The continuum directed polymer in Lévy noise
Journal de l’École polytechnique — Mathématiques, Volume 9 (2022), pp. 213-280.

We present in this paper the construction of a continuum directed polymer model in an environment given by space-time Lévy noise. One of the main objectives of this construction is to describe the scaling limit of a discrete directed polymer in a heavy-tail environment and for this reason we put special emphasis on the case of α-stable noises with α(1,2). Our construction can be performed in arbitrary dimension, provided that the Lévy measure satisfies specific (and dimension dependent) conditions. We also discuss a few basic properties of the continuum polymer and the relation between this model and the stochastic heat equation with multiplicative Lévy noise.

Nous présentons dans cet article la construction d’un modèle de polymère dirigé continu dans un environnement donné par un bruit de Lévy en espace-temps. L’un des principaux objectifs de cette construction est de décrire la limite d’échelle d’un polymère dirigé discret dans un environnement à queue lourde et, pour cette raison, nous mettons plus particulièrement en avant le cas de bruits α-stables avec α(1,2). Notre construction peut être réalisée en n’importe quelle dimension, pourvu que la mesure de Lévy satisfasse certaines conditions (qui dépendent de la dimension). Nous examinons aussi quelques propriétés de base du polymère continu, ainsi que la relation entre ce modèle et l’équation de la chaleur stochastique avec bruit multiplicatif de Lévy.

Received:
Accepted:
Published online:
DOI: 10.5802/jep.182
Classification: 82B44, 60G57, 60K35, 60H15
Keywords: Disordered polymer model, scaling limit, Lévy noise, stochastic heat equation
Mot clés : Modèle de polymère désordonné, limite d’échelle, bruit de Lévy, équation de la chaleur stochastique

Quentin Berger 1; Hubert Lacoin 2

1 LPSM, Sorbonne Université, UMR 8001 Campus Pierre et Marie Curie, Boîte courrier 158, 4 Place Jussieu, 75252 Paris Cedex 05, France
2 IMPA, Institudo de Matemática Pura e Aplicada Estrada Dona Castorina 110, Rio de Janeiro, CEP-22460-320, Brasil
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{JEP_2022__9__213_0,
     author = {Quentin Berger and Hubert Lacoin},
     title = {The continuum directed polymer in {L\'evy} noise},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {213--280},
     publisher = {\'Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.182},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.182/}
}
TY  - JOUR
AU  - Quentin Berger
AU  - Hubert Lacoin
TI  - The continuum directed polymer in Lévy noise
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 213
EP  - 280
VL  - 9
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.182/
DO  - 10.5802/jep.182
LA  - en
ID  - JEP_2022__9__213_0
ER  - 
%0 Journal Article
%A Quentin Berger
%A Hubert Lacoin
%T The continuum directed polymer in Lévy noise
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 213-280
%V 9
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.182/
%R 10.5802/jep.182
%G en
%F JEP_2022__9__213_0
Quentin Berger; Hubert Lacoin. The continuum directed polymer in Lévy noise. Journal de l’École polytechnique — Mathématiques, Volume 9 (2022), pp. 213-280. doi : 10.5802/jep.182. https://jep.centre-mersenne.org/articles/10.5802/jep.182/

[1] T. Alberts, K. Khanin & J. Quastel - “Intermediate disorder regime for directed polymers in dimension 1+1, Phys. Rev. Lett. 105 (2010) no. 9, article ID 090603 | DOI

[2] T. Alberts, K. Khanin & J. Quastel - “The continuum directed random polymer”, J. Statist. Phys. 154 (2014) no. 1-2, p. 305-326 | DOI | MR | Zbl

[3] K. Alexander & G. Yıldırım - “Directed polymers in a random environment with a defect line”, Electron. J. Probab. 20 (2015), article ID 6, 20 pages | DOI | MR | Zbl

[4] A. Auffinger & O. Louidor - “Directed polymers in a random environment with heavy tails”, Comm. Pure Appl. Math. 64 (2011) no. 2, p. 183-204 | DOI | MR | Zbl

[5] N. Berestycki - “An elementary approach to Gaussian multiplicative chaos”, Electron. Comm. Probab. 22 (2017), article ID 27, 12 pages | DOI | MR | Zbl

[6] Q. Berger, C. Chong & H. Lacoin - “The stochastic heat equation with multiplicative Lévy noise: Existence, Moments, and Intermittency”, 2021 | arXiv

