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INVARIANT MEASURES ON PRODUCTS AND ON
THE SPACE OF LINEAR ORDERS

BY CoriN JAaHEL & Topor Tsankov

Asstract. — Let M be an Ng-categorical structure and assume that M has no algebraicity
and has weak elimination of imaginaries. Generalizing classical theorems of de Finetti and
Ryll-Nardzewski, we show that any ergodic, Aut(M)-invariant measure on [0, 1] is a product
measure. We also investigate the action of Aut(M) on the compact space LO(M) of linear
orders on M. If we assume moreover that the action Aut(M) ~ M is transitive, we prove that
the action Aut(M) ~ LO(M) either has a fixed point or is uniquely ergodic.

Résumii (Mesures invariantes sur des produits et sur ’espace des ordres totaux)

Soit M une structure Ro-catégorique sans algébricité et éliminant faiblement les imaginaires.
En généralisant des théorémes classiques de de Finetti et de Ryll-Nardzewski, nous démontrons
que toute mesure Aut(M)-invariante et ergodique sur [0,1]™ est une mesure produit. Nous
étudions également 'action de Aut(M) sur I'espace compact LO(M) des ordres totaux sur M.
Sous I’hypothése supplémentaire que 'action Aut(M) ~ M est transitive, nous démontrons
que l'action Aut(M) ~ LO(M) soit est uniquement ergodique, soit admet un point fixe.
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1. INnTRODUCTION

In recent years, the study of dynamical systems of automorphism groups of homoge-
neous structures has become an important topic at the intersection of dynamics, com-
binatorics, probability theory, and model theory and it has uncovered many interesting
connections between these fields. Countable homogeneous structures are obtained
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156 C. JaneL & T. Tsankov

as Fraissé limits of a class of finite structures satisfying certain conditions (called
a Fraissé class) and there is a close correspondence between dynamical properties of
the automorphism group of the limit structure and combinatorial properties of the
class. Typical examples of Fraissé classes are the class of finite graphs (the limit is the
random graph), the class of finite triangle-free graphs, and the class of finite linear
orders (here the limit is the countable, dense linear order without endpoints (Q, <)).

In this paper, we will be interested in the invariant probability measures on dynam-
ical systems of the automorphism group Aut(M) of a homogeneous structure M. More
precisely, we will consider two specific systems: products of the type ZM, where Z is
a standard Borel space, and the compact space LO(M) of all linear orders on M.

Our study of invariant measures on product spaces of the type ZM is inspired
by the classical de Finetti theorem. One formulation of this theorem is that the
only ergodic measures on Z™ invariant under the full symmetric group Sym(M) are
product measures of the type AM, where ) is some probability measure on Z. (Recall
that a measure is ergodic if the only elements of the measure algebra fixed by the
group are the empty set and the whole space. Equivalently, the ergodic measures are
the extreme points of the convex set of all invariant probability measures.) In our
first result, we obtain the same conclusion as in de Finetti’s theorem under a weaker
hypothesis: that the measure is invariant under the much smaller group Aut(M),
provided that the structure M satisfies certain model-theoretic conditions. We will
say that a structure M is transitive if the action Aut(M) ~ M is transitive.

Tarorem 1.1. — Let M be an Ng-categorical, transitive structure with no algebraicity
that admits weak elimination of imaginaries. Let Z be a standard Borel space and
consider the natural action Aut(M) ~ ZM. Then the only invariant, ergodic proba-
bility measures on ZM are product measures of the form AM, where X is a probability
measure on Z.

We will discuss the model-theoretic hypotheses of the theorem in detail in the next
section, where we give all relevant definitions. The proof can be found in Section 3
(cf. Corollary 3.5). Here we only remark that they are all necessary (with the pos-
sible exception of Ng-categoricity) and that they are satisfied, for example, by the
random graph, the homogeneous triangle-free graph, the dense linear order (Q, <),
the universal, homogeneous partial order, and many other structures.

The ergodicity assumption in the theorem entails no loss of generality: one can ob-
tain a description of all invariant measures using the ergodic decomposition theorem.

Theorem 1.1 is a consequence of a more general independence result that applies to
any measure-preserving action of Aut(M) on a probability space for any Ro-categorical
structure M (cf. Theorem 3.4). The proof is based on representation theory and the
results of [Tsal2].

Making use of Fraissé’s theorem, it is also possible to apply Theorem 1.1 even in
situations where there is no homogeneity or an obvious group present. For example,
we can recover a theorem of Ryll-Nardzewski [RN57], which is another well-known
strengthening of de Finetti’s theorem; cf. Corollary 3.7.

JE.P.— M., 2022, tome g
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Theorem 1.1 was announced in the habilitation memoir of the second author
[Tsald]. Later, some independent related work has been done by Ackerman [Ack15]
and Crane—Towsner [CT18]. They consider a different class of homogeneous structures
(with combinatorial assumptions on the amalgamation) and use completely different
methods.

Next we consider Aut(M)-invariant probability measures on the compact space
LO(M) of linear orders on M. The systematic study of these measures was initi-
ated by Angel, Kechris, and Lyons in [AKL14]. Their main motivation comes from
abstract topological dynamics. If G is a topological group, a G-flow is a continuous
action of G on a compact Hausdorff space. A flow is minimal if every orbit is dense.
It turns out that for every group G, there is a universal minimal flow (UMF) that
maps onto every minimal flow of the group. In many cases (for example if G is locally
compact, non-compact), the universal minimal flow is a large, non-metrizable space
that does not admit a concrete description; however, for many automorphism groups
of homogeneous structures M, the UMF of Aut(M) is metrizable and can be explic-
itly computed. Moreover, in most known examples, it is a subflow of the flow LO(M)
of all linear orders on M. In these situations, classifying the invariant measures on
LO(M) gives information about all minimal flows of the group as well as other prop-
erties of G that can be expressed dynamically. One such property is amenability: a
topological group G is called amenable if every G-flow carries an invariant measure,
or equivalently, if the UMF of G has an invariant measure. Another property that
goes down to factors of the UMF is unique ergodicity: if the UMF is uniquely er-
godic, then so is every other minimal flow of the group. (Recall that a flow is uniquely
ergodic if it carries a unique invariant measure, which then must be ergodic.) This
latter property is quite interesting and is not encountered in classical dynamics: for
example, Weiss [Weil2] has constructed, for every countable, infinite, discrete group,
a minimal flow which is not uniquely ergodic and a similar construction was carried
out in [JZ21] for locally compact second countable groups.

Giving interesting examples of groups with this unique ergodicity property was one
of the main motivations of [AKL14]. They reduce the unique ergodicity problem to
an equivalent question about finite structures (as is often done with Fraissé limits)
and then use techniques from probability theory to attack each specific case. It is
interesting that their approach works in both directions, so if one manages to obtain
an unique ergodicity results by other methods, this yields combinatorial information
about the corresponding Fraissé class. For example, if we denote by R the random
graph, the unique ergodicity of the flow Aut(R) ~ LO(R) is equivalent to the unique-
ness of a consistent random ordering on the class of finite graphs (see [AKL14] for
more details). The work of Angel, Kechris, and Lyons was followed by several papers
[PS20, Jah21], in which more unique ergodicity results of this type were proved; in par-
ticular, the automorphism groups of all homogeneous directed graphs from Cherlin’s
classification were treated in these two articles.

