[Une théorie des résidus pour les fractions rationnelles tordues]
Cet article constitue un premier pas en direction du développement de méthodes analytiques pour les polynômes tordus. Précisément, notre principal objectif est de développer une théorie des résidus pour les fractions rationnelles tordues (qui sont, par définition, les quotients de deux polynômes tordus). Nous démontrons en particulier des analogues tordus de la formule des résidus et de la formule classique de changement de variables.
This paper constitutes a first attempt to do analysis with skew polynomials. Precisely, our main objective is to develop a theory of residues for skew rational functions (which are, by definition, the quotients of two skew polynomials). We prove in particular a skew analogue of the residue formula and a skew analogue of the classical formula of change of variables for residues.
Accepté le :
Publié le :
Keywords: Residues, skew polynomials
Mot clés : Résidus, polynômes tordus
Xavier Caruso 1
@article{JEP_2021__8__1159_0, author = {Xavier Caruso}, title = {A theory of residues for skew~rational~functions}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1159--1192}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.169}, language = {en}, url = {https://jep.centre-mersenne.org/articles/10.5802/jep.169/} }
TY - JOUR AU - Xavier Caruso TI - A theory of residues for skew rational functions JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 1159 EP - 1192 VL - 8 PB - École polytechnique UR - https://jep.centre-mersenne.org/articles/10.5802/jep.169/ DO - 10.5802/jep.169 LA - en ID - JEP_2021__8__1159_0 ER -
Xavier Caruso. A theory of residues for skew rational functions. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 1159-1192. doi : 10.5802/jep.169. https://jep.centre-mersenne.org/articles/10.5802/jep.169/
[1] - “Duals of linearized Reed-Solomon codes”
[2] - Free rings and their relations, London Math. Soc. Monographs, vol. 19, Academic Press, Inc., London, 1985 | MR | Zbl
[3] - “Azumaya algebras and skew polynomial rings”, Math. J. Okayama Univ. 23 (1981) no. 1, p. 19-32 | MR | Zbl
[4] - “Azumaya algebras and skew polynomial rings. II”, Math. J. Okayama Univ. 26 (1984), p. 49-57 | MR | Zbl
[5] - “Non-commutative polynomials and cyclic algebras”, Ann. of Math. (2) 35 (1934) no. 2, p. 197-208 | DOI | MR | Zbl
[6] - “Pseudo-linear transformations”, Ann. of Math. (2) 38 (1937) no. 2, p. 484-507 | DOI | MR | Zbl
[7] - Finite-dimensional division algebras over fields, Springer-Verlag, Berlin, 1996 | DOI | Zbl
[8] - “A general theory of Vandermonde matrices”, Exposition. Math. 4 (1986) no. 3, p. 193-215 | MR | Zbl
[9] - Lectures on modules and rings, Graduate Texts in Math., vol. 189, Springer-Verlag, New York, 1999 | DOI | MR | Zbl
[10] - “Vandermonde and Wronskian matrices over division rings”, J. Algebra 119 (1988) no. 2, p. 308-336 | DOI | MR | Zbl
[11] - “Principal one-sided ideals in Ore polynomial rings”, in Algebra and its applications (Athens, OH, 1999), Contemp. Math., vol. 259, American Mathematical Society, Providence, RI, 2000, p. 333-352 | DOI | MR | Zbl
[12] - “Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring”, J. Algebra 504 (2018), p. 587-612 | DOI | MR | Zbl
[13] - “Linear equations in non-commutative fields”, Ann. of Math. (2) 32 (1931) no. 3, p. 463-477 | DOI | MR | Zbl
[14] - “Theory of non-commutative polynomials”, Ann. of Math. (2) 34 (1933) no. 3, p. 480-508 | DOI | MR | Zbl
[15] - “Differential equations in characteristic ”, Compositio Math. 97 (1995) no. 1-2, p. 227-251 | Numdam | MR | Zbl
Cité par Sources :