Invariant measures on products and on the space of linear orders
[Mesures invariantes sur des produits et sur l’espace des ordres totaux]
Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 155-176.

Soit M une structure 0 -catégorique sans algébricité et éliminant faiblement les imaginaires. En généralisant des théorèmes classiques de de Finetti et de Ryll-Nardzewski, nous démontrons que toute mesure Aut(M)-invariante et ergodique sur [0,1] M est une mesure produit. Nous étudions également l’action de Aut(M) sur l’espace compact LO(M) des ordres totaux sur M. Sous l’hypothèse supplémentaire que l’action Aut(M)M est transitive, nous démontrons que l’action Aut(M)LO(M) soit est uniquement ergodique, soit admet un point fixe.

Let M be an 0 -categorical structure and assume that M has no algebraicity and has weak elimination of imaginaries. Generalizing classical theorems of de Finetti and Ryll-Nardzewski, we show that any ergodic, Aut(M)-invariant measure on [0,1] M is a product measure. We also investigate the action of Aut(M) on the compact space LO(M) of linear orders on M. If we assume moreover that the action Aut(M)M is transitive, we prove that the action Aut(M)LO(M) either has a fixed point or is uniquely ergodic.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.180
Classification : 37A50, 03C15
Keywords: Invariant measures, uniquely ergodic, linear orders, $\aleph _0$-categorical, de Finetti theorem
Mot clés : Mesures invariantes, uniquement ergodique, ordres totaux, $\aleph _0$-catégorique, théorème de de Finetti

Colin Jahel 1 ; Todor Tsankov 2

1 Institut Camille Jordan, Université Claude Bernard Lyon 1 Université de Lyon 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France
2 Institut Camille Jordan, Université Claude Bernard Lyon 1 Université de Lyon 43, boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France and Institut Universitaire de France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2022__9__155_0,
     author = {Colin Jahel and Todor Tsankov},
     title = {Invariant measures on products and on the~space of linear orders},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {155--176},
     publisher = {\'Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.180},
     language = {en},
     url = {https://jep.centre-mersenne.org/articles/10.5802/jep.180/}
}
TY  - JOUR
AU  - Colin Jahel
AU  - Todor Tsankov
TI  - Invariant measures on products and on the space of linear orders
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 155
EP  - 176
VL  - 9
PB  - École polytechnique
UR  - https://jep.centre-mersenne.org/articles/10.5802/jep.180/
DO  - 10.5802/jep.180
LA  - en
ID  - JEP_2022__9__155_0
ER  - 
%0 Journal Article
%A Colin Jahel
%A Todor Tsankov
%T Invariant measures on products and on the space of linear orders
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 155-176
%V 9
%I École polytechnique
%U https://jep.centre-mersenne.org/articles/10.5802/jep.180/
%R 10.5802/jep.180
%G en
%F JEP_2022__9__155_0
Colin Jahel; Todor Tsankov. Invariant measures on products and on the space of linear orders. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 155-176. doi : 10.5802/jep.180. https://jep.centre-mersenne.org/articles/10.5802/jep.180/

[Ack15] N. Ackerman - “Representations of Aut(M)-invariant measures: Part 1”, 2015 | arXiv

[AKL14] O. Angel, A. S. Kechris & R. Lyons - “Random orderings and unique ergodicity of automorphism groups”, J. Eur. Math. Soc. (JEMS) 16 (2014) no. 10, p. 2059-2095 | DOI | MR | Zbl

[BIT18] I. Ben Yaacov, T. Ibarlucía & T. Tsankov - “Eberlein oligomorphic groups”, Trans. Amer. Math. Soc. 370 (2018) no. 3, p. 2181-2209 | DOI | MR | Zbl

[CT18] H. Crane & H. Towsner - “Relatively exchangeable structures”, J. Symbolic Logic 83 (2018) no. 2, p. 416-442 | DOI | MR | Zbl

[ET16] D. M. Evans & T. Tsankov - “Free actions of free groups on countable structures and property (T)”, Fund. Math. 232 (2016) no. 1, p. 49-63 | DOI | MR | Zbl