In the present paper, we adopt a different approach to the unique ergodicity prob-
lem on the space of linear orders, based on the generalization of de Finetti’s theorem

JIEP. — M., 2022, tome g



D8 C. JaneL & T. Tsankov

that we discussed above. It has the advantage of working under rather general model-
theoretic assumptions (which are mostly necessary) and can also give information
about the invariant measures even in the absence of unique ergodicity. Our main
theorem is the following.

Turorem 1.2. — Let M be a transitive, Rg-categorical structure with no algebraicity
that admits weak elimination of imaginaries. Consider the action Aut(M) ~ LO(M).
Then exactly one of the following holds:

(i) The action Aut(M) ~ LO(M) has a fized point (i.e., there is a definable linear
order on M );
(ii) The action Aut(M) ~ LO(M) is uniquely ergodic.

Theorem 1.2 recovers almost all known results about unique ergodicity of LO(M).
More specifically, it applies to the following structures:

— the random graph, the K, -free homogeneous graphs, various homogeneous hy-
pergraphs, and the universal homogeneous tournament [AKL14];

— the generic directed graphs obtained by omitting a (possibly infinite) set of tour-
naments or a fixed, finite, discrete graph [PS20].

The class of structures satisfying the hypothesis of Theorem 1.2 is quite a bit richer
than the examples above. We should mention, however, that it does not cover all cases
where unique ergodicity of the space of linear orders is known. One exception is the ra-
tional Urysohn space Ug: it was proved in [AKL14] that the action Iso(Ug) ~ LO(Uj)
is uniquely ergodic but Uy is not Ryp-categorical (as it has infinitely many 2-types). It
also does not apply directly to prove unique ergodicity for proper subflows of LO, for
example for the automorphism group of the countable-dimensional vector space over
a finite field.

The proof of Theorem 1.2 is the object of Section 4, where it is stated as Theo-
rem 4.1.

We also have an interesting corollary of Theorem 1.2 concerning amenability.

Corovrrary 1.3. — Suppose that M satisfies the assumptions of Theorem 1.2. If the
action Aut(M) ~ LO(M) is not minimal and has no fized points, then Aut(M) is
not amenable.

Corollary 1.3 applies for example to the automorphism groups of the universal
homogeneous partial order and the circular directed graphs S(n) for n > 2, recovering
results of Kechris—Sokié¢ [KS12] and Zucker [Zuc14], respectively.

Corollary 1.3 also has an interesting purely combinatorial consequence of which
we do not know a combinatorial proof. Recall that a Fraissé class % (or its Fraissé
limit) has the Hrushouski property if partial automorphisms of elements of .# extend
to full automorphisms of superstructures in .%. It has the ordering property if for
every A € Z, there exists B € .% such that for any two linear orders < and <’ on A
and B respectively, there is an embedding of (A4, <) into (B, <’). The Hrushovski and
the ordering properties are important in the theory of homogeneous structures and in

JE.P.— M., 2022, tome g
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structural Ramsey theory but are not a priori related. We refer the reader to [KR07]
and [NR78] for more details about them.

Cororrary 1.4. Suppose that the homogeneous structure M satisfies the assump-
tions of Theorem 1.2. If M has the Hrushovski property, then it has the ordering

property.

The paper is organized as follows. In Section 2, we recall some prerequisites
from model theory, mostly about imaginaries and M 4. While using standard model-
theoretic terminology, we give all definitions and proofs in the language of permutation
groups in the hope of making the paper more accessible to non-logicians. In Section 3,
we recall some facts from representation theory and prove Theorem 1.1. Section 4
is devoted to the proof of Theorem 1.2 and its corollaries. Finally, in Section 5,
we briefly discuss some examples and possible extensions of Theorem 1.2.

Acknowledgments. We would like to thank Itai Ben Yaacov and David Evans for
helping us eliminate imaginaries in some examples and Lionel Nguyen Van Thé and
Andy Zucker for useful discussions. We are also grateful to the anonymous referees
for a detailed reading of the paper and many helpful suggestions.

2. PRELIMINARIES FROM MODEL THEORY

We start by recalling some basic definitions. A signature £ is a collection of relation
symbols { R;} and function symbols {F;}, each equipped with a natural number called
its arity. An Z-structure is a set M together with interpretations for the symbols
in .Z: each relation symbol R; of arity n; is interpreted as an n;-ary relation on M,
that is, a subset of M™, and each function symbol F} of arity n; is interpreted as a
function M™ — M. Functions of arity 0 are called constants. A substructure of M is
a subset of M closed under the functions, equipped with the induced structure. The
age of M is the collection of isomorphism classes of all finitely generated substructures
of M. If @ is a tuple from M, we denote by (@) the substructure of M generated by a.
If the signature contains only relation symbols (which will usually be the case for us),
then a substructure of M is just a subset with the induced relations.

The automorphism group of M, Aut(M), is the group of all permutations of M
that preserve all relations and functions. Aut(M) is naturally a topological group if
equipped with the pointwise convergence topology (where M is taken to be discrete).
If M is countable, then Aut(M) is a Polish group. If G = Aut(M) and A C M is
a finite subset, we will denote by G4 the pointwise stabilizer of A in G. A basis at
the identity of G is given by the subgroups {G4 : A C M is finite}. A topological
group which admits a basis at the identity consisting of open subgroups is called
non-archimedean. In particular, all groups of the form Aut(M) are non-archimedean.

The type of a tuple @ € M*, denoted by tpa, is the isomorphism type of the sub-
structure (a; : i < k) (with the a; named). Thus two tuples @ and b have the same type
(notation: @ = b) if the map a; + b; extends to an isomorphism (@) — (b). A k-type
is simply the type of some tuple @ € M*. The structure M is called homogeneous if
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for every two tuples @ and b with @ = b, there exists g € Aut(M) such that g-@ = b.
We will say that M is transitive if there is only one 1-type, i.e., G acts transitively
on M.

What we call type is usually called quantifier-free type in the model-theoretic liter-
ature. However, for homogeneous structures, which is our main interest here, the two
notions coincide.

An age is a countable family of (isomorphism types of) finitely generated
Z-structures that is hereditary (i.e., closed under substructures) and directed (i.e.,
for any two structures in the class, there is another structure in the class in which
they both embed). If M is a given countable structure, its age is the collection of
finitely generated structures that embed into it. If M is homogeneous, then its age
has another special property called amalgamation. An age with amalgamation is
called a Fraissé class. Fraissé’s theorem states that conversely, any Fraissé class is
the age of a unique countable, homogeneous structure, called its Fraissé limit. Thus
in order to define a homogeneous structure, one needs only to specify its age; and, as
already mentioned, combinatorial properties of the age are reflected in the dynamics
of the automorphism group of the limit.

