control for hyperbolic equations”, in Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1992), École Polytechnique, Palaiseau, 1992, p. 24 | MR | Zbl

[9] J. Rauch & M. Taylor - “Exponential decay of solutions to hyperbolic equations in bounded domains”, Indiana Univ. Math. J. 24 (1974), p. 79-86 | DOI | MR

[10] M. Zworski - Semiclassical analysis, Graduate Studies in Math., vol. 138, American Mathematical Society, Providence, RI, 2012 | DOI

Cité par Sources :