[GW02] E. Glasner & B. Weiss - “Minimal actions of the group 𝕊() of permutations of the integers”, Geom. Funct. Anal. 12 (2002) no. 5, p. 964-988 | DOI | MR | Zbl

[GW05] E. Glasner & B. Weiss - “Spatial and non-spatial actions of Polish groups”, Ergodic Theory Dynam. Systems 25 (2005) no. 5, p. 1521-1538 | DOI | MR | Zbl

[Hod93] W. Hodges - Model theory, Encyclopedia of Math. and its Appl., vol. 42, Cambridge University Press, Cambridge, 1993 | DOI

[Jah21] C. Jahel - “Unique ergodicity of the automorphism group of the semigeneric directed graph”, Ergodic Theory Dynam. Systems (2021), First view (14 p.) | DOI

[JZ21] C. Jahel & A. Zucker - “Minimal model-universal flows for locally compact Polish groups”, Israel J. Math. 244 (2021) no. 2, p. 743-758 | DOI | MR | Zbl

[Kal02] O. Kallenberg - Foundations of modern probability, Probability and its Appl., Springer-Verlag, New York, 2002 | DOI

[KPT05] A. S. Kechris, V. G. Pestov & S. Todorcevic - “Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups”, Geom. Funct. Anal. 15 (2005) no. 1, p. 106-189 | DOI | Zbl

[KR07] A. S. Kechris & C. Rosendal - “Turbulence, amalgamation and generic automorphisms of homogeneous structures”, Proc. London Math. Soc. (3) 94 (2007) no. 2, p. 302-350 | DOI | MR | Zbl

[KS12] A. S. Kechris & M. Sokić - “Dynamical properties of the automorphism groups of the random poset and random distributive lattice”, Fund. Math. 218 (2012) no. 1, p. 69-94 | DOI | MR | Zbl

[NR78] J. Nešetřil & V. Rödl - “On a probabilistic graph-theoretical method”, Proc. Amer. Math. Soc. 72 (1978) no. 2, p. 417-421 | DOI | MR | Zbl

[NVT13] L. Nguyen Van Thé - “More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions”, Fund. Math. 222 (2013) no. 1, p. 19-47 | DOI | MR | Zbl

[Phe01] R. R. Phelps - Lectures on Choquet’s theorem, Lect. Notes in Math., vol. 1757, Springer-Verlag, Berlin, 2001 | DOI | MR

[PS20] M. Pawliuk & M. Sokić - “Amenability and unique ergodicity of automorphism groups of countable homogeneous directed graphs”, Ergodic Theory Dynam. Systems 40 (2020) no. 5, p. 1351-1401 | DOI | MR | Zbl

[Rid19] S. Rideau - “Imaginaries and invariant types in existentially closed valued differential fields”, J. reine angew. Math. 750 (2019), p. 157-196 | DOI | MR | Zbl

[RN57] C. Ryll-Nardzewski - “On stationary sequences of random variables and the de Finetti’s equivalence”, Colloq. Math. 4 (1957), p. 149-156 | DOI | MR | Zbl

[Tsa12] T. Tsankov - “Unitary representations of oligomorphic groups”, Geom. Funct. Anal. 22 (2012) no. 2, p. 528-555 | DOI | MR | Zbl

[Tsa14] T. Tsankov - Automorphism groups and their actions, Mémoire d’habilitation, Université Paris Diderot, 2014, available at http://math.univ-lyon1.fr/~tsankov/

[Wei12] B. Weiss - “Minimal models for free actions”, in Dynamical systems and group actions, Contemp. Math., vol. 567, American Mathematical Society, Providence, RI, 2012, p. 249-264 | DOI | MR | Zbl

[Zuc14] A. Zucker - “Amenability and unique ergodicity of automorphism groups of Fraïssé structures”, Fund. Math. 226 (2014) no. 1, p. 41-62 | DOI | MR | Zbl

Cité par Sources :