The structures that will be especially important for us are the Rg-categorical ones.
A structure is Rg-categorical if its first-order theory has a unique countable model up
to isomorphism. Another characterization that will be crucial is given by the Ryll-
Nardzewski theorem: M is Ry-categorical iff the diagonal action Aut(M) ~ M* has
finitely many orbits for every k (a permutation group with this property is called
oligomorphic). In particular, if £ is a signature that contains only finitely many rela-
tional symbols of each arity and no functions, then every homogeneous .Z-structure is
No-categorical. Conversely, if M is any Np-categorical structure, one can render it ho-
mogeneous by expanding the signature to include all first-order formulas by a process
known as Morleyization (this is another facet of the Ryll-Nardzewski theorem). As we
never make assumptions about the signature, in what follows, we will tacitly assume
that every Ny-categorical structure is rendered homogeneous by this procedure. If G is
any closed subgroup of the full permutation group Sym(NV) of some countable set N,
one can convert N into a homogeneous structure with Aut(XN) = G by naming, for
every k, each G-orbit on N* by a k-ary relation symbol. If the action G ~ N is
oligomorphic, then the resulting structure will be Ng-categorical.

For the rest of the paper, we will only consider Wy-categorical structures. In
this setting, all model-theoretic information about M is captured by the actions
Aut(M) ~ M*. We refer the reader to Hodges [Hod93] for more details on Fraissé
theory, Ng-categorical structures, and their automorphism groups.

Let M be Ng-categorical, G = Aut(M), and let A C M be finite. The algebraic
closure of A (denoted acl(A)) is the union of all finite orbits of G 4 on M. We will say
that M has no algebraicity if the algebraic closure is trivial, that is, acl(4) = A for
all finite A C M. By Neumann’s lemma [Hod93, Lem. 4.2.1], having no algebraicity
is equivalent to the following: for all finite A, B,C C M with AN BN C = @, there
exists g € G¢ such that g- AN B = @.

JE.P.— M., 2022, tome g
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An imaginary element of M is the equivalence class of a tuple @ € MF* for some
G-invariant equivalence relation on M*. We denote by M the collection of all imag-
inaries. In symbols,

M = | |{M*/E : k € N and E is a G-invariant equivalence relation on M"}.

It is clear that G also acts on M and, moreover, the action G ~ M is locally
oligomorphic, i.e., it is oligomorphic on any union of finitely many G-orbits (see,
e.g., [Tsal2, Th.2.4]). Open subgroups of G are precisely the stabilizers of imaginary
elements of M. On the one hand, if e = [@]z € M®Y for some @ € M*, then Gz < G,
which implies that G, is open. On the other, if V' < G is an open subgroup, there
exists a tuple @ € M* such that Gz < V. Then a G-invariant equivalence relation E
on G - @ can be defined by

(2.1) (g1 -a)E(g2-a) <= g1V =gV forgi,g2 €G

and it can be extended by equality to the rest of M*. If we set e = [a]g, we have
that G, = V. This gives another possible way to view the set of imaginary elements
of M as

L {G/V : V is an open subgroup of G}.
Note, however, that there is no canonical bijection between this set and M°? according

to our definition even though they are interdefinable.
We can define for a finite A C M9,

acl®?A = {e € M : G4 - e is finite}.
Similarly, we can define the definable closure as
del®A={e e M*:G4-e={e}}.

For arbitrary A C M4, we define acl®® A to be the union of acl®® A’ over all finite
A’ C A. Similarly for dcl®?. A subset A C M®1 is algebraically closed if acl® A = A.
In other words, A is algebraically closed if for all finite A’ C A, G s/ has only infinite
orbits outside of A. We have the following basic properties of the algebraic closure.

Lemva 2.1. — The following hold for an Ng-categorical M :

(i) For all A C M®q, acl®® A is algebraically closed.
(ii) If A, B C M*®Y are algebraically closed, then so is AN B.

Proof

(i) A permutation group theoretic proof of this fact can be found for example in
[ET16, Lem. 2.4].

(ii) Suppose that C C AN B is finite and e € M*? is such that G¢ - e is finite. Then,
as C C A and A is algebraically closed, we have that e € A, and similarly, e € B. O

M admits elimination of imaginaries if all imaginary elements are interdefinable
with real tuples, that is, for every e € M, there exists k € N and a tuple @ € M* such
that e € dcl®@ and @ € dcl® e, or equivalently, G, = Gg. M admits weak elimination
of imaginaries if for every imaginary element e € M®9, there exists a real tuple a € M*
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such that e € dcl®®@ and @ € acl®® e. Equivalently, for every open subgroup V < G,
there exists k and a tuple @ € M* such that Gz < V and [V : Gg] < oo. In these
definitions, it is important to allow £k =0 and a = &.

The two hypotheses of no algebraicity and weak elimination of imaginaries com-
bined give us a complete understanding of the acl®® operator.

Lemva 2.2, Suppose that M is Rg-categorical and that it has no algebraicity and
admits weak elimination of imaginaries. Then for all A, B C M, we have that

acl®* ANacl® B = dcl®Y(AN B).

Proof. — The D inclusion being clear, we only check the other. We may assume
that A and B are finite. Suppose that e € acl®? A. By weak elimination of imaginaries,
there exists a tuple ¢ such that e € dcl®¢ and ¢ € acl®@e. We will show that the
tuple ¢ is contained in A. Consider the group H = G aufe}- As H contains the open
subgroup G 4z, it is also open. By weak elimination of imaginaries, there exists a
tuple @ such that Gz < H and [H : Gg] < 00. As e € acl® A, [G4 : H] < oo and thus
[G4 : Gg] < co. By the no algebraicity assumption, @ must be contained in A, so, in
particular, H = G4, i.e., G4 fixes e. If € is not contained in A, then the orbit G4 - ¢
is infinite, which implies that the orbit G, - € is infinite, contradicting the fact that
¢ € acl®@e. Thus we conclude that € is contained in A. An analogous argument shows
that € is also contained in B and hence, e € dcl®d(A N B). O

3. [/TV\IT/\RY REPRESENTATIONS AND A GENERALIZATION OF DE FIV\ETTI,S THEOREM

Recall that a unitary representation of a topological group G is a continuous action
on a complex Hilbert space J# by unitary operators, or, equivalently, a continuous
homomorphism from G to the unitary group of . A representation G ~ 7 is
trreducible if ¢ contains no non-trivial, G-invariant, closed subspaces.

In the case where M is an Ng-categorical structure and G = Aut(M), the action
G ~ M®9 gives rise to a representation G ~* £2(M°9) given by

(Mg) - f)(e) = f(g~te), where f € £2(M°Y), g€ G, e € M°%.

It turns out that this representation captures all of the representation theory of G.
More precisely, it follows from the results of [Tsal2] that the following holds.