[7] Q. Berger & H. Lacoin - “The high-temperature behavior for the directed polymer in dimension 1+2, Ann. Inst. H. Poincaré Probab. Statist. 53 (2017) no. 1, p. 430-450 | DOI | MR | Zbl

[8] Q. Berger & H. Lacoin - “Pinning on a defect line: characterization of marginal relevance and sharp asymptotics for the critical point shift”, J. Inst. Math. Jussieu 17 (2018) no. 2, p. 305-346 | DOI | MR | Zbl

[9] Q. Berger & H. Lacoin - “The scaling limit of the directed polymer with power-law tail disorder”, Comm. Math. Phys. 386 (2021) no. 2, p. 1051-1105 | DOI | MR | Zbl

[10] Q. Berger & N. Torri - “Directed polymers in heavy-tail random environment”, Ann. Probab. 47 (2019) no. 6, p. 4024-4076 | DOI | MR | Zbl

[11] L. Bertini & N. Cancrini - “The stochastic heat equation: Feynman-Kac formula and intermittence”, J. Statist. Phys. 78 (1995) no. 5-6, p. 1377-1401 | DOI | MR | Zbl

[12] M. Birkner - “A condition for weak disorder for directed polymers in random environment”, Electron. Comm. Probab. 9 (2004), p. 22-25 | DOI | MR | Zbl

[13] E. Bolthausen - “A note on the diffusion of directed polymers in a random environment”, Comm. Math. Phys. 123 (1989) no. 4, p. 529-534 | DOI | MR | Zbl

[14] E. Bolthausen & F. den Hollander - “Localization transition for a polymer near an interface”, Ann. Probab. 25 (1997) no. 3, p. 1334-1366 | DOI | MR | Zbl

[15] A. Bovier - Statistical mechanics of disordered systems: a mathematical perspective, Camb. Ser. Stat. Probab. Math., vol. 18, Cambridge University Press, Cambridge, 2006 | DOI

[16] F. Caravenna & G. Giacomin - “The weak coupling limit of disordered copolymer models”, Ann. Probab. 38 (2010) no. 6, p. 2322-2378 | DOI | MR | Zbl

[17] F. Caravenna, R. Sun & N. Zygouras - “The continuum disordered pinning model”, Probab. Theory Relat. Fields 164 (2016) no. 1-2, p. 17-59 | DOI | MR | Zbl

[18] F. Caravenna, R. Sun & N. Zygouras - “Scaling limits of disordered systems and disorder relevance”, 2016, to appear in Proceedings for XVIII International Congress on Math. Physics (Santiago de Chile, 2015) | arXiv

[19] F. Caravenna, R. Sun & N. Zygouras - “Polynomial chaos and scaling limits of disordered systems”, J. Eur. Math. Soc. (JEMS) 19 (2017) no. 1, p. 1-65 | DOI | MR | Zbl

[20] F. Caravenna, R. Sun & N. Zygouras - “Universality in marginally relevant disordered systems”, Ann. Appl. Probab. 27 (2017) no. 5, p. 3050-3112 | DOI | MR | Zbl

[21] F. Caravenna, R. Sun & N. Zygouras - “On the moments of the (2+1)-dimensional directed polymer and stochastic heat equation in the critical window”, Comm. Math. Phys. 372 (2019) no. 2, p. 385-440 | DOI | MR | Zbl

[22] F. Caravenna, R. Sun & N. Zygouras - “The critical 2d stochastic heat flow”, 2021 | arXiv

[23] C. Chong - “Stochastic PDEs with heavy-tailed noise”, Stochastic Process. Appl. 127 (2017) no. 7, p. 2262-2280 | DOI | MR | Zbl

[24] J. Clark - “Weak-disorder limit at criticality for directed polymers on hierarchical graphs”, Comm. Math. Phys. 386 (2021) no. 2, p. 651-710 | DOI | MR | Zbl

[25] F. Comets - “Weak disorder for low dimensional polymers: the model of stable laws”, Markov Process. Related Fields 13 (2007) no. 4, p. 681-696 | MR | Zbl

[26] F. Comets - Directed polymers in random environments, Lect. Notes in Math., vol. 2175, Springer, Cham, 2017, École d’été de probabilités (Saint-Flour, 2016) | DOI

[27] F. Comets, T. Shiga & N. Yoshida - “Directed Polymers in a random environment: strong disorder and path localization”, Bernoulli 9 (2003) no. 4, p. 705-723 | DOI | Zbl