Facr 3.1. — Let M be an Rg-categorical structure and let G = Aut(M). Then every
unitary representation of G is a sum of irreducible representations and every irre-
ducible representation is isomorphic to a subrepresentation of \. In particular, every
representation of G is a subrepresentation of a direct sum of copies of .

Proof. — The first claim is part of the statement of [Tsal2, Th. 4.2]. For the second, it
follows from [Tsal2, Th. 4.2] that every irreducible representation of G is an induced
representation of the form Indfl(a), where H is an open subgroup of G and o is
an irreducible representation of H that factors through a finite quotient K = H/V
of H. (We refer the reader to [Tsal2] for the definition of induced representation and
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more details.) As V < G is open, there exists a tuple @ from M such that Gz < V.
As in (2.1), define the G-invariant equivalence relation E on G - @ by

(91-a)E(g2-a) <= g1V =gV forgi,g2€G

and note that V' = G[g),. In particular, the quasi-regular representation 2(G)V) is
isomorphic to the subrepresentation ¢2(G - [a|g) of £2(M*®%). On the other hand,

C(G/V) =2 IndS(1y) =2 IndG (Ind (1y)) = Ind$ (Ak ),

where Ak denotes the left-regular representation of K. As o (being an irreducible
representation of the finite group K) is a subrepresentation of A, the result follows.
a

If 27 is a Hilbert space and 577, 565, 73 are subspaces with 5% C 56 N 33, we
write 4 J_jfz I6G it 4 © I 1 A5 © I, where S, © 5 denotes the orthogonal
complement of J& in J7,. If we let p1,ps,p3 denote the corresponding orthogonal
projections, this is equivalent to psp; = pop1. Note that 4 | s, 4 implies that
My = 0N Hs.

If G ~ J7Z is a unitary representation of G and A C M4 let

(3.1) oy ={6 €A : Gy - €= for some finite A’ C A}.

It is clear that J#, is a closed subspace of 7.

Prorosirion 3.2. Let M be Ng-categorical and G = Aut(M). Let A and B be
algebraically closed subsets of M. Then sa 1 sp,., 5.

Proof. — As for any subset C' C M*®1 the projection pc onto ¢ commutes with
direct sums and subrepresentations, by Fact 3.1, we can reduce to the case where
H = 2(M®) and 7 = \. If £ € 7, we view it as a function M®? — C and we let

supp§ = {e € M : {(e) # 0}
The main observation is the following: if C C M*1 is algebraically closed, then

He ={£ € A :suppl C C}.

The D inclusion follows from the fact that vectors with finite support are dense. For
the other inclusion, as the subspace on the right-hand side is closed, it suffices to see
that for all finite C’ C C and all £ fixed by G¢r, supp& C C. Let e € M® be such
that £(e) # 0. As ¢ is fixed by G¢v, it must be constant on the orbit Gor - e. As € is
in ¢2, this implies that G¢r - e is finite, i.e., e € acl®*C’ C C.
Now it follows from the hypothesis and Lemma 2.1 that
NS Hanpg ={§ € H :suppl C A~ B} and

Hp O Hang = {£ € S :suppl C B\ A},

whence the result. O

Remark 3.3. — A more model-theoretic treatment of similar ideas, using the formal-
ism of semigroups of projections, can be found in [BIT18].
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Now consider a measure-preserving action G ~ (X, u), where (X, 1) is a probability
space. As G is not locally compact, one has to take some care how this is defined.
We denote by MALG(X, 1) the Boolean algebra of all measurable subsets of X with
two such sets identified if their symmetric difference has measure 0. MALG(X, p) is
naturally a metric space with the distance between A and B given by u(AAB). We
denote by Aut(X, ) the group of all isometric automorphisms of MALG(X, u), that is,
the group of all automorphisms of the Boolean algebra that also preserve the measure.
Aut(X, p) is naturally a topological group if equipped with the pointwise convergence
topology coming from its action on MALG(X, ). If (X, p) is standard (ie., X is
a standard Borel space and p is a Borel probability measure), then Aut(X, ) is a
Polish group. For us, a measure-preserving action G ~ (X, p) will mean a continuous
homomorphism G — Aut(X, u), that is, G acts on measurable sets and measurable
functions (up to measure 0) but not necessarily on points. It is easy to see that if X
is standard and one has a jointly measurable action on points G ~ X that preserves
the measure p, then this gives an action in our sense. The converse is also true for
non-archimedean groups but this is less obvious (see [GW05, Th. 2.3]) and we will not
need it.

If F1,.%5,9 are o-fields in a probability space, we will denote by .#; 14 %>
the fact that Z#; and %y are conditionally independent over ¥4, ie., E(§ | F2¥Y) =
E(¢ | ¢) for every .#;-measurable random variable £. If ¢4 is trivial, we will write
simply .#, 1L %, and will say that .#, and .%, are independent. We will often make
use of the standard facts about conditional independence that go in model theory by
the name of forking calculus. A general source is [Kal02, Chap.5] and we will give
references to precise statements where needed.

If G = Aut(M) and a measure-preserving action G ~ (X, u) is given, for A C M®9,
we denote by %4 the o-field of measurable subsets of X generated by the G 4/-fixed
subsets for all finite A’ C A. The following is the main result of this section.

Turorem 3.4. — Let M be an Ng-categorical structure and let G = Aut(M). Let
G ~ (X, p) be any measure-preserving action on a probability space. Then the follow-
ing hold:

(i) For all algebraically closed A, B C M®, we have that Fa 1Lz, , Fp.
(ii) If M has no algebraicity and admits weak elimination of imaginaries, then for
all A,B C M, we have that F4 1l z, . Z5.

Proof’
(i) Consider the Koopman representation G ~™ L*(X) given by
(m(g) - f)(x) = f(g~-z), where f e L*(X),g€ G,z X.

For C C M®, we denote by L?*(Z¢) the subspace of L?*(X) consisting of all
Fc-measurable functions. Observe that if we write 7 = L?(X), then L?(%¢) = ¢
(as defined in (3.1)). To see the C inclusion, note that functions of the form
F(no,---,Mn—1), where F: R® — C is a bounded measurable function and each
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n;: X — R is a random variable fixed by G¢, for some finite C; C C, are dense in
L?(Z¢); each such function is in L? and is fixed by GU‘ ¢,» S0 belongs to H¢. The
inverse inclusion follows from the fact that if £ € ¢ is fixed by G- for some finite
C’" C C, then ¢ is measurable with respect to the o-field generated by the events
{{¢>r}:r € R} and all of these belong to Fc.

To show the required independence, it suffices to see that for all ns € L?(F4), we
have that

E(na | #B) =Ena | ZanB)

(see, e.g., [Kal02, Prop.5.6]). Recalling that the conditional expectation E(- | %)
for functions in L? is just the projection operator onto ., this follows directly from
Proposition 3.2.

(ii) Denote A" = acl® A, B’ = acl®* B, C' = dcl®(ANB). By Lemma 2.1, A" and B’
are algebraically closed and by Lemma 2.2, we have that C' = A’'NB’. Now (i) applied
to A" and B’ yields that .% 4 J_l_yc Zp. It only remains to observe that #¢c = Fanp
and that 4 C Fu, ¥ C Fp. O

Theorem 3.4 has the following immediate corollary, which can be viewed as a
generalization of the classical theorem of de Finetti.

CoroLrary 3.5. Let M be an Ng-categorical structure with no algebraicity that
admits weak elimination of imaginaries and let G = Aut(M). Consider a family
of random wvariables {&, : a € M} whose joint distribution is invariant under G.
Then these variables are conditionally independent over the G-invariant o-field. If the
G-invariant o-field is trivial and M is transitive, then the &, are i.i.d. (independent,
identically distributed).

Proof. — Let a1,...,an,b1,...,bp € M with {a1,...,a,} N {b1,..., b} = &. Then
it follows from Theorem 3.4 (ii) that

(50017"’7&171) (%lg (§b17'~'7£bm)

and it remains to observe that % is precisely the G-invariant o-field.
If M is moreover transitive, the variables £, must have the same distribution by
G-invariance. O

Remark 3.6. Using the properties of independence and an inductive argument, it is
possible to replace the no algebraicity and weak elimination of imaginaries assumption
above with a slightly weaker one. Namely, we only need that acl®® ANacl®® B = dcl®d @
for any disjoint A and B where B is a singleton, rather than for arbitrary A and B.

An action G ~ (X, p) is called ergodic if the G-invariant o-field is trivial. Thus in
the case of ergodic actions, one obtains genuine independence in Corollary 3.5.

Another interesting remark is that by virtue of Fraissé’s theorem, Corollary 3.5
can be applied even in situations in which there is no obvious group around. This
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is best illustrated by the following example, which is a well-known theorem of Ryll-
Nardzewski [RN57]. If € = (&, ...,&,-1) and = (10, .. .,Mn_1) are tuples of random
variables, we use the notation & = 7 to signify that £ and 77 have the same distribution.

Cororrary 3.7 (Ryll-Nardzewski). — Let pu be a Borel probability measure on RN
and denote by &: RN — R the projection on the i-th coordinate. Suppose that for all
ig < +++ < ig_1, we have that (&,,.... &) = (o,--.,&k—1). Denote by ¢: RN —
RN the one-sided shift defined by ¢(xg,1,...) = (x1,72,...) and suppose moreover
that v is ¢p-ergodic. Then i is a product measure.

Proof. — Here the relevant structure is (N, <) which has no automorphisms. Its age
is the class of finite linear orders. This age amalgamates and its Fraissé limit is the
countable dense linear order without endpoints (Q, <), which satisfies the hypothesis
of Corollary 3.5. Consider the random variables (£, : a € Q) whose distribution is
defined by

(Cags s &any) = (05 y&k—1) forallag < - - <ap_1 € Q.

In order to apply Corollary 3.5 and conclude, we only need to check that the Aut(Q)-
invariant o-field is trivial. Let %, be the o-field generated by &,...,&,—1. Sup-
pose that S is an Aut(Q)-invariant event and fix ¢ > 0. Then there exists n € N,

ag < -+ < ap—1 € Q and an event S. measurable with respect to the o-field gen-
erated by a0, .,&a, , such that P(SAS;) < e. Let ¢ € Aut(Q) be such that
g-(ag,...,an—1) =(0,...,n—1). Then g-S. is F,-measurable and by the invariance

of S, we have that P(SA(g . SE)) < e. As € was arbitrary, we conclude that S is
measurable with respect to the original o-field \/, .%,. As ¢ extends to an automor-
phism of Q, we obtain that ¢~1(S) = S. Now the fact that p is ¢-ergodic allows us
to conclude that S or its complement is p-null. ]

4. INVARIANT MEASURES ON THE SPACE OF LINEAR ORDERINGS

In this section, we fix a homogeneous Rg-categorical structure M with no algebraic-
ity that admits weak elimination of imaginaries and we let G = Aut(M). We denote
by LO(M) the space of all linear orders on M, that is

LOM)={z € QMXM . 0 is a linear order}.

LO(M) is a closed subset of 2M*M and thus a compact space. If z € LO(M), we will
use the more traditional infix notation a <, b instead of (a,b) € z. Sym(M) (and,
in particular, G) acts naturally on LO(M) as follows:

1

a<gzb <= g~ ca <z g tb

Our goal is to study the G-invariant measures on LO(M). There is always at least
one such measure i, which is, in fact, invariant under all of Sym(M). It is defined by

pulapg <g -+ <z ag—1) = 1/k!  for all distinct ag,...,ax—1 € M.
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Here and below, we employ the usual notation from probability theory and write
ag <g -+ <y ag—1 for the event {x € LO(M) : ag <z -+ <z ar—1}. We will call u,
the uniform measure. Glasner and Weiss [GW02] have shown that it is the only
measure invariant under the whole symmetric group. The proof is simple: the way the
tuple (ag, - ..,ar—1) is ordered gives a partition of LO(M) into k! pieces and for every
two elements of this partition, there is an element of Sym(M) that sends one to the
other, so they must all have the same measure.
Our main theorem is the following (cf. Theorem 1.2 in the introduction):

Tarorem 4.1. — Let M be a transitive, Rg-categorical structure with no algebraicity
that admits weak elimination of imaginaries and let G = Aut(M). Consider the action
G ~LO(M). Then exactly one of the following holds:

(i) The action G ~ LO(M) has a fixed point (i.e., there is a definable linear order
on M);
(ii) py s the unique G-invariant measure on LO(M).

We describe a method to construct the uniform measure on LO(M) that will help
illustrate our strategy for the proof. Let

Q={z€[0,1)™: 2(a) # 2(b) for all a # b}
and define the map 7: @ — LO(M) by
(4.1) a<q(z)b < z(a) <z(b) fora,be M.

The group G acts naturally on [0,1]", Q is a G-invariant set, and the map 7 is
G-equivariant. Thus any G-invariant measure on ) gives rise, via 7, to a G-invariant
measure on LO(M). In view of Corollary 3.5, the only G-invariant, ergodic mea-
sures on [0,1]™ are of the form MM where A is a measure on [0,1]. It is clear
that (AM)(Q) =1 iff X is non-atomic and in that case, m,(AM) = p, (this is true
because AM is Sym(M)-invariant and as we noted above, ju, is the only Sym(M)-
invariant measure on LO(M)). What we aim to show below is that if M does not
admit a G-invariant linear order, then the map x is invertible almost everywhere for
any G-invariant, ergodic measure on LO(M).

Let p be an ergodic, G-invariant measure on LO(M). We will use probabilistic
notation: we will denote by <, (or only by < if there is no danger of confusion)
a random element of LO(M) chosen according to p, by P the probability of events
and by E the expectation. If A is an event, we denote by 1 4 its characteristic function.
For every a € M, we denote by .%, the o-field fixed by G,.

For every 2-type 7 and every a € M, we define a random variable n] by

nm =Plc<al|#,), where tp(ac)=r.

The definition above does not depend on ¢ but only on 7. Indeed, if ¢’ € M is another
element with tpac’ = 7, and ¢ = P(¢ < a | %#,), then for every ¢ € L?(.%,),
invariance implies that (£, 1e<q) = (€, 1c<a), S0 L = (7 a.s.
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Lemma 4.2. The random variables (n])acym are i.i.d.
Proof. — This is a direct consequence of Corollary 3.5. O
The following is a basic fact about conditional expectation that we will need.

Lemva 4.3. — Let X > 0 be an integrable random variable, A be an event and .F be
a o-field. Suppose that X >0 on A. Then E(X | %) >0 on A a.s.

Proof. — Let Y = E(X | .%). If the conclusion of the lemma is false, there exists an
event C' C A such that P(C) > 0 and [,Y = 0. In particular, C C {Y = 0}. As the
set {Y =0} is in .#, we have:

X = Y =0,
Y=0 Y=0

contradiction. ]
If 7 is a 2-type and a € M, we define
D.(a)={beM :tpab=T1}.
The next lemma is the main tool that allows us to recover the order from the random

variables (n7)aens-

Lemma 4.4. Let the type 7 and a,b € M be such that D,(a) N D,(b) # &. Then
almost surely,

a<b = n, <n.
Moreover, for any ¢ € D,(a) N D, (b), we have that almost surely,

a<c<b = 7 <n.

Proof. It follows from Theorem 3.4 that for distinct a,b,c € M,
a<b.Z 1l c<a,
Fa

so, using the chain rule [Kal02, Prop. 5.8], we obtain that
(4.2) a<b Il c<a.

FaFp

Let ¢ € D,(a) N D,(b). Using the fact that .%, 1Lz, ¢ < b (which follows from
Theorem 3.4 and the chain rule), (4.2), and their variants obtained by exchanging a
and b, we have:

E(lo<s | FuTb) (05 —1a)

E(locs | ZaFp)(Plc<b| F) —Plc<al| Z,))
E(lacs | ZaPs) (E(lecs | FoFa) — B(leca | FuT))
= ( a<b( c<b — 1c<a) | g}yb)-
By Lemma 4.3, E(1,<; | Z0%) is a.s. strictly positive on the event a < b. This
implies that on a < b, we have that
= Bl = 1ecs) | £,5)
E(locy | FaF)
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The numerator is always non-negative, so n; < n; on a < b. For the second assertion
of the lemma, note that on a < ¢ < b, we have that 1,<p(Lecp — lecq) = 1. Thus
Lemma 4.3 applies again and the numerator is also strictly positive on that event. [J

We will also need a combinatorial fact about 2-types. For a 2-type 7 and a,be M,
we say that yo,y1,..., Y2, is an alternating T-path (or just a 7-path for brevity) be-
tween a and b if yo = a, yo, = b and tp(y2iy2ir1) = tp(Y2itoy2i+1) = 7 for all
i=0,...,n—1 and all of the nodes of the path are distinct (see Figure 4.1). The in-
terior of the path is the collection of all nodes except its endpoints. Being a 7-path is,
of course, a G-invariant condition.

Yan—1

Y1 Y3
a Y2 Ya Yon—2 b

Figure 4.1. An alternating 7-path between a and b

Lemva 4.5. — For all distinct a,b € M and any 2-type T, there is k € N such that
for any finite A C M, there is an alternating T-path of length k from a to b whose
interior avoids A. In particular, there are infinitely many T-paths between a and b of
length k with pairwise disjoint interiors.

Proof. — Let us first prove that there is an alternating 7-path between a and b. Write
¢ ~, d if there is an alternating 7-path between ¢ and d or ¢ = d. We check that ~,
is an equivalence relation. Symmetry and reflexivity are clear from the definition.
To check transitivity, consider a 7-path p; from ¢y to ¢; and a 7-path py from ¢
to co and suppose that cg, c¢1, and ¢y are distinct. By the no algebraicity assumption,
there exists an element g1 € Gy, c,} such that co ¢ g1 - p1. Similarly, there exists
g2 € Gie, e,y such that go - (p2 N {c1,c2}) N (91 - p1) = @. Now the concatenation of
g1 - p1 and gs - po witnesses that co ~, cs.

By transitivity, there is ¢ € M such that tp ac = 7. By the no algebraicity assump-
tion, the orbit G, - a is infinite, so the ~,-class of a is infinite. By transitivity and
weak elimination of imaginaries, it follows that the ~,-class of a is all of M, so there
is an alternating 7-path between a and b.

Now fix some alternating 7-path p between a and b and let k& be the length of p.
By the no algebraicity assumption, there is g € G, that moves p to a path whose
interior is disjoint from A. O

Denote by A7 the distribution of n7; this is a probability measure on [0, 1] and by
Lemma 4.2, it does not depend on a.
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Levmwa 4.6. Suppose that the measure A is non-atomic. Then for all a,b € M, we
have that, almost surely,
a<b <= n, <n.

Proof. — First, we suppose that D, (a)ND;(b) # @. The contrapositive of Lemma 4.4
gives us that in that case,

(4.3) g <My = a<b.

Next we consider the general case. Suppose that there exists an alternating 7-path
Yo, - - -, Yo, from a to b such that

(4.4) Moo < Mgy <7 < Myy -

Then for all 4, D;(y2;) N D+ (y2:42) # &, so by the above observation, we obtain that
a =1y <y < < yay = b Now condition on 77,7 and suppose that n] < /.
As the 7 are ii.d. with non-atomic distribution, for a fixed 7-path (yo,...,y2n)
between a and b, (4.4) holds with positive probability that only depends on n.
By Lemma 4.5, there exist infinitely many 7-paths of the same length between a
and b with disjoint interiors and whether (4.4) holds for each of them are independent
events with the same probability. Thus almost surely at least one of them happens
and we conclude that (4.3) holds for all a,b. For the reverse implication, it suffices to
notice that P(n7 =n;) = 0. O

Lemma 4.6 allows us to conclude in the case where A7 is non-atomic.

Lemma 4.7. — Suppose that for some type T, the distribution A7 is non-atomic. Then
M= [Hu-

Proof. — Define p: LO(M) — [0,1]™ by p(z)(a) = nI(x) (p is defined p-a.e.).
By Lemma 4.6, 7o p = id p-a.e. (7 is defined by (4.1)). By Lemma 4.2, p,pu = (A7)M.
Applying 7 to both sides, we obtain that

= T Px b = W*()\T)A/I = Hu- 0

Now we are left with the case where the distribution A™ has atoms for all 2-types 7
and we will eventually conclude that there is a G-invariant linear order on M.

From here on, as we will deal with several measures simultaneously, we will in-
corporate the measure in our notation. If y is an ergodic measure on LO(M), 7 is
a 2-type, and p € [0,1] is an atom for the distribution A", we define a new measure
V,,rp ON basic clopen sets by

(45) Py, (a0 < - <ap-1)=Pulag < <ap-1lng, =--=mng_, =p),
where ag,...,a,_1 are pairwise distinct elements of M. We note that as by Theo-
rem 3.4,

ag <+ < Ak—1,MNags+++>Nag_1 J-l-nbov"wnbmfl

for any {bo,...,bm-1}N{ag,...,ax—1} = &, we can condition additionally on Mo =
---=mnj = pon the right-hand side of (4.5) without changing the result.
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For the next lemma, we will need the following well-known general ergodicity cri-
terion.

Provosirion 4.8. — Let H be a group and let H ~ (X, 1) be a measure-preserving
action. Suppose that the collection

{Ae MALG(X,p):3he Hh-Al A}
is dense in MALG(X, ). Then the action H ~ X is ergodic.

Proof. Suppose that B € MALG(X, u) is H-invariant. For every ¢ > 0, there exist
A € MALG(X, p) and h € H such that u(AAB) < e and h- A 1L A. We have that

2(u(A) — u(A)?) = W(AAR - A) < W(BAR - B) + 2¢ = 2¢.
Taking a limit as ¢ — 0 yields that pu(B) — u(B)? = 0, so that u(B) =0 or 1. O

Lemma 4.9, — Let p be a G-invariant, ergodic measure on LO(M), T be a 2-type,
and p be an atom for \7. Then v, -, estends to a G-invariant, ergodic measure on

LO(M).

Proof. — For brevity, write v = v, ,. To define v on a general clopen set U, we
represent it as a disjoint union of basic clopen sets and use (4.5). It follows from
the remark after (4.5) that this is well-defined and gives rise to a finitely additive
measure on the Boolean algebra of clopen subsets of LO(M). Now it follows from the
Carathéodory extension theorem that v extends to a Borel measure on LO(M).

The G-invariance of v follows from (4.5) and the G-invariance of p. Finally, to
check ergodicity, we will use Proposition 4.8. If A = {ag,...,ax—1} C M, let ¥4 be
the Boolean algebra generated by the events {{ai <g aj}:4,j< k} and note that
by regularity of v, |J, %4 is dense in the measure algebra MALG(LO(M),v). Now
fix A and use the no algebraicity assumption to find g € G such that g- AN A = @.
In order to apply Proposition 4.8, we will check that g - %4 1L, 44. It suffices to see
that for any two permutations (ig,...,ik—1) and (jo,...,jk—1) of (0,...,k — 1), the
events By = {a;, <z -+ <z a;,_,} and B> = {97 - aj, <z - <z g7 - aj,_,} are
v-independent. Let

Cr={n=--=m, ,=p and Co={nj1, = =101, , =D}
(here the random variables are computed using p). It follows from Theorem 3.4 that
Boolean combinations of F;,C; are p-independent from Boolean combinations of
FE5, C5. Using this, we have:

PV(El N EQ) = PM(EI N Ey | cin 02)
=Pu(E1 | C1)Pu(E2 | C) =Py (E1)Py(Es).

This concludes the proof. O

If 7 is a 2-type, say that a measure p on LO(M) respects T if for all a,b,c € M
such that tpac = tpbe = 7 and p-a.e. x € LO(M), ¢ is not between a and b in the
order <,. Note that the uniform measure u, does not respect any type 7.
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Lemwva 4.10. Let p be a G-invariant, ergodic measure on LO(M), 7 be a 2-type,
and p be an atom for A\T. Let v = v, . Then the following hold:

(i) v respects T;

(ii) If 7’ is a 2-type and p respects 7', then v respects 7'.
Proof

(i) Let a,b,c € M be such that tp ac = tpbc = 7. Using Lemma 4.4, we have that

P,la<e<b)=Pula<c<b|n, =mn =n;=p)
P,(a<c<bandn] =n])
P.(ng =nj =ni =p)

We obtain similarly that P, (b < ¢ < a) =0.

(ii) This is clear from the definition. O

=0.

Levma 4.11. — Suppose that p is a G-invariant, ergodic measure on LO(M) which
respects all 2-types. Then p is a Dirac measure.

Proof. — We will prove that the order between two elements a,b € M is almost surely
determined by tp ab. More formally, we will show that for all a # b, we have that a.s.,

tpab=tpa't) = (a<b < d <V').
What the hypothesis gives us is that for all ¢,d,e € M, a.s.,
(4.6) tpce =tpde = (c<e < d<e).

Let 7 = tpab = tpa’l’ and use Lemma 4.5 to construct a 7-path a = yo,...,y2, = @’
from a to o’ whose interior avoids b and ¥’. Applying (4.6) consecutively, we obtain

that:
a<b <<= a<y <= YP<y <= Y <y < ---

= Yop_1 <a = d <V,

which concludes the proof. O
Now we can complete the proof of the theorem.

Proofof Theorem 4.1. — Let u be a G-invariant, ergodic measure on LO(M). Enu-

merate all 2-types as 79, ..., Tp—1. If A}? is non-atomic, then we can apply Lemma 4.7
and conclude that y = p,. Otherwise, we construct a sequence of invariant, ergodic
measures flo, . . ., fin such that for all i < n, u; respects 7o,...,7;—1 and A} has an

atom. Set puo = p and suppose that p; is already constructed. Set pit1 = vy, 7i.ps»
where p; is some atom for )\Zg By Lemma 4.10, p;y1 respects g,..., ;. Moreover,
A+, must have an atom: otherwise, by Lemma 4.7, y; 11 = fty, which is not possible
because p, has full support and p;+1 does not (as p;y1 respects 7;). Finally, apply
Lemma 4.11 to conclude that pu, is a Dirac measure, which, by invariance, implies
that the action G ~ LO(M) has a fixed point.

Thus we have proved that either u, is the unique ergodic, invariant measure on
LO(M) or there is a fixed point for the action. However, as convex combinations of
ergodic measures are dense in the space of all invariant measures (see, e.g., [Phe01,
§12]), this implies that in that case, p, is indeed the unique invariant measure. O
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Proofof Corollary 1.3. Let Z C LO(M) be any minimal subsystem. By the hypoth-
esis, Z is not a point and it is a proper subset of LO(M). If G is amenable, then there
must be a G-invariant measure supported on Z, which contradicts Theorem 4.1. [

Proof of Corollary 1.4. By [KRO7, Prop. 6.4], the Hrushovski property implies that
there are compact subgroups Ko < K; < --- of G with |J,, K, dense in G. In partic-
ular, G is amenable.

If K < G is any compact subgroup, then the orbits of K on M are finite. If M
admits a G-invariant linear order, then the K-orbits must be trivial, so K is trivial.
We conclude that there is no G-invariant linear order on M, so, by Corollary 1.3, the
action G ~ LO(M) must be minimal. This implies that M has the ordering property
(see [NVT13, Th. 4]). O

5. EX/\MI’LES AND OTHER INVARIANT MEASURES

5.1. ExampLEs. We briefly discuss some examples that show that the assumptions
of Theorem 1.1 and Theorem 1.2 are mostly necessary. This section requires more
familiarity with Fraissé theory than the rest of the paper.

5.1.1. Transitivity. — Let £ be a language with two unary predicates P and @) and
consider the age consisting of all .Z-structures for which P N @Q = & and every point
satisfies either P or Q. Let M be its Fraissé limit. Then one can randomly order M as
follows. Let (&, : a € M) be uniform, i.i.d. on [0,1] and define an Aut(M)-invariant
random order < on M by declaring all elements of P to be smaller than all elements
of Qand a < b <= &, < & if a and b both belong to P or to Q. This shows that
the transitivity assumption in Theorem 1.2 is necessary.

5.1.2. No algebraicity. Let V be the countable-dimensional vector space over Fg,
the field with two elements. Let V* be its dual: the space of linear maps from V
to Fo. V* embeds as a subspace of FY and, being a compact group, has a Haar
measure which is invariant under the action of Aut(V'). This gives an invariant, ergodic
measure on FY which is not a product measure and shows that one cannot omit the
no algebraicity assumption in Theorem 1.1.

The same example also shows that this assumption cannot be omitted in Theo-
rem 1.2. The universal minimal flow of Aut(V') is a proper subspace of LO(V) (see
[KPTO05, Th.8.2]) and it carries a (unique) invariant measure [AKL14, §10]. This
measure can be obtained as a factor of the measure on FY constructed above.

5.1.3. Weak elimination of imaginaries. In the presence of Aut(M )-invariant equiv-
alence relations on M, it is easy to construct distributions for (¢, : a € M) for which
the random variables are not independent. One can, for example, toss a coin for each
equivalence class and set £, = 0 or 1 depending whether the coin toss for the class
of a resulted in heads or tails.

In view of Remark 3.6, it is more interesting to ask whether the weak elimination
of imaginaries assumption can be replaced just by requiring primitivity of the action
Aut(M) ~ M, that is, the absence of invariant equivalence relations on M. (This
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would also have the advantage of being much easier to check.) It turns out that the
answer is negative, as the following example shows.

Let the signature .Z consist of two unary relations Sy and S; and a binary rela-
tion R. We consider the class &7 of finite bipartite graphs viewed as .Z-structures,
where the two parts of the graphs are labeled by Sy and S7 and R is the edge relation.
For a point a, we denote by R(a) the set of R-neighbors of a. For elements of <, we re-
quire furthermore that the degree of every point in Sy is 2 and that |R(a) N R(b)| < 1
for all @ # b in Sp. It is easy to check that this is an amalgamation class; let N be
the Fraissé limit. Denote M = {a € N : Sp(a)} and P = {a € N : Si(a)}. The
class &7 is not hereditary, so N is not fully homogeneous but we do have homogeneity
for algebraically closed, finite substructures of N. A finite substructure A C N is
algebraically closed iff for every a € AN M, the degree of a (calculated in A) is 2
(that is, A € &7).

Now consider M as a structure on its own (in a different signature) with relations
given by the traces of all definable relations on N. As N is Wy-categorical, M is too.
Using the homogeneity of N, it is easy to check that M has no algebraicity and
that the action Aut(M) ~ M is primitive. Indeed, the action of Aut(M) on pairs
of distinct elements of M has exactly two orbits: {(a,b) : |R(a) N R(b)] = 1} and
{(a,b) : R(a) N R(b) = @} and none of them is an equivalence relation.

There is a homomorphism Aut(N) — Aut(M) given by the natural action of
Aut(N) on M. As the elements of P can be recovered as imaginary elements of M,
it turns out that this homomorphism is an isomorphism. With all of this in mind,
it is easy to construct non-independent, Aut(M)-invariant distributions of random
variables (&, : @ € M). For example, we can start with i.i.d. (n, : b € P) uniform in
[0,1] and define

£a = min{m, : b € P,a Rb}.

This also allows to construct non-uniform, invariant measures on LO(M): just define
a random order < on M as usual by a < b <= &, < &.

Ro-categoricity. — We do not know whether Rg-categoricity is necessary in either
Theorem 1.1 or Theorem 1.2, although it is crucial for our proofs. In the absence of R-
categoricity, however, the other assumptions may need tweaking as the correspondence
between model theory and permutation groups breaks down.

5.2. Oruer INnVARIANT MEASURES ON LO. — One may ask, under the assumptions of
Theorem 4.1, what other ergodic, invariant measures there are on LO(M) apart from
the uniform measure and fixed points. A slight variation of the method we used to
construct p, yields the following. Let A be a probability measure on [0, 1] and let
S ={z€[0,1] : A({z}) > 0} be the set of its atoms (it can be finite or countable).
Let FF C LO(M) be the set of G-fixed points (which, by Theorem 4.1, has to be
non-empty if we want to construct anything interesting) and finally, let f: S — F
be an arbitrary function. Note that Ry-categoricity of M implies that F' is finite. Let
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7: [0,1]M — LO(M) be defined (\M-a.e.) by
a <x(z) b < z(a) < z(b) or (2(a) = z(b) and a <j(z(a)) b).

Then 7, (AM) is an invariant, ergodic measure on LO(M).

For many structures M, the methods we developed for the proof of Theorem 4.1
can be used to show that all ergodic, invariant measures on LO(M) can be obtained
as above; however, in the presence of definable cuts, more complicated constructions
are possible. We just give one example.

Consider the language £ = {<, f}, where < is a binary relation and f is a unary
function. Let &7 be the age consisting of all finite .Z-structures where < is interpreted
as a linear order and f is an involution without fixed points. It is easy to check that .o
amalgamates; let N be its Fraissé limit. As for every n, the structure generated by n
points is of size at most 2n and there are only finitely many structures of any given
finite size, N is Ng-categorical. Let

M={aeN:f(a)<a} and M ={a€ N: f(a)>a}.

It follows from homogeneity that M and M’ are the two orbits of the action
Aut(N) ~ N. Now consider M as a structure on its own with relations defined as
the traces of definable relations from N (in particular, the relations a < b, f(a) < b,
fla) < f(b) for a,b € M are definable in the structure M). From a permutation
group perspective, we can consider the homomorphism 7: Aut(N) — Sym(M) given
by the natural action Aut(N) ~ M and then Aut(M) = w(Aut(NV)) (this is because
Aut(M) and Aut(N) have the same orbits on M* for every k). It follows from
the homogeneity of N that M is transitive, Np-categorical, and has no algebraicity.
(The algebraic closure operator in N is given by acl(A) = AU f(A).) One can also
verify weak elimination of imaginaries, for example using the criterion from [Rid19,
Prop. 10.1].

We can construct an invariant measure on LO(M) as follows. Let (1q)aecn be a
collection of i.i.d., Bernoulli, {0, 1}-valued random variables, where each of the two
values is taken with probability 1/2, and define a random order < on M by

a=b < f1(a) < (),

where f = id and f' = f. This random order is different from the ones considered
above.
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