[28] F. Comets & V. Vargas - “Majorizing multiplicative cascades for directed polymers in random media”, ALEA Lat. Am. J. Probab. Math. Stat. 2 (2006), p. 267-277 | MR | Zbl

[29] F. Comets & N. Yoshida - “Directed polymers in random environment are diffusive at weak disorder”, Ann. Probab. 34 (2006) no. 5, p. 1746-1770 | DOI | MR | Zbl

[30] P. S. Dey & N. Zygouras - “High temperature limits for (1+1)-dimensional directed polymer with heavy-tailed disorder”, Ann. Probab. 44 (2016) no. 6, p. 4006-4048 | DOI | MR | Zbl

[31] J. Fageot, M. Unser & J. P. Ward - “On the Besov regularity of periodic Lévy noises”, Appl. Comput. Harmon. Anal. 42 (2017) no. 1, p. 21 -36 | DOI | Zbl

[32] G. Giacomin - Random polymer models, Imperial College Press, London, 2007 | DOI

[33] G. Giacomin - Disorder and critical phenomena through basic probability models, Lect. Notes in Math., vol. 2025, Springer-Verlag, Heidelberg, 2011, École d’été de probabilités (Saint-Flour, 2010) | DOI

[34] G. Giacomin, H. Lacoin & F. L. Toninelli - “Disorder relevance at marginality and critical point shift”, Ann. Inst. H. Poincaré Probab. Statist. 47 (2011) no. 1, p. 148-175 | DOI | Numdam | MR | Zbl

[35] Y. Gu, J. Quastel & L.-C. Tsai - “Moments of the 2D SHE at criticality”, Probab. Math. Phys. 2 (2021) no. 1, p. 179-219 | DOI

[36] D. A. Huse & C. L. Henley - “Pinning and roughening of domain walls in Ising systems due to random impurities”, Phys. Rev. Lett. 54 (1985) no. 25, p. 2708-2711 | DOI

[37] J. Z. Imbrie & T. Spencer - “Diffusion of directed polymers in a random environment”, J. Statist. Phys. 52 (1988) no. 3-4, p. 609-626 | DOI | MR | Zbl

[38] N. Kalinauskaitė - “Certain expansions of multidimensional symmetric stable densities with parameter a>1, Litovsk. Mat. Sb. 10 (1970) no. 3, p. 491-495, in Russian | DOI | MR | Zbl

[39] H. Lacoin - “New bounds for the free energy of directed polymer in dimension 1+1 and 1+2, Comm. Math. Phys. 294 (2010) no. 2, p. 471-503 | DOI | MR | Zbl

[40] H. Lacoin & J. Sohier - “Disorder relevance without Harris criterion: the case of pinning model with γ-stable environment”, Electron. J. Probab. 22 (2017), article ID 50, 26 pages | DOI | MR | Zbl

[41] G. Last & M. Penrose - Lectures on the Poisson process, Institute of Math. Stat. Textbooks, vol. 7, Cambridge University Press, Cambridge, 2018

[42] D. A. Levin & Y. Peres - Markov chains and mixing times: second edition, American Mathematical Society, Providence, RI, 2017 | DOI

[43] C. Mueller - “The heat equation with Lévy noise”, Stochastic Process. Appl. 74 (1998) no. 1, p. 67-82 | DOI | MR | Zbl

[44] M. Nakashima - “Free energy of directed polymers in random environment in 1+1 dimension at high temperature”, Electron. J. Probab. 24 (2019), article ID 50, 43 pages | DOI | MR | Zbl

[45] E. Saint Loubert Bié - “Étude d’une EDPS conduite par un bruit poissonnien”, Probab. Theory Relat. Fields 111 (1998) no. 2, p. 287-321 | DOI | MR | Zbl

[46] G. Samorodnitsky & M. Taqqu - Stable non-Gaussian random processes: stochastic models with infinite variance, Chapman & Hall, New York, NY, 1994

[47] Z. Shi - Branching random walks, Lect. Notes in Math., vol. 2151, Springer, Cham, 2015, École d’été de probabilités (Saint-Flour, 2012) | DOI

[48] R. Viveros - “Directed polymer in γ-stable random environments”, Ann. Inst. H. Poincaré Probab. Statist. 57 (2021) no. 2, p. 1081-1102 | DOI | MR | Zbl

[49] R. Wei - “On the long-range directed polymer model”, J. Statist. Phys. 165 (2016) no. 2, p. 320-350 | DOI | MR | Zbl

Cited by Sources: